
J. Parallel Distrib. Comput. 71 (2011) 1497–1508
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for
cloud computing systems
M. Mezmaz a,∗, N. Melab b, Y. Kessaci b, Y.C. Lee c, E.-G. Talbi b,d, A.Y. Zomaya c, D. Tuyttens a

a Mathematics and Operational Research Department (MathRO), University of Mons, Belgium
b National Institute for Research in Computer Science and Control (INRIA), CNRS/LIFL, Université de Lille1, France
c Centre for Distributed and High Performance Computing, The University of Sydney, Australia
d King Saud University, Riyadh, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 5 October 2010
Received in revised form
14 February 2011
Accepted 19 April 2011
Available online 13 May 2011

Keywords:
Energy-aware scheduling
Cloud computing
Metaheuristics
Hybridization
Parallelization
Genetic algorithm
Precedence-constrained parallel
applications

a b s t r a c t

In this paper, we investigate the problem of scheduling precedence-constrained parallel applications on
heterogeneous computing systems (HCSs) like cloud computing infrastructures. This kind of application
was studied and used in many research works. Most of these works propose algorithms to minimize the
completion time (makespan) without paying much attention to energy consumption.

We propose a new parallel bi-objective hybrid genetic algorithm that takes into account, not only
makespan, but also energy consumption.We particularly focus on the island parallelmodel and themulti-
start parallel model. Our new method is based on dynamic voltage scaling (DVS) to minimize energy
consumption.

In terms of energy consumption, the obtained results show that our approach outperforms previous
scheduling methods by a significant margin. In terms of completion time, the obtained schedules are also
shorter than those of other algorithms. Furthermore, our study demonstrates the potential of DVS.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Precedence-constrained parallel applications are one of the
most typical application models used in scientific and engineering
fields. Such applications can be deployed on homogeneous or het-
erogeneous systems (HCSs) like cloud computing infrastructures.

Cloud computing is a simple concept that has emerged from
heterogeneous distributed computing, grid computing, utility
computing, and autonomic computing. In cloud computing, end-
users do not own any part of the infrastructure. The end-users
simply use the services available through the cloud computing
paradigm and pay for the used services. The cloud computing
paradigm can offer any conceivable form of services, such as com-
putational resources for high performance computing applications,
web services, social networking, and telecommunications services.
Several criteria determine the quality of the provided service, the

∗ Corresponding author.
E-mail addresses:Mohand.Mezmaz@umons.ac.be,

mohand.mezmaz@gmail.com (M. Mezmaz), Nouredine.Melab@lifl.fr (N. Melab),
Yacine.Kessaci@lifl.fr (Y. Kessaci), yclee@it.usyd.edu.au (Y.C. Lee),
El-Ghazali.Talbi@lifl.fr (E.-G. Talbi), zomaya@it.usyd.edu.au (A.Y. Zomaya),
Daniel.Tuyttens@umons.ac.be (D. Tuyttens).

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.04.007
production cost of this service, and therefore the price paid by the
end-user. The duration of this service (makespan) and the con-
sumed energy are among of these criteria. The idea is to provide
end-users with a more flexible service that takes into account
the duration of the service and the consumed energy. End-users
could then find the right compromise between these two con-
flicting objectives to solve their precedence-constrained parallel
applications.

The problem of finding the right compromise between the
resolution time and the energy consumed of a precedence-
constrained parallel application is a bi-objective optimization
problem. The solution to this problem is a set of Pareto points.
Pareto solutions are those for which improvement in one objective
can only occur with the worsening of at least one other objective.
Thus, instead of a unique solution to the problem, the solution to
a bi-objective problem is a (possibly infinite) set of Pareto points.
To the best of our knowledge, there is no research published in the
literature to solve the above problem with a Pareto approach.

However,manyworks have focusedonprecedence-constrained
parallel applications (e.g., [7,31,25,19]). Most of these works pro-
pose algorithms to minimize the makespan. Only recently have
some works been interested in minimizing the energy consump-
tion (e.g., [13,2,29,30,10,23]).

http://dx.doi.org/10.1016/j.jpdc.2011.04.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:Mohand.Mezmaz@umons.ac.be
mailto:mohand.mezmaz@gmail.com
mailto:Nouredine.Melab@lifl.fr
mailto:Yacine.Kessaci@lifl.fr
mailto:yclee@it.usyd.edu.au
mailto:El-Ghazali.Talbi@lifl.fr
mailto:zomaya@it.usyd.edu.au
mailto:Daniel.Tuyttens@umons.ac.be
http://dx.doi.org/10.1016/j.jpdc.2011.04.007

1498 M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508
Using green IT techniques can significantly reduce an organi-
zation and ultimately a country’s carbon footprint. The UN bought
461 tons of carbon offsets to ensure that the September 2009 Sum-
mit on Climate Change in New York was carbon neutral. Accord-
ing to [3], if green IT techniques were implemented that reduced
the energy use of 10,000 computers in West Virginia by 50%, the
deployment would produce 33 times less carbon in one year than
that produced by the summit. A recent study on power consump-
tion by servers [16] shows that, in 2005, the power used by servers
represented about 0.6% of total US electricity consumption. That
number grows to 1.2% when cooling and auxiliary infrastructures
are included. In the same year, the aggregate electricity bill for op-
erating those servers and associated infrastructure was about $2.7
billion and $7.2 billion for the US and the world, respectively. The
total electricity use for servers doubled over the period 2000–2005
worldwide. The number of transistors integrated into today’s Intel
Itanium 2 processor reaches nearly 1 billion. If this rate continues,
the heat (per square centimeter) produced by future Intel proces-
sors would exceed that of the surface of the sun [15]. This implies
the possibility of worsening system reliability, eventually resulting
in poor system performance.

Due to the importance of energy consumption, various tech-
niques including dynamic voltage scaling (DVS), resource hiber-
nation, and memory optimizations have been investigated and
developed [26]. DVS among these has been proven to be a very
promising technique with its demonstrated capability for energy
savings (e.g., [2,29,10]). For this reason, we adopt this technique
and it is of particular interest to this study. DVS enables proces-
sors to dynamically adjust voltage supply levels (VSLs) aiming to
reduce power consumption. However, this reduction is achieved
at the expense of sacrificing clock frequencies.

In this paper, we investigate the energy issue in task schedul-
ing particularly on HCSs like cloud computing systems. We pro-
pose a new parallel bi-objective hybrid genetic algorithm that
takes into account, not only makespan, but also energy consump-
tion. Our new approach is a hybrid between a multi-objective
parallel genetic algorithmandenergy-conscious schedulingheuris-
tic (ECS) [20]. The results clearly demonstrate the superior per-
formance of ECS over the other algorithms like DBUS [1] and
HEFT [25]. Genetic algorithms make it possible to explore a great
range of potential solutions to a problem. The exploration capabil-
ity of the genetic algorithm and the intensification power of ECS
are complementary. A skillful combination of a metaheuristic with
concepts originating from other types of algorithms lead to more
efficient behavior.

