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Abstract

The Poisson binomial distribution is the distribution of the sum of independent and

non-identically distributed random indicators. Each indicator follows a Bernoulli distri-

bution and the individual probabilities of success vary. When all success probabilities

are equal, the Poisson binomial distribution is a binomial distribution. The Poisson bi-

nomial distribution has many applications in different areas such as reliability, actuarial

science, survey sampling, econometrics, etc. The computing of the cumulative distribu-

tion function (cdf) of the Poisson binomial distribution, however, is not straightforward.

Approximation methods such as the Poisson approximation and normal approximations

have been used in literature. Recursive formulae also have been used to compute the cdf

in some areas. In this paper, we present a simple derivation for an exact formula with a

closed-form expression for the cdf of the Poisson binomial distribution. The derivation

uses the discrete Fourier transform of the characteristic function of the distribution. We

develop an algorithm that efficiently implements the exact formula. Numerical studies

were conducted to study the accuracy of the developed algorithm and approximation

methods. We also studied the computational efficiency of different methods. The paper

is concluded with a discussion on the use of different methods in practice and some

suggestions for practitioners.

Key Words: Characteristic function; k-out-of-n system; Longevity risk; Normal

approximation; Sum of independent random indicators; Warranty returns.
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1 Introduction

1.1 Motivation

The Poisson binomial distribution describes the distribution of the sum of independent and

non-identically distributed random indicators. Each indicator is a Bernoulli random variable

and the individual probabilities of success vary. A special case of the Poisson binomial dis-

tribution is the ordinary binomial distribution, when all success probabilities are equal. The

Poisson binomial distribution has many applications in different areas such as reliability, ac-

tuarial science, survey sampling, econometrics, and so on. The following gives examples from

different areas.

• In some reliability applications, it is often of interest to predict the total number of

failures for a fleet of products in the field. Hong, Meeker, and McCalley (2009) considered

the prediction for the total number of field failures for a fleet of high-voltage power

transformers. Due to staggered entry of units into service, individual units in the field

have different failure probabilities at a specified future time. Thus the total number of

field failures follows a Poisson binomial distribution.

• In actuarial science, the total payout of an insurance company is often related to the

Poisson binomial distribution. For example, Pitacco (2007) considered a one-year insur-

ance coverage only providing a death benefit for n insureds. Let C denote the payout

due at each death. The individual payout is either 0 or C with probability 1−pj and pj ,

respectively, where the death probability pj varies from individual to individual. Assum-

ing that the individual lifetimes are independent, the total payout for those n insureds

is C times the total number of deaths which follows the Poisson binomial distribution.

• In econometrics, it is sometimes of interest to predict the number of corporation defaults

(e.g., Duffie, Saita, and Wang 2007). The default probabilities differ from corporation

to corporation because each corporation has its own unique situation on assets, debts,

stock returns and so on. The number of corporation defaults at a future time also follows

a Poisson binomial distribution.

• In engineering, Fernández and Williams (2010) provided several interesting examples

such as multi-sensor fusion and reliability of k-out-of-n systems, which are related to

the Poisson binomial distribution.

• In survey sampling, Chen and Liu (1997) presented an example where the inclusion

probabilities of sampling units are different. The total number of units in the sample

follows a Poisson binomial distribution.
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• The Poisson binomial distribution also has wide applications in areas such as, data

mining of uncertain databases (Tang and Peterson 2011), bioinformatics (Niida et al.

2012), and wind energy (Bossavy et al. 2012).

While the Poisson binomial distribution has many applications in different disciplines, the

computing of the cumulative distribution function (cdf) of the distribution is not straightfor-

ward. Because the individual probabilities of success vary, the naive way of computing the

cdf by using enumeration is not practical, even when the number of indicators is small (i.e.,

around 30). Approximation methods such as the Poisson approximation and normal approxi-

mations have been used in literature. There are situations, however, in which approximation

methods do not perform well. Thus it is desirable to have a method to compute the exact

values of the cdf. It is also useful to know in which situation approximation methods work

well. In applications such as predictions for the number of failures and corporation defaults,

the number of indicators is usually large. Thus efficiency of algorithms for computing the

exact values of the cdf is also important. This motivates us to provide efficient methods to

compute the exact values of the cdf of the Poisson binomial distribution.

