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Due to the volatile nature of wind and photovoltaic power, wind farms and solar stations are generally
thought of as the consumers of ramping services. However, a microgrid (MG) is able to strategically inte-
grate various distributed energy resources (DERs) to provide both energy and ancillary services (ASs) for
the bulk power system. To evaluate the ramping capabilities of an MG in the joint energy and AS markets,
an optimal bidding strategy is developed in this paper considering flexible ramping products (FRPs). By
aggregating and coordinating various DERs, including wind turbines (WTs), photovoltaic systems (PVs),
micro-turbines (MTs) and energy storage systems (ESSs), the MG is able to optimally allocate the capac-
ities for energy, spinning reserve and ramping. Taking advantage of the synergy among DERs, the MG can
maximize its revenues from different markets. Moreover, the flexibility of the MG for the bulk power sys-
tem can be fully explored. To address the uncertainties introduced by renewable generation and market
prices, a hybrid stochastic/robust optimization (RO) approach is adopted. Case studies based on a real-
world MG with various DERs demonstrate the market behavior of the MG using the proposed bidding
model.
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contributes to a more sustainable future, the variabilities and
uncertainties of the renewable sources pose great challenges to
the economic and reliable operations of the power system [2].
With the increasing penetration of renewable energy, rapid ramp-

1. Introduction

1.1. Motivation

The development of renewable energy has been drawing atten-
tion across the world in the past decade. California, for example,
announced its ambitious goal of achieving a 50% renewable
portfolio standard by 2030 [1]. While the use of renewable energy
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ing of generation resources may be insufficient to smooth out the
huge fluctuations in renewable energy production. Thus, it is crit-
ical to facilitate the accommodation of renewable generation while
economically and reliably operating the power system.

The concept of the microgrid (MG) assumes a cluster of loads
and distributed energy resources (DERs) operating as a single con-
trollable system [3]. Taking advantage of the synergy among vari-
ous DERs, the renewable generators can cooperate with
controllable energy resources to provide both energy and ancillary
services (ASs) for the bulk power system [4]. For example, in a
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Nomenclature

Indices and sets

t time index

S price scenario index

of set of decision variables

oY set of random variables

E superscript for energy

RES superscript for spinning reserve service
RAMPU  superscript for upward FRP service
RAMPD  superscript for downward FRP service
WT superscript for wind turbines

PV superscript for photovoltaic systems
MT superscript for micro-turbines

ESS superscript for energy storage systems

Parameters and constants

pwr point forecast of historical wind power (Unit: MW) in

A the MG at time slot ¢

ptv point forecast of historical solar power (Unit: MW) in
the MG at time slot ¢

r }’VT robustness parameter of wind power

v robustness parameter of solar power

P total wind power capacity (Unit: MW) in the MG

i total solar power capacity (Unit: MW) in the MG
NMT number of MTs in the MG

NESS number of ESSs in the MG

Vs weight of price scenario s

N° number of price scenarios

Agg day-ahead market price (Unit: $/MW h) at time slot ¢ in
scenario s

h time interval

B expectation of real-time deployment ratio of ancillary
services

cMr operation cost per unit energy production (Unit: $/
MW h) of MT i

T
imax

maximal power (Unit: MW) of MT i

ng\wu Maximal ramping-up capacity (Unit: MW/h) of MT i
PpMT.RAMPD
1,max

maximal ramping-down capacity (Unit: MW/h) of MT i

P& . maximal charging power (Unit: MW) of ESS i
Pfffmax maximal discharging power (Unit: MW) of ESS i

nEss charging efficiency of ESS i
ney discharging efficiency of ESS i

SOCES, minimal state of charge of ESS i
SOCff,fax maximal state of charge of ESS i

cEss capacity (Unit: MW h) of ESS i

EES initial stored energy (Unit: MW h) of ESS i in scenario s

PP load demand (Unit: MW) of the MG at time slot ¢

Variable

piwT random variable of available wind power (Unit: MW) at
time slot ¢

PV random variable of available solar power (Unit: MW) at
time slot ¢

e normalized error between actual and point forecast
wind power

ev normalized error between actual and point forecast so-
lar power

Rg') revenue (Unit: $) in scenario s from the day-ahead mar-
kets

cor operation costs (Unit: $) of the MG

P! bidding capacity (Unit: MW) of the MG or DER for en-
ergy or ASs at time slot t

of3s binary variable of ESS i at time slot t representing the

' status of charging

ﬁffs binary variable of ESS i at time slot t representing the
status of discharging