Our algorithm is effective as it profits from the exploration
power of the genetic algorithm, the intensification capability
of ECS, the cooperative approach of the island model, and the
parallelism of the multi-start model. The island model and the
hybridization improve the quality of the obtained results. The
multi-start model reduces the running time of a resolution.
Furthermore, one of the major interests of our approach is to give
the end-user a set of Pareto solutions to choose according to the
desired quality of service, in particular the completion time, and
the cost of the service in terms of energy and consequently in terms
of price willing to pay. The proposed method can easily be applied
to loosely coupled HCSs (e.g., cloud computing systems) using
advance reservation and various sets of frequency–voltage pairs.

Our new approach is evaluated with the Fast Fourier Trans-
formation task graph which is a real-world application. Experi-
ments show that (1) the hybridization improves on average the
best known results obtained in the literature (by 47.5% for the en-
ergy consumption and 12% for the completion time), (2) the island
model significantly improves the results obtained using only the
hybridization, and (3) the multi-start model accelerates our ap-
proach with an average speedup of 13 using 21 cores.
Table 1
Voltage-relative speed pairs.

Pair 1 Pair 2 Pair 3
Level Voltage

(vk)
Relative
speed (%)

Voltage
(vk)

Relative
speed (%)

Voltage
(vk)

Relative
speed (%)

0 1.5 100 2.2 100 1.75 100
1 1.4 90 1.9 85 1.4 80
2 1.3 80 1.6 65 1.2 60
3 1.2 70 1.3 50 0.9 40
4 1.1 60 1.0 35
5 1.0 50
6 0.9 40

The remainder of the paper is organized as follows. Section 2
presents the application, system, energy and scheduling models
used in this paper. Section 3 describes the related work. Our
algorithm is presented in Section 4. The results of our comparative
experimental study are discussed in Section 5. The conclusion
is drawn in Section 6. The paper ends with an Appendix which
describes our approaches using pseudo-code.

2. Problemmodeling

In this section, we describe the system, application, energy and
scheduling models used in our study.

2.1. Cloud computing model

A cloud computing system is a set of resources designed to
be allocated ad hoc to run applications. In our model, the cloud
is assumed to be hosted in a data center which is composed by
heterogeneousmachines. This data center provides a set of services
hosted on thousands of high-end computing servers. The need in
terms of services of an application can bemodeled by a task graph.
In this graph, an edge between two tasks represents an inter-
service communication.

The cloud computing system used in this work consists of a set
P of p heterogeneous processors/machines. Each processor pj ∈ P
is DVS-enabled; in other words, it can operate with different VSLs
(i.e., different clock frequencies). For each processor pj ∈ P , a set
Vj of v VSLs is random and uniformly distributed among three dif-
ferent sets of VSLs (Table 1). Since clock frequency transition over-
heads take a negligible amount of time (e.g., 10–150 µs [11,22]),
these overheads are not considered in our study. The inter-
processor communications are assumed to perform with the same
speed on all links without contentions. It is also assumed that a
message can be transmitted from one processor to another while a
task is being executed on the recipient processor which is possible
in many systems.

2.2. Application model

Parallel programs can be generally represented by a directed
acyclic graph (DAG). A DAG, G = (N, E), consists of a set N of
n nodes and a set E of e edges. A DAG is also called a task graph
or macro-dataflow graph. In general, the nodes represent tasks
partitioned from an application; the edges represent precedence
constraints. An edge (i, j) ∈ E between task ni and task nj also
represents inter-task communication. A task with no predecessors
is called an entry task, nentry, whereas an exit task, nexit , is one that
does not have any successors. Among the predecessors of a task ni,
the predecessor which completes the communication at the latest
time is called the most influential parent (MIP) of the task denoted
as MIP(ni). The longest path of a task graph is the critical path.

The weight on a task ni denoted as wi represents the
computation cost of the task. In addition, the computation cost
of the task on a processor pj, is denoted as wi,j and its average
computation cost is denoted as w̄i.

M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508 1499
Fig. 1. A simple task graph.

The weight on an edge, denoted as ci,j represents the
communication cost between two tasks, ni and nj. However, a
communication cost is only required when two tasks are assigned
to different processors. In other words, the communication cost
when tasks are assigned to the same processor is zero and thus can
be ignored.

The earliest starting and finishing timeof a taskni on aprocessor
pj is defined as

EST (ni, pj) =

0 if ni = nentry
EFT (MIP(ni), pk)+ cMIP(ni),i otherwise

EFT (ni, pj) = EST (ni, pj)+ wi,j.

Note that the actual start and finish times of a task ni on a processor
pj, denoted as AST (ni, pj) and AFT (ni, pj) can be different from its
earliest start and finish times, EST (ni, pj) and EFT (ni, pj), if the
actual finish time of another task scheduled on the same processor
is later than EST (ni, pj).

In the case of adopting task insertion the task can be scheduled
in the idle time slot between two consecutive tasks already
assigned to the processor as long as no violation of precedence
constraints is made. This insertion scheme would contribute in
particular to increasing processor utilization for a communication
intensive task graph with fine-grain tasks.

A simple task graph is shown in Fig. 1 with its details in
Tables 2 and 3. The values presented in Table 3 are computed using
two frequently used task prioritization methods, t-level and b-
level. Note that, both computation and communication costs are
averaged over all nodes and links. The t-level of a task is defined
as the summation of the computation and communication costs
along the longest path of the node from the entry task in the task
graph. The task itself is excluded from the computation. In contrast,
the b-level of a task is computed by adding the computation and
communication costs along the longest path of the task from the
exit task in the task graph (including the task). The b-level is used
in this study.

The communication to computation ratio (CCR) is a measure
that indicates whether a task graph is communication intensive,
computation intensive or moderate. For a given task graph, it
is computed by the average communication cost divided by the
average computation cost on a target system.

2.3. Energy model

Our energy model is derived from the power consumption
model in complementary metal-oxide semiconductor (CMOS)
logic circuits. The power consumption of a CMOS-based micropro-
cessor is defined to be the summation of capacitive, short-circuit
and leakage power. The capacitive power (dynamic power dissipa-
tion) is the most significant factor of the power consumption. The
capacitive power (Pc) is defined as
Table 2
Computation cost with VSL 0.

Task p0 p1 p2

0 11 13 9
1 10 15 11
2 9 12 14
3 11 16 10
4 15 11 19
5 12 9 5
6 10 14 13
7 11 15 10

Table 3
Task priorities.