1.2 Related Literature and This Work

The study on Poisson binomial distribution has a long history. Le Cam (1960) provided an

upper bound for the error of the Poisson approximation. Normal approximations are widely

used in practice. Volkova (1996) gave a normal approximation with second order correction

and provided an upper bound for the error of the approximation. Hong, Meeker, and McCalley

(2009) and Hong and Meeker (2010) applied the approximation in Volkova (1996) to warranty

prediction applications. Recursive formulae are available in literature to compute the exact

values of the cdf of the Poisson binomial distribution. For example, Barlow and Heidtmann

(1984) described a recursive formula for computing the cdf. Chen, Dempster, and Liu (1994)

provided another recursive formula. Details for these recursive formulae are described in

Section 2.5. Fernández and Williams (2010) gave a closed-form expression for the cdf using

the technique of polynomial interpolation and the discrete Fourier transform.

The contribution of this paper is summarized as follows.

• We propose a simple derivation for an exact formula for the cdf of the Poisson binomial

distribution, which gives the same form as that in Fernández and Williams (2010).

• We develop an algorithm that efficiently implements the exact formula, which outper-

forms existing methods.

• Numerical studies were conducted to compare the accuracy of the algorithm and approx-

imation methods. We also compared the computational efficiency of different methods.
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• Based on the numerical studies, we provide a discussion on the advantages and disad-

vantages of different methods and some guidelines for practitioners.

The statistical software R (2012) is widely used. There was no package, however, for

computing the Poisson binomial distribution function. We developed an R package that

efficiently implements both exact methods and approximation methods. The package can be

downloaded from the R website, see Section 5 for more details.

1.3 Overview

The rest of the paper is organized as follows. Section 2 describes several exact methods for

computing the cdf and algorithms for their efficient implementations. Section 3 describes

several approximation methods based on the Poisson and normal approximations. Section 4

conducts a comprehensive numerical study to assess the performance of various methods

in terms of accuracy and efficiency. Section 5 discusses software implementation for both

the exact and approximation methods. Section 6 provides some concluding remarks and

suggestions for practitioners.

2 Exact Methods

2.1 Notation

Let Ij , j = 1, . . . , n be a series of n independent and non-identically distributed random

indicators. In particular,

Ij ∼ Bernoulli(pj), j = 1, . . . , n, (1)

where pj = Pr(Ij = 1) is the success probability of indicator Ij and not all pj’s are equal. The

Poisson binomial random variable N is defined as the sum of independent and non-identically

distributed random indicators (i.e., N =
∑n

j=1
Ij). Note that N takes value in {0, 1, . . . , n}.

Let ξk = Pr(N = k), k = 0, 1, . . . , n be the probability mass function (pmf) for the Poisson

binomial random variable N . When all pj ’s are identical, the distribution of N is a binomial

distribution. The cdf of N , denoted by FN (k) = Pr(N ≤ k), k = 0, 1, . . . , n, gives the

probability of having at most k successes out of a total of n. The cdf FN(k) can be expressed

by (Wang 1993)

FN (k) =
k
∑

m=0

ξm =
k
∑

m=0

{

∑

A∈Fm

∏

j∈A

pj
∏

j∈Ac

(1− pj)

}

, (2)
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where Fm is the set of all subsets of m integers that can be selected from {1, 2, 3, . . . , n} and

Ac is the complement of set A (i.e., Ac = {1, 2, 3, . . . , n}\A). Samuels (1965) presented similar

formula as in (2). In order to compute FN (k) in (2), one needs to enumerate all elements in

Fm, which is not practical even when n is small (e.g., n = 30). For example, when n = 30, F15

contains 30!/[15!× (30− 15)!] = 155,117,520 elements. Thus efficient methods for computing

FN(k) are desirable.

2.2 Discrete Fourier Transform

In this section, we briefly introduce the discrete Fourier transform (DFT). For a sequence of

n+ 1 complex numbers {y0, y1, · · · , yn}, the DFT transforms {y0, y1, · · · , yn} into a sequence

of n+1 complex numbers {z0, z1, · · · , zn} where zk =
∑n

l=0
yl exp(−iωkl), k = 0, 1, . . . , n, and

ω = 2π/(n+ 1). The inverse discrete Fourier transform (IDFT), which recovers {y0, y1, · · · ,
yn} from {z0, z1, · · · , zn}, is given by

yl =
1

n+ 1

n
∑

k=0

zk exp(iωlk), l = 0, 1, · · · , n. (3)

Applying the DFT to both sides of equation (3), one can also recover {z0, z1, · · · , zn} from

{y0, y1, · · · , yn}. More details on the DFT can be found in Bracewell (2000, Chapter 11).

