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In order to improve energy-effectiveness in wireless sensor network, in practice some
sensors in observation points are selected not to gather data. In this case, the insufficient 
data gathered by the rest of sensors have to cover the total network so that the complete 
information of the whole environment could be estimated rationally, which is similar to
compressive sensing. However, the process of estimation has to cost a lot of energy, which 
is a crucial problem. This paper proposes a practical and effective information coverage 
approach in which an actual constrained condition is considered for consensus estimation 
to reduce unnecessary energy cost reasonably. In our experiments, the method has been 
proved valuable and feasible.

© 2014 Elsevier B.V. All rights reserved.

 
 

 

1. Introduction

In wireless sensor network, it is vital to guarantee 
energy-effectiveness for prolonging the lifetime of the net-
work. In this case, some sensors are considered not to 
gather data to reduce energy cost, by e.g. a sleep sched-
ule [1]. This approach is effective and practical for power-
saving. However, environment information of the areas 
where sleep sensors are deployed cannot be sensed di-
rectly, therefore information coverage has been a potential 
challenge. It means that the rest of sensors (unsleeping or 
wake) have to estimate these un-sensed areas to perceive 
the global situation of the network. Consensus estimation 
[2,3] had been proposed to apply to the values of part of 
sensors to estimate one of their neighbors. That is, infor-
mation coverage could be achieved by this scheme ratio-
nally. Nevertheless, there is a challenge for current consen-
sus estimation methods in actual applications, which is in 
that it is unnecessary for all wake sensors to undergo con-
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sensus estimation, since some of them have no real effect 
on estimation. In other words, these approaches have un-
necessary information exchange in the procedure of con-
sensus which is bound to waste energy. Hence, an effec-
tive information coverage approach should be designed for 
consensus estimation.

This Letter focuses on the actual constraint in the pro-
cess of consensus estimation. The previous work of Q. Ling 
et al. [4] is related to ours. However, our design is more 
practical for information coverage by distinguishing differ-
ent wake nodes, and energy cost of computation and com-
munication in the network could be further reduced rea-
sonably. Meanwhile, two influence parameters are adopted 
to embody the relationship between the number of wake 
sensors and accuracy of estimation separately to generate 
the formulation. In our work, we firstly optimize the con-
sensus estimation formulation in practice. In detail, wake 
sensors are divided into two kinds, one being crucial sen-
sors in whose neighbors there is at least one sleep sensor, 
and the other is common sensors in whose neighbors there 
is not any sleep sensors. In addition, wake sensors are con-
sidered to be capable of finding a neighboring node waking 
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at the same time. Obviously, the environment information 
of the area where sleep sensors are deployed is relevant 
to the data closely sensed by crucial sensors and hardly 
by common sensors. Therefore, in our formulation crucial 
sensors are considered instead of all wcloselyake sensors in 
general consensus estimation (GCE). In this case, the prac-
tical scheme reduces the computation and communication 
costs. In order to generate our formulation, the relation-
ship between the number of wake sensors and accuracy 
of estimation is embodied with two influence parameters. 
In the process of consensus estimation, each crucial sensor 
preserves its estimates itself and sleep sensors of its neigh-
bors. Consequently, crucial sensors of theirs neighboring 
also reach consensus for sleep sensors of their neighbors. 
As a result, crucial sensors conserve theirs values and nu-
merical estimates of its neighbors. Through values of wake 
sensors themselves and estimates of crucial sensors, in-
formation coverage could be reached. In this method, the 
number of crucial sensors is similar to the selection of 
measurement in compressive sensing technique [5] for ac-
curate estimation. Experiments show that our algorithm 
outperforms general consensus estimation method.

Our contributions in the Letter are summarized as fol-
lows:

a) Crucial wake sensors are picked out from all the wake
ones for more effective energy saving.

b) The relationship between the number of wake sensors 
and accuracy of estimation is reflected by two influ-
ence parameters for universal formulation.

The rest of this paper is organized as follows. Section 2
introduces briefly related background. Section 3 proposes 
our optimized algorithm. Experiments in actual environ-
ments and simulations are given in Section 4. Finally, con-
clusions are drawn in Section 5.