Task b-level t-
level

0 101.33 0.00
1 66.67 22.00
2 63.33 28.00
3 73.00 25.00
4 79.33 22.00
5 41.67 56.33
6 37.33 64.00
7 12.00 89.33

Pc = ACV 2f , (1)
where A is the number of switches per clock cycle, C is the total
capacitance load, V is the supply voltage, and f is the frequency.
Eq. (1) clearly indicates that the supply voltage is the dominant
factor; therefore, its reduction would be most influential to lower
power consumption. The energy consumption of the execution of
a precedence-constrained parallel application used in this study is
defined as

E =
n−

i=0

ACV 2
i f .w

∗

i =

n−
i=0

αV 2
i w∗i ,

where Vi is the supply voltage of the processor on which task ni is
executed, and w∗i is the computation cost of task ni (the amount of
time taken for ni’s execution) on the scheduled processor.

2.4. Scheduling model

The task scheduling problem in this study is the process of
allocating a set N of n tasks to a set P of p processors (without
violating precedence constraints) that minimizes makespan with
energy consumption as low as possible. Themakespan is defined as
M = max{AFT (nexit)} after the scheduling of n tasks in a task graph
G is completed. Although the minimization of makespan is crucial,
tasks of a DAG in our study are not associated with deadlines as in
real-time systems.

3. Related work

In this section, we present some noteworthy works in task
scheduling, particularly for HCSs, and then scheduling algorithms
with power/energy consciousness.

3.1. Scheduling in HCSs

Due to the NP-hard nature of the task scheduling problem
in general cases [9], heuristics, in particular meta-heuristics,
are the most popularly adopted scheduling approaches. List
scheduling heuristics are the dominant heuristic technique. This
is because empirically, list scheduling algorithms tend to produce
competitive solutions with lower time complexity compared to
algorithms in the other categories [17].

The HEFT algorithm [25] is highly competitive in that it
generates a schedule length comparable to other scheduling

1500 M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508
algorithms, with a low time complexity (O(n log n + (e + n)p)).
It is a list-scheduling heuristic consisting of the two typical phases
of list scheduling (i.e., task prioritization and processor selection)
with task insertion.

The DBUS algorithm [1] is a duplication-based scheduling
heuristic that first performs a critical path based listing for tasks
and schedules them with both task duplication and insertion.
The experimental results in [1] show its attractive performance,
especially for communication-intensive task graphs. The time
complexity of DBUS is in the order of O(n2p2).

3.2. Scheduling with energy consciousness

Most previous studies on scheduling with the consideration of
energy consumption are conducted on homogeneous computing
systems [13,29,30,10,23,4] or single-processor systems [28]. In
addition to systemhomogeneity, tasks are generally homogeneous
and independent. Slack management/reclamation is a frequently
adopted technique with DVS.

In [29], several different scheduling algorithms using the
concept of slack sharing among DVS-enabled processors were
proposed. The rationale behind the algorithms is to utilize
idle (slack) time slots of processors, lowering supply voltage
(frequency/speed). This technique is known as slack reclamation.
These slack time slots occur, due to earlier completion (than worst
case execution time) and/or dependencies of tasks. The work
in [29] has been extended in [30]with AND/ORmodel applications.
Since the target system for both works is shared-memory
multiprocessor systems, communication betweendependent tasks
is not considered unlike our approach.

In [10], two voltage scaling algorithms for periodic, sporadic,
aperiodic tasks on a dynamic priority single-processor system are
proposed. They are more practical compared with many existing
DVS algorithms in that a priori information on incoming tasks is not
assumed to be available until the tasks are actually released. This
assumption does not correspond to our task model as explained.

Rountree et al. [23] developed a system based on linear pro-
gramming that exploits slack using DVS (i.e., slack reclamation).
Their linear programming system aims to deliver near-optimal
schedules that tightly bound optimal solutions. It incorporates
allowable time delays, communication slack, and memory pres-
sure into its scheduling. The linear programming system mainly
deals with energy reduction for a given pre-generated schedule
with a makespan constraint as in most existing algorithms. In our
approach, the makespan is not a constraint but an objective to
optimize.

Another two scheduling algorithms for bag-of-tasks applica-
tions on clusters are proposed in [13]. Tasks in a bag-of-tasks appli-
cation are typically independent and homogeneous, yet run with
different input parameters/files. In [13], deadline constraints are
associated with tasks for the purpose of quality control. The two
algorithms differ in terms of whether processors in a given com-
puter cluster are time-shared or space-shared. Computer clusters
in this paper are composed of homogeneous DVS-enabled proces-
sors unlike our approach where processors are heterogeneous.

In [27], the authors propose a formulation of energy aware
scheduling algorithm and a detailed discussion of slack time
computation. This scheduling algorithm also concerns reducing
voltages during the communication phases between parallel jobs.
In [12], the authors study the energy-aware task allocation
problem for assigning a set of tasks onto the machines of a
computational grid each equipped with DVS feature. The goal
is to optimize the energy consumption and response time in
computational grids. Unlike our approach, [12] suppose that tasks
are independent and are not subject to precedence constraints.

To the best of our knowledge, none of the previous schedul-
ing approaches explicitly address the energy issue with a
multi-objective approachwhen tackling the problemof scheduling
precedence-constrained parallel applications on HCSs. Therefore,
the scheduling algorithmswith energy consciousness presented in
this section are the most closely related works to our study.

3.3. Energy-conscious scheduling heuristic

The consideration of energy consumption in task scheduling
adds another layer of complexity to an already intricate problem.
Unlike real-time systems, applications in our study are not
deadline-constrained. Therefore, the evaluation of the quality
of schedules should be measured explicitly considering both
makespan and energy consumption. For this reason, energy-
conscious scheduling heuristic (ECS) [20] is devised with relative
superiority (RS) as a novel objective function, which takes into
account these two performance criteria.

For a given ready task, its RS value on each processor is com-
puted using the current best combination of processor and VSL (p’
and v’ are, respectively, the selected processor and its voltage sup-
ply level) for that task, and then the processor – from which the
maximum RS value is obtained – is selected. Since each scheduling
decision that ECSmakes tends to be confined into a local optimum,
another energy reduction technique (MCER) is incorporated into
the energy reduction phase of ECS without sacrificing time com-
plexity. It is an effective technique in lowering energy consump-
tion, although the technique may not help schedules escape from
local optima. MCER is makespan conservative in that changes it
makes (to the schedule generated in the scheduling phase) are only
validated if they do not increase the makespan of the schedule. For
each task in a DAG, MCER considers all of the other combinations
of task, host and VSL to check whether any of these combinations
reduces the energy consumption of the taskwithout increasing the
current makespan.

The results clearly demonstrate the superior performance of
ECS over DBUS and HEFT. Note that, in many previous studies
[14,18], HEFT has been proven to perform very competitively, and
it has been frequently adopted and extended.

However, ECS returns one solution as a result, and the
precedence-constrained applications problem is bi-objective in
nature. Section 4 presents our new parallel bi-objective approach
based on hybridization between a genetic algorithm and ECS.
This approach provides a set of solutions to this problem. The
experiments presented in Section 5 show that our approach often
gives solutions which are better than those found by ECS.