There are fast Fourier transform (FFT) algorithms to compute the DFT efficiently. The

most commonly-used algorithm is the Cooley-Tukey algorithm (Cooley and Tukey 1965).

There are also subroutines available in C or FORTRAN that implement FFT algorithms. See

Bracewell (2000, Chapter 11) for details on FFT algorithms.

2.3 The DFT of the Characteristic Function of the Poisson Bino-

mial Distribution

In this section, we provide a derivation for a closed-form expression for the cdf of the Poisson

binomial distribution. Our approach is based on the characteristic function (CF) for the

Poisson binomial distribution (see, for example, Athreya and Lahiri 2006, Chapter 10 for

details on CF). Fernández and Williams (2010) provided the same closed-form expression for

the cdf, which was derived by using polynomial interpolation technique and the DFT. Our

approach, however, is much simpler.
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The CF of the Poisson binomial random variable N =
∑n

j=1
Ij is

ϕ(t) = E[exp(itN)] =
n
∑

k=0

ξk exp(itk) = E

[

exp

(

it
n
∑

j=1

Ij

)]

(4)

=

n
∏

j=1

E[exp(itIj)] =

n
∏

j=1

[1− pj + pj exp(it)],

where i =
√
−1. Substituting t = ωl, l = 0, 1, · · · , n into (4) where ω = 2π/(n + 1), one

obtains

1

n+ 1

n
∑

k=0

ξk exp(iωlk) =
1

n + 1

n
∏

j=1

[1− pj + pj exp(iωl)] =
1

n+ 1
xl, l = 0, 1, · · · , n, (5)

where xl =
∏n

j=1
[1−pj+pj exp(iωl)]. Note that the left hand side of equation (5) is the IDFT

of the sequence {ξ0, ξ1, · · · , ξn}. Apply the DFT to both sides of equation (5), one recovers

{ξ0, ξ1, · · · , ξn}. In particular,

ξk =
1

n + 1

n
∑

l=0

exp(−iωlk)
n
∏

j=1

[1− pj + pj exp(iωl)] =
1

n+ 1

n
∑

l=0

exp(−iωlk)xl. (6)

The expression in equation (6) gives the same closed-form expression as in Fernández and

Williams (2010). From (6), the cdf of N can be expressed as

FN (k) =
k
∑

m=0

ξm =
1

n + 1

n
∑

l=0

k
∑

m=0

exp(−iωlm)xl =
1

n+ 1

n
∑

l=0

{1− exp[−iωl(k + 1)]}xl

1− exp(−iωl)
. (7)

The last equality in (7) follows from the fact that exp(−iωlm), m = 0, 1, . . . , k is a geometric

sequence. We refer to the closed-form expression in (7) for FN (k) as the DFT-CF method.

2.4 Efficient Implementation of the DFT-CF Method

In this section, we develop an efficient algorithm for computing the cdf FN(k) in (7). To com-

pute ξk, k = 0, 1, . . . , n, one first needs to compute xl. Let xl = al+ibl, l = 0, 1, . . . , n, where al

and bl are the real and imaginary parts of xl, respectively. From (5), xl =
∑n

k=0
ξk exp(iωlk), l =

0, 1, · · · , n. Note that x0 =
∑n

k=0
ξk = 1. Because all ξk’s are real numbers and exp[iω(n +

1)k] = 1, the conjugate of xl is

xl = al − ibl =

n
∑

k=0

ξk exp(−iωlk) =

n
∑

k=0

ξk exp[iω(n+ 1− l)k]

= xn+1−l = an+1−l + ibn+1−l, l = 1, . . . , n.
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Thus al = an+1−l, and bl = −bn+1−l for l = 1, . . . , n. Let zj(l) = 1−pj+pj cos(ωl)+ipj sin(ωl),

|zj(l)| be the modulus of zj(l), and Arg[zj(l)] be the principal value of the argument of zj(l).

Note that

xl = exp

{

n
∑

j=1

log [zj(l)]

}

= exp

{

n
∑

j=1

log

(

|zj(l)| exp{iArg[zj(l)]}
)

}

= exp

{

n
∑

j=1

log [ |zj(l)| ]
}

exp

(

i

n
∑

j=1

Arg[zj(l)]

)

= exp

{

n
∑

j=1

log [ |zj(l)| ]
}(

cos

{

n
∑

j=1

Arg[zj(l)]

}

+ i sin

{

n
∑

j=1

Arg[zj(l)]

})

.

