
 

 

 

 

IMPLEMENTATION OF 
TRAVELING SALESMAN’S 

PROBLEM USING 
HOPFIELD NEURAL NETWORKS 

 

 

FINAL PROJECT REPORT 

(Fall 2011) 

 

EECS 484 Computational Intelligence 

December 9, 2011 

 

 
 

Arunprasath Shankar 

 
 



Solving Traveling Salesman’s Problem 
Using Continuous Hopfield Network 

 

Arunprasath Shankar 

Department of Electrical Engineering and Computer Science  

 axs918@case.edu 

 

 

ABSTRACT 

I have proposed an implementation of an algorithm in neural network for an approximate 
solution for Traveling Salesman’s Problem. TSP is a classical example of optimization 
and constrain satisfaction problem, which falls under the family of NP-complete of 
problems. I have used Continuous Hopfield network to find the solution for the given 
problem. 

 

PROBLEM 

There is a list of cities that are to be visited by a salesman. A salesman starts from a city 
and come back to the same city after visiting all the cities. Here the objective is to find 
the path, which follows following constrains 

1) Salesman has to visit each city. He should not leave any city unvisited. 

2) Each city should be visited only one time. 

3) The distance that he travels till he returns back to the city he has started should be      
minimum. 

 

INTRODUCTION 

The traveling salesman problem (TSP) is well known in optimization. The TSP problem 
is NP-complete problem. There is no algorithm for this problem, which gives a perfect 
solution. Thus any algorithm for this problem is going to be impractical with certain 
examples. 



Here we assume that we are given n cities, and a non-negative integer distance Dij 
between any two cities i and j. We try to find the tour for the salesman that best fits the 
above- mentioned criterion. 

There are various neural network algorithm that can be used to try to solve such constrain 
satisfaction problems. Most solution have used one of the following methods 

• Hopfield Network 

• Kohonen Self-organizing map 

• Genetic Algorithms 

Here an approximate solution is found for TSP using Hopfield network. 

 

HOPFIELD NETWORK 

Hopfield network is a dynamic network, which iterates to converge from an arbitrary 
input state. The Hopfield Network works as minimizing an energy function. 

The Hopfield net is fully connected network. It is a weighted network where the output of 
the network is fed back and there are weights to each of this link. The fully connected 
Hopfield network is shown in following figure. 

 

 

 

Here we use n2 neurons in the network, where n is the total number of cities. The neurons 
here have a threshold and step- function. The inputs are given to the weighted input node. 
The network then calculates the output and then based on Energy function and weight 
update function, converges to the stable solution after little iteration. The most important 
task on hand is to find an appropriate connection weight. It should be such that invalid 
tours should be prevented and valid tours should be preferred. 
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HOPFIELD NETWORK 
Hopfield network is a dynamic network, 
which iterates to converge from an 
arbitrary input state. The Hopfield 
Network works as minimizing an energy 
function.  
The Hopfield net is fully connected 
network. It is a weighted network where 
the output of the network is fed back and 
there are weights to each of this link. 
The fully connected Hopfield network is 
shown in following figure. 
Here we use n2 neurons in the network, 
where n is the total number of cities. The 
neurons here have a threshold and step-
function. The inputs are given to the 
weighted input node. The network then 
calculates the output and then based on 
Energy function and weight update 
function, converges to the stable solution 
after few iteration. The most important 
task on hand is to find an appropriate 
connection weight. It should be such that 
invalid tours should be prevented and 
valid tours should be preferred.  
 

 
Figure : Fully Connected Hopfield 

Network for TSP for 3 cities. 
The output result of TSP can be 
represented as following. The example 
here is for 4 cities. The 4 cities TSP need 
16 neurons.  

 
 

 
 
 
 

 
Figure : Tour Matrix obtained as the 

output of the network. 
 
The corresponding visiting route, in  the 
above example is 
 City2‡‡ City1‡‡City4‡‡City3‡‡City2  
So the total traveling distance is 
 D = D21 + D14 + D43 + D32.  
 