4. A parallel hybrid approach

This section starts with a brief overview on multi-objective
combinatorial optimization and genetic algorithms. Then, our new
parallel bi-objective hybrid approach is presented.

4.1. Multi-objective combinatorial optimization

A multi-objective optimization problem (MOP) consists gen-
erally in optimizing a vector of nbobj objective functions F(x) =
(f1(x), . . . , fnbobj(x)), where x is an d-dimensional decision vec-
tor x = (x1, . . . , xd) from some universe called decision space.
The space the objective vector belongs to is called the objective
space. F can be defined as a cost function from the decision space
to the objective space that evaluates the quality of each solu-
tion (x1, . . . , xd) by assigning it an objective vector (y1, . . . , ynbobj),
called the fitness (Fig. 2).While single-objective optimization prob-
lems have a unique optimal solution, a MOP may have a set of so-
lutions known as the Pareto optimal set. The image of this set in
the objective space is denoted as the Pareto front. For minimiza-
tion problems, the Pareto concepts of MOPs are defined as follows
(for maximization problems the definitions are similar):

M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508 1501
Decision space Objective space

Y1

Y3

Y2

X1

X3

X2

X(X1,X2,....,Xn) Y(Y1,Y2,....,Ym)

F

Fig. 2. Illustration of a MOP.

Fig. 3. Example of non-dominated solutions.

• Pareto dominance: An objective vector y1 dominates another
objective vector y2 if no component of y2 is smaller than the
corresponding component of y1, and at least one component of
y2 is greater than its correspondent in y1 i.e.:
∀i ∈ [1..nbobj], y1i ≤ y2i
∃j ∈ [1..nbobj], y1j < y2j .

• Pareto optimality: A solution x of the decision space is Pareto
optimal if there is no solution x′ in the decision space for which
F(x′) dominates F(x).
• Pareto optimal set: For a MOP, the Pareto optimal set is the set

of Pareto optimal solutions.
• Pareto front: For a MOP, the Pareto front is the image of the

Pareto optimal set in the objective space.

Graphically, a solution x is Pareto optimal if there is no other
solution x′ such that the point F(x′) is in the dominance cone
of F(x). This dominance cone is the box defined by F(x), its
projections on the axes and the origin (Fig. 3).

4.2. Genetic Algorithms

Genetic Algorithms (GAs) are meta-heuristics based on the
iterative application of stochastic operators on a population of
candidate solutions. At each iteration, solutions are selected from
the population. The selected solutions are recombined in order
to generate new ones. The new solutions replace other solutions
selected either randomly or according to a selection strategy.

In the Pareto-orientedmulti-objective context [8], the structure
of the GA remains almost the same as in the mono-objective
context. However, some adaptations are required mainly for the
evaluation and selection operators.

The selection process is often based on twomajor mechanisms:
elitism and sharing. They allow respectively the convergence of
the evolution process to the best Pareto front and to maintain
some diversity of the potential solutions. The elitism mechanism
makes use of a second population called a Pareto archive that
stores the different non-dominated solutions generated through
the generations. Such an archive is updated at each generation and
used by the selection process. Indeed, the individuals on which the
variation operators are applied are selected either from the Pareto
Fig. 4. Our hybrid GA (GA and ECS).

archive, from the population or from both of them. The sharing
operator maintains the diversity on the basis of the similarity
degree of each individual compared to the others. The similarity
is often defined as the Euclidean distance in the objective space.

4.3. Hybrid approach

In our approach illustrated in Fig. 4, a solution (chromosome)
is composed of a sequence of N genes. The ith gene of a solution
s is denoted sj. Each gene is defined by a task, a processor and a
voltage. These three parts of sj are denoted respectively t(sj), p(sj)
and v(sj). Thismeans that the task t(sj) is assigned to the processor
p(sj) with the voltage v(sj).

The new approachwe propose is based on ECS [20] which is not
a population-based heuristic. ECS tries to construct in a greedyway
one solution using three components.

• The first component to build the task parts of each gene of the
solution.
• The second component to build the processor and voltage parts

of these genes.
• The third component to calculate the fitness of a solution in

terms of energy consumption and makespan.

Unlike ECS, our approach provides a set of Pareto solutions.
This approach is a hybrid between a multi-objective GA and
the second component of ECS. The role of the GA is to provide
good task scheduling. In other words, the GA builds task parts
t(s1), t(s2), . . . , t(sn) of a solution s. Therefore, the mutation and
crossover operators of the GA affect only the task part of the genes
of each solution.

The second component of ECS is called whenever a solution is
modified by these two operators. The first role of this component
is to correct the task order to take into account the precedence
constraints in the task graph. Then the component completes the
processor and voltage parts of the genes of the partial solutions
provided by these operators. In other words, ECS builds the
remaining parts p(s1), p(s2), . . . , p(sn) and v(s1), v(s2), . . . , v(sn)
of the partial solutions provided by the mutation and crossover
operators of the GA.

1502 M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508
Fig. 5. The mutation operator.

The evaluation (fitness) operator of the GA is called once the
task, processor and voltage parts of each gene of the solution
are known. The role of this operator is to calculate the energy
consumption and the makespan of each solution.

The mutation operator is based on the first component of ECS.
This first component returns all tasks scheduled according to their
b-level values. The principle of our mutation operator is also based
on the scheduling of tasks according to their b-level values. The b-
level concept is explained in Section 2. It should be noted that one
can choose the t-level values instead of those of b-level. First, the
operator chooses randomly two integers i and j such that 1 ≤ i <
j ≤ n and b-level(t(si)) < b-level(t(sj)). Then, the operator swaps
the two tasks t(si) and t(sj) (see Fig. 5).

As illustrated in Fig. 6, the crossover operator uses two solutions
s1 and s2 to generate two new solutions s′1 and s′2. To generate s′1,
the operator:
• considers s1 as the first parent and s2 as the second parent.
• randomly selects two integers i and j such that 1 ≤ i < j ≤ n.
• copies in s′1 all tasks of s1 located before i or after j. These tasks

are copied according to their positions (s′1k = s1k if k < i or
k > j).
• copies in a solution s all tasks of s2 that are not yet in s′1. Thus,

the new solution s contains (j− i+ 1) tasks. The first task is at
position 1 and the last task at the position (j− i+ 1).
• and finally, copies all the tasks of s to the positions of s′1 located

between i and j (s′1k = sk−i+1 for all i ≤ k ≤ j).
The solution s′2 is generatedwith the samemethod by considering
s2 as the first parent and s1 as the second parent.

The other elements of the GA in the new approach are
conventional. Indeed, our GA randomly generates the initial
population. Its selection operator is based on a tournament
strategy. The algorithm stops when no new best solution is found
after a fixed number of generations.

