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1. Introduction
1.1. Background

With the proliferation of soft computing techniques, nature-
inspired algorithms have drawn enormous attention among
researchers. Such algorithms have been studied to solve many
optimization problems. For examples, genetic algorithm (GA) has
been applied to enhance the efficiency of construction automation
system (Wi et al., 2012). Similarly, particle swarm optimization
(PSO) has been applied to solve various optimization problem in
manufacturing (Issam et al., 2013; Thitipong and Nitin, 2011).
Clustering and routing are two well known optimization problems
which are well researched for developing many nature-inspired
algorithms (Saleem et al., 2011; Kulkarni et al., 2011) in the field of
wireless sensor networks (WSNs). PSO (Kennedy and Eberhart,
1995) is one such metaheuristic technique that has gained
immense popularity in the recent years. In this paper, the authors
propose two PSO-based algorithms for clustering and routing in
wireless sensor networks.

A WSN consists of a large number of tiny and low power sensor
nodes, which are randomly or manually deployed across an
unattended target area. WSNs have potential applications in envir-
onment monitoring, disaster warning systems, health care, defense
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reconnaissance, and surveillance systems (Akyildiz et al., 2002).
However, the main constraint of the WSNs is the limited power
sources of the sensor nodes. Therefore, energy conservation of the
sensor nodes is the most challenging issue for the long run
operation of WSNs. Various issues have been studied for this
purpose that include low-power radio communication hardware
(Calhoun et al., 2005), energy-aware medium access control (MAC)
layer protocols (Ahmad et al., 2012; Aykut et al., 2011), etc. However,
energy efficient clustering and routing algorithms (Abbasi and
Mohamad, 2007; Kemal and Mohamed, 2005) are the most
promising areas that have been studied extensively in this regard.

In a two-tier WSN, sensor nodes are divided into several groups
called clusters. Each cluster has a leader known as cluster head
(CH). All the sensor nodes sense local data and send it to their
corresponding CH. Then the CHs aggregate the local data and
finally send it to the base station (BS) directly or via other CHs. The
functionality of a cluster-based WSN is shown in Fig. 1. Clustering
sensor nodes has the following advantages: (1) It enables data
aggregation at cluster head to discard the redundant and uncor-
related data; thereby, it saves energy of the sensor nodes.
(2) Routing can be more easily managed because only CHs need to
maintain the local route set up of other CHs and thus require small
routing information; this in turn improves the scalability of the
network significantly. (3) It also conserves communication bandwidth
as the sensor nodes communicate with their CHs only and thus avoid
exchange of redundant messages among themselves.

However, CHs bear some extra work load contributed by their
member sensor nodes as they receive the sensed data from their
member sensor nodes, aggregate them and communicate it to
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Fig. 1. A wireless sensor network model.

the BS. Moreover, in many WSNs, the CHs are usually selected
amongst the normal sensor nodes which can die quickly for this
extra work load. In this context, many researchers (Gupta and
Younis, 2003; Low et al., 2008; Ataul et al., 2009; Kuila and Jana,
2012a; Kuila et al., 2013) have proposed the use of some special
nodes called gateways, which are provisioned with extra energy.
These gateways act like cluster heads and are responsible for the
same functionality of the CHs. Therefore, gateways and CHs are
used interchangeably in the remainder of the paper.

Unfortunately, the gateways are also battery-operated and
hence power constrained. Lifetime of the gateways is very crucial
for the long run operation of the network. It is noteworthy that the
transmission energy (E) which mainly dominates the overall
energy consumption is proportional to the distance (d) between
transmitter and receiver, i.e., Eod’, where A is the path loss
exponent and 2 <A <4 (Habib and Sajal, 2008). Therefore, mini-
mization of transmission distance can reduce the energy con-
sumption. However, some applications are very time-critical in
nature. Hence, they should satisfy strict delay constraints so that
the BS can receive the sensed data within a specified time bound.
But the delay is proportional to the number of forwards on the
dissemination path between a source and the BS. In order to
minimize the delay, it is necessary to minimize the number of
forwards, which can be achieved by maximizing the distance
between consecutive forwards. Therefore, while designing routing
algorithms we need to incorporate a trade-off between transmis-
sion distance and number of forwards as they pose two conflicting
objectives. Furthermore, load balancing is another important issue
for WSN clustering. Particularly, this is a pressing issue when the
sensor nodes are not distributed uniformly. In this paper we
address the following problems:

(1) Energy efficient routing with a trade-off between transmission
distance and number of data forwards.

(2) Energy efficient load balanced clustering with energy conser-
vation of the WSN.

Note that given n sensor nodes and m gateways, the number of
possible clusters is m". It should also be noted that if the gateways
have an average of d valid one-hop neighbor relay nodes, then the
number of valid routes is d™. Therefore the computational com-
plexity of finding the optimal route and cluster for a large WSN
seems to be very high by a brute force approach. Moreover, an
optimization method requires reasonable amount of memory and
computational resources and yet finding out good results is
desirable. In order to obtain a faster and efficient solution of the
clustering and routing problem with the above issues, a metaheur-
istic approach such as particle swarm optimization (PSO) is highly
desirable. The main objective of this paper is to develop an
efficient PSO-based clustering and routing algorithms for WSNs
with the consideration of energy consumption of the sensor nodes
for prolonging network life time.

1.2. Authors’ contribution

In this paper, first Linear Programming (LP) and Non-linear
Programming (NLP) formulations are presented for the routing
and clustering problems respectively. Then two PSO-based algo-
rithms for the same are proposed. The PSO-based routing builds a
trade-off between energy consumption of the CHs and delay in
forwarding the data packets. It finds out a route from all the
gateways to the base station which has comparably lower overall
distance with less number of data forwards. We present an
efficient particle encoding scheme for complete routing solution
and design the multi-objective fitness function using weighted
sum approach.

The proposed PSO-based clustering takes care of energy con-
sumption of the normal sensor nodes as well as the gateways. For
clustering, particles are cleverly encoded to produce complete
clustering solution. A different fitness function is also used by
taking care of those gateways which inevitably consumes more
energy by acting as relay node in packet forwarding. We perform
extensive simulation on the proposed methods and evaluate them
with several performance metrics including network life-time,
number of active sensor nodes, energy consumption, total number
of packets delivery and so on. The results are compared with
GA-based clustering (Kuila et al., 2013), GLBCA (Low et al., 2008)
and LDC (Ataul et al., 2008). Our main contributions can be
summarized as follows:

® [P and NLP formulations for the routing and clustering pro-
blems respectively.

® PSO-based routing algorithm with a trade-off between trans-
mission distance and number of data forwards with efficient
particle encoding scheme for complete routing solution and
derivation of efficient multi-objective fitness function.

