
Computer Networks 60 (2014) 1–12

ilable at ScienceDirect
3 Contents lists ava
 
 

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

 

Online OSPF weights optimization in IP networks
1389-1286/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.bjp.2013.12.014

⇑ Corresponding author at: CNRS, LAAS, 7 avenue du colonel Roche,
F-31400 Toulouse, France. Tel.: +33 561 336 992.

E-mail addresses: jvallet@laas.fr (J. Vallet), brun@laas.fr (O. Brun).
Josselin Vallet ⇑, Olivier Brun
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Univ. de Toulouse, LAAS, F-31400 Toulouse, France
a r t i c l e i n f o

Article history:
Received 16 July 2013
Received in revised form 13 December 2013
Accepted 17 December 2013
Available online 24 December 2013

Keywords:
OSPF weights
SNMP link counts
Routing optimization
Traffic matrix estimation
a b s t r a c t

The high volatility of traffic patterns in IP networks calls for dynamic routing schemes
allowing to adapt resource utilization to prevailing traffic. In this paper, we focus on the
problem of link weight optimization in OSPF networks where the traffic is routed along
shortest paths according to the link metrics. We propose an online approach to optimize
OSPF weights, and thus the routing paths, adaptively as some changes are observed in
the traffic. The approach relies on the estimation of traffic demands using SNMP link
counts. Experimental results on both simulated and real traffic data show that the network
congestion rate can be significantly reduced with respect to a static weight configuration.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

With the increasing popularity of bandwidth-hungry
applications, traffic patterns are getting more and more vol-
atile. A consequence of the high traffic variability is that it is
no more credible to use a single ‘‘busy-hour’’ traffic matrix
for traffic engineering. Indeed, such an approach can lead to
poor network performances if at some point in time the ac-
tual traffic matrix deviates significantly from the one used
for traffic engineering. A well-known alternative approach
to handle time-varying traffic matrices is to rely on online
traffic monitoring and to adapt resource utilization when
changes are observed. One of the fundamental mechanisms
to control the performances of a network is route optimiza-
tion. It allows to make a more efficient use of network re-
sources by tailoring routes to prevailing traffic. However,
several difficulties arise when seeking to design and imple-
ment an adaptive routing scheme in IP networks.

The first difficulty is related to how traffic is routed by
intra-domain routing protocols, the most prominent being
Open Shortest Path First (OSPF) and Intermediate System
to Intermediate System (IS–IS) [1,2]. Each traffic flow is
routed along shortest paths, splitting the flow equally at
nodes where several outgoing links are on shortest paths
to the destination. Although they are usually set to one,
the weights of the links, and thereby the shortest path
routes, can be changed by the network operator. Given a
set of traffic demands between origin/destination (OD)
pairs, the link weight optimization problem amounts to
finding a set of link weights that optimize a given perfor-
mance measure, e.g., the maximum utilization rate of the
links (see [3–6] and references therein).

An illustrative example is given in Fig. 1. A single flow of
8 Mbps has to be routed from node S to node D, and the
capacity of all links is 10 Mbps, except link S–B whose
capacity is 8 Mbps. If unit weights are used, the flow is rou-
ted along path S–B–D, leading to a maximum utilization
rate equal to 100%. However, if the weight of link S–B is in-
creased by one, half the traffic is deviated along path S–A–
B–D, resulting in a reduced maximum utilization rate of
80% on link B–D (whereas the other utilization rates are
lower than 50%). We note that the link weight optimization
problem is known to be a NP-hard problem [7].

The second difficulty concerns the monitoring of OD
traffic demands. Traditional methods for link weight opti-
mization have been designed for network planning pur-
poses: they assume that a predicted traffic demand is
known for each OD pair in the network, either exactly or

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bjp.2013.12.014&domain=pdf
http://dx.doi.org/10.1016/j.bjp.2013.12.014
mailto:jvallet@laas.fr
mailto:brun@laas.fr
http://dx.doi.org/10.1016/j.bjp.2013.12.014
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


Fig. 1. Metric optimization example.

2 J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12

 
 

 

with some form of uncertainty [8–11]. In practice, traffic
demands cannot be directly measured in large high-speed
networks due to the high processing overhead and to the
significant reporting traffic induced by current metrology
solutions such as Netflow [12,13]. An alternative approach
is to use the link counts (amount of traffic sent on a link in
a 5 min interval) provided by the SNMP protocol (Simple
Network Management Protocol) to retrieve the actual traf-
fic demands. However, since there are usually many more
network flows than link load measures, this leads to an ill-
posed inverse problem which cannot be solved without
additional information (see, e.g., [14–19] and references
therein). We also emphasize that these observations pro-
vide some form of information on past traffic demands,
whereas routing decisions have to be taken for future
demands.

Finally, there are some difficulties related to operational
constraints. First, the routing changes have to be limited in
number, to avoid continuously changing the routes in the
network, and they have to be incremental in nature, mean-
ing that the current routing strategy has to be improved
incrementally by changing one link weight after the other.
Moreover, the reconfiguration decisions have to be taken
in real-time. If one considers that link load observations
are available every 5 min, and that intra-domain routing
protocols need a few tens of seconds to converge to the
new routes, then it means that the decision process should
last only a few seconds. This clearly has an impact on the
complexity of the decision algorithms to be used.

In this paper, we investigate how to dynamically recon-
figure link weights so as to adapt to prevailing traffic. A
similar problem was considered in [20], but, in contrast
to the present work, the authors assume that information
about the mean and the variance of the aggregate traffic
from every source to every destination router is available
periodically. Another closely related reference is [21],
where the authors consider the same problem as us, but
fail to propose an approach that can cope with real-time
constraints.
We propose an online algorithm for dynamic reconfigu-
ration of intra-domain routes depending on links loads in
IP core networks. The algorithm uses SNMP to regularly
collect link load measures, from which a set of possible
traffic matrices is derived. A simple robust optimization
heuristic is then used to minimize the congestion rate of
the network, i.e., the utilization rate of the most loaded
link. Simulation results as well as results obtained on real
traffic data show that the proposed method, despite its
simplicity, allows to greatly improve network perfor-
mances, and has running times compatible with an online
execution, even for large IP networks.

We note that the proposed online mechanism can help
to mitigate the effects of route flapping in OSPF networks.
If an OSPF router does not receive 4 consecutive hello pack-
ets from its neighbor, it will safely assume that its neighbor
is unreachable/down and subsequently purges all the
routes from its routing table that were once reachable via
this neighbor. If a link goes down due to severe congestion
(hello packets are lost due to buffer overflow), this can in-
duce massive shift of traffic from one route to another. The
original link will soon stabilize because the traffic (and
possibly congestion) has moved to another link, and will
comes up as available. Once it starts getting back all its
traffic, it will start getting congested again. This can cause
repeated traffic shifts with no apparent solution. The dy-
namic scheme we propose could help to avoid this phe-
nomenon by balancing load among the routes before
congestion occurs.

