
Author's Accepted Manuscript

Support vector regression based determina-
tion of shear wave velocity

Parisa Bagheripour, Amin Gholami, Mojtaba
Asoodeh

PII: S0920-4105(14)00395-7
DOI: http://dx.doi.org/10.1016/j.petrol.2014.11.025
Reference: PETROL2868

To appear in: Journal of Petroleum Science and Engineering

Received date: 19 April 2013
Revised date: 12 October 2014
Accepted date: 24 November 2014

Cite this article as: Parisa Bagheripour, Amin Gholami, Mojtaba Asoodeh,
Support vector regression based determination of shear wave velocity, Journal
of Petroleum Science and Engineering, http://dx.doi.org/10.1016/j.petrol.2014.11.025

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal
pertain.

www.elsevier.com/locate/petrol

Downloaded from http://iranpaper.ir

http://dx.doi.org/10.1016/j.petrol.2014.11.025
http://dx.doi.org/10.1016/j.petrol.2014.11.025
http://dx.doi.org/10.1016/j.petrol.2014.11.025
http://dx.doi.org/10.1016/j.petrol.2014.11.025
http://dx.doi.org/10.1016/j.petrol.2014.11.025
http://dx.doi.org/10.1016/j.petrol.2014.11.025


Support Vector Regression Based Determination of Shear Wave Velocity 

Parisa Bagheripour
1
; Amin Gholami

2
; Mojtaba Asoodeh

3* 

1
 Department of Petroleum Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, 

Iran 

2
 Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran 

3 
Islamic Azad University, Birjand Branch, Birjand, Iran 

Address Correspondence to MojtabaAsoodeh, Islamic Azad University, Birjand Branch, Birjand, 

Iran, Email: Asoodeh.mojtaba@gmail.com , Tel.: +989395161149 

 

Abstract 

Shear wave velocity in the company of compressional wave velocity add up to an invaluable 

source of information for geomechanical and geophysical studies. Although compressional wave 

velocity measurements exist in almost all wells, shear wave velocity is not recorded for most of 

elderly wells due to lack of technologic tools in those days and incapability of recent tools in 

cased holes. Furthermore, measurement of shear wave velocity is to some extent costly. This 

study proposes a novel methodology to remove aforementioned problems by use of support 

vector regression tool originally invented by Vapnik and his co-workers (1995).Support vector 

regression (SVR) is a supervised learning algorithm plant based on statistical learning (SLT) 

theory. It is used in this study to formulate conventional well log data into shear wave velocity in 

a quick, cheap, and accurate manner. SVR is preferred for model construction because it utilizes 

structural risk minimization (SRM) principle which is superior to empirical risk minimization 

(ERM) theory, used in traditional learning algorithms such as neural networks. A group of 2879 

data points was used for model construction and 1176 data points were employed for assessment 

of SVR model. A comparison between measured and SVR predicted data showed SVR was 
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capable of accurately extract shear wave velocity, hidden in conventional well log data. Finally, 

a comparison among SVR, neural network, and four well-known empirical correlations 

demonstrated SVR model outperformed other methods. This strategy was successfully applied in 

one of carbonate reservoir rocks of Iran Gas-Fields. 

Keywords: Shear Wave Velocity; Support Vector Regression (SVR); Structural Risk 

Minimization (SRM); Empirical Risk Minimization (ERM); Conventional well logs; Rock 

Mechanics 

1. Introduction 

Sonic measurements in hydrocarbon wells provide precious information for rock mechanical and 

geophysical studies. Compressional wave velocity is easily recorded and is available for all 

wells. However, measurement of shear wave velocity is more complicated and these 

measurements are not available in old wells owing to lack of technologic tools in those days. 

Run of recent tools in old wells is not practical for most of them due to prevailing casing 

completion. Therefore, a quantitative formulation between conventional well logs (available in 

all wells) and shear wave velocity eliminates the mentioned problems and makes it possible to 

perform geophysical and geomechanical studies. Combination of shear and compressional wave 

velocities measurements adds up to invaluable source of information for lithology identification 

(Pickett 1963), rock mechanical properties calculation (Eaton 1972; Kumar 1976; Chang et al. 

2006; Ameen et al. 2009), and pore type identification (Eberli et al. 2003). Due to significance of 

subject several researchers have tried to establish empirical correlations estimating shear wave 

velocity (Pickett, 1963; Tosaya and Nur, 1982; Castagna et al., 1985; Han, 1986; Eberhart-
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Phillips, 1989; Castagna et al., 1993; Anselmetti and Eberli, 1993; Eskandari et al., 2004; 

Brocher, 2005).  