NETWORK INPUTS 
 
The inputs to the network are chosen 
arbitrarily. The initial state of the 
network is thus not fixed and is not 
biased against any particular route. If as 
a consequence of the choice of the 
inputs, the activation works out to give 
outputs that add up to the number of 
cities, and initial solution for the 
problem, a legal tour will result. A 
problem may also arise that the network 
will get stuck to a local minimum. To 
avoid such an occurrence, random noise 
is generated and added.  
Also there are inputs that are taken from 
user. The user is asked to input the 
number of cities he want to travel and 
the distance between those cities which 
are used to generate the distance matrix. 
Distance matrix  in n*n square matrix 
whose principal diagonal is zero. The 

 #1 #2 #3 #4 
C1 0 1 0 0 
C2 1 0 0 0 
C3 0 0 0 1 
C4 0 0 1 0 



GENERAL PROCEDURE: 

The use of Continuous Hopfield Feedback Network to solve 10-city traveling salesman 
problem (TSP) in which the coordinates are given as follows: 

1 (0.4000,0.4439), 2 (0.2439,0.1463),
3 (0.1707,0.2293), 4 (0.2293,0.7610),
5 (0.5171,0.9414), 6 (0.8732,0.6536),
7 (0.6878,0.5219), 8 (0.8488,0.3609),
9 (0.6683,0.2536),

city city
city city
city city
city city
city ci

= =

= =

= =

= =

= 10 (0.6195,0.2634)ty =

 

  

Basic network parameters are: 

0500, 200, 0.02A B D C µ= = = = =  

In general, to solve any optimization problem using Hopfield Neural Networks, we must 
follow the procedure listed below with certain assumed prerequisites: 

(1) An appropriate representation corresponding to the problem to be solved. 

(2) A network energy function needs to be constructed to a minimum value so as to solve 
the specific problem (in our case TSP) 

(3) This energy function is then compared to the standard form. Neural network weights 
and bias expressions are introduced to meet the optimal solution for the problem. 

(4) By introducing network state update formula and by using iterative update formula –
an optimal solution is obtained. 

 

MODIFIED GENERAL PROCEDURE FOR SOLVING TRAVELING 
SALESMAN PROBLEM 

To solve Traveling Salesman Problem by using Continuous Hopfield Networks, the 
general procedure can be modified as follows: 

(1) Of N cities in TSP problem, in the travel route transposition matrix, each row and 
each column has only one element = 1, the rest is 0. One element of its abscissa X 
represents the city name, the vertical axis I represents the city's position in the access 
route. 

(2) The network energy function consists of four parts as shown below, so as to ensure 
the legitimacy of the length of the shortest route. 

(3) The equation for the energy function is obtained by comparing it with the standard 
form and is given as below. This equation is used to get the network weights and the bias.  



First a representation scheme for the tour needs to be found, or, more specifically, the 
tour has to be encoded by the states of a set of neurons. Hopfield and Tank used a scheme 
in which N2 neurons are needed for a N-city problem. The tour can be conveniently 
represented by an N×N matrix. If the ij-element is equal to one, then city i has the jth 
position in the tour.  

 

 

An example for the matrix representation of the TSP for a 4-city tour can be seen below:    

 1 2 3 4 

A 0 1 0 0 

B 0 0 0 1 

C 0 0 1 0 

D 1 0 0 0 

 

The matrix indicates that city D is the first visited city. The total tour is D-A-C-B. 

Secondly an appropriate Hopfield energy function and the corresponding weights have to 
be determined. Hopfield and Tank proposed the following energy function: 

2
, 1 , 1( ) ( )

2 2 2 2xi xj xi yi xi xy xi y i y i
x i j i i x y x x i x i y x

A B C DE v v v v v n d v v v+ −
≠ ≠ ≠

= + + − + +∑∑∑ ∑∑∑ ∑∑ ∑∑∑
 

 

(4) Thus, the network update formula is: 

, , 1 , 1(1 ) (1 ) ( )xi yj xy ij ij xy xy j i j i

xi

W A B C Dd
I C n

δ δ δ δ δ δ+ −= − − − − − − +⎧⎪
⎨

= ⋅⎪⎩
 

 

 

 

 

 

 



PROGRAMMING 

Based on the above derivation, we can design the Hopfield network in MATLAB to solve 
the TSP. 