The paper is organized as follows. Section 2 is devoted to
the mathematical formulation of the problem. The proposed
algorithm and its details are described in Section 3. Results
obtained on simulated and real traffic data are presented in
Section 4. Some conclusions are drawn in Section 5.

2. Problem statement

The network is represented as a graph G ¼ ðV ; EÞ. The
set V is composed of the N nodes of the network, while
the set E is composed of the M links of the network. We de-
note by cl the capacity of link l, and let K ¼ NðN � 1Þ be the
number of OD pairs.

We observe the network at discrete time points
s ¼ 1;2; . . .. Let ŷs ¼ ðŷs

1; . . . ; ŷs
MÞ be the vector of measured

link traffics, where ŷs
l gives the average traffic over link l

between times s� 1 and s. These measures provide an
indirect observation on the average traffic demands in this
time interval. Although conceptually traffic demands are
represented in matrix form, it is more convenient to use
a vector representation. Thus, we order the OD pairs and
let ds

k be the average traffic transmitted by OD pair k in
the time interval Is ¼ ½s� 1; s�. We let sðkÞ and tðkÞ be
the source and destination nodes of demand k, respec-
tively. We denote the vector of traffic demands by ds. We
emphasize that traffic demands have to be interpreted as
offered traffic, i.e., the traffic which would be carried if link
capacities were infinite. Indeed, when evaluating the ben-
efits that can be expected from deviating an OD flow from
a link, it is more convenient to think in terms of offered
traffic. We note that, as a consequence, the utilization rate
of a link can be higher than 100%.



Fig. 2. Online algorithm.

J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12 3
We can control the network by changing the weights of
the links. Let xs ¼ ðxs

1; . . . ;xs
MÞ be the vector describing

the link weight configuration in the time interval Is, where
the metric xs

l of link l is an integer value in the interval
X ¼ ½1;216 � 1�. The shortest paths resulting from the
weight configuration xs are modeled by an M � K routing
matrix FðxsÞ whose rows represent the links of the net-
work and columns represent the OD pairs. Element
fl;kðxsÞ is the fraction of demand k sent across link l. These
values are readily obtained from the weight vector using
any shortest path algorithm, e.g., Dijkstra’s one. We
emphasize that they are not constrained to be 0 or 1 due
to load-balancing on equal cost paths.

OD demands and observed link traffics are then related
through the following linear relation

ŷs ¼ FðxsÞds
: ð1Þ

By changing the weight configuration, we can control
the routing matrix, and thus the resulting link loads. The
main difficulty here is that we have to choose the weight
configuration xs at time s without any means to predict
the future traffic demands between times s and sþ 1.
Since we have no information on the future traffic, our ap-
proach is just to react to the observed network congestion
by optimizing the weight configuration for the current
traffic demands ds. In some sense, we proceed as if
dsþ1 ¼ ds. The basic idea is that, even if this modeling
assumption is not fully satisfied, there is some form of sta-
bility in the traffic that allows to make the right decisions
using the most recent knowledge.

The problem we address amounts to finding the weight
configuration xs that minimizes the congestion rate of the
network (defined as the maximum utilization rate of the
links) over the time interval Is. Formally, the problem is
as follows:

minimize qðxÞ ¼ max
l2E

yl

cl
ðMETRICÞ

subject to

y ¼ FðxÞds
;

x 2 XM :

We note that the solution of the above problem de-
pends on the unknown traffic demands at time s. These
traffic demands have to be inferred from the available
observations. We describe the proposed approach to solve
this problem in the following section.

3. Online algorithm

The proposed online algorithm for dynamic reconfigu-
ration of IP routes is described in Fig. 2. This algorithm is
run periodically. It first uses SNMP to collect the average
traffic on each link over the last time window. These obser-
vations are then used to estimate a demand uncertainty
set, over which the routing metrics have to be optimized.
A robust greedy heuristic is then used to determine if some
weight changes can be applied to reduce the network con-
gestion. If no such weight changes are found, the algorithm
becomes idle until the next period. Otherwise, the weight

 
 

 

changes are applied in the network, and the algorithm
waits for the new SNMP data. We describe below the main
steps of the algorithm.

Remark 1. SNMP is an Internet-standard protocol for
managing devices on IP networks, such as routers. The
MIB variable ifOutOctets, which is used to compute the
link count (number of bytes output by the interface), is
directly set by the SNMP agent running on a router for each
of its network interfaces. This value should thus be
perfectly accurate. The time required to collect all link
counts using SNMP is difficult to evaluate precisely, since it
depends on many factors, but it should be in the order of a
few seconds (depending on the size of the network, on the
architecture of the network management tool, etc.). The
resulting traffic overhead can be neglected, and, since
SNMP is a low priority process as far as the CPU scheduler
is concerned, the SNMP agent should not affect perfor-
mance of the router.
3.1. Traffic matrix estimation

In order to solve problem (METRIC), we have to know
the traffic demands at time s. In practice, these traffic de-
mands are unknown and have to be inferred from the
available SNMP measures. We assume that at time s we
obtain the following data regarding the traffic demands
in the time interval Is:

� Traffic ŷs
l on each link l 2 E.

� Average ingress traffic bi;s
n and egress traffic be;s

n of each
edge router n.

The vector ds of traffic demands on the interval Is is re-
lated to the vector ŷs of observed link traffics through Eq.
(1). Although the routing matrix FðxsÞ is known at time
s, this equation does not allow in general to determine
the traffic demands. Indeed, this problem is an ill-posed in-
verse problem because in almost any network, the number
of OD pairs K is much higher than the number of links M.
Nevertheless, we can define the polytope Ds of traffic
matrices that comply with the observations as the set of
vectors d 2 RK

þ such that



Fig. 3. Matrices and uncertainty set used for optimization.