® PSO-based clustering algorithm with efficient particle encoding
scheme and fitness function.

® Simulation of the proposed algorithm to demonstrate super-
iority over some existing algorithms.

The rest of the paper is organized as follows. The related work
is presented in Section 2. An overview of particle swarm optimiza-
tion is given in Section 3. The system model and used terminol-
ogies are described in Section 4 which includes energy model and
network model. The proposed algorithms and the experimental
results are presented in Sections 5 and 6 respectively and we
conclude in Section 7.

2. Related works

A number of clustering and routing algorithms have been
developed for WSNs. We present the review of such works based
on heuristic and metaheuristic approaches. However, we empha-
size on the metaheuristic approach as our proposed algorithm is
based on it.

2.1. Heuristic approaches

Low et al. (2008) have proposed a clustering algorithm by
considering a breadth-first search (BFS) tree of the sensor nodes to
find out the least loaded gateway for assigning a sensor node to a
CH. The algorithm has the time complexity of O (mn?) for n sensor
nodes and m CHs. For a large scale WSN, it seems that execution
time of this algorithm is very high. Their algorithm also takes
substantial amount of memory space for building a BFS tree for
individual sensor node. We have proposed a load balanced
clustering algorithm (Kuila and Jana, 2014) that runs in O (n log n)
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which is an improvement over Low et al. (2008). Gupta and Younis
(2003) have proposed a clustering algorithm called LBC, which
takes O(mn log n) time in worst case. Kuila and Jana (2012b) have
proposed an energy efficient load-balanced clustering algorithm
(EELBCA) with O(nlog m) time. EELBCA addresses energy effi-
ciency as well as load balancing. EELBCA is a min-heap based
clustering algorithm. A min-heap is build using cluster heads (CHs)
on the number of sensor nodes allotted to the CHs. However, the
algorithms do not consider residual energy of the sensor nodes.
Many heuristics have also been proposed for routing in WSNs.
LEACH (Heinzelman et al., 2002) is a popular cluster-based routing
algorithm that dynamically rotates the work load of the CHs
amongst the sensor nodes which is useful for load balancing.
However, the main disadvantage of this approach is that a node
with very low energy may be selected as a CH which may die
quickly. Moreover, the CHs communicate with base station via
single-hop which is impractical for WSNs with large coverage area.
Therefore, a large number of algorithms have been developed to
improve LEACH which can be found in Tyagi and Kumar (2013),
Al-Refai et al. (2011). Kuila and Jana (2012c) have proposed a cost-
based distributed energy balanced clustering and routing algo-
rithm for CH selection and cluster formation. But, the algorithm
suffers from the connectivity problem of the selected CHs.

2.2. Metaheuristic approaches

A number of metaheuristic based clustering algorithms have been
reported for WSNs. However, most of them have dealt with CH
selection only. Recently, we have proposed a GA-based load balanced
clustering algorithm for WSNs (Kuila et al., 2013). The algorithm
forms clusters in such way that the maximum load of each gateway
is minimized and it works for both the equal and unequal load of the
sensor nodes. The algorithm has faster convergence and better load
balancing than the traditional GA (Goldberg, 2007). However, it has
the demerit that the CHs directly communicate with the BS which
may not be realistic for large area networks. Moreover, the algorithm
does not consider residual energy of the sensor nodes and gateways
in cluster formation which may lead to imbalance energy consump-
tion of the sensor nodes.

Ataul et al. (2009) have proposed a GA-based algorithm for data
routing between gateways in a two-tire wireless sensor network.
Selection of individuals is carried out using the Roulette-wheel
selection method and the fitness function is defined by network
lifetime in terms of rounds. We have also proposed GA-based
routing algorithm called GAR where the overall communication
distance from the gateways to the BS is minimized (Gupta et al.,
2013). However, both of the algorithms (Ataul et al., 2009; Gupta
et al., 2013) consider only routing of aggregated data from the
gateways to the BS without considering data communication from
the sensor nodes to the gateways within each cluster. Enan et al.
(2011) have presented an evolutionary aware routing protocol
(EAERP) for dynamic clustering of wireless sensor networks. Here
the authors have made an attempt to minimize the energy
consumption throughout the network by choosing a set of efficient
cluster heads from the normal sensor nodes and all non-CH sensor
nodes determine nearest CH to join. EAERP suffers same problem
as LEACH, as some sensor node may become a CH which may not
have sufficient energy. Moreover, EAERP requires re-clustering in
each round to rotate the extra work load of CH. Unfortunately,
being a centralized approach; EAERP requires whole network
information in each round for re-clustering. Chakraborty et al.
(2012) have presented a differential evolution based routing
algorithm for more than a 1000 relay nodes such that the energy
consumption of the maximum energy-consuming relay node is
minimized. However, the authors do not take care about the cluster
formation. Some improper clustering may lead to serious energy

inefficiency of the relay nodes. Singh and Lobiyal (2012) and Abdul
et al. (2007) have used the PSO for CH selection amongst the normal
sensor nodes and do not take care of the cluster formation. PSO and
ant colony optimization (ACO) are used in WSNs for other optimiza-
tion problems also and they can be found in Saleem et al. (2011),
Kulkarni et al. (2011), Zungeru et al. (2012).

However, none of the above algorithms consider the overhead
of the data routing in cluster formation phase. Even, none of them
except Kuila et al. (2013) focus on cluster formation using nature-
inspired approach. Many works have been proposed for CH
selection. However, selection of the CHs merely cannot form the
clusters. To the best of our knowledge, there is no nature-inspired
clustering algorithm such as PSO which considers cluster forma-
tion rather than CH selection for WSNs.

3. Overview of particle swarm optimization

Particle swarm optimization (PSO) is inspired by natural life,
like bird flocking, fish schooling and random search methods of
evolutionary algorithm (Kennedy and Eberhart, 1995; Wei and Nor,
2014). It can be observed from the nature that animals, especially
birds, fishes, etc. always travel in a group without colliding. This is
because each member follows the group by adjusting its position
and velocity using the group information. Thus it reduces indivi-
dual's effort for searching of food, shelter etc. The various steps of
a PSO are depicted in the flowchart as shown in Fig. 2.

PSO consists of a swarm of a predefined size (say Np) of particles.
Each particle gives a complete solution to the multidimensional
optimization problem. The dimension D of all the particles is equal.
A particle P, 1 <i< Np has position Xj4, 1 <d <D and velocity V4 in
the dth dimension of the hyperspace. We adopt the notation for
representing the ith particle P; of the population as follows:

P; =[X;1,Xi2,Xi3, ... Xip] 3.1

Each particle is evaluated by a fitness function to judge the
quality of the solution to the problem. To reach up to the global
best position, the particle P; follows its own best, i.e., personal best
called Pbest; and global best called Gbest to update its own velocity
and position. In each iteration, its velocity V;; and position X4 in
the dth dimension is updated using the following equations

Calculate fitness

Start
iteration,
i=1.

