
Controller scheduling for continued SDN
operation under DDoS attacks

Sungheon Lim, Seungnam Yang, Younghwa Kim,
Sunhee Yang and Hyogon Kim✉
ELECT

D

There exists a way that attackers can identify software defined net-
works (SDNs). Knowing the vulnerabilities of a SDN, the attackers
can mount a saturation attack on the SDN controller with the aim of
incapacitating the entire SDN. Therefore, the controller should have
an architecture to weather out such an attack while continuing oper-
ation. A scheduling-based architecture is proposed for the SDN con-
troller that leads to effective attack confinement and network
protection during denial of service (DoS) attacks.
Introduction: There exists a way that attackers can identify networks
that employ software defined networks (SDNs) for control [1]. To inca-
pacitate an identified SDN, the attackers could mount a saturation attack
towards the SDN controller simply by sending a large volume of new
flows, e.g. from a botnet to a known server in the given SDN [2].
Since every new flow should be handled by the controller for flow
entry creation on the traversed switches, the SDN controller can be over-
whelmed by flow creation type denial of service (DoS) attacks. A
flooded controller will show poor responsiveness to the flow requests
from other unaffected flow switches, so that they too will be indirectly
rendered less capable of handling new flows.

Although provisioning large resource for the controller is one way to
cope with the aforementioned DoS attacks, a more systematic approach
is desired. Unfortunately, there is a dearth of even the most rudimentary
work on how to design the SDN controller for continued operation under
the aforementioned attack scenario. Although there is a body of litera-
ture on SDN security, most of it is focused on mitigating attacks at
flow switches where the attack traffic actually flows [3]. Therefore, in
this Letter, we discuss an architecture that helps the controller weather
out the DoS attacks targeted at it independently of the attack mitigation
measures working in the switches on the actual attack flow paths.
Specifically, we propose a scheduling-based scheme that contains
most of the attack traffic at attack ingress switches so that the SDN
network as a whole can continue normal operation.

attacker, s

S1 S2 Sk server

SDN controller

processing queue

lk
l2

l1

new flows

requests

legitimate
clients

m

Fig. 1 One-dimensional model of DDoS attack on SDN-controlled network
Scheduling-based attack containment: A real SDN-controlled network
configuration could be more complex, but for ease of analysis let us
consider a simplified model depicted as in Fig. 1. We assume that the
attacker(s) do not know the exact SDN controller location (e.g. IP
address), so they send a large number of new flows to a known
service (‘server’) in the network as a means of overwhelming the con-
troller. Suppose that the attack flow path P = (S1, S2,…, Sk) is composed
of k flow switches from the attack ingress switch S1 to a server which is
connected to Sk. All the switches traversed by the attack are shared by
legitimate clients. When the attack commences, attack packets arriving
at switches begin to generate spurious flow entry creation requests from
the switches in P. Meanwhile, legitimate clients connect to the server
using TCP. However, a connection setup attempt may fail because the
controller overwhelmed by the spurious flow creation requests cannot
respond to the legitimate request at one of the switches (e.g. S2) on
the intended TCP connection path (e.g. client →S2→S3). In particular,
if the TCP connection is not established after a predefined number of
TCP SYN segment retransmissions because a corresponding flow
RONICS LETTERS 6th August 2015 Vol. 51

ownloaded from http://www.elearnica.ir
entry is not made at Si (1≤ i ≤ k), the connection setup is deemed a
failure.

Our proposal is simple: modify the controller model in Fig. 1 so that the
single request processing queue at the controller is logically subdivided
into k queues, each of which corresponds to a flow switch. Namely, the
requests from the same switch are enqueued in the corresponding
logical queue, and the controller serves these logical queues with a
scheduling discipline, e.g. round-robin. Consequently, it can create an
isolated allocation of controller processing capacity to each switch. For
convenience, we call this scheme ‘MultiQ’. To evaluate its impacts, we
compare it with two other schemes. In ‘Static’, the flow switches are
directed to begin rate limiting on flow requests whose rate is λi≥ λmax

(1≤ i≤ k), where λmax is a predefined parameter. In OpenFlow,
OFPF_METER_MOD message with OFPM_CONTROLLER as the
meter ID can be used to set up a meter for this purpose [4]. The second
scheme is ‘SingleQ’, which is the model depicted in Fig. 1. For compar-
ison of these three schemes, we perform an emulation on Mininet [5] that
implements OpenFlow 1.3 switch logic. We assume that a botnet mounts
a DDoS attack, where each bot sends UDP flood (or SYN flood), with
each carrying a different flow identity. The controller is assumed to have
the processing capacity μ [reqs./s] and has queue capacity Lmax [reqs.]. In
the Static scheme, we assume λmax = μ/k. In MultiQ and SingleQ, each
queue has space for Lmax/k flow requests, with k = 1 for SingleQ.