EFSS stored energy (Unit: MW h) of ESS i at time slot ¢

stand-alone mode, a wind farm must deviate from its maximum
power output status and leave a margin to provide ramping ser-
vices for the system. However, in an MG, the wind farm is able
to leave the ramping margin by charging a Na/S battery without
deviating from its maximum power. Hence, an MG can stably pro-
vide both energy and ASs by integrating various DERs [5]. From the
system point of view, MGs show the advantages of low investment
costs, low pollutant emission and high operational flexibility. The
flexibility of the MGs provided by the DERs can be aggregated for
power system operations, thereby replacing high-cost centralized
units and deferring the generation expansion. In addition, the
MGs are located at the demand side, efficiently offering capacities
to meet the local requirements [6]. Compared with centralized
thermal units, MGs can achieve localized energy balance without
the loss accompanied with long-distance power transmission and
difficulties caused by transmission congestions. Therefore, the con-
cept of the MG provides new insights for exploring the grid-
friendly manner of DERs [7].

In most electricity markets across the world, ASs play a critical
role in the reliable operation of power systems. In California, for
example, the reserve and regulation services are co-optimized with
the energy in the day-ahead market. With the increasing penetra-
tion of solar energy, the variability and uncertainties in net load
demands will become more severe in the real-time operation. As
illustrated in Fig. 1, the steep rise of the system net loads from
17:00 to 18:00 as the sun sets requires over 5500 MW of

generating capacity to come online, which poses great challenges
to the secure operation of the power system.

To cope with the inadequacy of the system’s ramping capacities,
the flexible ramping product (FRP) has been introduced into the
California market recently to improve the dispatch flexibility and
address the operational challenges [8,9]. FRPs are flexible genera-
tion capacities dispatched by the independent system operator
(ISO) to deal with energy imbalances and satisfy the load following
requirements in the real-time operation. The energy imbalances
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Fig. 1. Hourly renewable energy and electric load demands on March 1, 2017 in
California.
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can arise due to load and supply variability. The FRPs consist of
separate products in the upward and downward directions as the
energy imbalances may be positive or negative [8]. Currently,
fast-ramp generators are generally dispatched to provide FRPs.

With the integration of rapid ramping resources, e.g., micro-
turbines (MTs) and energy storage systems (ESSs), the MGs are
promising energy resources to provide fast ramping capacities for
the power system. In existing studies, the bidding strategies of
an MG with various DERs participating in the energy and reserve
markets have been investigated [10-12]. These studies examined
the abilities of an MG to provide energy and spinning reserve.
However, few studies have focused on an MG's participation in dif-
ferent types of ASs, especially the FRPs. Therefore, it is imperative
to evaluate the ramping capabilities of MGs in the market environ-
ment. This paper is the pioneering work on the optimal bidding
strategy for MGs participating in joint energy, spinning reserve
and FRP markets.

1.2. Literature review and contribution

The optimal bidding strategies for MGs in the energy market
have been widely investigated in the last decade. In [10], an opti-
mal day-ahead price-based power scheduling problem is studied
for a community-scale MG. The model aims at maximizing the
expected benefits of the MG in the energy market while satisfying
users’ thermal comfort requirements. In [13], the day-ahead bid-
ding strategy of a commercial virtual power plant (VPP) is
addressed considering various DERs. To address the uncertainties
in load consumptions and real-time prices, a three-stage stochastic
optimization model is formulated for optimal energy scheduling. In
[14], the optimal bidding strategy in the day-ahead energy market
of an MG is proposed. The MG coordinates the energy consumption
and production of its components and trades electricity in day-
ahead and real-time markets. A hybrid stochastic/robust optimiza-
tion method is adopted to address the uncertainties in renewable
energy outputs and future prices. In [15], the concept of MG aggre-
gators is introduced to involve small-scale MGs in the real-time
balancing market bidding via a hierarchical market framework.
At the upper level, the bidding strategy of the aggregator is opti-
mized while the market is cleared at the lower level. In [16], the
bidding problems of VPPs are investigated considering renewable
distributed generators and inelastic demands. A stochastic bi-
level optimization model is formulated to minimize the cost of
the VPP in day-ahead and balancing markets.