 

The program obeys the following conditions: 

* Program output rule: As the end of each iteration cannot guarantee that the solution 
is legitimate, and when there is a large number of cities, it is inconvenient for the people 
to check the legality of the optimum route. Therefore the program should be able to state 
the legitimacy of the solution after the end of each iteration and if a legal solution is 
achieved, the program should terminate otherwise again start solving. 

* Parameter adjustment: In the experiment, it is found that when the network 
parameters take the values given for the first time, they have little access to legal 
solutions, observed after the end of each iteration of the solution, found that most of the 
next only eight have each row and column 1 and only one case, in addition to two all 0. 
This shows that the energy function is vital in ensuring the legitimacy of N in a relatively 
small proportion manner. Also the parameter choice is an important criterion to be noted.  

* Iteration condition: Provided the weights are symmetric, the hop field networks can 
be used as an approximate method for solving 0-1 optimization problems because the 
network converges to a minimum of the energy function. The proof of stability of such 
Hopfield network relies on the fact that the energy function is a Lyapunov function. 
Hopfield and Tank showed that if a combinatorial optimization problem can be expressed 
in terms of a quadratic energy function of the general form, a Hopfield network could be 
used to find locally optimally solutions of the energy function, which may translate to 
local minimum solutions of the optimization problem. 

 

THE PROGRAM FLOW 

I. Initialization: the number of cities, the city coordinates, and the network parameters 

II. Transposition matrix with random numbers and status array initialization 

III. Array and transposed array of state, a 1000-step synchronous update, the solution is 
finally transposed matrix V 

IV. To determine the legitimacy derived from V, if a legal solution, the order is given 
access, travel route maps and route length, the program ends; otherwise, go to step II. 

 

 

 



 

RESULTS: 

 

1. BASIC RESULTS 

Take the number 10 in the city, take the basic parameters of the network is too run the 
program and statistical results, were: 

0500, 1000, 0.02, 0.0001A B D C lamdaµ= = = = = =  

 

Run the program and statistical results, were: 
 

Iteration Count  200 	
  
Number Of Times The Legal Solution  29 
Optimal Number  1 
Optimal Solution (Route Length)  2.6907 
Number Of Times The Sub-Optimal Solution  1 
Sub-Optimal Solution (Route Length)  2.7693 
Distance Solution1 (Total Line Length)  2.7782 
Distance Solution2 (Total Line Length)  2.8352 
The Average Time Required For One Run (s)  0.8813 
   

 

 

Figure1 The optimal route (2.6907)          Figure2 The optimal solution matrix transposition 

 

 



 

 

 

 

  Figure 3 Sub-optimal route (2.7693)    Figure 4  Sub-optimal matrix transposition 

 

 

 Figure Sub-Optimal Solution (Route Length)                  Figure 6  Matrix transposition 

 

2. INFLUENCE OF PARAMETERS 

(i) Run-time estimate 

For number N in the city, step size lambda is fixed and the case is updated each time 
solving the time spent V which is also fixed, therefore, more legitimate solution is 
obtained every time spent by comparing the number of cycles can be carried out. In the 
following discussion of the impact parameter, the number of cycles was compared by the 
relative length of time. 



(ii) Weights A, B, C 

Weight matrix A, B, C, D reflects the relative size of the solution requirements, in which 
A, B, C is the solution to ensure the legal entry of weights. A is 1 per line to ensure that 
the weight coefficient; ensure B is at most one 1 per column weights; C is to ensure that 
there are N ones; D - The total length of the shortest route is to ensure the item weights. 

When C is relatively small compared to A and B (A = B = 500, C = 200), the experiment 
is difficult to appear legitimate solution, the majority of the whole solution has two zeros, 
the program often falls into an infinite loop. This shows that the solution of the 
legitimacy of the third did not receive enough attention. Therefore, when there is a 
gradual increase in C, observe the result. When C is 500, we still do not notice any 
significant improvement in the situation. When C is taken as 1000, the legal solution 
significantly increases the frequency (200 times the experiment, the average once every 
6.7 times the legal solution), which also appeared in the optimal solution (see 1 in the 
experimental results); when C is taken as 2000, it is the average of once every six full-
solution method, which is also seen an optimal solution. 