Here |zj(l)| = {[1 − pj + pj cos(ωl)]
2 + [pj sin(ωl)]

2}1/2 and Arg[zj(l)] = atan2[pj sin(ωl), 1 −
pj + pj cos(ωl)]. The function atan2(y, x) is defined as

atan2(y, x) =























































arctan( y
x
) x > 0

π + arctan( y
x
) y ≥ 0, x < 0

−π + arctan( y
x
) y < 0, x < 0

π
2

y > 0, x = 0

−π
2

y < 0, x = 0

0 y = 0, x = 0

.

Thus explicit expressions for al and bl are

al = dl cos

{

n
∑

j=1

Arg[zj(l)]

}

and bl = dl sin

{

n
∑

j=1

Arg[zj(l)]

}

, (8)

where dl = exp
{

∑n
j=1

log [ |zj(l)| ]
}

, l = 1, . . . , n. The following algorithm is used to compute

the cdf FN(k) for k = 0, 1, · · · , n.

Algorithm A:

1. Let x0 = 1. For l = 1, . . . [n/2], compute the real and imaginary parts of xl by using the

formulae in (8). Here [ · ] is the ceiling function.

2. For l = [n/2]+1, . . . , n, compute the real and imaginary parts of xl by using the formula

al = an+1−l, and bl = −bn+1−l.

3. Apply the FFT algorithm to the set {x0/(n + 1), x1/(n+ 1), . . . , xn/(n + 1)} to obtain

{ξ0, ξ1, . . . , ξn}.
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4. Compute the cdf by using FN (k) =
∑k

m=0
ξm, k = 0, 1, · · · , n.

The above algorithm returns the values of the entire cdf by doing FFT once. Because there are

C or FORTRAN subroutines available to do the FFT, the implementation of Algorithm A

is not difficult. The FFT algorithm that is used for the implementation in this paper is due

to Singleton (1969), which is an FFT algorithm based on the Cooley-Tukey algorithm. The

original subroutine was written in FORTRAN and it was translated to C, which is available

in the R library.

2.5 Recursive Formulae

Recursive formulae (RF) are available in literature to compute FN (k). Barlow and Heidtmann

(1984) described the following recursive formula. A better description of the algorithm is

available in Kuo and Zuo (2003, Chapter 7). Let Nj =
∑j

m=1
Im and ξk,j = Pr(Nj = k) where

the random indicator Im is defined in (1). Note that N = Nn and ξk = ξk,n. The recursive

formula is given by

ξk,j = (1− pj)ξk,j−1 + pjξk−1,j−1, 0 ≤ k ≤ n, 0 ≤ j ≤ n. (9)

The boundary conditions for (9) are ξ−1,j = ξj+1,j = 0, j = 0, 1, . . . , n − 1 and ξ0,0 = 1. We

refer to (9) as the RF1 method. The RF1 method can be computer memory demanding when

n is large.

Chen, Dempster, and Liu (1994) introduced another recursive formula for computing ξk.

The algorithm requires all pj < 1. In particular, the formula is given by

ξ0 =
n
∏

j=1

(1− pj), and ξk =
1

k

k
∑

l=1

(−1)l−1tlξk−l, k = 1, . . . , n, (10)

where tl =
∑n

j=1
[pj/(1−pj)]

l. We refer to (10) as the RF2 method. This formula is sometimes

not numerically stable. This is caused by round-off error in ξ0 and the explosion of the term

[pj/(1− pj)]
l in tl, especially when pj is close to 1 and n is large.

3 Approximation Methods

In this section, we describe several commonly-used approximation methods for computing

the cdf FN(k). Approximation methods are still widely used because of their computational

efficiency, especially when n is large and the cdf FN (k) needs to be evaluated many times. For

example, in the prediction application in Hong, Meeker, and McCalley (2009), the cdf needs

to be evaluated B = 10,000 times in the calibration of prediction intervals for the number of
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field failures. We will need moments or functions of moments of N in the description of ap-

proximation methods. The expectation, standard deviation, and skewness of the distribution

of N are

µ = E(N) =
n
∑

j=1

pj, σ = [Var(N)]1/2 =

[

n
∑

j=1

pj(1− pj)

]1/2

, (11)

γ = [Var(N)]−3/2
E [N − µ]3 = σ−3

n
∑

j=1

pj(1− pj)(1− 2pj),

respectively.