0
10
20
30
40
50
60
70
80
90

100

10
20
30
40
50
60
70
80
90
100

0
10
20
30
40
50
60
70
80
90
100

S1 S2 S3

de
la

y,
 s

de
la

y,
 s

de
la

y,
 s

de
la

y,
 s

fa
ilu

re
 r

at
io

, %
fa

ilu
re

 r
at

io
, %

0
10
20
30
40
50
60
70
80
90
100

fa
ilu

re
 r

at
io

, %

0
10
20
30
40
50
60
70
80
90
100

fa
ilu

re
 r

at
io

, %

a = 1.2 * m

delay-St
delay-SQ
delay-MQ

fail-St
fail-SQ
fail-MQ

0
10
20
30
40
50
60
70
80
90

100

S1 S2 S3

a = 2 * m

0
10
20
30
40
50
60
70
80
90

100

S1 S2 S3

a = 4 * m

0
10
20
30
40
50
60
70
80
90

100

S1 S2 S3

a = 8 * m

Fig. 2 TCP connection setup delay (bars) and connection failure ratio (lines)
Evaluation: To overload the controller in our emulation, we set α > μ =
50, where α is the aggregate flow arrival rate purely from the DDoS
attack from the botnet (i.e. besides legitimate requests). In particular,
we set α/μ to be between 1.2 (mild attack) and 8 (severe attack).
Legitimate clients are modelled to be ‘persistent’. Namely, as soon as
they successfully establish a TCP connection by creating the flow
entries on all the switches along the connection path or they fail to do
so after the maximum number of retransmissions, they immediately
initiate another connection. This process repeats until the emulation
ends at t = 127 s. During this process, we measure the TCP connection
No. 16 pp. 1259–1261

setup failure rate Rf, the connection setup delay Ds (for successful con-
nections only), and the number of successfully established connections
across the system (Ns). We set the legitimate traffic injected at each
switch to be under 0.1μ. Fig. 2 shows the performance of the three com-
pared schemes for k = 3 (the smallest non-trivial topology) and Lmax =
150. With μ = 50, Lmax provides 3 s buffering and multiple retransmitted
TCP SYNs for the same connection are not queued together. Finally,
higher numbers of switches k result in qualitatively similar results.

Let us first discuss the result at the front switch S1 that bears the brunt
of the attack. We see in Fig. 2 that with the exception of α = 1.2μ,
SingleQ shows the worst Rf. It also exhibits significantly higher Ds. In
contrast, MultiQ and Static show comparable delays and failure rates.
Most importantly, their interior (S1 and S2) protection performance is
very good. The delays are under 10 s and the failure rates are close to
zero even for very high μ’s. This starkly contrasts with the SingleQ
failure ratio that can increase to more than 90% at S2 under 8μ. We
can observe that an isolation mechanism, either the rate limiter at the
flow switches or the locally separated queue at the controller, is necess-
ary in the SDN architecture for unaffected operation under severe satur-
ation attacks on the controller.

Although MultiQ and Static are comparable in terms of Rf and Ds,
Static has issues. First, it has smaller Ns than MultiQ (see Table 1),
which stems from its inflexibility. Even if the controller has idle
capacity, each switch cannot request higher than the rationed rate, e.g.
f (k) = μ/k. Overbooking could be considered by having Σf (k) > μ, but
it would cause the controller to become more like SingleQ as Σf (k)
gets larger. Secondly, rationing is not scalable in the number of switches
k. If k grows large (it is expected to be so in real SDNs), μ/k will be a
severe performance-limiting factor in Static. MultiQ does not suffer
from the scalability problem.

Table 1: Performance difference in Ns between MultiQ and Static
α
 Scheme
 Successful connections
 Utilisation (%)
1.2μ

Static
 1497
 88.5
MultiQ
 1862
 100
2μ

Static
 1350
 91.9
MultiQ
 1788
 100
4μ

Static
 1296
 92.4
MultiQ
 1761
 100
8μ

Static
 1345
 93.6
MultiQ
 1748
 100
Finally, we can attempt to validate the Rf values from the emulation
above, through analysis. Although a thorough analysis would require
a model complete with α, μ, legitimate request rate and TCP retransmis-
sion parameters among others, we will use a simpler model in this
Letter. The legitimate client’s connection setup behaviour can be
described with a Markov model where each state <n, j> denotes the
nth SYN transmission trying to set up the flow entry at the jth switch
on the path. Each transition in the Markov chain corresponds to a con-
nection setup attempt (i.e. SYN re/transmission) and aj refers to the
probability of successful flow creation at the jth switch. Note that a con-
nection setup succeeds if the flow creation request succeeds at each flow
switch on the connection path, first to the server and then back to the
client. For instance, for the legitimate users entering the network
through S1, the flow entries should be created across S1, S2, …, Sk, Sk,
…, S2, S1, possibly using multiple SYN[/ACK] retransmissions in the
process. For the forward sub-path (S1→Sk), any failure will cause
the TCP connection originator to retransmit the SYN. However, for
the reverse sub-path (Sk→S1), any failure will cause the TCP destination
will retransmit SYN/ACK. Fig. 3 shows the Markov model for legit-
imate clients that enter the network through S1. Let Psi be the probability
of one-way connection setup success with i SYN transmissions. Then,
from the Markov model we obtain Ps1 = a1a2 · · · a2k = S,
Ps2 =