Recent studies have proved the superiority of intelligent systems to empirical and statistical 

approaches in geosciences and petroleum related problems. A growing tendency is observed 

among researchers to utilize intelligent systems in solving their problems of various fields 

(Mohaghegh et al., 2000; Saggaf and Nebrija 2003; Artun et al., 2005; Kadkhodaei-Illkchi et al., 

2008; Asoodeh and Bagheripour, 2012a).Several researchers suggested estimation of shear wave 

velocity from conventional well logs using traditional learning algorithm such as neural networks 

which use empirical risk minimization (ERM) principle (Rezaee et al. 2006; Rajabi et al. 2009; 

Asoodeh and Bagheripour, 2012b). In this study, shear wave velocity is estimated from 

conventional well log data using support vector regression (SVR). SVR utilizes structural risk 

minimization (SRM) in conjunction with ERM. Therefore, it produces more reliable results 

compared with neural networks that solely use ERM principle.SVR model was compared with 

neural network and four well-known empirical correlations. Results confirm superiority of SVR 

to other methods. This methodology was successfully implemented to Asmari carbonate 

reservoir rocks, the major reservoir of Iranian Oil Fields. Top of the reservoir formation is 

varying in range of 2983m to 2996m in field of our study. Therefore, there is a compaction 

knowing approximate 1 psi/ft overburden pressure. 

2. Method: Support Vector Regression 

Support vector regression was introduced as a machine learning technique by Vapnik (1995). 

SVR has been deemed as an arresting tool featuring promising applications owing to its superior 

capability in successfully solving large variety of nonlinear regression problems. SVR method 
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utilizes structural risk minimization principle in addition to supplanted empirical risk 

minimization principle that traditionally has been used by neural networks with a view to 

developing an accurate model (Al-Anazi and Gates, 2010a; El-Sebakhy, 2009; Jiang and Zhao 

2013; Liao et al. 2011;Ustun et al. 2005; Wu and Law 2010). An elaboration on SVR underlying 

structure is brought as follows. In SVR regression, the ultimate goal is to find linear relation 

between n-dimensional input vectors n
x R∈ and output variables y R∈ as follow: 

( ) Tf x w x b= +                                                                                                                             (1) 

Where, w and b are the slope and offset of the regression line respectively. For determining the 

values of b and w, it is necessary to minimize following equation:  
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Loss function, used in SVR is ε -insensitive which has been introduced by Vapnik (1995) as 

below: 
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Where, *, 0i iα α ≥ are positive Lagrange multipliers. C is regulated positive parameter which 

determines trade-off between approximation error and the weight vector norm w . After 

calculation of Lagrange multipliers iα  and *

iα , training data points, those meeting the conditions 

* 0i iα α− ≠ , will be employed to construct the decision function.Hence, the best linear hyper 

surface regression is given by: 

( ) ( )*

1

l
T T

o ii i

i

f x w x b x x bα α
=

= + = − +∑                                                                                    (6) 

Which desired weight vector of the regression hyper plane is given by: 

( )*

1

l

o i i i

i

w xα α
=

= −∑                                                                                                                       (7) 

In nonlinear regression, Kernel function is employed for mapping input data onto higher 

dimensional feature space in order to generate a linear regression hyper plane. Polynomial, radial 

basis function (RBF), and sigmoid are the common kernel functions in SVR. In the case of the 

nonlinear regression, the learning problem is again formulated in the same way as in a linear 

case, i.e., the nonlinear hyperplane regression function becomes:
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In above equation, ,( )iK x x is kernel function which is defined as follow: 

( ) ( )( , )                 , 1, ,T

i j i j
k x x x x i j l= Φ Φ = …                                                                        (9) 

Where, ( )ixΦ  and ( )j
xΦ are projection of the xi and xj in feature space respectively. For 

simplicity, a brief description of SVR was explained. More detailed studies about SVR are 
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provided in several papers and reviews which readers can refer to (Al-Anazi and Gates, 2010b; 

Kecman 2005, 2006;Mousavi et al. 2013; Vogt and Kecman, 2005). 

3. Input Selection by Sensitivity Analysis 

Using a back-propagation neural network, Dutta and Gupta (2010) suggested a stable method 

based on partial derivative of output with respect to th
i input to find relative contribution of each 

input in estimating output. Partial derivative of output with respect to th
i input is evaluated using 

following equation: 

( )21s

j

V
Woj hj Wji

xi

∂
= −

∂
∑                                                                                                            (10) 

Where, s
V

xi

∂

∂
is partial derivative of shear wave velocity with respect to th

i input,Woj is weight 

between output neuron and thj hidden neuron and hj is the response of thj neuron in the hidden 

layer. Relative contribution of back-propagation neural network inputs is calculated by sum of 

the squares of the partial derivatives (S) as follow: 
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Where, RCi is relative contribution of i
th

 input. 