3.1 Poisson Approximation

In literature, the Poisson distribution has been used to approximate the distribution of N ,

which is referred to as the Poisson approximation (PA) method. In particular, the pmf the

Poisson binomial distribution ξk is approximated by

ξk ≈
µk exp(−µ)

k!
, k = 0, 1, · · · , n, (12)

where µ is defined in (11). By Le Cam’s theorem (Le Cam 1960), the approximation error for

the PA method is
∑n

k=0

∣

∣ξk − µk exp(−µ)/(k!)
∣

∣ < 2
∑n

j=1
p2j . Thus the PA method only works

well when the expected number of successes µ is small. When µ is large, the performance of the

PA method is generally poor. See Section 4.2 for a numerical illustration of the performance

of the PA method.

3.2 Normal Approximation

The normal approximation (NA) method is based on the central limit theorem. In particu-

lar, the NA method with continuous correction approximates the cdf of a Poisson binomial

distribution by

FN (k) ≈ Φ

(

k + 0.5− µ

σ

)

, k = 0, 1, · · · , n, (13)

where Φ(x) is the cdf of the standard normal distribution, and µ and σ are defined in (11).

When n is small, the performance of the normal approximation can be poor.

3.3 Refined Normal Approximation

Volkova (1996) described a refined normal approximation (RNA) which makes a correction to

the skewness of the distribution of N . For the RNA method, the cdf FN(k) is approximated
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by

FN (k) ≈ G

(

k + 0.5− µ

σ

)

, k = 0, 1, · · · , n, (14)

where G(x) = Φ(x) + γ(1 − x2)φ(x)/6, φ(x) is the pdf of the standard normal distribution,

and γ is defined in (11). In some situations, the values of the cdf approximated by the RNA

method can be outside [0, 1]. Thus those values less than 0 are corrected to 0 and those values

larger than 1 are corrected to 1.

4 Numerical Studies

4.1 Accuracy of the Implementations of Exact Methods

The DFT-CF, RF1 and RF2 methods can provide exact values of the cdf. It is, however, desir-

able to verify that the software implementations of these methods are correct. In this section,

we use the distribution of the sum of binomial random variables to verify the implementations

of these methods.

Note that the distribution of the sum of three independent and non-identically distributed

binomial distributions is a special case of the Poisson binomial distribution. The pmf in this

special case is

ξk =

k
∑

j=0

bk−j,n3

(

j
∑

i=0

bi,n1
bj−i,n2

)

=

k
∑

j=0

j
∑

i=0

bi,n1
bj−i,n2

bk−j,n3
, (15)

where n1+n2+n3 = n, and bi,n1
, bi,n2

, and bi,n3
are the pmfs of Binomial(n1, p1), Binomial(n2, p2),

and Binomial(n3, p3), respectively. Here p1, p2, and p3 are the success probabilities for these

three binomial distributions. In particular,

bi,n1
=

(

n1

i

)

pi1(1− p1)
n1−i, bi,n2

=

(

n2

i

)

pi2(1− p2)
n2−i, and bi,n3

=

(

n3

i

)

pi3(1− p3)
n3−i.

The pmfs bi,n1
, bi,n2

and bi,n3
can be accurately computed by using existing software. With dif-

ferent values of n1, n2, n3 and p1, p2, p3, one can obtain various Poisson binomial distributions.

We use the total absolute error (TAE) between two cdfs as a metric for accuracy comparisons.

The TAE is defined by

TAE =

n
∑

k=0

|F (k)− Fbin(k)|,

where F (k) is a cdf computed by using one of the exact methods, and Fbin(k) is the cdf

computed by using the formula in (15). Table 1 shows the results from the accuracy study for

the DFT-CF, RF1 and RF2 methods. Various values of n1, n2, n3 and p1, p2, p3 were chosen
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Table 1: Accuracy comparisons for the DFT-CF, RF1 and RF2 methods.

n n1 n2 n3 p1 p2 p3
TAE

DFT-CF RF1 RF2
30 10 10 10 0.500 0.500 0.500 1.6×10−14 7.4×10−15 7.4×10−15

30 10 5 15 0.500 0.500 0.500 1.3×10−14 5.2×10−15 5.2×10−15

30 10 5 15 0.010 0.500 0.990 1.4×10−14 7.0×10−16 na
300 100 50 150 0.010 0.500 0.990 1.9×10−12 4.7×10−14 na