4 J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12
ŷs ¼ FðxsÞd; ð2Þ
X

k:sðkÞ¼n

dk ¼ bi;s
n ; 8n 2 V ; ð3Þ

X
k:tðkÞ¼n

dk ¼ be;s
n ; 8n 2 V : ð4Þ

Since we cannot determine exactly the traffic demands
at time s, we have to use additional information in order to
estimate it. Existing methods for traffic matrix estimation
differ in the nature of the additional information used.
Starting with [22], a first generation of methods has tried
to use link load covariances as this additional information
(see e.g., [23–25]). These methods are based on statistical
assumptions on the traffic demands whose validity is ques-
tionable. A second generation of methods use spatial or
temporal prior information [26,15–17]. The latest genera-
tion of methods use posterior spatial and temporal infor-
mation. They require a calibration phase where the traffic
matrix is regularly measured using Netflow over a certain
period of time and then use filtering techniques to predict
future traffic matrices [18,19]. Although the accuracy of
these methods is significantly superior to that of first gen-
erations methods, their drawback is the overhead induced
on the network during the calibration phase. We have cho-
sen to use the ‘‘tomogravity’’ method introduced in [26]
because it is the simplest and fastest method of the second
generation, it does not rely on statistical assumptions on
traffic demands as do first generation methods, and does
not introduce extra-overhead on the network as is the case
for third generation methods. The basic idea of the method
is to consider the traffic vector dG obtained using the fol-
lowing simple formulation:

dG
k ¼

be;s
tðkÞX

n–sðkÞ
be;s

n

bi;s
sðkÞ: ð5Þ

In other words, the traffic vector dG is obtained by
assuming that the total ingress traffic at a node is split be-
tween the demands originating from that node in propor-
tion to the egress traffics of their destination nodes. In
general, the traffic demands dG

k are not consistent with
the observations, i.e., dG: 2 Ds. To obtain traffic demands
complying with the observations, the tomogravity method
computes the projection of the traffic vector dG on the poly-
topeDs (see Fig. 3). The estimated traffic vector d̂ is thus the
vector of Ds minimizing the distance to dG. Choosing
the infinity norm distance, the traffic vector d̂ is therefore
the solution of the following linear programming problem:

minimize a
subject to

a P jd̂k � dG
k j k ¼ 1; . . . ;K

ŷs
l ¼

XK

k¼1

fl;kðxsÞd̂k; 8l 2 E

X
k:sðkÞ¼n

d̂k ¼ bi;s
n ; 8n 2 V

X
k:tðkÞ¼n

d̂k ¼ be;s
n ; 8n 2 V

 
 

 

Note that the minimal value of a has to be interpreted
as the distance between the tomogravity traffic vector dG

and the polytope of traffic matrices complying with SNMP
measures. Therefore, it does not give the distance to the ac-
tual traffic matrix of the network.

Our online algorithm uses the CPLEX library (C++) [27]
to compute the traffic vector d̂ once the SNMP data are
available. The estimated traffic demands d̂k can be ob-
tained very quickly, in a fraction of seconds for small net-
works, and in just a few seconds for very large ones.
They are then used to optimize the link weights for the
time interval Isþ1.

If a topology modification (e.g., a link going down or up)
occurs between the time instants s� 1 and s, the above
minimization problem can become infeasible. In such a
case, to avoid taking wrong decisions due to inconsistent
information, no weight change is applied and the algo-
rithm waits for the next consistent SNMP measures.

3.2. Robust optimization of link weights

The vector d̂ of estimated traffic demands can be used
to obtain lower and upper bounds on the demand of each
traffic flow in the time interval Is :

ð1� cÞd̂k 6 ds
k 6 ð1þ cÞd̂k; 8k ¼ 1; . . . ;K; ð6Þ

where the parameter c has to be adjusted to take into ac-
count the estimation error. Since we know exactly the in-
gress and egress traffics of each edge router in the time
interval Is, we also require that
X

k:sðkÞ¼n

ds
k ¼ bi;s

n ; 8n 2 V ; ð7Þ
X

k:tðkÞ¼n

ds
k ¼ be;s

n ; 8n 2 V : ð8Þ

We denote by Ds
� the set of traffic vectors d satisfying (6)–

(8). The set Ds
� describes the uncertainty on the traffic de-

mands at time s. As will be explained in Section 3.2.2, the
main advantage of using the polytope Ds

� instead of Ds is
that it greatly simplifies the computation of worst-case
link loads. Defining ylðx;dÞ ¼

P
kfl;kðxÞdk as the traffic on

link l under the weight configuration x when the traffic
vector is d, and noting that

qðxÞ ¼max
d2Ds

�
max

l2E

1
cl

ylðx;dÞ;

¼max
l2E

max
d2Ds

�

1
cl

ylðx;dÞ; ð9Þ



J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12 5
we obtain the following equivalent formulation of problem
(METRIC)

minimizeqðxÞ ¼max
l2E

max
d2Ds

�

1
cl

ylðx;dÞ

 
 

 

subject to x 2 XM

This new formulation lends itself better to optimization
because, as explained in Section 3.2.2, it allows to use min-
imum cost flow algorithms to compute the worst-case uti-
lization rate of a link. Our online algorithm uses a greedy
heuristic to incrementally solve this problem. This greedy
heuristic is described in Fig. 4.

The greedy heuristic first initializes the best weight
configuration x� and the current weight configuration
x to xs. At each iteration of the optimization loop, it arbi-
trarily selects a link ‘ among those with the maximum
worst-case utilization rate (line 3), and computes the min-
imum metric increment D‘ to deviate at least one OD flow
(in whole or in part) from this link (line 4). The current
weight configuration x is then set to xþ D‘e‘, where e‘
is the M-vector with 1 in position ‘ and 0 elsewhere, and
the network congestion rate under weight configuration
x is evaluated (line 6). If it is reduced with respect to the
best weight configuration x�, then x� is updated (line 8).
To avoid getting stuck in a local minimum, the heuristic
also allows the network congestion rate to increase for a
limited number of iterations q 6 Q max. The convergence is
reached when either q ¼ Qmax or when the maximum num-
ber of iterations Nmax is attained (line 2). We describe in
more detail the main steps of the heuristic below.
3.2.1. Minimum metric increment D‘

The basic idea of the greedy heuristic is to deviate traffic
from a link ‘ having the maximum worst-case load. This is
done by increasing the weight of that link by the minimum
quantity D‘ such that at least one OD flow k sent through
link ‘ is deviated from that link. Formally, D‘ is computed
using the formula given in line 4 of Fig. 4.
Fig. 4. Greedy heuristic for robust weight optimization.
We emphasize that, although ‘ is the link with the max-
imum worst-case utilization rate, the quantity D‘ is inde-
pendent of the traffic demands. We first observe that if
there exists an OD flow k such that 0 < fl;kðxÞ < 1, then this
flow is split among several shortest paths. In this case, a
metric increment D‘ ¼ 1 is sufficient to deviate flow k from
link ‘. Otherwise, we use the technique proposed in [4].
The basic idea is to remove link ‘ from the network and
to analyze how the distances between source and destina-
tion nodes increase for those flow k such that fl;kðxÞ ¼ 1.
Choosing D‘ as the minimum increase in shortest path
lengths introduces load-sharing for at least one of these
OD flows, thus deviating in part this flow from link ‘. We
refer to [4] for further details.