2. Background

Consensus estimation, as a decentralized estimation 
method, is employed to local estimates in wireless sen-
sor network [6,7]. In general, estimators in this scheme are 
always formulated as a solution of convex minimization 
problem via iteration. In current methods, every iteration 
comprises of two steps, one step is communication for in-
terchanging information between sensors and their neigh-
bors and the other step is update for renewing their local 
estimation via interchanged information. For instance, the 
sample average estimator was applied to analyze consen-
sus parameters in ensemble learning [8] as an optimization 
problem. Kar et al. [9] and Thanou et al. [10] discussed 
respectively two kinds of distributed consensus based on 
deterministic and random signals.

In the process of estimation, sensors need to dynam-
ically exchange their estimates to neighbor sensors and 
update their local estimates until the global network con-
verges. By updating local estimations iteratively, the whole 
network could achieve consensus which minimizes the es-
timation error. In this case, information will reach global 
coverage even if not all sensors are available. Therefore, it 
is suitable to utilize consensus estimation to obtain infor-

 
 

 

mation of the whole network based on the part of sensors. 
However, it is crucial to propose an objective optimization 
function and corresponding constraint condition for better 
estimation, which is the essential mission of our work.

3. The proposed information coverage algorithm

To estimate precisely and save energy, we adopt valid 
(or crucial) wake sensors and exclude invalided wave sen-
sors for information coverage. In this Letter, an optimized 
formulation for consensus estimation is proposed and then 
information converge algorithm is presented.

3.1. Optimized formulation

Consider a network with N sensors comprised of wake 
sensors W and sleep sensors S and N = |W | + |S|, where 
| • | denotes cardinality. Sensors i are deployed at the po-
sition pi , i ∈ N . The set of wake sensors W consists of 
the subset of crucial sensors Cr and the subset of com-
mon sensors Co . The former is defined as a sensor which 
has at least one sleep neighbor, and the latter is defined 
as a sensor which has zero sleep neighbors. Both sets sat-
isfy W = Cr ∪ Co and |W | = |Cr | ∪ |Co|. Suppose sensors 
are just single-hop communications, so that the i-th sensor 
can only communicate with sensor j in its neighborhood
j ∈ Ni , Ni ⊆ [1, N]. The connectivity of network is sym-
metric and the topology of the network is an undirected 
graph whose vertices are sensors and its edges represent 
available communication links. Environment information is 
sensed by wake sensors and these local sensed data can 
provide a well approximated estimate about the global 
area. Let e = [e1, e2, · · · , eN ]T denote the environment in-
formation vector, where si corresponds to be value at pi . 
Similarly, d = [d1, d2, · · · , dN ]T denotes the sensed data by 
all sensors. Here, di is null if the i-th sensor is a sleep sen-
sor. In practice, information occurring at the position pi
may influence its neighborhood Ai . We formulate the in-
fluence function f i(p) which is non-zero only for positions 
p ∈ Ai and normalized to obey f i(pi) = 1. The sensed data 
di can be regarded as the superposition of the influence in 
the neighborhood of the point pi .

To achieve consensus estimation, two premises should 
be satisfied:

Premise 1 (Connectivity). The network should be connected 
based on all sensors or all wake sensors.

Premise 2 (Influence range). If the distance of any two sen-
sors is larger than their communication range, their influ-
ence function is equal to 0.

For Premise 1, it is easy to employ route algorithms to 
judge the connectivity of the network. For Premise 2, it is a 
reasonable assumption since information hardly influences 
the sensed data in a faraway location. Hence, the function 
of the communication range of sensors is discussed in Sec-
tion 4.