3,000 1,000 500 1,500 0.010 0.500 0.990 3.6×10−10 1.1×10−11 na
3,000 1,000 500 1,500 0.001 0.010 0.020 3.1×10−11 9.4×10−11 1.6×10−10

3,000 1,000 500 1,500 0.999 0.990 0.980 1.4×10−09 1.1×10−14 na
3,000 1,000 500 1,500 0.001 0.500 0.999 3.4×10−10 7.2×10−12 na
3,000 1,000 500 1,500 0.300 0.500 0.700 3.8×10−10 7.7×10−11 na

to generate different scenarios. The TAE for each scenario was computed. The TAEs are

generally less than 1×10−10 for the DFT-CF and RF1 methods. Thus the results show that

the DFT-CF and RF1 methods can accurately compute the cdf for the Poisson binomial

distribution. The RF2 method does not work for most cases because the algorithm is not

numerically stable.

4.2 Accuracy Comparisons for Approximation Methods

Being able to compute the exact values of the cdf FN(k) allows us to study the performance of

approximation methods. To see the performance of different approximation methods, we sim-

ulate success probabilities pj’s from various patterns. Figure 1 shows the six different patterns

in pj ’s used in this numerical study. These patterns in the pj ’s are generated from the uniform

distribution, beta distribution with various values of shape parameters, and mixtures of beta

distributions. For each pattern, various values of n, which is the number of random indicators

in N , were chosen to see the effect of n on the accuracy of approximation methods. In particu-

lar, the values of n were chosen from n = 10, 20, 50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000,

and 15,000.

Figure 2 shows an illustration of computed cdfs by using various methods. Each sub-

figure is based on a set of pj ’s simulated from Pattern (b) in Figure 1 when n = 10, 50, 200 ,

and 1,000 , respectively. The x-axis is on the logarithm scale and the y-axis is on the scale

of the quantile function of the standard normal distribution (but labeled on the original

scales). For convenience of plotting, the location where k = 0.5 shows the value of the cdf at

k = 0. Note that the Poisson binomial distribution is a discrete distribution. Thus only those

points in Figure 2 show the values of the cdfs. Those segments that connect points are for
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convenience of visual comparisons. The RNA method approximates the cdf well and the NA

method approximates the cdf moderately well (there are departures in the upper and lower

tails of the cdf). The cdf computed by the PA method deviates from the true cdf. Thus the

PA method does not perform well. The RF1 method gives exactly the same values (agree to

the ninth decimal places) as the DFT-CF method. The RF2 method does not work because

it is not numerically stable. Thus the results for recursive formulae are not shown in Figure 2.

To make accuracy comparison for different methods, Table 2 shows the average TAE of

1,000 sets of pj ’s simulated for each combination of patterns in pj’s and values of n. In

particular, the TAE for a set of pj’s is computed by

TAE =

n
∑

k=0

|F (k)− FN (k)|,

where F (k) is a cdf computed by using one of the approximation methods, and FN(k) is the

cdf computed by using the DFT-CF method. As we can see from the results in Table 2, the

PA method does not perform well for most cases. The PA method only works reasonably well

when µ is small, for example in Pattern (b) when n ≤ 50.

For the normal approximation methods, the RNA method performs better than the NA

method for almost all cases. For Patterns (b) and (c) where N is highly skewed, the RNA

method performs much better than the NA method. When n ≥ 2000, the TAE for the

RNA method is generally less than 0.005. Thus the RNA method is recommended when an

approximation method needs to be used.

For all combinations of patterns in the pj’s and values of n considered in Table 2, both

the DFT-CF and RF1 methods provide results that agree to the ninth decimal places. The

RF2 method, however, does not work in most cases for the same reason mentioned previously.

Thus the results for the RF1 and RF2 methods are not shown in Table 2.

4.3 Efficiency Comparisons for Exact Methods

The computing time for the exact and approximation methods needs to be considered when n

is large. For each combination of patterns in pj ’s and values of n as in Section 4.2, 1,000 sets

of pj’s were simulated. Table 3 gives the average time for computing the entire cdf using the

RNA, DFT-CF and RF1 methods based on those 1,000 sets of pj ’s. The unit of time is the

second. The computations were done by using the 64-bit R in a workstation. The workstation

has an Intel Xeon CPU (X5570, 2.93GHz) and 24G RAM installed.