3.2.2. Worst-case evaluation of link loads
One of the key operations of the greedy heuristic is the

evaluation of the worst-case loads of the links. This opera-
tion is required when choosing the link ‘ (line 3), and when
computing the network congestion rate (line 6) after the
metric of that link has been increased. We first note that
we do not need to recompute the worst-case load for all
links, but only for those links for which the parameters
fl;k have been updated. Let l be one of these links. Noting
that
X

n

be;s
n �

X
k

ds
k ¼ 0; ð10Þ

the worst-case load of link l can be written as follows:

max
d2Ds

�
ylðx;dÞ ¼

X
n

be;s
n þmax

d2Ds
�

X
k

ðfl;kðxÞ � 1Þdk;

¼
X

n

be;s
n �min

d2Ds
�

X
k

ð1� fl;kðxÞÞdk:

The computation of max
d2Ds

�
ylðx;dÞ therefore reduces to

solving the following minimization problem:

mind2RK
þ

X
k

ð1� fl;kðxÞÞdk

s:t:
ð1� cÞd̂k 6 dk 6 ð1þ cÞd̂k; 8kX
k:sðkÞ¼n

dk ¼ bi;s
n ; n 2 V

X
k:tðkÞ¼n

dk ¼ be;s
n ; n 2 V

8>>>>>>>>>>>><
>>>>>>>>>>>>:

The structure of the above linear problem is that of a
standard minimum cost flow problem on a bipartite graph.
It can be solved very efficiently using a dedicated algo-
rithm [28]. The advantage of using the polytope Ds

� instead
of the polytope Ds is precisely here: it allows to drastically
reduce the computing times by solving a minimum cost
flow problem instead of a general linear programming
problem. We have used the software library LEMON
(C++) [29] to solve this problem.

3.3. Reduction of the number of metric changes

Recall that, to avoid being trapped in local minima,
some weight changes can lead to an increase of the net-
work congestion rate. We therefore regroup the weight



6 J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12
changes proposed by the greedy heuristic into groups, such
that when all weight changes of the same group are
applied, the network congestion rate is strictly improved.

After some changes in the weight configuration, the in-
tra-domain routing protocol needs some time before con-
verging to the new routes, and the convergence time
depends on the number of changes. It is therefore sensible
to restrict the number of weight changes to those that are
really needed. The following rules are used to reduce the
number of metric changes:

� the greedy heuristic stops if the weights of more than
MAX METRIC distinct links have been changed,
� the latest group of weight changes reducing the net-

work congestion rate by less than a certain threshold
Gthreshold is removed.

Fig. 5 provides an illustration of these rules with
MAX METRIC ¼ 10. Each step corresponds to the produc-
tion of a new group of weight changes. The cumulative
number of links whose weight has to be changed is shown
in the figure at each step (note that it does not increase
from steps 3 to 4 because the weight changes concern al-
ready modified links). In this example, the heuristic pro-
poses 6 groups of weight changes. We keep only the first
four because: (a) group 6 exceeds the maximum number
of allowed metric changes, and (b) group 5 provides a gain
below the threshold Gthreshold.

 
 

 

4. Results

In this section, we analyze how the network congestion
rate evolves in time using the proposed online algorithm.
The analysis is done for simulated traffic data and real traf-
fic data.

All results presented were obtained using the following
parameters: Nmax ¼ 100;Qmax ¼ 10;Gthreshold ¼ 2%;MAX
METRIC ¼ 10 and various values of parameter c. The C++
implementation code was compiled using the GCC com-
piler, using the �O3 optimization level. All simulations
have been performed on a Intel Core i5-2430M processor
at 2.4 GHz, running under Linux with 4 GB of available
memory.
Fig. 5. Restricting the number of metric changes.
4.1. Simulated traffic data

Simulations are performed on 8 real network topologies
(see Table 1). Their characteristics have been found in IEEE
literature (bhvac, pacbell, eon, metro, arpanet, nsf) or from
the Rocketfuel project [30] for abovenet and vnsl topologies.
For each topology, the initial weight of each link is set to 1.

For each network, a random traffic matrix is generated
at time s ¼ 0. We remind that the number of OD pairs is
K ¼ NðN � 1Þ, where N is the number of nodes of the net-
work topology. Each minute, the traffic matrix is updated
by adding a white gaussian noise to each traffic demand:

dt
k ¼ dt�1minute

k þNð0;r2Þ k ¼ 1; . . . ;K: ð11Þ
The standard deviation of this noise is chosen so that

99.7% of the traffic demands varies by at most ±8.5% per
minute (we enforce these bounds for the remaining
0.3%). As a consequence, each traffic demand can vary by
at most ±50% over an interval of 5 min:

0:5ds�1
k 6 ds

k 6 1:5ds�1
k ð12Þ

Despite its simplicity, this model allows significant traf-
fic variation (±50% on five minutes). In addition, real traffic
data observed on the ABILENE network (see Section 4.2 for
details) gives some credits to our simple model: real mea-
sured traffic exhibit bursty traffic, but on time scales of sev-
eral minutes, and the maximum observed variations are
also similar to the one used in our simulation (max ±50%
each 5 min). We emphasize that our method is not in-
tended to handle large traffic variations on short time scales
(less than 5 min), which would require truly dynamic rout-
ing algorithm, but rather to adapt routes as traffic fluctuates
over larger time scales due to the behavior of users.

All our simulations on simulated traffic data consider a
total time period of 250 min.

4.1.1. Time-average network congestion rates
To investigate the performances obtained using the on-

line algorithm, we decide to study the time-average net-
work congestion rate over the complete time period. To
compute this value, the network congestion rate is ob-
served at each minute. The time-average value is then de-
fined as follows:

�/ ¼ 1
n

Xn

t¼1

max
l2E

yt
l

cl
¼ 1

n

Xn

t¼1

max
l2E

XK

k¼1

fl;kðxtÞdt
k

cl

0
BBBB@

1
CCCCA

ð13Þ

with in our case, n ¼ 250.
Table 1
Topologies characteristics: number of nodes (N) and links (M).

Topology N M

ABOVENET 19 68
ARPANET 24 100
BHVAC 19 46
EON 19 74
METRO 11 84
NSF 8 20
PACBELL 15 42
VNSL 9 22



J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12 7
Three different static weight configurations are consid-
ered. The first two ones are commonly used in real net-
works, and correspond to Unit metrics (xl ¼ 1;8l 2 E)
and CISCO metrics (xl ¼ 108=cl;8l 2 E), respectively. The
third considered configuration is hypothetical, and uses
optimized weights. To obtain these optimized weights,
we assume to know future traffics demands for the entire
period. We compute the average traffic matrix over the
whole temporal period of 250 min, and then use the local
search algorithm proposed in [21] to optimize the weights
for this average matrix. Finally, these optimized weights
are used to define an optimized static metric configuration
for the whole 250 min simulation, that is the weights are
not changed during the simulation.