To achieve influence of each input in estimation of shear wave velocity, an improved strategy 

was followed and subsequently optimal number of inputs was evaluated. Firstly, a feed forward 
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back-propagation neural network was constructed using all available well logs and a sensitivity 

analysis was performed to compute RC value for each input as is shown in Table 1. In spite of 

correlation coefficient which is a qualitative criterion for illustrating dependency between inputs 

and output, sensitivity results are quantitative norms and are more reliable. In next step, RC 

values were used for ranking inputs. In SVR model, optimal number of introduced inputs is a 

crucial design factor. Therefore, conventional well logs were introduced into SVR model one by 

one according to their RC values and performance of SVR model was evaluated for each set of 

inputs. Results indicated that optimal SVR model is achieved when four inputs, including 

compressional wave slowness, neutron porosity, bulk density, and true resistivity are used.The 

mentioned procedure is summarized in a flowchart, shown in Fig.1. Readers unfamiliar to back-

propagation neural networks (NNs) can refer to a work by Mohaghegh (2000) for more detailed 

study about NNs. In this study, we were to model the simplest way of formulating conventional 

well log data to shear wave velocity. Knowing that conventional well logs implicitly records 

effects of lithology changes, we didn’t include lithology as input. Several studies have been done 

to show conventional well log data contain invaluable lithology information in their records (e.g., 

Delfiner et al., 1987; Cabello et al., 2010; Sfidari et al., 2014). 

4. Results and Discussion 

An epsilon support vector regression (ε -SVR) algorithm was employed for construction a model 

meant to estimate shear wave velocity from conventional well log data, including compressional 

wave slowness, neutron porosity, bulk density, and true resistivity. The primary task which 

should be done before SVR model construction is data normalization in range of [-1 1]. This task 

reduces confusion to SVR model due to better performance of kernel functions and enhances the 

accuracy of final prediction. A group of 2879 data points belonging to one well was used for 
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model construction. Previous works demonstrates that radial basis functions (RBF) are the most 

appropriate choice for kernel function owing to fewer parameters to be tuned and low 

computational cost (Keerthi and Lin, 2003). Therefore, RBF was used as kernel function for 

SVR model construction. Performance of SVR model is strongly governed by involved 

parameters in SVR model and kernel function (C, Gamma, and Epsilon). Therefore, a thorough 

survey for determining such parameters is desired. You et al. (2010) suggests carrying out this 

survey through combination of grid search and pattern search techniques such that the grid 

search determines the area surrounding the optimal point and pattern search finds global optimal 

point within the found area by grid search. The specified search range for “C”, “Gamma”, and 

“Epsilon”were [0.1 500000], [0.000001 20], and [0.0001 100] respectively, while the extracted 

optimal points from these ranges are 125814.37412, 0.198179, and 0.014732, correspondingly. 

For this study, 2879 data points were employed as training data for model construction. Hence 

2879 Lagrange multiplier pairs ( iα , *

iα ) is determined during the training the model. Among all 

extracted multiplier pairs, 2740 Lagrange multiplier pairs which meet the condition * 0i iα α− ≠  

will be employed to build the decision function. In other word, number of support vectors used 

by this model is 2740. Moreover, in SVR algorithm the dimension of Hessian matrix is two times 

of number of input data for training model, i.e., (5758, 5758). After model construction, 1176 

data points from another well were employed for assessment of SVR model. After model 

construction two powerful concepts, including correlation coefficient and error distribution were 

employed for assessment of the SVR performance. Fig.2 shows crossplot of measured shear 

wave velocity versus predicted values. Correlation coefficient for SVR prediction is equal to 

0.9716(R-square=0.944) which verifies robustness of SVR Model. Fig.3 allows more statistical 

analysis of SVR performance using error distribution information. Mean and standard deviation 
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of error distribution are in turn equal to 0.0000 and 0.0734 which are relatively small values. It 

means error of 68% of samples is in range of 0.0000±0.0734 that is an acceptable error for shear 

wave velocity. Fig.4 provides an opportunity to compare measured shear wave velocity versus 

predicted values for all samples. This figure states SVR predicted values are in good agreement 

with reality. Eventually, relative error (error percentage) for each sample is evaluated and 

demonstrated in Fig.5. Relative error for most data points is located in range of [-5% 5%], which 

is an acceptable value.  

5. Comparison among SVR Model, Neural Network, and Empirical correlations 

In the latter stage of this study, a comparison among SVR model, neural network, and empirical 

correlations, proposed by Pickett (1963), Castagna et al. (1993), Eskandari et al. (2004), and 

Brocher (2005) was performed. Following equations show the used empirical correlations. 