Initialization
of particles

of each particle
> P, and initialize
Pbest; and Gbest.

W

Update velocity Evaluate
and positions of P; Fitness F(P;)

. —

Output
result=Gbest

@ L | Gbest= Pbest

Fig. 2. Flowchart of the PSO.
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respectively:
V,"d(t) =W X V,"d(t— 1)+C] X I'1
x(Xpbest; 4 —Xi4(t—1))+C2 x 12 x (Xgbesty — X 4(t—1))
3.2)

Xia(t) =Xiq(t—=1)+Viq(t) (3.3)

where w is the inertial weight, ¢; and ¢, are two non-negative
constants called acceleration factor and r; and r, are two different
uniformly distributed random numbers in the range [0,1]. The
update process is iteratively repeated until either an acceptable
Gbest is achieved or a fixed number of iterations t;;.x is reached.

4. System model and terminologies
4.1. Energy model

The radio model for energy used in this paper is same as discussed
by Heinzelman et al. (2002). In this model, both the free space and
multi-path fading channels are used depending on the distance
between the transmitter and receiver. When the distance is less than
a threshold value dy, then the free space (fs) model is used, otherwise,
the multipath (mp) model is used. Let Eciec, £ and &y, be the energy
required by the electronics circuit and by the amplifier in free space
and multipath respectively. Then the energy required by the radio to
transmit an [-bit message over a distance d is given as follows:

IEgec +lerd® for d<d
ET(I, d): { elec fs 0

4.1
lEelec+15mpd4 for d>dy “4.1)

The energy required by the radio to receive an [-bit message is
given by

ER(l) = lEelec (4~2)

The E,.c depends on several factors such as digital coding, modulation,
filtering, and spreading of the signal, whereas the amplifier energy,
exd%/empd®, depends on the distance between the transmitter and the
receiver and also on the acceptable bit-error rate. It should be noted
that this is a simplified model. In general, radio wave propagation is
highly variable and difficult to model.

4.2. Network model

We assume a WSN model where all the sensor nodes are de-
ployed randomly along with a few gateways and once they are
deployed, they become stationary. A sensor node can be assigned to
any gateway if it is within the communication range of the sensor
node. Therefore, there are some pre-specified gateways onto which a
particular sensor node can be assigned. Thus each sensor node has a
list of gateways and it can be assigned to only one gateway amongst
them. Similar to LEACH, the data gathering operation is divided into
rounds. In each round, all sensor nodes collect the local data and
send it to their corresponding CH (i.e., gateway). On receiving the
data, the gateways aggregate them to discard the redundant and
uncorrelated data and send the aggregated data to the base station
via other CH as a next hop relay node. Between two adjacent rounds,
all nodes turn off their radios to save energy. All communication is
over wireless link. A wireless link is established between two nodes
only if they are within the communication range of each other.
Current implementation supports TDMA (Baronti et al.,, 2007) pro-
tocol to provide MAC layer communication. Gateways use slotted
CSMA/CA MAC protocol to communicate with base station (Baronti
et al., 2007).

Various definition of the network life is given in the literature
(Dietrich and Dressler, 2006; Madan et al., 2005), such as this is

the time until first node dies, the time until last node dies or the
time until a desired percentage of nodes die. Moreover in some
scenario (Cardai and Du, 2005) network life is considered as the
period until the entire region is covered. Pan et al. (2003) have
defined several metrics for network life time, e.g., N-of-N lifetime,
K-of-N lifetime and m-in-K-of-N lifetime. N-of-N lifetime means
the time duration until first gateway dies. K-of-N lifetime means
survival of the network until K gateways out of N are alive and
m-in-K of N lifetime means the time duration until all m support-
ing gateways and overall a minimum of K gateways are alive.
In this paper, we use N-of-N lifetime.

4.3. Terminologies
We use the following terminologies in the proposed algorithm:

(1) The set of sensor nodes is denoted by S={s, s, ..., Sn}.

(2) The set of gateways is denoted by &={g,, g, ..., gu} and
gy 1 indicates the base station (BS).

(3) L(i) denotes the lifetime of the gateway g;. If g; has residual
energy Eresiqua(gi) and energy consumption per round
Ecateway(gi) then L(i) can be calculated as follows:

N Eresidual(gi)
o= [mJ 43)

(4) dmex denotes the maximum communication range of the
gateways.

(5) dis(s;, s;) denotes the distance between s; and s;.

(6) ComCH(s;) is the set of all those gateways, which are within
the communication range (Rs) of sensor node s;. In other
words,

ComCH(s;) = {g;|dis(s;. &j) < Rs » g; € &} (4.4)

Therefore, s; can be assigned to any one of the gateway from
ComCH(s;), where ComCH(s;) < &.

(7) Com(g;): The set of gateways, which are within communica-
tion range of g;. The BS may also be a member of Com(g;).
In other words,

Com(g;) = {gj|Vgj € (E+8n1) A dis(g;, &) < dmax) (4.5)

(8) PNextHops(g;): The set of gateways those might be selected
as a next hop relay of g;. The next hop relay node must be
towards the BS. Therefore,

PNextHops(g;)
= {gjIVgj e (Com(g) —8u+1} A dis(gj, Ev1) < dis(g, 8+ 1))
(4.6)

(9) NextHop(g;) is the gateway g;, gje PNextHops(g;) which is
selected as next-hop relay node from g; towards BS in data
routing phase. Here, the next hop node may be the BS when
BS is within communication range of g;.

(10) HopCount(g;) denotes the number of next hops required to
reach to the BS from g;. If g; directly communicates with BS,
then HopCount(g;) is one. Therefore, HopCount(g;) can be
recursively defined as

1, NextHop(g;) = gy, 1(i.e., BS)
HopCount(g;) = 1+HopCount(g;), NextHop(g;)=g;(i.e., other than BS.)

4.7)

(11) A delay is the time elapsed between the departure of a
collected data packet from a source (say g;) and its arrival to
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the BS (Habib and Sajal, 2008). A delay D(g;) includes the
average value of queuing delay (say dg;) per intermediate
data disseminator, transmission delay (say d), and propaga-
tion delay (say dp). So, D(g;) is formulated as

D(g;) = (dq+d;+d,) x HopCount(g;)
i.e., D(g;) =K x HopCount(g;) (4.8)

where K=dq+d;+d,, which is a constant for a particular
network (Habib and Sajal, 2008). Therefore, minimizing
delay is equivalent to minimizing the hop count.