An MG, as a controllable system, is able to provide both energy
and ASs for the power system by strategically coordinating various
DERs [17]. There have been extensive studies focused on the bid-
ding strategies for MGs in joint energy and reserve markets [18].
In [19], an arbitrage strategy for VPPs by participating in energy,
spinning reserve and reactive power markets is presented. The
security-constrained unit commitment (SCUC) model is estab-
lished to maximize VPP’s profits. In [20], the bidding problem by
a VPP in a joint market of energy and spinning reserve service is
addressed. The proposed bidding strategy is a non-equilibrium
model based on the deterministic price-based unit commitment.
In [21], a risk-averse optimal offering model for a VPP is proposed
in the joint energy and reserve markets. Uncertainties in renewable
generation and prices from day-ahead and balancing markets are
considered. Reference [21] assesses how total and surplus profits
of a VPP are affected by risk-aversion. In [12], a multi-objective
joint energy and reserve market clearing model is presented in
which the payment cost minimization and voltage stability maxi-
mization are considered. In [22], a bidding behavior modeling
and an auction architecture of the MG are proposed. The bidding
behavioral states of the MG are formalized as Markov processes.
In [23], an optimal bidding model of a residential MG is formulated

for day-ahead markets, considering the uncertainties in renewable
power production. The renewable uncertainties are modeled based
on an Analog Ensemble method, which can estimate the probabil-
ity of solar power by sampling. In [24], a day-ahead optimal energy
management strategy of industrial MGs is presented with high-
penetration renewables. Besides satisfying its local demands, the
MG participates in energy trading with the power system.

To the best of our knowledge, few existing studies have focused
on the combination of different types of ASs, especially the ramp-
ing services of an MG. By means of the synergy among various
DERs, MGs can be thought of as promising energy resources to cope
with the inadequacy of the system’s ramping capacities. Therefore,
it is imperative to investigate the ramping capabilities of MGs in
the market environment. In this paper, an optimal bidding model
is established to evaluate the ramping capabilities of an MG in
the joint energy and AS markets. By coordinating various DERs,
including WTs, PVs, MTs and ESSs, an MG is able to maximize its
revenues from the day-ahead markets. A hybrid stochastic/robust
optimization method is adopted to address the uncertainties in
renewable energy generation and market prices.

The major contributions of this paper are as follows:

(1) FRPs are incorporated into the bidding model of an MG for
the first time. The ramping capabilities of the MG can then
be evaluated by optimizing the bidding model. By integrat-
ing various DERs, the ramping capabilities of the MG can
be greatly improved.

(2) The flexibility of an MG for the bulk power system is exam-
ined considering its participation in the joint energy, spin-
ning reserve and FRP markets.

(3) A hybrid stochastic/robust optimization approach is adopted
to address the uncertainties in renewable energy and market
prices. The bidding problem with uncertain coefficients can
be transformed into a mixed-integer linear programming
(MILP) model that can be readily solved.

2. Problem description
2.1. Co-optimization of energy and ancillary service markets

Without loss of generality, the co-optimization of energy and AS
markets is implemented in this paper [25]. In the pool-based day-
ahead markets, it is assumed that an MG can simultaneously bid in
joint energy and AS markets. Considering its relatively small capac-
ity, an MG is reasonably assumed to be a price-taker. As a control-
lable entity, the MG will strategically allocate available capacities
in day-ahead markets to maximize the revenues. The MG bids
energy and ASs, including spinning reserve service and FRPs [8].

The FRP provided by an MG is referred to the potential power
output change from time slot t to t + 1, which reflects the available
capacity of the MG reserved for the power system to satisfy load
following. FRPs are specifically designed to relieve the system-
wide ramping constraints, which are first introduced in California
and MISO markets in the United States. The models and applica-
tions of FRPs have been investigated recently. In [26], the mathe-
matical model of FRPs is formulated according to the California
market. In [27], the security-constrained economic dispatch (SCED)
model is presented to incorporate the ramping constraints. Numer-
ical results demonstrate the effectiveness of the ramping con-
straints for reducing the instances of short-term scarcity
conditions. In [28], a risk-constrained SCED scheme is proposed
to optimize the dispatch and provision of FRPs. With the increasing
demand for the ramping resources in the power system, the FRP
market is expected to be fully operational in the near future.