4.4. Insular approach

The island model [5] is inspired by behaviors observed in the
ecological niches. In this model, several evolutionary algorithms
are deployed to evolve simultaneously various populations of solu-
tions, often called islands. As shown in Fig. 7, the GAs of our hybrid
approach asynchronously exchange solutions. This exchange aims
at delaying the convergence of the evolutionary process and to ex-
ploremore zones in the solution space. For each island, amigration
operator intervenes at the end of each generation. Its role consists
of deciding the appropriateness of operating a migration, to select
the population sender of immigrants or the receiver of emigrants,
to choose the emigrating solutions, and to integrate the immigrant
ones.

4.5. Multi-start approach

Compared to the GA, ECS is more costly in CPU time. The differ-
ent evaluations of ECS are independent of each other. Therefore,
their parallel execution can make the approach faster. The objec-
tive of the hybrid approach is to improve the quality of solutions.
Fig. 6. The crossover operator.

Fig. 7. The cooperative island approach.

The island approach also aims to obtain solutions of better quality.
The goal of the parallel multi-start approach is to reduce the exe-
cution time. As shown in Fig. 8, our parallelization is based on the
deployment of the approach using the farmer-worker paradigm.
The GA processes are farmers and ECS processes are workers.

5. Experiments and results

This section presents the results obtained from our compar-
ative experimental study. The experiments aim to demonstrate
and evaluate the contribution of the hybridization, the insular ap-
proach and themulti-start approach respectively compared to ECS,
the hybrid approach and the insular approach.

5.1. Experimental settings

The performance of our approach was thoroughly evaluated
with the Fast Fourier Transformation [6] task graph which is a

M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508 1503
Fig. 8. Illustration of the multi-start approach.

Table 4
Experimental parameters.

Parameter Value

The number of tasks ∼ 20 ∼ 40 ∼ 60 ∼ 80 ∼ 120
The number of processors 02 04 08 16 32 64
Processor heterogeneity 100 200 random
CCR 0.1 0.2 1.0 5.0 10.0

Table 5
The parameters used by ParadisEO for each approach.

Parameters Hybrid Insular Multi-start

Population size 20 20 20
Number of generations 1000 100 100
Crossover rate 1 1 1
Mutation rate 0.35 0.35 0.35
Migration topology Ring
Migration rate Every 20 generations
Number of migrants 5

real-world application. A large number of variations were made
on this task graph for more comprehensive experiments. Various
different characteristics of processors were also applied. Table 4
summarizes the parameters used in our experiments.

The new approach is experimented on 9000 instances dis-
tributed equitably according to the number of tasks, the number
of processors, the processor heterogeneity and the CCR (1/5 of in-
stances have a number of tasks equal to∼20, 1/5 of instances have
a number of tasks equal to∼40, . . . , 1/6 of instances have a num-
ber of processors equal to 2, etc.). In other words, 20 instances are
used for each combination of parameters.

Our approach has been implemented using ParadisEO [21].
This software platform provides tools for the design of parallel
meta-heuristics for multi-objective optimization. [24] explains
how to implement a multi-objective genetic algorithm, an insular
approach, and a multi-start using ParadisEO. Table 5 shows the
parameters used by ParadisEO for the hybrid, insular and multi-
start approaches during our experiments.

Experiments have been performed on a grid of three clusters.
The first cluster contains 8 Opteron 244 nodes (dual-processor
clocked at 1.8 GHz, 2 GB of RAM). The second contains 10 Xeon
L5420 nodes (bi-quad-core processors clocked at 2.5 GHz, 16 GB of
RAM). The third cluster contains 106 cores AMD opteron 248, 40
cores AMD opteron 252, 104 cores AMD opteron 285, et 368 cores
Intel Xeon E5440 QC. A total of 714 cores are used. The first two
clusters are located at the University of Mons in Belgium, while the
third cluster is at the Université de Lille1 in France.

5.2. Hybrid approach

The hybrid approach is experimented on all instances of Table 4.
Each instance is solved twice. The first resolution is done with
ECS, and the second resolution with the new approach. These
experiments are launched by a script on one of the cores of our
grid according to their availability.
Fig. 9. An example of the obtained results with the hybrid approach and ECS for
the same instance.

Fig. 9 gives an example of a Pareto front obtained with the
hybrid approach and the solution obtained by ECS for the same
instance which is the tenth instance generated with the number
of tasks equal to∼20, number of processors equal to 02, processor
heterogeneity equal to 100, and CCR equal to 0.1. Experiments
show that ECS finds the solution of an instance after ∼1 s on
average, while our hybrid approach requires about ∼25 min on
average to find the Pareto solutions of an instance. As previously
mentioned, ECS is a heuristic that builds one and only one solution
using a greedy strategy, and our hybrid approach is based on
the hybridization between a GA and ECS. Therefore, the hybrid
approach handles a population of solutions that evolves over
several generations, and the second component of ECS is called and
used during the construction of each solution. So it was expected
that the hybrid approach uses more computing power than ECS.
Our goal is not to have an approach faster than ECS but an approach
that gives Pareto solutions which improve the solution of ECS. Our
approach is useful, for example, for large scientific applications
requiring high computing power, and for small applications which
are executed many times.

Table 6 compares the Pareto solutions of the hybrid approach
with the solution of ECS. The comparison is made according to
the number of tasks, the number of processors, the processor
heterogeneity and the CCR. The third column shows the average
number of obtained Pareto solutions. The last column gives the
percentage of Pareto solutions that improves the ECS solution on
the two objectives simultaneously. As indicated in the last line of
the table, the hybrid approachprovided19.77 solutions on average,
and 83.04% of the Pareto solutions found by this hybrid approach
improve the ECS solution on the two objectives simultaneously. In
addition, Table 6 shows that the more tasks there are, the more
Pareto solutions are found, and the more the percentage of Pareto
solutions dominating the ECS solution increases.

To determine the contribution of the new approach, in terms
of the values of makespan and energy consumption, we compare
the solution provided by ECS to only one solution of the Pareto
set provided by the new approach. The solution chosen in the
Pareto set is used only to compare the new approach with ECS.
Nevertheless the decision maker, using the new approach, will
have a set of Pareto solutions instead of one solution.

For each instance,

• a first resolution is done using ECS to provide one solution s.
• a second resolution is done using the new approach to obtain a

set E of Pareto solutions.

1504 M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508
Table 6
Comparison of Pareto hybrid approach solutions and ECS solution.

Average number
of Pareto solutions

Pareto solutions
dominating ECS
solution (%)

Number of
tasks

∼20 14.78 78.24
∼40 19.57 80.70
∼60 21.36 83.62
∼80 21.45 83.12
∼120 21.67 89.51

Number of
processors

02 18.51 73.21
04 19.42 71.01
08 22.17 75.83
16 23.32 86.12
32 19.98 94.73
64 15.18 97.36

Heterogeneity
100 20.12 80.82
200 21.67 74.47
random 17.52 93.83

CCR

0.1 19.60 88.44
0.2 19.47 88.83
1.0 17.53 89.09
5.0 19.26 78.80

Average 19.77 83.04

Fig. 10. Improvement according to the number of tasks.