Summary, minor changes in C cannot guarantee the legitimacy of the solution, C larger 
when the frequency was significantly increased legal solution, but the shortest route C is 
large the right term coefficient D is relatively small; hence, the frequency of the optimal 
solution has declined. 

(iii) Weights D 

Weight coefficient D reflects the length of the route the proportion of energy function. 
When D is taken as 200, an average of once every 1.5 times the legal solution, but the 
line length is very large, generally about 4.0, there can hardly be the optimal solution; 
when D is taken as 500, an average of once every 6.7 times the legal solution, optimal 
solution, which also appeared (see 1 in the experimental results); when D is taken as 600, 
appear legitimate solution decreased the frequency; when D is taken as 700, 151 running 
once distance solution; when D is taken as 1000, the program is almost caught in an 
infinite loop, there is very low risk of legal solutions. 

Summary, D is small, relatively stronger legitimacy of mediation, resulting in a greater 
frequency of legal solutions, but the line length of the great; D is large, there has 
decreased the frequency of legal solutions, but the route length was significantly smaller, 
appear to increase the relative likelihood of the optimal solution; and when the D is too 
large, due to too much emphasis on line length, is difficult to appear legitimate solution, 
so the program is easy to freeze. 

(iv) Step lambda 

Lambda of 0.0001, when the results as described in 1; when lambda taken to be 0.001, an 
average of once every 2.5 times the legal solution. Visible, lambda is large, larger 
changes in the state matrix, the solution will increase the frequency of appear legitimate; 
When lambda is too large, the state matrix becomes difficult due to dramatic changes 
appearing in the legitimate solution; When lambda is small, the update is too slow or 
even frozen. 



(v) Initial 𝜇! 

 𝜇!  taken as 0.02 when the results obtained as described in 1; when 𝜇!  taken as 0.005, the 
average once every 3.6 times the optimal solution; 𝜇!  taken as 0.3, an average of once 
every 41 full-Solving.   

𝜇! small 

Visible, small, discrete activation function value tends to shorten the optimization time 
there, but less prone to the optimal solution 

𝜇! larger 

Greater activation function is too flat, not conducive to convergence. 

 

3. CHANGE THE NUMBER OF CITIES 

The number of cities is given below for 5 and 11 cities case, when the network 
parameters gives constant results. From the experimental results, decrease the number of 
cities, time optimization; we can see the solution to be legitimate and a significant 
increase in frequency of the optimal solution. 

In addition to that, because of the impact of network parameters on the experiment with a 
similar front, not repeat them here. 

(1) The number of 11 cities (11 cities in the coordinates (0.9125,0.9568)) 

Occur once every 7.5 times the legal solution, the solution of which a route length of 
3.1382, graphics are as follows: 

 

 

Figure 7   11 City TSP 

 

 



(2) The number of cities 5 (taking the coordinates of the top 5 cities) 

An average of once every five times the legal solution, 35 experiments appears three 
times in the optimal solution. Optimal solution is 1.8324, which also occur several times 
solution 1.8904, graphics are as follows: 

   

 

 

Figure 8       5 City TSP (Optimal Solution) 

 

 

 

Figure 9       5 City TSP 

 

 
 
 
 
 
 
 
 



CONCLUSION 
 
I think Hopfield’s idea to solve the TSP with a dynamic system is very elegant. However, 
according to the experiences gained by this project, I conclude that the Hopfield net is not 
the best effective methodology that is applicable for solving combinatorial optimization 
problems. Hopfield net produces only a very low percentage of optimal solutions. The 
problem is that a constrained optimization problem is transformed into an unconstrained 
one. Furthermore, the optimal choice of the coefficients of the energy function is 
unknown.  
 
A second disadvantage of the Hopfield net is that N2 neurons are needed to solve a N-city 
TSP. Hence computation time increases exponentially with the number of cities. The 
calculation time of my program for a 10-city TSP and 1000 time steps, for example, was 
about 8.5s on a Mac with a clock rate of 2 GHz. Therefore, even when using a faster 
programming language, it is not very efficient to use a Hopfield net to solve TSPs with 
hundreds or thousands of cities. 
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