The framework of an MG’s participation in day-ahead energy
and AS markets are shown in Fig. 2. In this framework, integrated
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Fig. 2. Framework of an MG'’s participation in day-ahead energy and AS markets.

with various DERs, an MG bids in the joint energy, reserve and FRP
markets at time to, when the ISO opens the day-ahead market.
Then the day-ahead market bid period closes at time t;. The ISO
begins to run the market clearing software to determine the hourly
dispatch schedules and the locational marginal prices for the day-
ahead market. Finally, the market clearing results will be released
at time t,.

The co-optimization of the energy and AS markets is imple-
mented in most electricity markets operated by the ISO [29]. The
bids of the MG must be determined before the closure of the
day-ahead markets for the next day [14]. By introducing FRP mar-
kets, on one hand, the MG is able to increase the revenues from
market bidding; on the other hand, the power system will benefit
from the improvement of the dispatch flexibility and the adequacy
of the ramping resources.

2.2. Uncertainty modeling

In this paper, a hybrid stochastic/robust optimization approach
is adopted to address the uncertainties in renewable generation
and day-ahead market prices [14,25]. The prices in the energy
and AS markets are modeled via scenario-based stochastic pro-
gramming. The uncertainties in wind and photovoltaic power are
addressed using RO.

For market prices, an MG is concerned with the profiles of mar-
ket prices to optimally allocate its available capacities in each mar-
ket. The prices in different markets have strong correlations, which
cannot be modeled with independent confidence intervals. For
example, both prices of energy and spinning reserve are relatively
high during peak hours because of high load demands. In addition,
to allocate the capacities in different markets, the relative differ-
ences of prices are the major concern instead of the absolute values
of market prices. Therefore, stochastic programming with multiple
price scenarios is more appropriate than RO to model the uncer-
tainty of market prices [14].

For renewable generations, the absolute capacities of wind and
photovoltaic power have large impacts on the bidding strategy of
an MG as well as the operation of the DERs in the MG. Moreover,
because the intervals of wind and photovoltaic power can be
obtained according to historical data, RO is an effective tool to
address the uncertainties in renewable generation. Therefore, the
robust mixed-integer linear programming (RMILP) in [30] is
applied in this paper.

The available power of the WT and PV in the MG at time slot ¢,
denoted by P" and PYV, are modeled as independent and

bounded random variables. Under a confidence level o, P takes

values from the minimum power PAYT to the maximum power
P, while P2V takes values from P#” to P#*V. To obtain the confi-
dence intervals of P and P, the forecast errors are analyzed
based on historical datasets.

For example, P*" and P!'" are the point forecast and actual wind
power at time slot t. Based on the historical data from the Wind
Integration Datasets of the NREL [31], the probability distribution
fYT(PWT /PYT ) of wind power forecast errors é*” can be acquired,

max
Le.,

pWT WT

VW?P[ _Pt
(A WT
Pmax

, eV~ fYT(PYT /PR, (1)

max

Then the upper and lower bounds of wind power forecast errors
under the confidence level o, e"T. and ¢V, can be calculated as

t,min t,max °’
follows:
WT Y owr 1-0
et =nffwe 0.1]) [/ oodx > 257, @)
0
e = lnf{w € [O,]]’/ T (x)dx > HTO—} 3)
0

Fig. 3 shows the intervals of forecast errors with 95% confidence
level under different levels of forecasted wind power [32].

According to the forecasted wind power, the minimum power
and the maximum power can be calculated as follows:

50__ W, Positive error
404 M Negative error

30

20

Forecast error (%)
=
1

T T T T T T T T T T
0 20 40 60 80 100
Forecasted wind power (% installed capacity)

Fig. 3. The intervals of forecast errors with 95% confidence level under different
levels of forecasted wind power.
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B?WT:IA)?WT7PWT 'EY.VnTAaxv Smax >0, (4)

max

DAWT DAWT WT WT wr
P? = P? - Pmax ) gt,minﬂ &t min < 0. (5)

Then the random variable for the available wind power at time slot t
is bounded as follows:

P e [P, PRI, (6)

The intervals for the available PV power can be obtained in a similar
manner with wind power.

3. Optimal bidding model for microgrids

By coordinating various DERs, an MG is able to provide flexibil-
ity for the bulk power system. In this paper, FRPs are modeled in
the bidding strategy of the MG in the day-ahead markets. As a
price-taker, the MG strategically allocates the hourly capacities in
energy, spinning reserve and FRPs.