These three static weight configurations are compared
with the proposed online algorithm. As the c parameter
(defined in Section 3.2) affects the evaluation of worst case
link loads, it can change the routing decisions. To better
understand the influence of this parameter, a set of simu-
lations are performed with c 2 f0;0:25;0:4g. The results
are shown in Table 2.

Several comments are in order. First, the results show
that significant benefits can be expected from link weight
optimization. Indeed, the proposed online optimization
clearly outperforms the static configurations Unit and CIS-
CO, for all c values different from zero, except for ABOVE-
NET, ARPANET and VNSL topologies, where no acceptable
modification was proposed. We also note the proximity be-
tween the results obtained with the proposed online algo-
rithm and the static configuration with optimized weights.
We emphasize that this last static configuration is purely
theoretical in that it requires the knowledge of future traffic
demands over the whole time period, which is not the case
in reality. Moreover, the length of the considered time per-
iod is relatively short (250 min), which means that the traf-
fic demands remain ‘‘close’’ to their average values over the
time period. The larger the period of time used to compute
the optimized static configuration, the greater the probabil-
ity that the actual traffic matrix deviates at some point in
time from the average matrix over that period, and the
worse the time-average network congestion rate obtained
with the static configuration with respect to those obtained
with the dynamic reconfiguration algorithm.

Finally, we note the benefit of using some uncertainty
on estimated traffic demands. Indeed, the congestion rates
obtained with c ¼ 0 (considering only the tomogravity
matrix, with no uncertainty on traffic demands) are higher

 
 

 

Table 2
Time-average network congestion rate (%) for 250 min.

Topology Static metrics

Unit CISCO Optimized

ABOVENET 81.00 101.20 55.69
ARPANET 81.57 96.35 75.84
BHVAC 81.62 75.13 67.30
EON 91.21 103.49 54.86
METRO 63.08 47.83 44.13
NSF 43.78 43.77 41.52
PACBELL 137.97 40.04 37.56
VNSL 59.28 59.28 58.43

Average 79.94 70.89 54.42
than those obtained with c ¼ 0:25 or c ¼ 0:4. In fact, most
of the time with c ¼ 0, except for the PACBELL topology,
the obtained congestion rates are equal to the ones given
by the Unit static configuration. This confirms the interest
to consider a demand uncertainty set around the tomogra-
vity matrix, to avoid bad decisions due to matrix estima-
tion errors. Finally, due to the heuristic nature of the
algorithm and also to unpredictable estimation error, it is
difficult to choose the best c value, as the results are very
close between c ¼ 0:25 and c ¼ 0:4. In what follows, we
will consider the value c ¼ 0:25, which seems to be a good
compromise.

The total number of weight changes is shown in Table 3.
It remains quite limited. Table 4 gives the number of time
instants where reconfigurations are done. The changes are
applied at just a few time instants, thus avoiding to contin-
uously change the routes in the network. The BHVAC
topology is an exception here, with more instants applying
modifications than for the other networks.

4.1.2. Temporal evolution of network congestion rates
In this section, we are interested in the temporal evolu-

tion of the network congestion. We also want to study how
the proposed metrics changes are applied, and their conse-
quences on the network congestion. In this perspective, we
decide to plot the network congestion and the weight
changes during the considered time period.

To evaluate the gain of using an adaptive routing
scheme, we compare with the static weight configuration
where all metrics are set to 1 (Unit metrics). To assess
the loss in performance due to the uncertainty on traffic
demands, we also compare with the results obtained by
the greedy heuristic in the case where the traffic demands
are known. Finally, we also wish to measure the gap with
respect to the network congestion rates that would be ob-
tained using the optimal weight configuration at each time
step if the traffic demands were known. Since there is no
exact optimization algorithm to solve the weight optimiza-
tion problem, we compute instead a lower bound on the
optimal network congestion rate by solving the following
multipath routing problem:

min z ðMULTIPATHÞ
s:t:

X
k

fl;kdsþ1
k 6 clz; 8l 2 E; ð14Þ
Online algorithm

static weights c = 0 c = 0.25 c = 0.4

81.00 81.00 81.00
81.57 81.57 81.57
81.62 64.80 65.62
91.21 50.95 47.63
63.08 37.84 37.93
43.78 42.16 43.52
46.15 38.14 39.47
59.28 59.28 59.28

68.46 56.97 57.00



Table 3
Total number of weight changes for 250 min.

Topology c = 0 c = 0.25 c = 0.4

ABOVENET 0 0 0
ARPANET 0 0 0
BHVAC 0 34 49
EON 0 28 42
METRO 0 25 28
NSF 0 6 12
PACBELL 1 9 9
VNSL 0 0 0

Table 4
Number of epochs where weight changes are applied, for 250 min.

Topology c = 0 c = 0.25 c = 0.4

ABOVENET 0 0 0
ARPANET 0 0 0
BHVAC 0 16 17
EON 0 4 6
METRO 0 5 6
NSF 0 2 3
PACBELL 1 2 1
VNSL 0 0 0

M
a
x

C
o
n
g
e
s
ti
o
n

M
e
tr

ic
c
h
a
n
g
e
s

Time (min)

BHVAC
Distinct metric changes

UnitMetrics
Lower Bound

Known Matrix Optim
Estimated Matrix Optim

50 %

55 %

60 %

65 %

70 %

75 %

80 %

85 %

90 %

95 %

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

Fig. 6. Congestion for BHVAC topology.

a
x

C
o
n
g
e
s
ti
o
n

M
e
tr

ic
c
h
a
n
g
e
s

EON

Distinct metric changes
UnitMetrics

Lower Bound
Known Matrix Optim

Estimated Matrix Optim

60 %

70 %

80 %

90 %

100 %

110 %

120 %

4

5

6

7

8

9

10

8 J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12

 
 

 

X
l2dþðnÞ

fl;k �
X

l2d�ðnÞ
fl;k ¼ hn

k ;8k;8n 2 V ; ð15Þ
M

40 %

50 %

2

3

0 6 fl;k 6 1;8l 2 E; 8k ð16Þ
Time (min)

20 %

30 %

0 50 100 150 200 250
0

1

Fig. 7. Congestion for EON topology.

M
a
x

C
o
n
g
e
s
ti
o
n

M
e
tr

ic
c
h
a
n
g
e
s

Time (min)

METRO

Distinct metric changes
UnitMetrics

Lower Bound
Known Matrix Optim

Estimated Matrix Optim

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

Fig. 8. Congestion for METRO topology.
where dþðnÞ (resp. d�ðnÞ) denotes the set of incoming (resp.
outgoing) arcs at node n, while hn

k is 1 if v ¼ sðkÞ, �1 if
v ¼ tðkÞ and 0 otherwise. Note that inequalities (16) ensure
that there is no restriction on the routing scheme. Note
also that it is assumed that future traffic demands dsþ1

k

are known at time s. We emphasize that this lower bound
is potentially much lower than the network congestion
rate obtained under the optimal weight configuration.