Maximum distance (MaxDist) between two nodes in the
routing path can be defined by

MaxDist = Max{dis(g;, NextHop(g))|Vi,1 <i<M,g; € &} 4.9)

(12

—

(13) Maximum hop count (MaxHop) of the gateways can be
defined by

MaxHop = Max{HopCount(g;)|vi,1 <i <M, g; e &}. (4.10)

5. Proposed algorithms

Network setup is performed in three phases: bootstrapping;
route setup; and clustering. During the bootstrapping process, all
the sensor nodes and gateways are assigned unique IDs. Then the
sensor nodes and the gateways broadcast their IDs using CSMA/CA
MAC layer protocol. Therefore, the gateways can collect the IDs of
the sensor nodes and the other gateways those are within their
communication range and finally send the local network informa-
tion to the base station. Now, using the received information of the
network, base station executes the routing and clustering algo-
rithm. Note that after execution of the routing algorithm, the base
station uses the final route setup for proper formation of the
cluster. When the routing and clustering is over, all the gateways
are informed about their next hop relay node towards the base
station and the sensor nodes are also informed about the ID of the
gateway they belong to. Then the gateways provide a TDMA
schedule to their member sensor nodes for intra cluster commu-
nication. Gateways use slotted CSMA/CA MAC protocol to commu-
nicate with its next hop relay node. Now, we present our proposed
(1) routing and (2) clustering algorithms as follows.

5.1. PSO based routing

5.1.1. LP formulation for routing problem
Now, we address the routing problem where our main objec-
tive is to minimize the maximum transmission distance between
two nodes in the routing path and maximum hop count. Let a;; be
a Boolean variable defined as
. { 1, If NextHop(g) = g;
i =

0, otherwise. (5.1)

Then the Linear Programming (LP) of the routing problem is
formulized as follows:

Minimize W = @ x MaxDist+f3 x MaxHop

Subject to
M+1

Y ai=1,1<i<M,vVg el Vgei+gy,1) and i#]j (5.2)
j=1

dis(g;, gj) x ajj <dmax, 1 <TI<M,Vgie &, Vg e{l+8y 1} and i#j
(5.3)

a=1-f and 0<pf<1 (5.4)

The constraint (5.2) ensures that the gateway g;, Vi, 1<i<M
forwards its data to only one next hop node gj and the constraint
(5.3) ensures that the selected next hop node is within the
transmission range. & and /3 are two control parameters. & controls
the total path distance and /8 controls the total hop count. The
constraint (5.4) defines the range of @ and /.

5.1.2. Proposed routing algorithm

We now present our PSO-based routing algorithm which consists
of particle initialization and determination of fitness function fol-
lowed by the velocity and position update phase as follows.

5.1.2.1. Initialization of particles. We represent the particles in such
a way that each particle provides the route from each CH to the BS.
The dimension of the particles is same and equal to the number of
gateways (i.e., M) in the network. We initialize each component,
i.e,, Xja, 1 <i<Np, 1 <d<M with a randomly generated uniformly
distributed number Rand(0,1], 0 < Rand(0,1] < 1. The value of the
dth component (i.e., X;4) maps a gateway (say g) as a next hop
relay towards BS from g, Therefore, X;4=Rand(0,1] maps a
gateway (say gi), indicating that g, send data to g. The mapping
is done as follows:

g = Index(PNextHops(g,), n) (5.5)

where Index(PNextHops(g,),n) is an indexing function that indexes
the nth gateway from PNextHops(gy) and

n = Ceiling(X;q x |[PNextHops(gy)|)

Illustration 5.1: Consider a WSN with 10 gateways, ie., =
{g1, &2, ..., &10} as shown in Fig. 3(a). Therefore, the dimension of
the particles is same as the number of gateways, ie., M=10.
Consider the directed acyclic graph G(V,E) shown in Fig. 3(a),
where E represents the set of edges. The edge g;— gj indicates that
gi can use g; as a next hop relay towards BS. Here, g; is closer to BS
than g; and also g; is within communication range of g;. It can be
observed form Fig. 3(a) that the gateway g3 can use any one of the
three gateways amongst {gs, g, g7} as a next hop relay node
towards the BS. In other words, PNextHops(g3)={gs, g, g7}. Table 1
shows the gateways and their possible next hop node (gateway/
base station) as per Fig. 3(a).

Now, for each X; 4, 1 < d < M of the particle P;, a random number
is generated to initialize it. Let us assume that a particle P;=[0.38,
0.63, 0.46, 0.17, 0.86, 0.73, 0.94, 0.81, 0.34, 0.13] has been randomly
generated as shown in the second column (i.e., X;4) of Table 2.

We show that this particle actually represents the complete
solution of the routing problem as follows. Let consider the second
element, ie. X;>=0.63. Therefore, Ceiling(X;, x |PNextHops(g,)|)
=2, which implies that the 2nd gateway from PNextHops(g,) is
selected as next hop relay node of g,. Thus gz (2nd gateway from
PNextHops(g>)) serves as the next hop relay for g,. In the same way
all the gateways are given a next hop relay using the randomly
generated particle. Thus, the above randomly generated particle
P; maps the complete routing solution from each CH as shown in
the fifth column (i.e., Next-hop) of Table 2. Therefore, the route
from g; to the base station can be expressed as the path g; »>gs—
87— 8&10— BS. The final routing schedule for the sub-graph network
is shown in Fig. 3(b).

5.1.2.2. Fitness function derivation. Now, we construct a fitness
function to evaluate the individual particle of the population.
This helps us to periodically update the personal best and global
best of the particles. We have two objectives in our proposed
algorithm. The first objective is to minimize the maximum
distance between two nodes and the second objective is to
minimize the maximum number of hops used by the gateways.
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Fig. 3. (a) Sub graph network of a WSN and (b) routing path.

Table 1
Gateways and their possible next hops.