Based on two premises, sensed data d j of sensor j can 
be represented as d j = ∑N

i f i(p j)ei + n j , where ei ≥ 0 and 
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n j denotes a noise or interference. Intuitively, the mini-
mal value of 

∑
W |d j − ∑N

i f i(p j)ei | could be solved for 
consensus estimation. In the Letter, we will employ crucial 
sensors to estimate information instead of all wake sensors 
to reduce the redundancy energy cost. More importantly, 
the relationship between the accuracy of estimation and 
the number of crucial sensors is also considered. Accord-
ingly, our optimized formulation for consensus estimation 
is given:

min
s

∑
c∈Cr

α

(
dc − ec −

∑
i∈Nc

f i(pc)ei

)2

+ β
∑

i∈Cr∪S

ei

s.t. |Cr | ≥ 0,α > β > 0 (1)

The above objective function contains a least-squares 
�2 norm term, an �1 norm term and two positive weight-
ing coefficients α and β which reflect the tradeoff between 
these two terms, which is more universal than those in 
the previous works. According to this formulation, only 
crucial sensors are needed to estimate sleep neighbors. 
Hence, it could reduce efficiently the energy cost and ac-
celerates convergence during iterations. The corresponding 
distributed algorithm is presented in the next subsection.

3.2. Information coverage algorithm

In our algorithm, each crucial sensor conserves local 
copies of its decisions. The decisions on every sleep sen-
sor are enforced to reach consensus among the entire cru-
cial sensors of their neighborings. Accordingly, the network 
will consent on the global optimal estimations. In this case, 
we introduce a set of slack variables to indicate the mea-
surement errors. Similar with [4], crucial sensors minimize 
a Lagrangian function [11], and the detailed algorithm is as 
follows:

Algorithm: Information coverage based on consensus estimation op-
timization.
Input: Each crucial sensor sets the decision variable, slack variable, 
and multiplier factors as 0
Output: The rate of crucial node in the network

1 Judge the connectivity of the network via all wake nodes. (Avoid-
ing invalid estimation)

2 If the network is connected, then
3 Each crucial sensor c transmits its decision variables to its neigh-

bors
4 Repeat
5 c updates its slack variable gc via multiplying parameters (2)–(4)

respectively. Then it transmits its current slack variable and cor-
responding Lagrange multiplier factors to its crucial neighbors. 
Then, it updates decision variables of itself ec and its sleep 
neighbors ec

S∩Ni
by (5), (6)

6 Until convergence
7 All crucial sensors transmit their estimators of itself and its sleep 

neighbors to the sink
8 End If

gc(n + 1) = μ

2αm2
i + βμ

( ∑
i∈(Nc∩Cr)∪c

f icei(n)

+
∑

f icec
i (n)

 
 

 

i∈Nc∩S
+
∑

i∈c∪Nc

(
mic(n)

β
− �ic(n)

))
(2)

�ic(n + 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f icei(n)

+ di−
∑

i∈(Nc∩Cr )∪c f icec
i (n)−∑

i∈Nc∩S f icec
i (n)

hc

+ mic
μ +

∑
i∈c∪Nc mic(n)

μhc
, i ∈ (Nc ∩ Cr) ∪ c

ficec
i (n)

+ di−
∑

i∈(Nc∩Cr )∪c f icec
i (n)−∑

i∈Nc∩S f icec
i (n)

hc

+ mic
μ +

∑
i∈c∪Nc mic(n)

μhc
, i ∈ Nc ∩ S

(3)

mic(n + 1)

=

⎧⎪⎪⎨
⎪⎪⎩

mic(n) + μ( f icei(n) − gc(n+1)
hc

− �ic(n + 1)),

i ∈ (Nc ∩ Cr) ∪ c
mic(n) + μ( f icec

i (n) − gc(n+1)
hc

− �ic(n + 1)),

i ∈ Nc ∩ S

(4)

φci j(n + 1) = φci j(n) + μ
(
ec

i (n) − e j
i (n)

)
,

i ∈ S ∩ Nc ∩ N j, j ∈ Cr ∩ Nc (5)

ec(n + 1) = max

{
hc(n + 1)

rc(n + 1)
,0

}
(6)

where

rc(n + 1) =
{

μ
∑

i∈(Nc∩Cr)∪c f 2
ci, c ∈ Cr

μ( f 2
ic + 2|Nc + Ni + Cr |)

ec
i (n + 1) = max

{
hc

i (n + 1)

rc
i (n + 1)

,0

}
, i ∈ S ∩ Nc

hc(n + 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈(Nc∩Cr)∪c μ fci × (

gi(n+1)
hi

+ �ci(n + 1)