• only one Pareto solution s′ is selected from the set E. This
solution is the closest to s in the sense of Euclidean distance.
• finally, a comparison will be done between the solutions s

and s′.

Figs. 10–12 and Table 7 allow to compare in a detailed way
the two approaches. They respectively show the improvement
brought by the new approach according to the number of tasks, the
number of processors, the CCR, and the processor heterogeneity.
Experiments show that our approach improves on average the
results obtained by ECS. Indeed, as shown in Table 7, the energy
consumption is reduced by 47.49% and the makespan reduced
by of 12.05%. In addition, Fig. 11 shows clearly that the more
processors there are, the more the new approach improves the
results of ECS.

5.3. Insular approach

The objective of the following experiments is to show that our
island approach improves the quality of the solutions provided by
the hybrid approach. This insular approach is useful when solving
large instances. Therefore, the experiments, presented in this
Fig. 11. Improvement according to the number of processors.

Table 7
Improvement according to the processor heterogeneity.

Processor heterogeneity Energy (%) Makespan (%)

100 44.74 9.10
200 43.49 7.07
Random 54.26 19.99
Average 47.49 12.05

Fig. 12. Improvement according to the CCR.

section, focus only on the large instances of Table 4. The instances
used are those with the number of tasks is 120, the number of
processors is 64, the value of CCR is 10, and the heterogeneity of
processors is 200 (20 instances). Each instance is solved using 1, 5,
10, 30 or 50 islands. An insular approachwith 1 island is equivalent
to the hybrid approach.

Fig. 13 illustrates the S-metric average values obtained with
different numbers of islands. These values are normalized with the
average value obtained by the experiments using 1 island. The S-
metric measures the hyper-volume defined by a reference point
and a Pareto front. It allows to evaluate the quality of a Pareto front
provided by an algorithm.

Experiments show that whatever the number of used islands
the insular approach improves the Pareto front obtained with the
hybrid approach. As shown in Fig. 13, the use of 50 islands, instead
of 1 island (i.e. the hybrid approach), improves the S-metric of the
obtained Pareto front by 26%. In Fig. 13, the more islands used, the
better the results will be.

M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508 1505
Fig. 13. S-metric value according to the number of islands.

Table 8
Speedup according to the processor heterogeneity.

Processor heterogeneity Speedup

100 13.74
200 12.73
random 12.73
Average speedup 13.06

Fig. 14. Speedup according to the CCR.

5.4. Multi-start approach

This section presents the experiments done to assess the quality
of our multi-start approach. The parameters of the instances used
in our experiments are: the CCR is 0.1, 0.5, 1.0, 5.0 or 10.0,
the number of processors is 8, 32, or 64, and the heterogeneity
of processors is 100, 200 or random. The population of the GA
contains 20 chromosomes. Therefore, 21 computing cores are used
to solve each instance (20 cores to run the ECSs and 1 core to run
the GA). In our case, an experiment can not have a speedup greater
than 21.

Table 8, Figs. 14 and 15 show respectively the evolution of the
speedup according to the processor heterogeneity, the CCR, and the
number of processors. The average speedup obtained is 13.06.

As shown in Fig. 15, the speedup increases proportionally to
the number of processors on which the precedence-constrained
parallel application is run. Table 8 and Fig. 15 that show the CCR
and the heterogeneity of processors do not impact significantly on
the quality of the acceleration of our approach.
Fig. 15. Speedup according to the number of processors.

6. Conclusions

In this paper, we have investigated the precedence-constrained
parallel applications particularly on high-performance comput-
ing systems like cloud computing infrastructures. Precedence-
constrained parallel applications are designedmostlywith the sole
goal of minimizing completion time without paying much atten-
tion to energy consumption.

We presented a new parallel bi-objective hybrid genetic
algorithm to solve this problem. The algorithm minimizes energy
consumption and makespan. The energy saving of our approach
exploits the dynamic voltage scaling (DVS) technique — a recent
advance in processor design.

Our new approach has been evaluated with the Fast Fourier
Transformation task graph which is a real-world application. Ex-
periments show that our bi-objective meta-heuristic improves on
average the results obtained in the literature (see [25,1,9]) par-
ticularly in energy saving. Indeed, the energy consumption is re-
duced by 47.5% and the completion time by 12%. The experiments
of the insular approach also show that the more islands used, the
better the results will be. The use of 50 islands, instead of 1 is-
land (i.e. the hybrid approach), improves the S-metric of the ob-
tained Pareto front by 26%. Furthermore, the multi-start approach
is on average 13 times faster than the island approach using 21
cores.

However, we observed that the hybrid approach consumes
more resources than ECS, and the insular approach consumes
more resources than the hybrid approach. In the insular approach,
experiments show that the more islands used, the more the
resources are needed. A resource can be a processor, a network
bandwidth, etc. The energy consumed by an approach increases
when the used resources increase. We think that the multi-start
approach does not increase significantly the energy consumed by
the insular approach.

Therefore, one of the main perspectives of the work presented
in this paper is to determine the solving approach to choose among
ECS, the hybrid approach, and the insular approach, according
to the precedence-constrained parallel application at hand. If the
insular approach is chosen, themajor issue is to determine the best
number of islands to be used. This future work aims to minimize
the total amount of consumed energy by the chosen solving
approach and by the precedence-constrained parallel application
to be solved. It is clear, for example, that the insular approach
is interesting for the large and resource consuming precedence-
constrained parallel applications and the applications intended to
be executed several times.

1506 M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508
Acknowledgments

Professor Albert Zomaya’s work is support by an Australian
Research Grant DP1097110. Experiments presented in this paper
were carried out using the Grid’5000 experimental testbed, being
developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several universities as well as
other funding bodies (see https://www.grid5000.fr). Clusters of the
University of Mons were also used. We would like to thank the
technical staffs of the Grid’5000 and the clusters of the University
of Mons for making their clusters accessible and fully operational.