Gateways PNextHops (g4) IPNextHops (g4)|
31 {g3, gs} 2
82 {g1, g3, 84} 3
83 {gs, &7, g6} 3
8 {86, &3} 2
85 {g7, gs} 2
S {g7, g0} 2
g7 {gs, g0, &10} 3
8s {g10, BS} 2
8o {g10, BS} 2
810 {BS} 1

Table 2

Next-hop relay node selection from the randomly generated particle.
Gateways Xia IPNextHops (g4)! Ceiling (X q x NextHop (g4)

IPNextHops (g4)!)

g1 0.38 2 1 g3
22 0.63 3 2 g3
g3 0.46 3 2 g7
2 017 2 1 25
85 0.86 2 2 gs
6 0.73 2 2 29
g7 0.94 3 3 10
8s 0.81 2 2 BS
) 0.34 2 1 g0
810 0.13 1 1 BS

Therefore, our two objectives are as follows:

Objective 1: Minimize MaxDist = Max{dis(g;, NextHop(g;))|Vi,1 <i< M}

(5.6)

Objective 2 : Minimize MaxHop = Max{HopCount(giﬂ Vi, <i<M}

(5.7

It is noteworthy that the above two objectives conflict each
other, i.e., lower distance of next hop relay node increases the hop
count and vice versa. Therefore, optimization of one objective
hampers in optimization of other. Our proposed work constructs
the fitness function in such a way that a trade-off can be built with
these conflicting objectives. We have used weight sum approach
(WSA) (Konak et al.,, 2006) for the construction of the multi
objective fitness function. WSA is a classical approach for solving
the multi-objective optimization problem. In this approach, a
weight value W; is multiplied with each objective. Finally all the
multiplied values are added to convert the multi objectives into a
single scalar objective function as follows:

Fitness = W1 x MaxDist+ W, x MaxHops (5.8)

Algorithm: PSO-Routing

Input: (1) Set of cluster heads & ={g,,g,....g, }-
(2) PNextHops (g;) and HopCount(g;), Vi, 1<i< M .
(3) Predefined swarm size Np.

Output: Route R: & —> {&+g,,,,}.

Step 1: Initialize particles P;,Vi,1<i< N,. /*As described in section 5.1.2%*/
Step 2: for i=1to Npdo
2.1: Calculate Fitness(P;) /* Using equation 5.8.*/
2.2: Pbest;=P;
end
Step 3: Gbest={Pbesty | Fitness(Pbesty) = min( Fitness(Pbest;), Vi, 1<i<N,) }
Step 4: While (!(Terminate))
fori=1toNpdo

4.1: Update velocity and position of P; using equation 3.2 and 3.3

4.2: Calculate Fitness(P;)

4.3: If Fitness(P;) < Fitness(Pbest;) then

Pbest; = P;
end
4.4: If Fitness(Pbest;) < Fitness(Gbest) then
Gbest = Pbest;
end
end
end
Step 5: Calculate NextHop(g:), Vi, 1<i< M, (i.e., route R) using Gbest as shown
in illustration 5.1

Step 6: Stop.

Fig. 4. PSO based routing algorithm.

In our approach we have taken W,=1-W; and 0 <W; < 1. Our
objective is to minimize the fitness value. In other words,

Objective : Minimize fitness (5.9)

Therefore, lower the fitness value, the better is the particle position.

5.1.2.3. Velocity and position update. The velocity and the position
are updated in each iteration using Egs. (3.2) and (3.3)
respectively. It is noteworthy that, the algebraic steps of addition
and subtraction operation in Eqgs. (3.2) and (3.3) may cause the
new position of the particle to be negative or greater than one.
In our scenario the position of the particle must satisfy the range
(0,1]. Therefore, our algorithm should generate the positions of the
particles in such a way that it can satisfy the range. This can be
made if we choose the positions as follows:

® [f new position is negative or zero, then replace the position
value by a newly generated random number which tends
to zero.

® [f new position is greater than one, then replace the position
value by one.

After getting the new position, the particle P; is evaluated by
the fitness function. Now, its personal best (Pbest;) is replaced by
itself, only if its current fitness value is better than its Pbest; fitness
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value. The updating process is as follows:

P; if (fitness(P;) < fitness(Pbest;))
Pbest; = { Pbest; Otherwise. (5.10)
Now, the global best is also updated as follows:

P; if (fitness(P;) < fitness(Gbest))
Ghest = { Gbest Otherwise. G1D

The velocity and the positions are iteratively updated until the
termination criteria are fulfilled. In our approach, the termination
criterion is a predefined iteration number. After termination of the
PSO-based routing algorithm, the particle Gbest represents the
final routing solution. The algorithm is shown in Fig. 4.

5.2. PSO based clustering

5.2.1. NLP formulation for clustering problem

Now, we address the clustering problem where our basic
objective is to maximize the lifetime of the network as well as
minimize the energy consumption of the sensor nodes. By the
network lifetime, we mean the time from the deployment of the
WSN till the death of the first gateway. Therefore, network life can
be maximized if we can maximize the minimum lifetime of the
gateways. Energy consumption of the sensor nodes can be mini-
mized by minimizing the distance between sensor nodes and their
corresponding gateways. Let b;; be a Boolean variable such that

1 If sensor node s; is assigned to cluster head g,
Vi,j: 1<i<N,1<j<M
0 Otherwise

by = (5.12)

Let L be the minimum lifetime of the gateways, ie., L=
min {L(i)|Vi,1<i<M} and AvegDist be the average distance
between sensor nodes and their corresponding CH, i.e.,

1

N
AvegDist = N E (5.13)
i=

Then the Non-linear Programming (NLP) of the clustering
problem can be formulized as follows:

L
M Z=
aximize AvegDist

e Sensor node

Fig. 5. A WSN with gateways (a) before clustering and (b) after clustering.

Subject to
M
> bj=1, 1<i<N (5.14)
j=1
2 dis(s;, &) x bjj < dmax, 1 <i<N,s;€S5,8;€& (5.15)

iZ

The constraint (5.14) states that the sensor node s;, Vi, 1 <i<N
can be assigned to one and only one gateway. The constraint (5.15)
ensures that the sensor nodes are assigned to the gateway within
its communication range.

5.2.2. Proposed clustering algorithm

After executing the above routing algorithm, the base station
executes the clustering algorithm in which the information of the
routing solution is used for the cluster formation to balance the
load of the CHs (i.e., gateways). Note that we use here particle
initialization for clustering and fitness function different from that
are used in the above routing algorithm as they do not fit for the
proposed clustering.