3.1. Objective

The objective of the optimal bidding strategy for an MG is to
maximize the total revenue from the energy, spinning reserve
and FRP markets, shown as follows:

[SPSpFTerms6][SPSpFTerm,0][SPSpFTermy]
NS

max min > _y,(RE + RE + R — ), (7)

o oY s=1

where
[SPSpFTerm44][SPSpFTerms8)[SPSpFTerms7][SPSpFTerm; 8]
x [SPSpFTerm,2|[SPSpFTerm,1][SPSpFTerm, 2)[SPSpFTermg)
x [SPSpFTerms)RE

T
_ Zlfs {Pf_l_ﬁRESPI;ES_"_ﬁRAMP(PfAMPU _ PI[QAMPD) h, (8)
t=1
T
RYS = 3 EphEsy, ©)
t=1
T
RfRP _ Z()Vf?MPUPfAMPU + /lf?MPDPl:AMPD)h, (10)
t=1

[SPSpFTermy1][SPSpFTerm,5][SPSpFTermg|C oP
MT
_ iNZC?/IT [P%T,E+ﬁ?/lT,RESP§\1/iT,RES+ﬁ§VIT‘RAMP (Pi_\./iTARAMPU _ PKT,RAMPD) h
t=1 i=1
(11)
The revenues from the energy and reserve markets are shown in (8)
and (9). The revenues from the FRPs are shown in (10), composed of
the upward and downward FRPs. (11) shows that the operational
costs of the MG come from the fuel costs of the MTs. Note that in
(8)and (11), to consider the influences of the real-time deployment
of ASs, the ratios g are used to estimate the potential energy
requirement in providing AS [25].

3.2. Constraints

3.2.1. The constraints of renewable generators

PYTE 4 PTRE 4 pTRAMIY < pIMT. v, (12)

PI[’V.E +PI[’V,RES +PI[’V.RAMPU S P:;\PV7 Vt, (13)
PYTE _ pTRAMPD > 0 vt (14)
PI[’V.E _ PI;V,RAMPD >0, Vt. (15)

In (12) and (13), the energy, reserve and upward FRP of the WT are
restricted by the available wind and photovoltaic power. In (14) and
(15), the difference between the energy and the downward FRP
should be no less than 0.

3.2.2. The constraints of micro turbines

P?ﬁT,E +P€_\‘/£T,RES +P:_\‘/£T,RAMPU < PMT

imax’ Vl, t: (16)
P%T’E _ P%T,RAMPD > O, Vl, t, (17)

MT E MT RES MT ,RAMPU MT E MT,RAMPD MT,RAMPU  \ :
( it4+1 +Pi,r+1 +Pi,r+1 ) — (Pit - Pit ) < Pi,max ) Vit

(18)
(P?_{rﬁ + PmT,RES + PmT,RAMPU) _ (P%Zf _ PﬁzfAMPD) < Py;;,iAMPDv Vl, t.
(19)

In (16) and (17), the bidding capacities of the MTs should be limited
by the maximum and minimum power. In (18) and (19), the ramp-
ing up/down constraints are modeled.

3.2.3. The constraints of energy storage systems

[SPSpFTerm,2][SPSyFTerm; 6][SPSpFTerm; 0]0 < ofy° + pf;°

<1, ofS, B € {0,1}, Vi, t, (20)
0 < Pip, < 0P e Vit (21)
0 < PR < Pl Vit (22)
PISF = Pl — P, Vit (23)
PffS,E + PﬁfS,RES + PﬁfS,RAMPU < ijfmaxv Vl t, (24)
Pffs‘E _ PffS,RAMPD > _ Pfffmam Vit (25)
Pffs'EhE + Pffs‘REshREs + Pﬁfs'RAMPUhRAMP < Eff57 Vl, t, (26)
ERS — PESERE 4 PESFAMPPRMME < soChs  CF%, Vil t, (27)
R = B, + (PSS — PSR, Wi (28)
SOCimn < Eft /P < SOCio,, Vit (29)
Ey =E7. Vi, (30)

where of> and p5° are binary variables representing the working
condition of the ESS i at time slot t. of = 1, 87 = 0 indicates the
ESS is charging; off® =0, 6;° = 1 indicates the ESS is discharging;
of$S =0, ;> = 0 indicates the ESS is standing by. The power limits
of ESSs are shown in (21) and (22). In (23), the energy capacities
provided by the ESSs are the difference between the discharging
and charging power. In (24) and (25), the power limits of the ESSs
are shown. Constraints (26) and (27) indicate that an ESS must be
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able to maintain the fully deployed output level for h® (typically 1 h)
energy, h"® (typically 1h) spinning reserve, and h*"" (typically
15 min) ramping up/down [29]. Constraint (28) represents the rela-
tionship between stored energy and charging/discharging power. In
(29), the ESS is bounded by the minimum and maximum of the
state of charge (SOC). In (30), the initial and final stored energy
should be equal.