The results in Table 3 show that the computing time for the RNA method is generally

negligible (less than four milliseconds). The computing time for both the DFT-CF and RF1

methods are generally negligible (less than ten milliseconds) when n ≤ 500. When n ≥ 1,000,
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Figure 1: Six different patterns in the pj’s used in the numerical study. Here Beta(a, b) is the

probability density function of the beta distribution with shape parameters a and b.
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Figure 2: An illustration of computed cdfs with various methods for Pattern (b) in Figure 1,

when n = 10, 50, 200, and 1,000. The x-axis is on the logarithm scale (the location where

k = 0.5 shows the value of the cdf at k = 0) and the y-axis is on the scale of the quantile

function of the standard normal distribution.
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Table 2: Average TAE of 1,000 sets of pj’s simulated for each combination of patterns in pj’s

and values of n for accuracy comparisons of approximation methods.

Pattern (a) (b)
Method RNA NA PA RNA NA PA
n = 10 0.0209 0.0281 0.7372 0.0300 0.0466 0.0563
n = 20 0.0147 0.0200 1.0728 0.0259 0.0708 0.0897
n = 50 0.0092 0.0124 1.6948 0.0216 0.0762 0.1420
n = 100 0.0065 0.0086 2.3924 0.0195 0.0873 0.2043
n = 200 0.0046 0.0061 3.3763 0.0148 0.0940 0.2912
n = 500 0.0029 0.0038 5.3303 0.0092 0.0930 0.4637
n = 1,000 0.0021 0.0027 7.5429 0.0064 0.0925 0.6521
n = 2,000 0.0015 0.0019 10.664 0.0045 0.0919 0.9315
n = 5,000 0.0009 0.0012 16.864 0.0028 0.0919 1.4632
n = 10,000 0.0007 0.0009 23.844 0.0020 0.0918 2.0727
n = 15,000 0.0005 0.0007 29.211 0.0016 0.0918 2.5353
Pattern (c) (d)
Method RNA NA PA RNA NA PA
n = 10 0.0401 0.0838 1.4915 0.0456 0.0623 1.5046
n = 20 0.0459 0.1165 1.9571 0.0574 0.0772 2.0599
n = 50 0.0381 0.1086 3.0302 0.0434 0.0535 3.1704
n = 100 0.0225 0.0971 4.4510 0.0272 0.0330 4.4456
n = 200 0.0149 0.0952 6.7313 0.0185 0.0225 6.2709
n = 500 0.0092 0.0932 12.005 0.0114 0.0138 9.8885
n = 1,000 0.0064 0.0922 18.630 0.0080 0.0095 13.970
n = 2,000 0.0045 0.0921 28.247 0.0056 0.0067 19.762
n = 5,000 0.0028 0.0917 46.583 0.0035 0.0043 31.226
n = 10,000 0.0020 0.0917 66.215 0.0025 0.0030 44.161
n = 15,000 0.0016 0.0918 81.116 0.0020 0.0024 54.087
Pattern (e) (f)
Method RNA NA PA RNA NA PA
n = 10 0.0155 0.0215 0.6144 0.0252 0.0262 0.7726
n = 20 0.0109 0.0151 0.8733 0.0169 0.0176 1.0813
n = 50 0.0068 0.0095 1.3818 0.0105 0.0109 1.7042
n = 100 0.0048 0.0066 1.9534 0.0074 0.0077 2.4101
n = 200 0.0034 0.0047 2.7627 0.0052 0.0054 3.4005
n = 500 0.0021 0.0030 4.3608 0.0033 0.0034 5.3738
n = 1000 0.0015 0.0021 6.1632 0.0023 0.0024 7.6009
n = 2,000 0.0011 0.0015 8.7117 0.0016 0.0017 10.745
n = 5,000 0.0007 0.0009 13.771 0.0010 0.0011 16.988
n = 10,000 0.0005 0.0007 19.485 0.0007 0.0008 24.017
n = 15,000 0.0004 0.0005 23.869 0.0006 0.0006 29.425
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the RF1 method requires more computing time than the DFT-CF method. The RF1 method

also requires more RAM. For example, when n = 15,000, approximately 4GB memory is

needed for computing the entire cdf. The DFT-CF method, however, is less demanding in

memory. Thus the DFT-CF method is recommended for computing the exact values for the

cdf FN(k), especially when n is large.