− mci(n+1)
μ ) − 1, c ∈ Cr∑

j∈Nc∩Ni∩Cr
(2μec

i (n) − φi jc(n + 1)

+ φ jik(n + 1)) + μ fci(μ fci × (
gc(n+1)

hc

+ �ic(n + 1) − mic(n+1)
μ )) − Cc

r , c ∈ S ∩ Nc

(7)

According to this algorithm, crucial sensors are able 
to estimate information of the rest un-sensed areas when 
convergence achieves, and it is suitable for distributed sen-
sor networks, since information is exchanged based on 
distributed environment. In the practical applications, it 
is noticed that the topology of the network needs to be 
reconfigured when sensors alter their sleeping status via 
a random or synchronized mechanism and our algorithm 
also should be operated again based on the altered new 
arrangement of the network. Furthermore, the crucial sen-
sors shall contain adequate information for information 
coverage in order to estimate successfully. That is, the den-
sity of wake sensors in the network could not be too small. 
Otherwise, the process of optimization may result in in-
correct results. This scene is similar to the selection of 
measurement in compressive sensing technique for precise 
recovery.
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Fig. 1. The relation between wake sensors and energy cost.

4. Experiments

In our experiments, both the proposed approach and 
the general consensus estimation GCE scheme are com-
pared. Sensors are placed outdoors to gather the temper-
ature of environment. Crucial sensors estimate informa-
tion of its sleep neighbors and simultaneously the network 
constructs corresponding routing along all wake sensors. 
Experiments show that our method outperforms GCE. To 
further test the performance of the algorithm, simulations 
are shown in cases of different influence parameters.

4.1. Actual environment

Sensors are used to gather data of environment and 
the size of network is 60. After information coverage, data 
sensed by wake sensors and estimates of crucial sensors 
are transmitted to the sink node. The protocol system 
of wireless network in our experiments includes physical 
layer, data link layer and net layer. To guarantee the accu-
racy of the results, we experiment 100 times and calculate 
the average value.

To represent the validity of our algorithm intuitively, 
the simple metric parameter of the efficiency is adopted, 
which is the relative energy cost between two schemes. 
Suppose Ec denotes energy cost for our algorithm and E ′

c
for GCE, then the relative energy cost is equal to Ec/E ′

c . 
Fig. 1 illustrates that our scheme outperforms GCE as a 
whole. In the figure, we set Ec to 1. When the propor-
tion of wake sensors is lower than 40%, all of them are 
probably regarded as crucial sensors and therefore their 
energy costs are the same as GCE’s. That is, the gathered 
data should contain adequate information to estimate suc-
cessfully. As the proportion of wake sensors increases, the 
energy cost of our algorithm reduces and reaches nearly
75% when there are 60% wake sensors in the network. 
Afterwards, the cost increases as the proportion of sleep 
sensors decreases. Therefore, the density of wake sensors 
in the network should be selected suitably, which means 
not too small to avoid incorrect results or not too large to 
avoid unnecessary wastes.

 
 

 

Fig. 2. The relation between wake sensors and accuracy of estimation.

4.2. Simulations

Our simulations focus on the influence of tradeoff pa-
rameters of the proposed formulation based on NS-2. 
We verify the influence of two parameters α, β in (1). 
Fig. 2 shows the situations when the ratio r = α/β =
0, 1, 10, 100. When the ratio is equal to 0, it means that 
our algorithm could not estimate any information; when 
the ratio is equal to 100, it means that the algorithm may 
approximately degenerate into general consensus estima-
tion. According to the results, the ratio should be selected 
larger as long as the consumption of energy is still within 
a permitted range, which effectively directs us to choose 
the suitable tradeoff parameters for balancing the accuracy 
and energy cost.

5. Conclusion

In this paper, a practical information converge is pre-
sented based on consensus estimation in wireless sensor 
network. In the process of convergence, crucial sensors are 
considered for further reduction of energy cost, and the 
relationship between the number of wake sensors and ac-
curacy of estimation is revealed with two influence param-
eters for universal formulation. Experiments have shown 
that our algorithm outperforms general consensus estima-
tion method.
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