3.2.4. The constraints of the microgrid

NESS

PE PWTE+PPVE+ZPMTE+ZPESSE P[D7 Vty (31)
i=1 i=1
NMT NESS

P" PWTm+PPV’“+ZPMT’"+ZP555m Vt, m

€ {RES, RAMPU, RAMPD}, (32)

The MG'’s capacity for energy and AS is supported by the DERs oper-
ated by the MG aggregator, as shown in (31) and (32). Therefore, the
objective (7) and the constraints (8)-(32) form the proposed bid-
ding model. The solution algorithm is elaborated in Section 5.

4. Reformulation via robust optimization approach

Because of its flexibility, controllability and moderate computa-
tional cost, the RO approach provides applicable solutions to the
general stochastic optimization problems. In the optimal bidding
model, the set of random variables includes the available wind
and photovoltaic power. As elaborated in the Appendix A, this
problem can be formulated as an RMILP by introducing dual and
auxiliary variables as follows:

NS
max ZV RE+RRES+RFRP COP) (33)

By oP

subject toConstraints (14)-(32),

PUTE L pUTAES | TR [Ty quT < T (BT pIWT) vt
(34)
PFV‘E +Pl;V,RES +PI[’V‘RAMPU + FFVZPV 4 q < (PAPV +PAPV)
(35)
1
g =5 (P =Py v (36)
1 -
Mg > S (P Py, (37)
Wy =1, v, (38)
2. g =0, v, (39)

where zZ/T zPV g"T gfV are the dual variables of the original
problems and y*, yV are the auxiliary variables that help lin-
earize the problem. I'}'" and I'Y" are the robustness parameters,
which take on values in the interval [0, [JI'"|] and [0, [JI|], where
JYT and Jt¥ are sets including all random variables in constraints
(12)and (13) at time slot t. Note that there is just one random vari-
able in each constraint, so |J""| = |JV| = 1. It is worth mentioning
that by varying T}"" € [0, [J7|] and T? € [0, [J}|], the flexibility
of adjusting the robustness is acquired against the level of conser-
vatism of the solution [33]. In practice, the robustness parameters

can be set according to the risk preference of the MG operator. The
details of the RO approach can be found in [30].

The RMILP seeks to maximize the MG’s revenues from each
market under the worst case caused by the uncertainties in renew-
able generations. The hourly parameters T'}'" and I'Y" adjust the
robustness degree of constraints (12) and (13) against the uncer-
tainties in the wind and photovoltaic power. The larger the robust-
ness parameters are, the more conservative the RMILP problem
becomes. The influences of selecting different robustness parame-
ters are investigated in Section 6.

5. Case studies

The test environment is a ThinkPad T440p operating at
2.40 GHz with 8 cores. The program is developed using MATLAB
R2015a. The optimization solver is CPLEX 12.4 [34].

5.1. Basic data

Historical data of the Electric Reliability Council of Texas
(ERCOT) day-ahead market prices [35] from July 1, 2016, to
September 30, 2016, are used to generate 20 typical scenarios to
address the uncertainties in day-ahead market prices. These price
scenarios are generated by K-means clustering. The average hourly
prices in the energy and AS markets are shown in Fig. 4. The wind
and solar power are the real-world data from a wind farm and a
photovoltaic station in a province in China. According to the uncer-
tainty modeling in Section 3, under 95% confidence level, the fore-
casted wind and photovoltaic power and the confidence intervals
are shown in Fig. 5. The parameters of the other DERs in the MG
are shown in Table 1.