5.2.2.1. Initialization of particles. Here, the dimension of the
particle is same as the number of sensor nodes (i.e., N) in the
network. Let, P;=[Y;1, Yi2, Yis3, ..., Yin] be the ith particle of the
population where each component, Y;4, 1 <i<Np, 1 <d <N maps
the assignment of the sensor node s; to a gateway. We initialize
each component with a randomly generated uniformly distributed
number Rand(0,1], 0<Rand(0,1]<1. The random number is
generated independently for each component. The component of
the dth dimension of this particle, i.e., Y;4q=Rand(0,1], 1<d<N
maps a gateway (say g) to which the sensor node s, is assigned.
The mapping is done as follows:

g, = Index(ComCH(sy), n) (5.16)

where Index(ComCH(sy),n) is an indexing function that indexes the
nth gateway from ComCH(sq) and n = Ceiling(Y;4 x |ComCH(sq)|).
This is important to note that the above particle representation
is a part of the clustering algorithm. As mentioned above that the
dimension of each particle is equal to the number of the sensor
nodes. Therefore, addition/deletion of any sensor node would
change the particle dimension and require re-clustering.
llustration 5.2: Consider a WSN with 15 sensor nodes and
6 gateways, i.e., S={s1, S2, ..., 515} and {={g1, &2, &3, &4, &5, &6} as
shown in Fig. 5(a). Therefore, the dimension of the particle is same

@«@\ﬁ

t @\g@&

J Gateway
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as the number of sensor nodes, i.e., N=15. The edges between the
sensor nodes and the gateways indicate that the gateways are
within communication range of the sensor nodes. It can be
observed from Fig. 5(a) that the sensor node s, is connected with
three gateways. In other words, ComCH(s4)={g3, g4, &2}. Table 3
shows the sensor nodes and the gateways within its communica-
tion range.

Now, for each element of the ith particle at the Gth generation, a
random number is generated to initialize the element. Let, the
generated random number for the fourth element is 0.18, i.e.,
Y;4=0.18 as shown in Table 4. Hence,Ceiling(Y;4 x |ComCH(s4)|) =1,
therefore the 1st gateway from ComCH(s,), i.e., g3 is selected for
assigning s4 as shown in Table 4. In the same way all the sensor
nodes are assigned to a gateway using the randomly generated
particle. The final assignment of the sensor nodes to their corre-
sponding gateways are shown in Table 4.

Therefore, the particle P;=[0.26, 0.86, 0.91, 0.18, 0.77, 0.12, 0.47,
0.62, 0.24, 0.53, 0.71, 0.46, 0.81, 0.92, 0.39] maps the assignment of
the sensor nodes to their gateways shown in Fig. 5(b). This is
important to note that the different order of gateways under
ComCH may produce another assignment which is also valid.

5.2.2.2. Fitness function derivation. The fitness function is derived
in such a way that it takes care of energy consumption of the CHs

Table 3
Sensor nodes with the list of possible gateways.

Sensor nodes ComCH (sq) IComCH (sq)!
$1 {g1, g5} 2
S2 {6, &5} 2
S3 (g1, g5, 83} 3
Sa (g3, 8a, 82} 3
S5 {g3, &2, &1} 3
Se {86, 85, 3} 3
s7 {84, &3, 86} 3
Sg (g} 1
So {84, 86} 2
S10 {84} 1
Sn {82, 84} 2
S12 {g1} 1
S13 {g1, 82} 2
S1a {82} 1
S15 {gs} 1
Table 4
Sensor nodes assignment from particle representation.
Sensor Yia IComCH (s4)| Ceiling Assigned
Nodes (sq) (Yia x IComCH Gateway
(sa))
$1 0.26 2 1 21
Sz 0.86 2 2 g5
S3 0.91 3 3 g3
Sa 0.18 3 1 g3
S5 0.77 3 3 g1
Sg 0.12 3 1 g6
Sz 0.47 3 2 g3
S 0.62 1 1 6
Sg 0.24 2 1 84
S10 0.53 1 1 84
sn 0.71 2 2 g4
S12 0.46 1 1 g1
S13 0.81 2 2 2
S1a 0.92 1 1 2
S15 0.39 1 1 gs

as well as the sensor nodes. The derivation depends on some
parameters described as follows:

(A) Lifetime of the CHs: Our first objective is to maximize the
network life. This can be possible if we can maximize the
lifetime of the gateway that has least lifetime. The general
principle behind the maximization of the gateway life is
that the gateway with lower residual energy should have
lower rate of energy consumption per round than the
gateways with higher residual energy. Thus the lifetime of
the gateways with lesser remaining energy can be pro-
longed effectively. The gateways consume their energy for
receiving sensed data from their member sensor nodes,
aggregation of data and finally to send the aggregated data
to the base station. Therefore, energy consumption of a
gateway g; with n; number of member sensor nodes due to
inter-cluster activity in a single round can be formulated as
follows:

Ecruster(8:) = i x Er+n; x Epa+Er(g;, NextHop(g;))

where Eg, Eps and E; are the energy consumption due to
data receiving, aggregation and transmission to BS respec-
tively. Apart from these inter-cluster activities, in a multi-
hop scenario, g; also consumes its energy due to forwarding
the data from the gateways whose routing path to the base
station goes through g;. Before calculating the energy
consumption due to data forwarding, we need to calculate
the total number of incoming packets those are coming
from other gateways to g; toward the base station. It can be
recursively calculated as follows:

0. If NextHop(gj) # g, Vg € &
Y (Nin(g))|NextHop(g)) = g;.g; € £}.0therwise
(5.18)

(5.17)

Nin(gi) = {

The gateway g; having Njy(g;) number of incoming packets
will consume its energy for receiving and transmitting
these packets. The overall data forwarding energy con-
sumption can be calculated as follows:

Erorwarp(&i) = Nin(g;) x Er+Nin(g;)

xEr(g;, NextHop(g;)) (5.19)

Therefore, total energy consumption of g; can be calculated
by adding Eqs. (5.17) and (5.19) as follows:

EGateway(&i) = Ecruster(&:) +Erorwarp(&;)
=1n; x Er+n; x Eps+Er(g;, NextHop(g;))
+Nin(g) x Er+Nin(g;) x Er(g;, NextHop(g;))
= (i +Nin(g;)) x EgR+n; x Epa+(Nin(gi)+1)
xEr(g;, NextHop(g;))

Let, g; has the residual energy of Eesiqual(gi)- Then, lifetime
of g; can be calculated as

- Eresidual(gi)J
L(i) = | =residuall&i)
(l) \‘EGateway (gi)

Our first objective is to maximize the minimum lifetime of
the CHs. In other words,

Objective 1: Maximize L= Min {L(i)|Vi,1 <i< M}

(5.20)

(5.21)

(5.22)
Therefore, larger the value of L, higher is the fitness value, i.e.,

Fitness oc L (5.23)

Remark 6.1. In Egs. (5.18) and (5.19), we have calculated
the number of incoming packets those are coming from the
other gateways towards base station over the gateway g;
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and the corresponding energy consumption respectively.
As our first objective (Eq. (5.22)) is to maximize the lifetime
of the network, the prior information of the data forward-
ing overhead of the gateways helps in the clustering phase
to properly balance the load of the gateways and prolong
the network life. Thus we have takes care of the gateways
those inevitably deplete their energy due to serving as relay
node in data routing phase.