Appendix

Algorithm 1 The main parameters of our approaches
1: INSULAR←TRUE
2: MULTISTART←TRUE
3:
4: GENERATION_MAXIMUM←200
5: POPULATION_SIZE←20
6: CROSSOVER_RATE←1
7: MUTATION_RATE←0.35
8: N←size(solution)
9:

10: MIGRATION_TOPOLOGY←RING
11: MIGRATION_RATE←20
12: MIGRANTS_SIZE←5

Algorithm 2 The main algorithm of our approaches
hybrid_insular_multistart_approches()
1: initialize(population,POPULATION_SIZE)
2: evaluate(population)
3: GENERATION←1
4: while GENERATION≤ GENERATION_MAXIMUM do
5: parents←select(population)
6: children←crossover(parents)
7: mutation(children)
8: evaluate(children)
9: replace(population,children)

10: update(archive,children)
11: migrate(population,GENERATION)
12: GENERATION←GENERATION+1
13: end while

Algorithm 3 Fitness operator
evaluate(population)
1: if MULTISTART then
2: evaluate_parallel(population)
3: else
4: evaluate_sequential(population)
5: end if
evaluate_parallel(population)
1: for all solution ∈ population do
2: launch_parallel(ECS_component2,solution)
3: end for
4: for all solution ∈ population do
5: cost(solution)←read_cost(solution)
6: end for
evaluate_sequential(population)
1: for all solution ∈ population do
2: cost(solution)←ECS_component2(solution)
3: end for
Algorithm 4 Mutation operator
mutation(children)
1: for all solution ∈ children do
2: if random([0, 1])≤MUTATION_RATE then
3: mutation(solution)
4: end if
5: end for
mutation(solution)
1: (i, j)= random(1≤i<j≤N ∧ check_level(solution, i, j))
2: swap(task(solutioni),task(solutionj))
check_level(solution,i,j)
1: return b-level(task(solutioni))<b-level(task(solutionj))

Algorithm 5 Crossover operator
crossover(parents)
1: children← ∅
2: for all i ∈ (1 . . .POPULATION_SIZE) do
3: if random([0, 1])≤ CROSSOVER_RATE then
4: (parent1, parent2)←select(parents)
5: (child1, child2)←crossover2(parent1, parent2)
6: add(children, child1)
7: add(children, child2)
8: end if
9: end for

10: return children
crossover2(parent1, parent2)
1: child1←crossover1(parent1, parent2)
2: child2←crossover1(parent2, parent1)
3: return (child1, child2)
crossover1(parent1, parent2)
1: (i, j)= random(1≤i<j≤N)
2: for all k ∈ (1, . . ., i−1, j+1, . . ., N) do
3: task(childk)←task(parent1k)
4: end for
5: m←0
6: for all [k ∈ (1, . . ., N)] ∧ [task(parent2k) /∈ tasks(child)] do
7: task(solution_bufferm)←task(parent2k)
8: m←m+1
9: end for

10: for all k ∈ (i, . . ., j) do
11: task(childk)←task(solution_bufferk−i+1)
12: end for
13: return child

Algorithm 6 Migration operator
migrate(population, GENERATION)
1: if NOT INSULAR then
2: stop
3: end if
4: if GENERATION mod(MIGRATION_RATE)≠0 then
5: stop
6: end if
7: migrants←select(population, MIGRANTS_SIZE)
8: DESTINATION←destination(topology)
9: send(DESTINATION, migrants)

10: SOURCE←source(topology)
11: migrants←receive(SOURCE)
12: insert(population, migrants)

https://www.grid5000.fr

M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508 1507
References

[1] D. Bozdag, U. Catalyurek, F. Ozguner, A task duplication based bottom-up
scheduling algorithm for heterogeneous environments, in: Proceedings of IEEE
International Parallel and Distributed Processing Symposium, IPDPS, 2006,
pp. 1–12.

[2] D.P. Bunde, Power-aware scheduling for makespan and flow, Journal of
Scheduling 12 (5) (2009) 489–500.

[3] K.W. Cameron, Trading in green it, Computer 43 (3) (2010) 83–85.
[4] J.J. Chen, T.W. Kuo, Multiprocessor energy-efficient scheduling for real-time

tasks with different power characteristics, June 2005, pp. 13–20.
[5] J.P. Cohoon, S.U. Hegde, W.N. Martin, D. Richards, Punctuated equilibria:

a parallel genetic algorithm, 1987.
[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,

The MIT Press, 2001.
[7] S. Darbha, D.P. Agrawal, Optimal scheduling algorithm for distributed-

memory machines, IEEE Transactions on Parallel and Distributed Systems 9
(1) (2002) 87–95.

[8] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, Wiley,
2001.

[9] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, WH Freeman and Company, 1979.

[10] R. Ge, X. Feng, K.W. Cameron, Performance-constrained distributed dvs
scheduling for scientific applications onpower-aware clusters, in: Proceedings
of the ACM/IEEE Conference on Supercomputing, November 2005, pp. 34–44.

[11] Intel. Intel pentium m processor datasheet, 2004.
[12] S.U. Khan, I. Ahmad, A cooperative game theoretical technique for joint

optimization of energy consumption and response time in computational
grids, IEEE Transactions on Parallel and Distributed Systems 20 (3) (2009)
346–360.

[13] K.H. Kim, R. Buyya, J. Kim, Power aware scheduling of bag-of-tasks applications
with deadline constraints on DVS-enabled clusters, in: Proceedings of the 7th
IEEE International Symposium on Cluster Computing and the Grid, May 2007,
pp. 541–548.

[14] S.C. Kim, S. Lee, J. Hahm, Push–pull: deterministic search-based dag
scheduling for heterogeneous cluster systems, IEEE Transactions on Parallel
and Distributed Systems 18 (11) (2007) 1489–1502.

[15] G. Koch, Discovering multi-core: extending the benefits of Moore’s law,
Technology Intel Magazine (July) (2005) 1.

[16] J.G. Koomey, Estimating total power consumption by servers in the US and the
world, 2007.

[17] Y.K. Kwok, I. Ahmad, Benchmarking the task graph scheduling algorithms,
in: Proceedings of the IEEE 1st Merged International Parallel Sympo-
sium/Symposium on Parallel and Distributed Processing, IPPS/SPDP, 1998,
pp. 531–537.

[18] Y.C. Lee, A.Y. Zomaya, A productive duplication-based scheduling algorithm
for heterogeneous computing systems, in: Proceedings of International
Conference on High Performance Computing and Communications, HPCC,
2005, pp. 203–212.

[19] Y.C. Lee, A.Y. Zomaya, A novel state transitionmethod formetaheuristic-based
scheduling in heterogeneous computing systems, IEEE Transactions onParallel
and Distributed Systems 19 (9) (2008) 1215–1223.

[20] Y.C. Lee, A.Y. Zomaya, Minimizing energy consumption for precedence-
constrained applications using dynamic voltage scaling, in: Proceedings of the
9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
CCGRID’09, 2009, pp. 92–99.

[21] A. Liefooghe, L. Jourdan, E.-G. Talbi, A software framework based on a
conceptual unified approach for evolutionary multiobjective optimization:
ParadisEO-MOEO, European Journal of Operational Research (EJOR) 209 (2)
(2011) 104–112.

[22] R. Min, T. Furrer, A. Chandrakasan, Dynamic voltage scaling techniques for
distributed microsensor networks, in: Proceedings of IEEE Workshop on VLSI,
April 2000, pp. 43–46.

[23] B. Rountree, D.K. Lowenthal, S. Funk, V.W. Freeh, B.R. de Supinski, M. Schulz,
Bounding energy consumption in large-scale MPI programs, in: Proceedings
of the ACM/IEEE Conference on Supercomputing, November 2007, pp. 1–9.