To evaluate the ramping capabilities and the benefits of the MG
in joint energy and AS markets, three cases are considered:

Case 1: (i) S1, where the MG bids in the joint energy, reserve
and FRP markets with T'"" = TV = 1 ; ii) S2, where the MG bids
in the joint energy and reserve markets with T = 'Y =1 ; iii)
S3, where the MG only bids in the energy market with
=1y =1

t t

Case 2: (i) S1; (ii) S4, where the MG bids in the joint energy,
reserve and FRP markets with I'}" = TY = 0.6; (iii) S5, where
the MG bids in the joint energy, reserve and FRP markets with
=1 =02

Case 3: i) S1; ii) S6, where the MG bids in the joint energy,
reserve and FRP markets with " = I’ = 1, while the FRP prices

160 420
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Fig. 4. Average day-ahead hourly prices in the energy and AS markets.
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Fig. 5. The forecasted renewable power and the confidence intervals.
Table 1
Parameters of the DERs in the MG.
DER c'" ($/MW h) Pifnax (MW) PULEMPY (MW/h) Pt M (MW/h)
MT-1 13 3 2 2
MT-2 10 4 2 2
MT-3 18 2 2 2
ESs-1 Ui U SOCHmin SOCTax
0.95 0.95 0.1 0.9
P (MW h) Ef (MW h) PEimax(MW) P max(MW)
12 6 2 2
ESS-2 nﬁs nfffs Socfsnfin Socffgax
0.95 0.95 0.1 0.9
CPS(MW h) EfF (MW h) P max (MW) P max(MW)
20 10 2.5 25
are 1.2 times of those in S1; iii) S7, where the MG bids in the joint B Energy [l Upward FRP
energy, reserve and FRP markets with T'}"" = TV = 1, while the FRP 15 Reserve N\ Downward FRP
prices are 0.8 times of those in S1. % 7
0 27 . é zZ R
5.2. Base case results 7099% 7%
In S1, the MG bids in joint energy, reserve and FRP markets. The 2 2A%9% % 7
. PR A . . S 7 %
optimal bidding strategies of the MG are shown in Fig. 6. S o MEellNLBIINENRZAGANERERE [
The MG strategically allocates the available capacity in each = _ § § § § § § § § § § § § § § § § § N § §
hour to maximize the revenues from the joi - ® NNYNNNNNNNNNNNNN N NN NN
joint energy and AS mar: °--5— Q\\§§\§§§§§\\ § §§
kets. The bidding strategy of the MG depends on the physical con- 8 \ § \ § § NAN S §
straints of the DERs and the opportunity costs in each market. In ' § § § § § § §
the energy market, the MG will generate electricity for the bulk -10 ‘ § § § &\ § § &\
power system, which leads to the operational costs of the MG. In - § § § § § § §
the AS markets, the MG will leave a margin for the AS capacities, RER N N N N § § N
which may not cause the operational costs. As shown in Fig. 4, e N
when the prices of spinning reserve are high and the opportunity 4 8 10 12 14 16 18 20 22 24
costs are relatively low, the capacity is provided for reserve instead Time (h)

of bidding in the energy market. Similar conclusions can be drawn
from the bidding for the upward FRPs. In addition, by curtailing
renewable generation, decreasing the MTs’ output and making
the ESSs charge, the MG is able to provide downward FRPs.

The optimal bidding strategies of the DERs in the energy market
are shown in Fig. 7. Because the operational costs of wind and pho-
tovoltaic power are zero, the capacity of WT and PV is fully used in
the energy market to maximize the energy revenues. The opera-
tional cost of M-2 is relatively low; thus, all the available capacity
is provided for energy. However, the costs of the other two MTs are
higher, thereby driving MT-1 and MT-3 to bid the available capac-
ity for ancillary services during some periods. In the process of

Fig. 6. Optimal bidding strategies of the MG in the base case.

arbitrage, the ESSs will charge during the valley hours and dis-
charge during the peak hours. In addition, because the ESSs can
flexibly adjust the consumption or production, the ESSs will strate-
gically bid for energy and ancillary services. The energy capacity of
the MG is equal to the difference between the capacity offered by
the DERs and the load demands.

The expected revenues of the DERs in different markets are
shown in Table 2. By strategically allocating the capacity of the
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Fig. 7. Optimal bidding strategies of the DERs in the energy market.

Table 2
The expected revenues of the DERs in different markets.

Revenue Energy ($) Reserve ($) FRP ($) Total revenue ($)
WT 275.99 0 15.01 291.00

PV 1189.46 0 16.71 1206.17

MT-1 1470.21 419.02 78.30 1967.53

MT-2 2805.89 0 75.68 2881.57

MT-3 257.99 797.51 123.88 1179.38

ESS-1 -534.68 1598.88 235.74 1299.94

ESS-2 -687.50 2014.55 301.70 1628.75

MG 1450.18 4829.96 847.02 7127.16

DERs in different markets, the MG can obtain the optimal expected
revenues with 20.35% energy, 67.77% reserve and 11.88% FRP. As
one can observe, it is beneficial for the MG to participate in the
joint energy and AS markets, in which FRPs are also important
fractions.