(B) Average cluster distance: In order to maximize the lifetime
of the gateways, some sensor nodes are forced to be
assigned to the gateway which is farther from it. Thus
these sensor nodes consume their energy faster and die
quickly due to long haul communication with their CH.
Therefore, we should also take care about the assignment of
the sensor nodes to minimize their energy consumption.
In order to minimize the energy consumption of the sensor
nodes, they should be assigned to their nearest CH. There-
fore, we have measured the average distance between
sensor nodes and their corresponding CH and our second
objective is to minimize it. In other words,

N
Objective 2 : Minimize AvegDist:% Y dist(s;, CH;)
i=1

(5.24)

where CH; is the cluster head of sensor node s;. The shorter the
AvegDist, the higher is the fitness value. Therefore, the fitness
function is reversely proportional to the AvegDist, i.e.,

. 1
Fitness OCW (5.25)
Egs. (5.23) and (5.25) combinedly implies that
Fitness o¢ zzen
. . L
i.e., Fitness=K x /W (5.26)

where K is the proportionality constant. It is noteworthy that the
fitness value is used only for comparison purpose. Therefore, the
value of K does not hamper our objective. Without loss of general-
ity, we assume that K=1. Therefore,

Fitness =

L
~ AvegDist (5.27)

Our objective is to maximize the Fitness value. In other words,

Objective : Maximize Fitness (5.28)

Therefore, higher the fitness value, the better is the particle
position.

5.2.2.3. Velocity and position update. In the same way as routing
algorithm, the velocity and the position are updated in each
iteration using Egs. (3.2) and (3.3) respectively. Then same way
Pbest; and Gbest are also updated. The clustering algorithm can be
developed in the same way as routing algorithm (refer Fig. 4).

6. Experimental results

We performed extensive experiments on the proposed algo-
rithm using MATLAB R2012b and C programming language. The
experiments were performed with diverse number of sensor
nodes ranging from 200 to 700 and 60 to 90 gateways. Each
sensor node was assumed to have initial energy of 2] and each

Table 5
Simulation parameters.

Parameter Value
Area 500 x 500 m?
Sensor nodes 200-700
Gateways 60-90
Initial energy of sensor nodes 20]
Number of simulation iterations 200
Communication range 150 m
Eelec 50 n]J/bit
efs 10 pJ/bit/m?
Emp 0.0013 pJ/bit/m*
do 87.0 m
Epa 5 nJ/bit
Packet size 4000 bits
Message size 200 bits
Table 6
PSO parameters.

Parameter Value

Np 60

G 1.4962

(@} 1.4962

w 0.7968

Vinax 0.5

Vinin —-05

gateway has 10J. In the simulation run, we used following
parameter values same as in Heinzelman et al. (2002) as shown
in Table 5.

We have tested our proposed algorithms extensively and depict
the experimental results for both the routing and clustering in a
combined way. For the sake of simulation we considered two
different network scenarios (WSN#1 and WSN#2). Both of them
have the sensing field of 500 x 500 m? area. For the WSN#1, the
position of the base station was taken at (500,250), i.e., in a side of
the region and for the WSN#2, the position of the base station was
taken at (250,250), i.e, in the center of the region. To execute our
proposed algorithms, we considered an initial population of 60
particles and the values of PSO parameters are taken same as in
Daniel and Kennedy (2007), Sahoo et al. (2011). This is shown in
Table 6. The size of the swarm can be defined differently. However,
we use a predefined swarm size of 60 particles. The same
experiment can be tested for 50 or 70 particles. In weight sum
approach we had tested for different values of the weight factor,
W, and W, and observed that for W;=0.2 and W,=1-W;=0.8, it
was showing comparably better result. Therefore, in the simula-
tion we have taken the same value. It should be noted that it is
very difficult to precisely and accurately select these weight
values, even for someone familiar with the problem domain
(Konak et al., 2006).

For the sake of comparison, we also executed the GA-based
clustering algorithm presented by Kuila et al. (2013) and another
two clustering algorithms GLBCA (Low et al., 2008) and LDC (Ataul
et al., 2008). Note that all the above three algorithms assume that
the base station is within the direct communication range of the
gateways and thereby they do not consider any multi-hop routing
algorithm between gateways and the base station. As the proposed
work consists of clustering algorithm along with multi-hop rout-
ing, for the fair comparison a popular GA-based multi-hop routing
algorithm (Ataul et al., 2009) is executed for the three clustering
algorithms (Ataul et al., 2008; Low et al., 2008; Kuila et al., 2013).

First, we ran the algorithms for comparing lifetime of the
network by varying the sensor nodes from 200 to 700 and the
number of gateways for 60 and 90 on both of the network
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Fig. 7. Comparison in terms of network life in rounds for (a) 60 gateways and (b) 90 gateways in WSN#2.

scenarios, WSN#1 and WSN#2. Figs. 6 and 7 show the comparison
of the proposed PSO-based algorithm with GLBCA, GA and LDC in
terms of network life in WSN#1 and WSN#2 respectively. It can be
observed from Figs. 6 and 7 that the proposed algorithm has better
network lifetime than the GLBCA, LDC and GA-based clustering
algorithms. This is due to the clustering phase the proposed PSO
based algorithm where it takes care of the CHs those are inevitably
used as a relay node to forward the data packets to the base
station. Thus it helps to delay in initial death of the CH and
increase network lifetime. Whereas the existing clustering algo-
rithms do not deal with the uneven data forwarding effects on the
CHs, thereby the CHs those are near to the base station die quickly
due to extra work load of frequent data forwarding. The average
(mean) network life time for 25 runs of the algorithms along with
their standard deviations (SD) for both the scenarios WSN#1 and
WSN#2 are also calculated by varying number of sensor nodes and
gateways. The results are shown in Tables 7 and 8 for 60 and 90
gateways respectively. It is clear that the average network life time
for the proposed PSO is maximum. However, GA has the minimum
fluctuations in the average network life.

Next we ran the algorithms to compare the balancing of
lifetime of the gateways by varying the sensor nodes from 200
to 500 for 60 gateways on both the network scenarios, WSN#1 and
WSN#2. Here, we calculate the duration between first gateway die
(FGD) and last gateway die (LGD) in rounds. This is to be noted

Table 7
Mean network life time and standard deviation in WSN#1 (60 gateways).

Algorithms 200 Sensor nodes 400 Sensor nodes 600 Sensor nodes
Mean SD Mean SD Mean SD
PSO 831.23 22.21 814.12 21.21 691.25 19.36
GLBCA 715.21 23.21 661.14 23.53 601.41 20.54
GA 674.11 21.14 651.71 23.64 541.87 18.63
LDC 643.52 26.84 523.39 24.32 441.69 19.23
Table 8

Mean network life time and standard deviation in WSN#2 (90 gateways).

