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Abstract. Neuroimaging in the context of stroke is becoming more and
more important. Quantifying and characterizing stroke lesions is still an
open challenge. In this paper, we propose a novel framework to solve this
problem. The features we use are intensities of patches from multiscale
multimodal magnetic resonance (MR) images. We have built random
forest classifiers for different parts of the whole brain. A leave-one-out
cross-validation result on SISS training data yields 0.55 in Dice score.

1 Introduction

Stroke is a cerebrovascular accident, in which part of the function of the brain
is lost through a decrease of the blood supply [3]. It is the second major cause
of death and it may lead to long-term disability [2]. Advanced neuroimaging
techniques have been widely used in the diagnosis of stroke. It is normally rec-
ommended that patients should undergo either MR or computer tomography
(CT) imaging [4]. Diffusion-weighted imaging (DWTI), T2-fluid attenuated inver-
sion recovery (FLAIR), T1-weighted imaging, and T2-weighted imaging should
be included in the MR sequences, which are regarded as the gold standard in
stroke treatment since they are able to show different types of lesions.

Based on MR images, quantifying lesions is important for assessing the pro-
gression of the disease and predicting the functional outcomes for patients. How-
ever, manual delineation of lesions is extremely time-consuming and the inter-
expert consistency is not satisfactory. In this paper, we propose a novel frame-
work for sub-acute stroke lesion segmentation based on the data from the ISLES
challenge, MICCAI 2015.

2 Methods

The ISLES challenge released 28 cases for model training, each of which con-
sists of T1-weighted, T2-weighted, diffusion-weighted, and FLAIR images and
a corresponding manual delineation of the actual lesions. The overview of our
framework is shown in the Figure 1. It consists of six steps.

In the first stage we normalize all images in terms of intensity. For each image
X, we apply the formula %, where 4 is the mean intensity of the tissue in
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Fig. 1: Overview of the segmentation process.

X and s is its standard deviation. Notably, we exclude 5% outlier voxels with
minimum and maximum intensities of the tissue, respectively.

Secondly, we extract features from all images. Intensities of multi-scale patches
in each modality are extracted. Specifically, we blur all images at the lower res-
olutions using Gaussian kernels ¢ = 1 and o = 2. 5 x 5 patches are extracted
at each scale of each modality. Finally, all patches are converted to vectors and
concatenated into a long vector of dimension 300. In a real clinical scenario,
the acquired axial slices are typically thick and their thickness can vary signifi-
cantly. Resampling them into thin slices leads to additional errors. Therefore we
prefer pixels, rather than voxels as our features. We parcellate the whole brain
into three parts (see Figure 2), including top, middle, and bottom. In the given
dataset, there are 65, 40, and 49 slices in the bottom, middle, and top part,
respectively. Patches are separated according to their locations and classifiers
will be trained for each part individually. The main reason for this is that each
part of the brain contains different anatomical structures. The top part con-
tains relatively homogeneous structures. The middle part contains the ventricles
and the bottom part contains complicated structures such as the cerebellum.
Another reason is that strokes occur most frequently in the middle part of the
brain because the main arteries are located there so that the numbers of lesion
and normal patches are extremely unbalanced in the top and the bottom part.

In the third step, the data is divided into training and testing sets. In this
work, as we will perform the leave-one-out cross-validation, one patient is left
out for validation in each round. The remaining training patches will be selected
to train classifiers. Since we have a limited number of subjects and not all images
contain large lesions, there are significantly less lesion patches than normal ones.
If we sample the same number of normal patches as the lesion ones globally,
there will be many normal patterns that will be excluded and therefore the test
performance will not be satisfactory. We propose to sample different numbers of
normal patches for different parts of the brain. In the bottom part, we randomly
select 5 times normal patches more than lesion ones since we would like to cover
all kinds of normal patterns. For the middle and the top parts, the rates, where
the number of normal patches versus lesion ones are 1.5 and 3, respectively.
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Fig. 2: Tllustration of brain parcellation. This is a FLAIR example showing each
part of the brain. The structure of the top part is relatively simple. The mid-
dle part has ventricles and more lesions. The bottom consists of more complex
structurs and less lesions.

Subsequently, we can train three classifiers based on the patches selected
from three parts of the brain. In this paper, the standard random forests [1]
are used as patch classifiers. In each forest, 100 trees are developed. Afterwards,
the classifiers can be evaluated with the test data to distinguish how abnormal
they are. The outputs of the classifiers are the probabilities that characterize the
abnormality of the test patches.

Finally, we perform some post-processing operations. Considering that the
lesions in the brain are typically continuous, we smooth the probabilities of
the slice at the joint of bottom and middle part of the brain by averaging the
probabilities of the neighbouring slices where the outputs given by the classifier of
the bottom volume and the classifier for the middle volume have sharp difference
occasionally. Based on the resulting probabilities, a threshold & = 0.6 is applied
to obtain the binary lesion map. For some patients with lacuna infarction, the
lesion appearance on the FLAIR image used to be a hyperintense clot with a
dark ’hole’ inside, which can hardly be detected by the classifiers. Therefore we
perform a morphological operation to fill up these "holes’.

3 Experiments and Results

The method mentioned above is performed on the given training data and we
achieve the results presented in Table 1. The leave-one-out cross-validation is
used. It is obvious that the results are good if the subject have large lesions. The
very small lesions shown in Case 26 and 27 can never been detected.

4 Discussion and Conclusion

We have presented a novel framework for sub-acute stroke lesion segmentation
and we achieved an average Dice score of 0.55. In the future, we proposed to
collect more data so that there are sufficient data for all kinds of lesions. As
a result, different classifiers can be trained for different conditions, where the
lesion sizes vary.
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Table 1: The results on the SISS training data.

Case 1D ASSD Dice Hausdorff Distance Precision Recall

1 0.96 0.93 48.88 0.91 0.94
2 2.15 0.83 52.43 0.75 0.92
3 1.59 0.62 49.75 0.48 0.89
4 2.34 0.79 55.29 0.93 0.69
5 1.44 0.87 45.52 0.85 0.88
6 1.05 0.90 28.46 0.86 0.95
7 1.76 0.86 58.60 0.84 0.88
8 19.4 0.49 94.22 0.35 0.84
9 2.11 0.86 24.19 0.90 0.82
10 5.19 0.67 73.74 0.83 0.56
11 10.09 0.59 92.50 0.43 0.94
12 8.30 0.53 67.60 0.41 0.74
13 12.56 0.23 70.80 0.15 0.57
14 1.55 0.81 81.65 0.89 0.75
15 2.22 0.83 48.93 0.73 0.95
16 40.52 0.02 120.59 0.01 0.14
17 11.02 0.49 93.01 0.67 0.38
18 8.41 0.59 83.96 0.47 0.80
19 13.78 0.16 56.86 0.09 0.69
20 4.44 0.77 126.15 0.81 0.74
21 41.43 0.07 140.13 0.04 0.46
22 6.75 0.52 79.76 0.72 0.41
23 22.80 0.38 90.14 0.25 0.77
24 15.38 0.44 102.51 0.31 0.76
25 9.46 0.60 87.87 0.43 0.97
26 29.92 0 85.65 0 0

27 59.99 0 124.96 0 0

28 11.13 0.67 76.69 0.56 0.56

Average 12.42 4 14.29 0.55 £ 0.29  77.17 £ 28.60 0.52 £ 0.32 0.68 £ 0.27
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