Pickett (1963): 

/1.9s pv v=
          (13)

 

Castagna et al. (1993): 

2
0.05509 1.0168 1.0305s p pv v v= − + −      (14) 

Eskandari et al. (2004): 

2
0.1236 1.612 2.3057s p pv v v= − + −

     (15) 

Brocher (2005): 

2 3 4
0.7858 1.2344 0.7949 0.1238 0.0064s p p p pv v v v v= − + − +

 (16)
 

Downloaded from http://iranpaper.ir



Where, vp refers to compressional wave velocity. Different statistical concepts, including 

correlation coefficient (R), average relative error (ARE), average absolute relative error (AARE), 

and root mean square error (RMSE) were employed to carry out this comparison. Following 

equations show the mentioned statistical tools: 
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Where, Ve, Vm, mV
�

 and N are estimated shear wave velocity, measured shear wave velocity, 

mean of measured shear wave velocity, and number of testing data points, respectively. Results 

of this comparison are shown in Table 2. As it is seen in Table 2, SVR outperformed other 

methods owing to higher R and lower ARE, AARE, and RMSE.  

6. Conclusions 

Shear wave velocity can provide valuable data for reservoir characterization, and geomechanical 

and geophysical studies when it is used in conjunction with compressional wave velocity. Due to 

significance of calling for shear wave velocity knowledge, several researchers attempted to 
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determine shear wave velocity through empirical correlations and/ or traditional intelligent 

systems. Nonetheless, the quest for precision as much as possible offers looking for high 

accuracy methods. In this study, support vector regression method was employed for responding 

to this quest. SVR was utilized to formulate conventional well log data, including compressional 

wave slowness, bulk density, true resistivity, and neutron porosity into shear wave velocity. 

Results indicated SVR model performed satisfyingly and it was capable of mining hidden 

knowledge about shear wave velocity from conventional well logs. Since SVR utilizes structural 

risk minimization (SRM) in conjunction with ERM, it was expected that SVR model performs 

better than traditional learning algorithm such as neural network. A comparison between SVR 

and previous works, including neural network and four well-known empirical correlations 

verified superiority of SVR model. The comparison showed SVR model has a higher correlation 

coefficient and lower average relative error, absolute average relative error, and root mean 

square error. Finally, implementation of proposed methodology can produce shear wave velocity 

for elderly and/ or cased holes where no shear wave measurement is done. Applying SVR model 

for new wells can significantly reduces costs and saves time. 
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Table 1: Relative contribution of each input in shear wave velocity estimation, based on 

sensitivity analysis and correlation coefficient concept. 

Conventional well logs Relative Contribution Correlation Coefficient 

Compressional wave slowness (DT) 41.03% 0.76 

Bulk density (RHOB) 23.73% 0.51 

Neutron porosity (NPHI) 18% 0.31 

True resistivity (RT) 12.41% 0.19 

Photoelectric factor (PEF) 2.53% 0.23 

Shallow resistivity (RS) 1.84% 0.04 

Gamma ray (GR) 0.46% 0.11 

 

Table 2: Comprising SVR model with neural network and four well-known empirical 

correlations based on correlation coefficient (R), average relative error (ARE), absolute average 

relative error (AARE), and root mean square error (RMSE).  

Method R ARE AARE RMSE 

SVR 0.9716 -0.0567 1.7595 0.0733 

NN 0.956 -0.0682 1.8691 0.0793 

Pickett 0.947 -3.0211 3.3028 0.1145 

Castagna et al 0.941 -4.6908 4.6955 0.1761 

Eskandari et al 0.8819 -9.2848 9.2848 0.3550 

Brocher 0.9359 8.6817 8.9723 0.9241 
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Figure 1: flowchart showing input selection via sensitivity analysis. 
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Figure 2: Crossplot showing correlation coefficient between measured and SVR predicted shear 

wave velocity. High value of correlation coefficient, i.e. 0.9716 (R-square=0.944) proves the 

robustness of SVR modeling. 
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Figure 3: Error distribution statistics for SVR model meant to predict shear wave velocity. Small 

values of mean and standard deviation (STD) reveal high performance of SVR modeling. Error 

distribution indicates 68% of predicted values have errors in range of 0.0000±0.0734. 
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Figure 4: A comparison between measured and SVR predicted shear wave velocity versus 

different samples. Results indicate high match between measured and predicted values. 
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Figure 5: Relative error (error percentage) of SVR model in prediction of shear wave velocity 

for each sample. Results indicate relative error is located in range of [-5% 5%] for most data 

points. 
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� In this study, shear wave velocity (vs) was predicted from conventional well log data. 

� Support vector regression (SVR) algorithm was used for model construction. 

� Results of SVR was compared with those of neural network and empirical correlations 

� Comparison showed superiority of SVR algorithm to other methods. 

� Implementation of SVR model in wells with no vs data reduces costs and saves time  
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