Figs. 6–8 present the results obtained for the topologies
BHVAC, EON and METRO, respectively (similar results are
obtained for the other topologies). These figures show
the evolution of the network congestion rate. The x-axis
represents the time s. Two vertical axes are present: the
left one is the measured congestion rate of the network.
The right one gives the number of weight changes made
by the online algorithm. Four curves are plotted on each
graph:

� Lowerbound: the lower bound obtained by solving
problem (MULTIPATH).
� UnitMetrics: congestion rate obtained with unitary

metrics.
� KnowMatrixOptim: congestion rate obtained with the

greedy heuristic if the traffic matrix was known.
� EstimatedMatrixOptim: congestion rate obtained with

the proposed online algorithm.

Vertical bars represent the number of link weights
modified by the online algorithm. No vertical bar means
that the algorithm does not change the routing.
We first observe that the use of an adaptive routing
scheme allows to significantly reduce the network conges-
tion rate with respect to a static weight configuration such
as that with unitary metrics. We also observe that for all
topologies there is no significant loss in performance due
to the uncertainty on traffic demands. In practice, the esti-
mation of the traffic matrix seems sufficiently accurate to



J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12 9
perform interesting optimization. The robust optimization
algorithm even performs better than if the traffic matrix
was known in some cases: this can be explained by the
heuristic nature of the algorithm. We note that for the
BHVAC and EON topologies, the network congestion rate
obtained with the online algorithm is often fairly close to
the lower bound, indicating that this algorithm provides
a near-optimal weight configuration. Finally, we also ob-
serve that the number of metric changes is quite limited,
thus avoiding to continuously change the routes in the
network.

 
 

 

4.1.3. Execution time
The execution time of the online algorithm at each time

step is critical in this study. The worst per-step execution
times are presented in Table 5. For all the networks, the
routing decisions can be taken in a few fractions of sec-
onds, which is clearly compatible with online processing.
An experiment on two larger network topologies, which
we call BRITE1 (50 nodes, 200 links) and BRITE2 (100
nodes, 400 links), generated using the BRITE tool [31],
has shown that execution times can increase very fast as
the size of the topology grows. The worst execution time
was equal to 4.6 s for BRITE1 and around 24 s for BRITE2.
This is certainly due to the size of the problem we consider,
which also grows very fast with network size (for example,
Table 5
Worst per-step execution times (s).

Topology Time

ABOVENET 0.15
ARPANET 0.56
BHVAC 0.17
EON 0.21
METRO 0.07
NSF 0.04
PACBELL 0.10
VNSL 0.04

Fig. 9. Link congestion rates for 4th wee
the routing fractions fl;k is composed of N � N �M values
which needs to be computed and used). For example, on
the BRITE2 topology experiment, the traffic matrix estima-
tion took around 4.6 s, and the repeated calculation of the
worst cost evaluation (cf Section 3.2.2) problem took
around 5.5 s to compute in total. The remaining time is
spend computing the routes and especially the corre-
sponding routing fractions fl;k. Unfortunately, ISPs gener-
ally regard their router-level topologies as confidential
and, as a result, real topologies are not publicly available.
Available public data (see Table 1 and the ABILENE net-
work in Section 4.2) suggest however that real core net-
works have far fewer nodes and links than the BRITE2
topology.

4.2. Real traffic data

We now present the results obtained with real traffic
data recorded in 2004 on the ABILENE network (12 nodes
and 30 links) [32]. Unfortunately, we were not able to ob-
tain more recent traffic data because such data are not
publicly available. A recent traffic matrix would probably
have higher traffic levels, although it is difficult to say what
it would look like since there is probably not a single rep-
resentative traffic matrix.

The ABILENE traffic data were collected every 5 min
during 24 weeks (6 months). We needed to choose one
week of traffic to work on. The motivation for choosing a
specific week of traffic was threefold. First, we wanted a
week with a clear day-to-day traffic variability. Second,
we wanted a week exhibiting significant traffic variations
on short time-scales. Finally, we wanted a week with a sig-
nificant gap between the average and the maximum link
utilizations, indicating room for optimization. Week 4
was one the weeks complying to all criteria, and this is
why only the fourth week is used to carry out our
experiments.

Assuming unitary metrics, the evolution of the network
congestion rate is plotted in Fig. 9. The average utilization
k on ABILENE, using unit metrics.



C
o
n
g
e
s
ti
o
n

Time (min)

Phase2
Max congestion

Average congestion

0 %

10 %

20 %

30 %

40 %

50 %

60 %

0 10 20 30 40 50 60

Fig. 10. Zoom on phase 2.

Table 6
Maximum traffic variations (%) for large flows.

Percentile (%) Phase 1 Phase 2 Phase 3

100 83 142395 87
99 41 74 48
98 33 43 35
95 21 31 26
90 16 25 18

Table 7
Maximum ingress traffic variations (%) for all nodes.

Percentile (%) Phase 1 Phase 2 Phase 3

100 49 1062 36
95 15 28 14
90 10 19 12

10 J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12

 
 

 

rate of the links is also plotted. In contrast to the network
congestion rate, variations in average utilization rate of the
links are very slight, indicating that there is a true potential
for a better load distribution in the network.
M
a
x

C
o
n
g
e
s
ti
o
n

Time

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

Day 01 Day 02 Day 03 Day 04

Fig. 11. Congestion for ABILENE to
We analyze in more detail three phases of one hour
traffic (see Fig. 9): phase 1 corresponds to a period of low
congestion (� 10%), phase 2 corresponds to a period when
load increases and with important traffic variations (see
Fig. 10), and phase 3 is a period of high congestion
(� 55%). For the three phases, we compute the average
traffic demand of each OD flow over the 1 h period, sort
them in the order of decreasing traffic demands and then
retain only the first OD flows that represent 90% of the to-
tal traffic (those ‘‘elephants’’ that are really meaningful for
traffic engineering purposes). Table 6 gives statistical data
regarding the relative variation (in absolute value) of these
large flows.

We note that 98% of the flows have relative variations
lower than 43%, so that the constraint (12) is satisfied for
almost all traffic demands k. The large value observed for
the 100th percentile of phase 2 is caused by OD demands
which were very close to zero at some measurement
epoch, and became non-negligible at the next one.

The same study is performed for ingress/egress traffics
for all the nodes in the network. Results obtained for in-
gress and egress are similar, and Table 7 gives statistical
data for ingress traffics. We note that 90% of ingress traffics
have relative variations lower than 19% for phase 2 and
lower than 12% for phase 1 and 3. These variations are
not completely insignificant, but the obtained results show
that it does not affect the optimization quality.