Algorithms 300 Sensor nodes 500 Sensor nodes 700 Sensor nodes
Mean SD Mean SD Mean SD
PSO 1185.63 27.56 954.85 23.51 874.53 26.35
GLBCA 1036.32 29.35 774.52 2412 675.12 2413
GA 986.74 24.56 714.23 21.54 621.98 2941
LDC 754.31 29.54 621.5 28.14 422.12 28.53

that lower the duration, better is the balancing of the lifetime.
Fig. 8 shows the comparison of the proposed algorithm, GLBCA,
LDC and GA-based clustering algorithms in terms of balancing of



P. Kuila, PK. Jana / Engineering Applications of Artificial Intelligence 33 (2014) 127-140

a
WSN#1
2500
I rso

=z I GLBCA
g B 3 [Joea
£ [Jibc
(=)
2 2000 _ -
—
e}
g
@)
©
=%
=]
8 1500
z
5]
=}
&
(@)

1000

200 300 400 500

No. of Sensor Nodes

137

b

WSN#2
- I rso

- I GLBCA

[ Jipc

1600 b

2000

1800 —

1400 1

1200 1

1000 i

Diff. between FGD and LGD in round

800 i

200 300 400 500

No. of Sensor Nodes

Fig. 8. Difference between first gateway die (FGD) and last gateway die (LGD) in rounds for (a) WSN#1 and (b) WSN#2.

350

300

250

200

150

100

Inactive Sensor Nodes.

£11) SERERRE ;

1000 1500 2000 2500
No. of Rounds

0 500

600

500 -

400 f-

300

200

Inactive Sensor Nodes.

100

1500 2000 2500 3000

1000
No. of Rounds

0 500

Fig. 9. Comparison in terms of inactive sensor nodes in (a) WSN#1 and (b) WSN#2.

lifetime in WSN#1 and WSN#2 respectively. It can be observed
that the proposed algorithm has better balancing than the existing
clustering algorithms.

Now, we show the comparison of the algorithms in terms of
number of inactive sensor nodes per round in WSN#1 and WSN#2
respectively. A sensor node is considered as active if its existing
energy is not zero and also there must be at least one CH within its
communication range. Sometimes few CHs die quickly for impro-
per load balancing in clustering and extra overload of data
forwarding. As a result, few sensor nodes are unable to find any
CH within their range, though they still may have some existing
energy. In our scenario this type of sensor nodes are also
considered as inactive. Simulations are performed by means of
different algorithms for 600 sensor nodes and 60 gateways. It can
be observed from Fig. 9 that the rate of inactive of the sensor
nodes in both of the scenarios for the proposed algorithm is lesser
than the existing algorithms. This is due to the fact that our
derived fitness function takes care about the energy consumption
of the normal sensor nodes by reducing the distances between
sensor nodes and the gateways. Moreover, long life of the CHs
helps the sensor nodes to be active for the long time. It can be
observed that GLBCA and the GA-based clustering algorithms only
balance the load of the CHs. To achieve this goal, some sensor
nodes are assigned to the CH which may be farther from it. As a
result their energies are drained out due to long haul transmission

and die quickly. Whereas, though LDC assigns the sensor nodes to
their nearest CH to reduce energy consumption of the normal
sensor nodes, it does not take care of the load balancing of the CHs
and the data forwarding overhead. In a result, frequent death of
the CHs lead some sensor nodes become inactive though they may
have some remaining energy.

Fig. 10 shows the comparison of energy (J) consumption of the
network per round for 600 sensor nodes and 60 gateways in
WSN#1 and WSN#2 respectively. Though the proposed algorithm,
GLBCA and the GA-based clustering algorithms consume more or
less same amount of energy it can be claimed that the proposed
algorithm performs better in this respect. The justification behind
it is that the higher number of active sensor nodes in the network
consume more energy than the others. LDC consumes comparably
lesser energy due to its sensor assignment strategy. As the sensor
nodes are assigned to their nearest CH, they consume less energy
and as a result the overall energy consumption of the network
becomes lesser than the others. However, overall performance of
the network is not only the measurement of energy consumption.
It should be noted that in terms to assign the sensor nodes to their
nearest CH, load of the CHs is not properly balanced which leads to
initial death of the overloaded CHs. The initial death of the CHs
may cause the network be disconnected and the maximum sensed
data packets are unable to reach to the base station. It can be
observed from Fig. 11 that number of data packets received by the
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Fig. 11. Comparison in terms of total data packets received by the base station in (a) WSN#1 and (b) WSN#2.
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Fig. 12. Comparison in terms of total number of hops for (a) WSN#1 and (b) WSN#2.

base station in LDC is comparably very lesser than the proposed ran MHRM (Chiang et al., 2007). Fig. 12 shows the comparison of

algorithm as well as others. In this case the proposed algorithm is the algorithms in terms of the total number of hops used. In this
far better than the other existing algorithms. case, MHRM always shows the better result. This is because MHRM

To evaluate the performance of the proposed routing algorithm, uses maximum possible distance for the next hop selection, thus it
we ran two GA-based routing algorithms, i.e., GAR (Gupta et al., can easily reduce the hop count but unfortunately it extends the

2013) and the algorithm proposed by Ataul et al. (2009). We also transmission distance and use long haul transmission. Whereas,
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GAR minimizes the transmission distance to reduce the energy
consumption but it uses comparably high number of hops. The
proposed PSO-based routing algorithm builds a trade-off between
transmission distance and hop count, i.e., GAR and MHRM. We also
compare all the algorithms with respect to the total distance
covered in each round. This can be observed from Fig. 13 that the
proposed algorithms cover comparably less distance than MHRM
and GA-based routing algorithm proposed by Ataul et al. (2009) in
a single round.

7. Conclusions

In this paper, first a Linear and a Non-linear Programming have
been formulated for two important optimization problems for
wireless sensor networks, i.e., energy efficient routing and cluster-
ing respectively. Then, two algorithms have been presented for the
same based on particle swarm optimization. The routing algorithm
has been developed by considering a trade-off between transmis-
sion distance and the number of hop-count. In the clustering
phase, routing overhead of the CHs is considered for balancing the
energy consumption of the CHs. All the CHs which are heavily
used as next hop relay nodes in data forwarding are assigned
lesser number of sensor nodes. Thus the energy consumption of
the CHs is significantly balanced and the lifetime of the network is
improved. The algorithms are based on the derivation of efficient
particle encoding scheme and fitness function for routing and
clustering separately. The algorithms have been extensively tested
with several scenarios of WSNs by varying number of sensor nodes
and gateways. The experimental results have shown that the
proposed algorithms perform better than the existing algorithms
in terms of network life, number of inactive sensor nodes and the
total data packets transmission.
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