5 Software Implementation

The DFT-CF, RF1, RNA and NA methods have been implemented in R. The computation-

ally intensive components such as the FFT are implemented in C and are linked to R. The

R functions have been wrapped into an R package poibin which can be downloaded from

the Comprehensive R Archive Network (http://cran.r-project.org/). The R function in the

package for computing the cdf FN (k) is ppoibin(), which has an option that allows users to

specify the method for computing.

6 Concluding Remarks

In this paper, we focus on the computing of the distribution function for the Poisson binomial

distribution. We present a simple derivation for an exact formula with a closed-form expres-

sion. We develop an algorithm for efficient implementation of the exact formula and study

the advantages and disadvantages of various approximation methods. Numerical studies were

conducted to compare the accuracy of the exact and approximation methods. The DFT-CF,

RF1, RNA and NA methods have been implemented in an R package.

In practice, the DFT-CF method is generally recommended for computing. The RF1

method can also been used when n < 1,000, because there is not much difference in computing

time from the DFT-CF method. The RNA method is recommended when n > 2,000 and the

cdf needs to be evaluated many times. As shown in the numerical study, the RNA method

can approximate the cdf well, when n is large, and is more computationally efficient. The PA

method, however, is not recommended because its performance is generally poor. The RF2

method is not recommended either, because the algorithm is not numerically stable.
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Table 3: Computational efficiency comparisons for the RNA, DFT-CF and RF1 Methods,

based on 1,000 sets of pj’s simulated from each combination of patterns in pj ’s and values of

n. The unit of time is the second.

Pattern (a) (b)
Method RNA DFT-CF RF1 RNA DFT-CF RF1
n = 10 0.000 0.000 0.000 0.000 0.000 0.000
n = 20 0.000 0.000 0.000 0.000 0.000 0.000
n = 50 0.000 0.000 0.000 0.000 0.000 0.000
n = 100 0.000 0.000 0.000 0.000 0.000 0.000
n = 200 0.000 0.001 0.001 0.000 0.001 0.001
n = 500 0.000 0.008 0.005 0.000 0.006 0.006
n = 1,000 0.000 0.029 0.068 0.000 0.022 0.069
n = 2,000 0.001 0.111 0.185 0.000 0.084 0.181
n = 5,000 0.001 0.691 0.825 0.001 0.528 0.814
n = 10,000 0.002 2.735 3.377 0.002 2.100 3.307
n = 15,000 0.003 6.176 7.715 0.003 4.736 7.658
Pattern (c) (d)
Method RNA DFT-CF RF1 RNA DFT-CF RF1
n = 10 0.000 0.000 0.000 0.000 0.000 0.000
n = 20 0.000 0.000 0.000 0.000 0.000 0.000
n = 50 0.000 0.000 0.000 0.000 0.000 0.000
n = 100 0.000 0.000 0.000 0.000 0.000 0.000
n = 200 0.000 0.001 0.001 0.000 0.001 0.001
n = 500 0.000 0.006 0.005 0.000 0.006 0.005
n = 1,000 0.000 0.026 0.068 0.000 0.024 0.074
n = 2,000 0.000 0.098 0.185 0.000 0.094 0.193
n = 5,000 0.001 0.617 0.809 0.001 0.581 0.827
n = 10,000 0.002 2.445 3.337 0.002 2.271 3.359
n = 15,000 0.003 5.517 7.731 0.003 5.141 7.665
Pattern (e) (f)
Method RNA DFT-CF RF1 RNA DFT-CF RF1
n = 10 0.000 0.000 0.000 0.000 0.000 0.000
n = 20 0.000 0.000 0.000 0.000 0.000 0.000
n = 50 0.000 0.000 0.000 0.000 0.000 0.000
n = 100 0.000 0.000 0.000 0.000 0.000 0.000
n = 200 0.000 0.001 0.001 0.000 0.001 0.001
n = 500 0.000 0.007 0.005 0.000 0.007 0.004
n = 1000 0.000 0.029 0.067 0.000 0.027 0.069
n = 2,000 0.001 0.109 0.186 0.000 0.104 0.194
n = 5,000 0.001 0.689 0.859 0.001 0.654 0.912
n = 10,000 0.002 2.743 3.348 0.002 2.593 3.661
n = 15,000 0.002 6.181 7.741 0.003 5.847 8.626
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