The optimization results obtained for the ABILENE
topology, with c ¼ 0:25 and the 4th week traffic data are
shown in Fig. 11.

The proposed dynamic routing algorithm allows a sig-
nificant reduction of the network congestion rate when
the traffic is high: the maximum congestion rate of the net-
work is decreased from 55% with unitary metrics to about
45%.

Using the static optimized metrics configuration de-
fined in Section 4.1.1, the time-average network conges-
tion rate for the whole 4th week of ABILENE is visible in
Table 8. As expected, the online algorithm provides slightly
M
e
tr

ic
c
h
a
n
g
e
s

Distinct metric changes
UnitMetrics

Lower Bound
Known Matrix Optim

Estimated Matrix Optim

Day 05 Day 06 Day 07
0

1

2

3

4

5

6

7

8

9

10

pology during the 4th week.



Table 8
Time-average network congestion rate (%) for the whole ABILENE 4th week.

Configuration Time-average congestion (%)

Unit metrics 19.37
Optimized static weights 17.84
Online algorithm (c = 0.25) 16.18
Online algorithm (c = 0.4) 16.42

M
a
x

C
o
n
g
e
s
ti
o
n

M
e
tr

ic
c
h
a
n
g
e
s

Time (min)

BHVAC-Failure

Distinct metric changes
UnitMetrics

Lower Bound
Estimated Matrix Optim

40 %

60 %

80 %

100 %

120 %

140 %

160 %

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

Fig. 13. Congestion for BHVAC topology with link failure.

EON-Failure

Distinct metric changes
UnitMetrics

Lower Bound
Estimated Matrix Optim

100 %

110 %

120 %

8

9

10

J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12 11

 
 

 

better results than the optimized static weights configura-
tion ones. Furthermore, with both configuration, when the
traffic is high, the congestion rate is decreased to about
45%. This proximity is a good result, considering that the
optimized static weight is hypothetical, as we can not
know future traffic.

Concerning execution times, they remain below 0.07 s,
which is fully compatible with an online execution. The to-
tal number of modifications is also very limited. For
c ¼ 0:25, there are only 17 time instants where routes
are reconfigured for the whole week (which is composed
of around 2000 instants), and the total number of applied
metric modifications for the whole week is 27.
M
a
x

C
o
n
g
e
s
ti
o
n

M
e
tr

ic
c
h
a
n
g
e
s

Time (min)

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

0 50 100 150 200 250
0

1

2

3

4

5

6

7

Fig. 14. Congestion for EON topology with link failure.
4.3. Link failure

In this section, we study the results obtained with the
algorithm when a link failure occurs in the network. More
precisely, we compare the network congestion obtained
with unitary metrics and with the proposed online algo-
rithm when a link goes down at an arbitrary time instant
Tdown, and then goes up at time Tup > Tdown. We use the
same simulation protocol as that used in Section 4.1. The
same link is cut in the different configurations: it is one
of the links with the greatest utilization rate under unitary
weights at the time of failure. Three examples of results are
presented in Figs. 12–14, all obtained with Tdown ¼
97th min, Tup ¼ 157th min and c ¼ 0:25. The same kind of
results is obtained for the others topologies.

As explained at the end of Section 3.1, the demand esti-
mation problem can become infeasible when the link goes
down, and when it reappears. In these two cases, the algo-
rithm stays idle until the next SNMP measures become
M
a
x

C
o
n
g
e
s
ti
o
n

M
e
tr

ic
c
h
a
n
g
e
s

Time (min)

ABOVENET-Failure

Distinct metric changes
UnitMetrics

Lower Bound
Estimated Matrix Optim

40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

120 %

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

10

Fig. 12. Congestion for ABOVENET topology with link failure.
available. For Tdown ¼ 97th min and Tup ¼ 157th min, it
means that the algorithm does not propose any modifica-
tion at the 100th and 160th min.

The obtained network congestion rates are most of the
time below that obtained with unitary weights. We can ob-
serve that after each event, some modifications are applied,
reducing the congestion in a very efficient way. We also
note that for each event, the network congestion increases
less when we use the online algorithm, and the number of
applied modifications remains limited. It seems that bal-
ancing the traffic load among the network links before
the failure event occurs, helps to reduce its impact on net-
work congestion.
5. Conclusion

The key idea of the proposed approach is to deviate traf-
fic from the most loaded links. To evaluate to which extent
this is interesting, we need some information on the traffic
in the network. This information is obtained using a simple
estimation of the current traffic from the SNMP link
counts. Robust optimization is used to compensate for
the estimation errors. The results obtained on simulated
and real traffic data show that a significant reduction of



12 J. Vallet, O. Brun / Computer Networks 60 (2014) 1–12
the network congestion rate can be obtained with respect
to a static weight configuration, even when the traffic
has significant variations in time. In the ABILENE record,
the maximum congestion has been reduced to around
45% with the algorithm, while it was around 55% with
the static weight configuration. It also shows that the
dynamic algorithm provides a more robust configuration,
giving the ability to react to traffic variation. The running
times are compatible with online execution, as long as
we do not consider very large network topologies. Another
interesting conclusion is that, by balancing the traffic load
among the network links, the proposed online mechanism
helps reducing the impact of failures on network
congestion when they occurs. Future work will consider
the implementation of the algorithm in a real network to
demonstrate its practical feasibility.

Acknowledgement

This work was supported by French FUI project NEC.

References

[1] Networking Working Group, OSPF Version 2, Technical Report,
Internet Engineering Task Force, 1994.

[2] J. Moy, OSPF, Anatomy of an Internet Routing Protocol, Addison-
Wesley, 1998.

[3] B. Fortz, M. Thorup, Increasing internet capacity using local search.,
Comput. Optimiz. Appl. 29 (2004) 13–48.

[4] C. Fortuny, O. Brun, J.M. Garcia, Metric optimization in ip networks,
in: 19th International Teletraffic Congress, Beijing, China, 2005, pp.
1225–1234.

[5] H. Ümit, A column generation approach for IGP weight setting
problem, in: CoNEXT, Toulouse, France, 2005, pp. 294–295.

[6] B. Fortz, H. Ümit, Efficient techniques and tools for intra-domain
traffic engineering, Technical Report 583, ULB Computer Science
Departement, 2007.

[7] B. Fortz, M. Thorup, Internet traffic engineering by optimizing ospf
weights, in: Proc. 19th IEEE Conf. on Computer Communications
(INFOCOM), 2000.

[8] E. Mulyana, U. Killat, Optimizing ip networks for uncertain demands
using outbound traffic constraints, in: INOC’2005, 2005, pp. 695–
701.

[9] A. Altin, P. Belotti, M. Pinar, Ospf routing with optimal oblivious
performance ratio under polyhedral demand uncertainty, Optimiz.
Eng. (2009).