∑2k
i=1 (1− ai)S, Ps3 =

∑2k
i1=1

∑2k
i2=i1

(1− ai1)(1− ai2)S and so
on. In general, the one-way connection setup succeeds with l retransmis-
sions whose probability is given as

Psl+1 =
∑2k

i1=1

· · ·
∑2k

il=il−1

(1− ai1)(1− ai2) · · · (1− ail)S
ELECTRONICS LETTERS 6
first Tx 1, 1
a1 a2 ... a2k

a1 (1 – a2) ... a2k

a1 a2 ... (1 – a2k)

(1– a1) a2 ... a2k

second Tx

(n+1)th Tx n+1, 1 n+1, 2 n+1, 2k

2, 1 2, 2 2, 2k

... succ

(1 – a1)na2 ... a2k

(1–a1)na1a2 ... a2k–1a2k

...

Fig. 3 Markov model for legitimate clients that enter the network at S1

Then we can compute Rf = 1−∑N
l=0 Psl+1 , where N is the maximum

number of retransmission attempts. For instance, for α = 4μ where
SingleQ and MultiQ show non-negligible difference in Rf for the legit-
imate clients entering through S1, we can apply the simple model. We
use the aj values produced by emulation here: (a1, a2, a3) = (17, 20,
20.9%) in SingleQ and (9.3, 80.8, 73.3%) in MultiQ, respectively.
The success probabilities are symmetric on the return sub-path.
Expectedly, aj’s in SingleQ are similar across switches, as they share
a single queue at the controller. Moreover, a1 with MultiQ is much
lower than with SingleQ. This is because of the logical queue isolation
at the controller: at the cost of protecting S2 and S3, the drop rate for S1
is much higher. Finally, a3 under MultiQ is lower than for S2. This is
because the legitimate connection requests successfully passing S2 are
added to S3 legitimate requests. With N = 6 and K = 3, the Markov
model gives us Rf for SingleQ and MultiQ as 98.4 and 87.2%, respect-
ively. The model is slightly more pessimistic than emulation in MultiQ,
due to the fact that the model ignores the N SYN/ACK retransmissions
possible by the server.

Conclusion: Upon a DDoS attack, attack traffic classification and filter-
ing should be quickly started at the flow switches on the attack per-
imeter. Meanwhile, however, the SDN controller can be temporarily
overwhelmed by the spurious flow requests generated by the attack
traffic. This Letter shows that a simple scheduling-based isolation of
flow requests processing at the controller can prevent the attack from
affecting other flow switches inside the attack perimeter by way of the
controller. In future, we will investigate how the scheduling mechanism
should be designed for better protection of the SDN operation.

Acknowledgment: This research was funded by the Ministry of Science,
ICT & Future Planning (MSIP), Korea, in the ICT R&D Program 2014.

© The Institution of Engineering and Technology 2015
Submitted: 28 January 2015 E-first: 20 July 2015
doi: 10.1049/el.2015.0334
One or more of the Figures in this Letter are available in colour online.

Sungheon Lim, Seungnam Yang and Hyogon Kim (Korea University,
Seoul, Republic of Korea)

✉ E-mail: hyogon@gmail.com

Younghwa Kim and Sunhee Yang (ETRI, Daejon, Republic of Korea)

References

1 Shin, S., Gu, G., and Anderson, P.: ‘Attacking software-defined net-
works: a first feasibility study’. Proc. of ACM HotSDN, 2013

2 Kreutz, D., Ramos, F.M.V., and Verissimo, P.: ‘Towards secure and
dependable software-defined networks’. Proc. of ACM HotSDN, 2013

3 Braga, R., Mota, E., and Passito, A.: ‘Lightweight DDoS flooding attack
detection using NOX/OpenFlow’. Proc. of IEEE LCN, 2010

4 Open Networking Foundation: ‘OpenFlow switch specification 1.3.4’,
March 2014

5 Mininet: ‘An instant virtual network on your laptop (or other PC)’.
Available at http://www.mininet.org
th August 2015 Vol. 51 No. 16 pp. 1259–1261