[24] E.G. Talbi, Metaheuristics: From Design to Implementation, Wiley, 2009.
[25] H. Topcuoglu, S. Hariri, Min-You Wu, Performance-effective and low-

complexity task scheduling for heterogeneous computing, IEEE Transactions
on Parallel and Distributed Systems 13 (3) (2002) 260–274.

[26] V. Venkatachalam, M. Franz, Power reduction techniques for microprocessor
systems, ACM Computing Surveys (CSUR) 37 (3) (2005) 195–237.

[27] L. Wang, G. von Laszewski, J. Dayal, F. Wang, Towards energy aware
scheduling for precedence constrained parallel tasks in a cluster with DVFS,
in: Proceedings of The 10th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGRID’10, May 2010, pp. 368–377.

[28] X. Zhong, C.Z. Xu, Energy-awaremodeling and scheduling for dynamic voltage
scaling with statistical real-time guarantee, IEEE Transactions on Computers
56 (3) (2007) 358–372.

[29] D. Zhu, R. Melhem, B.R. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems, IEEE
Transactions on Parallel and Distributed Systems 14 (7) (2003) 686–700.

[30] D. Zhu, D. Mosse, R. Melhem, Power-aware scheduling for and/or graphs in
real-time systems, IEEE Transactions on Parallel and Distributed Systems 15
(9) (2004) 849–864.
[31] A.Y. Zomaya, C. Ward, B. Macey, Genetic scheduling for parallel processor
systems: comparative studies and performance issues, IEEE Transactions on
Parallel and Distributed Systems 10 (8) (1999) 795–812.

M. Mezmaz received the Master’s degree (2002), and
a Ph.D. in Computer Science (2007) both from the
Laboratoire d’Informatique Fondamentale de Lille (LIFL,
Université de Lille1). He is currently a researcher in
the Mathematics and Operational Research Department
(MathRO) of the University of Mons. His research interests
are in the fields of grid/cloud computing and combinatorial
optimization. He is the author of one book and the co-
author of 3 book chapters, 5 journal papers, and about 20
other papers in different conferences and workshops.

N. Melab received the Master’s, Ph.D. and HDR degrees
in Computer Science from the Laboratoire d’Informatique
Fondamentale de Lille (LIFL, Université Lille 1). He is a
Full Professor at Université Lille 1 and a member of the
DOLPHIN research group at LIFL and INRIA Lille - Nord
Europe. He is the head of the Grid5000 French Nation-
Wide grid project and the EGI grid at Lille. His major
research interests include parallel, GPU and grid/cloud
computing, combinatorial optimization algorithms and
software frameworks. Professor Melab has more than 80
international publications including journal papers, book

chapters and conference proceedings.

Y. Kessaci received the Master’s degree in Computer Sci-
ence from the Laboratoire d’Informatique Fondamentale
de Lille (LIFL, Université de Lille1). Currently he is a Ph.D.
student within the DOLPHIN project team of INRIA Lille
Nord Europe.Hismajor research interests include schedul-
ing, combinatorial optimization algorithms and applica-
tions, green computing and cloud computing.

Y.C. Lee received the B.Sc. (hons) in Computer Science in
2003 and the Ph.D. degree from the School of Informa-
tion Technologies at the University of Sydney in 2008. He
is currently with the Centre for Distributed and High Per-
formance Computing, School of Information Technologies.
His current research interests include scheduling and re-
source allocation for distributed computing systems in-
cluding clouds, nature-inspired techniques, and parallel
and distributed algorithms. He is amember of the IEEE and
the IEEE Computer Society.

E.-G. Talbi received the Master and Ph.D. degrees in
Computer Science, both from the Institut National Poly-
technique de Grenoble in France. Then he became an As-
sociate Professor in Computer Sciences at the University
of Lille (France). Since 2001, he has been a full Professor
at the University of Lille and the head of the optimization
group of the Computer Science laboratory (LIFL). His cur-
rent research interests are in the field of multi-objective
optimization, parallel algorithms, metaheuristics, combi-
natorial optimization, cluster and grid computing, hybrid
and cooperative optimization, and applications to logis-

tics/transportation, bioinformatics and networking. Professor Talbi has to his credit
more than 100 publications in journals, chapters in books, and conferences. He is
the co-editor of three books. He was a guest editor of more than 10 special issues
in different journals (Journal of Heuristics, Journal of Parallel and Distributed Com-
puting, European Journal of Operational Research, Theoretical Computer Science,
Journal of Global Optimization). He is the head of the INRIA Dolphin project and the
bioinformatics platformof theGenopole of Lille. Hehasmany collaborative national,
European and international projects. He is the co-founder and the coordinator of
the research group dedicated to Metaheuristics: Theory and Applications (META).
He is the founding co-chair of the NIDISC workshop on nature inspired comput-
ing (IEEE/ACM IPDPS). He served in different capacities on the programs of more
than 100 national and international conferences. He has also organized many con-
ferences (e.g. EA’2005, ROADEF’2006, META’2008, IEEE AICCSA’2010).

1508 M. Mezmaz et al. / J. Parallel Distrib. Comput. 71 (2011) 1497–1508
A.Y. Zomaya is currently the Chair Professor of High
Performance Computing & Networking and Australian
Research Council Professorial Fellow in the School of Infor-
mation Technologies, the University of Sydney. He is also
the Director of the Centre for Distributed and High Per-
formance Computing which was established in late 2009.
Professor Zomaya is the author/co-author of seven books,
more than 380 papers, and the editor of 9 books and 11
conference proceedings. He is the Editor in Chief of the
IEEE Transactions on Computers and serves as an associate
editor for 19 leading journals. Professor Zomaya is the re-

cipient of theMeritorious Service Award (in 2000) and the Golden Core Recognition
(in 2006), both from the IEEE Computer Society. He is a Chartered Engineer (CEng), a
Fellow of the AAAS, the IEEE, the IET (UK), and a Distinguished Engineer of the ACM.
D. Tuyttens received the Ph.D. degree in Mathematics
from the University of Namur (1991). He is currently a
Full Professor in the Polytechnic Faculty of the University
of Mons. Professor Tuyttens is author/co-author of about
30 papers. His current research interests include combi-
natorial optimization, exact methods, metaheuristics and
multi-objective optimization.

	A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems
	Introduction
	Problem modeling
	Cloud computing model
	Application model
	Energy model
	Scheduling model

	Related work
	Scheduling in HCSs
	Scheduling with energy consciousness
	Energy-conscious scheduling heuristic

	A parallel hybrid approach
	Multi-objective combinatorial optimization
	Genetic Algorithms
	Hybrid approach
	Insular approach
	Multi-start approach

	Experiments and results
	Experimental settings
	Hybrid approach
	Insular approach
	Multi-start approach

	Conclusions
	Acknowledgments
	Appendix
	References