[10] A. Altin, B. Fortz, H. Ümit, Oblivious OSPF routing with weight
optimization under polyhedral demand uncertainty, in:
International Network Optimization Conference (INOC 2009), Pisa,
Italy, 2009.

[11] J. Chu, C.T. Lea, Optimal link weights for ip-based networks
supporting hose-model vpns, IEEE/ACM Trans. Network. 17 (2009)
778–786.

[12] Cisco Systems, Cisco ios netflow, 2004. <http://www.cisco.com/en/
US/products/ps6601/products_ios_protocol_group_home.html>.

[13] Cisco Systems, Sampled NetFlow, 2001. <http://www.cisco.com/en/
US/docs/ios/12_0s/feature/guide/12s_sanf.html>.

[14] Y. Zhang, M. Roughan, N. Duffield, A. Greenberg, Fast accurate
computation of large-scale ip traffic matrices from link loads, in:
ACM SIGMETRICS, San Diego, USA, 2003. <http://
www.citeseer.ist.psu.edu/article/zhang03fast.html>.

[15] A. Soule, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci,
M. Crovella, C. Diot, Traffic matrices: balancing measurements,
inference and modeling, SIGMETRICS Perform. Eval. Rev. 33 (2005)
362–373.

[16] A. Nucci, R. Cruz, N. Taft, C. Diot, Design of IGP link weight changes
for estimation of traffic matrices, in: I EEE Infocom, Hong Kong,
2004.

 
 

 

[17] C. Fortuny, O. Brun, J.M. Garcia, Fanout inference from link counts,
in: 4th European Conference on Universal Multiservice Networks
(ECUMN 2007), 2007, pp. 190–199.

[18] A. Soule, K. Salamatian, A. Nucci, N. Taft, Traffic matrix tracking using
kalman filters, SIGMETRICS Perform. Eval. Rev. 33 (2005) 24–31.

[19] K. Papagiannaki, N. Taft, A. Lakhina, A distributed approach to
measure IP traffic matrices, in: Internet Measurement Conference,
2004, pp. 161–174. <http://doi.acm.org/10.1145/1028808>.

[20] T. Ye, H.T. Kaur, S. Kalyanaraman, K.S. Vastola, S. Yadav, Dynamic
optimization of OSPF weights using online simulation, in: IEEE
INFOCOM, 2002.

[21] O. Brun, J.M. Garcia, Dynamic IGP weight optimization in ip
networks, in: First International Symposium on Network Cloud
Computing and Applications (NCCA), 2011.

[22] Y. Vardi, Bayesian inference on network traffic using link count data,
J. Am. Stat. Assoc. 93 (1998) 573–576.

[23] A. Medina, N. Taft, S. Battacharya, C. Diot, K. Salamatian, Traffic
matrix estimation: Existing techniques compared and new
directions, in: SIGCOMM, Pittsburgh, 2002. <http://
www.citeseer.ist.psu.edu/medina02traffic.html>.

[24] J. Cao, D. Davis, S. Wiel, B. Yu, Time-Varying Network Tomography:
Router Link Data, Technical Report, Bell Labs, 2000.

[25] I. Juva, S. Vaton, J. Virtamo, Quick traffic matrix estimation based on
link count covariances, in: 2006 IEEE International Conference on
Communications (ICC 2006), Istanbul, 2006.

[26] Y. Zhang, M. Roughan, N. Duffield, A. Greenberg, Fast accurate
computation of large-scale ip traffic matrices from link loads, in:
ACM SIGMETRICS, 2003, pp. 206–217.

[27] ILOG CPLEX, 2012. <http://www.ilog.com/products/cplex/>.
[28] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows, Prentice Hall,

1993.
[29] Library for Efficient Modeling and Optimization in Networks

(LEMON), 2012. <http://lemon.cs.elte.hu/trac/lemon>.
[30] N. Spring, R. Mahajan, D. Wetherall, T. Anderson, Measuring ISP

topologies with rocketfuel, IEEE/ACM Trans. Network. 12 (2004) 2–
16.

[31] Boston University Representative Internet Topology Generator
(BRITE), 2001. <http://www.cs.bu.edu/brite/>.

[32] Y. Zhang, Abilene Traffic Matrices, 2004. <http://www.cs.utexas.edu/
yzhang/research/AbileneTM/>

Josselin Vallet graduated from the Ecole
Nationale Supérieure de Mécanique et d’Aé-
rotechnique (ISAE-ENSMA, Poitiers, France).
He is currently a PhD student in the LAAS–
CNRS laboratory, in the SARA group. His main
research area lies in network routing optimi-
zation.
Olivier Brun is a CNRS research staff member
at LAAS, in the SARA group. He graduated
from the Institut National des Télécommuni-
cation (INT, Evry, France) and he was awarded
his PhD degree from Université Toulouse III
(France). Before joining LAAS, he spent one
year working for Delta Partners company as a
R&D engineer and was in charge of the
NEMOS project for British Telecom. His
research interests lie in queueing and game
theories as well as network optimization.
Olivier Brun is also a teacher at INSA Toulouse

and co-founder and scientific advisor of QoS Design, a spin-off of LAAS–
CNRS.

http://refhub.elsevier.com/S1389-1286(13)00417-9/h0120
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0120
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0120
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0125
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0125
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0130
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0130
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0130
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0135
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0135
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0135
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.citeseer.ist.psu.edu/article/zhang03fast.html
http://www.citeseer.ist.psu.edu/article/zhang03fast.html
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0140
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0140
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0140
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0140
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0145
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0145
http://doi.acm.org/10.1145/1028808
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0150
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0150
http://www.citeseer.ist.psu.edu/medina02traffic.html
http://www.citeseer.ist.psu.edu/medina02traffic.html
http://www.ilog.com/products/cplex/
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0155
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0155
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0155
http://lemon.cs.elte.hu/trac/lemon
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0160
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0160
http://refhub.elsevier.com/S1389-1286(13)00417-9/h0160
http://www.cs.bu.edu/brite/
http://www.cs.utexas.edu/yzhang/research/AbileneTM/
http://www.cs.utexas.edu/yzhang/research/AbileneTM/

	Online OSPF weights optimization in IP networks
	1 Introduction
	2 Problem statement
	3 Online algorithm
	3.1 Traffic matrix estimation
	3.2 Robust optimization of link weights
	3.2.1 Minimum metric increment ? 
	3.2.2 Worst-case evaluation of link loads

	3.3 Reduction of the number of metric changes

	4 Results
	4.1 Simulated traffic data
	4.1.1 Time-average network congestion rates
	4.1.2 Temporal evolution of network congestion rates
	4.1.3 Execution time

	4.2 Real traffic data
	4.3 Link failure

	5 Conclusion
	Acknowledgement
	References