5.3. Comparison results in Case 1

Table 3 shows the expected revenues from each market in
Case 1.

Comparing the results in S1 with those in S2, one can observe
that the MG can increase its revenues by 8.02% if providing FRPs.
Comparing the results in S1 and those in S3, one can observe that
the MG can increase its revenues by 24.75% if participating in joint
energy and AS markets.

Therefore, by participating in joint energy, reserve and FRP mar-
kets, the MG can further increase its revenues from the day-ahead
markets. Meanwhile, the MG is able to provide ramping capacities
for the bulk power system, which fully utilizes the grid-friendly
potentials of the MG.

5.4. Comparison results in Case 2

The total FRPs provided by the MG in Case 2 are compared in
Table 4.

Table 3
The expected revenues from each market in Case 1.

Revenue Energy ($) Reserve ($) FRP ($) Total revenue ($)
S1 1450.18 4829.96 847.02 7127.16
S2 1498.84 5099.03 0 6597.87
S3 5713.36 0 0 5713.36

Table 4
The total FRPs provided by The MG in Case 2.
S1 S4 S5
Upward FRP (MW) 76.79 77.82 78.44
Downward FRP (MW) 187.42 190.46 193.93

Table 5
The expected revenues from each market in Case 2.

Revenue Energy ($) Reserve ($) FRP ($) Total revenue ($)
S1 1450.18 4829.96 847.02 7127.16
S4 1605.92 4946.87 860.27 7413.06
S5 1801.27 5025.54 871.46 7698.26

From the comparison results, the total FRPs provided by the MG
increase with the decrease of the conservatism degree. A smaller
conservatism degree indicates a larger amount of available renew-
able generation is expected, thereby leading to an increase in the
ramping capacities of the MG. The expected revenues from each
market in Case 2 are shown in Table 5.

With the decrease of the conservatism degree, the revenues
from each market will increase. As the simulation results show,
with the synergy of the DERs in the MG, the renewable generation
can cooperate with the MTs and ESSs and be fully accommodated
without curtailment.

5.5. Comparison results in Case 3

The FRPs provided by the MG in Case 3 are compared in
Fig. 8. From the comparison results, when the ramping capaci-
ties of the bulk power system are insufficient, leading to higher
FRP prices, the MG is able to provide more ramping capacities
to support the bulk power system while maximizing its individ-
ual revenues.

The expected revenues from each market in Case 3 are shown in
Table 6. From the results in S1 and S6, by increasing the FRP prices
by 20%, the total revenues of the MG from the day-ahead market
will increase by 2.40%, and the FRP revenues increase by 21.77%.
With more available capacities provided for FRPs, the revenues
from energy and reserve are reduced in S6. From the results in
S1 and S7, by reducing the FRP prices by 20%, the total revenues
will decrease by 2.27%, the FRP revenues decrease by 26.30% while
more capacities can be provided for energy and reserve in S7.
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Fig. 8. The FRPs provided by the MG in Case 3.
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Table 6
The expected revenues from each market in Case 3.

Revenue Energy ($) Reserve ($) FRP ($) Total revenue ($)
S1 1450.18 4829.96 847.02 7127.16
S6 1444.17 4822.50 1031.38 7298.05
S7 1482.12 4858.81 624.27 6965.20

5.6. Sensitivity analysis

The RO approach adopted in this paper offers full control on the
degree of conservatism for the constraints with uncertain coeffi-
cients. To demonstrate the influences of the degree of conservatism
on the bidding strategies, the approach in this paper with different
robustness parameters is compared with the method proposed in
[36], in which the worst-case and most conservative scenario is
considered.

The revenues of the MG with different robustness parameters
are shown in Fig. 9(a), and the growth rates of the revenues are
shown in Fig. 9(b) compared with the method in [36].

As shown in Fig. 9 (a), with the increase of the conservatism
degree, the revenues from each market are gradually reduced
because of the decreasing expectations of the renewable genera-
tion. As shown in Fig. 9 (b), because the operational costs of the
WT and PV are zero, most renewable energy will be allocated to
the energy market, leading to the great change of the energy rev-
enues with different robustness. Compared with the method in
[36], the conservatism of the bidding problem can be flexibly
adjusted by using the approach in this paper. Note that when the
robustness parameters are equal to 1.0, two methods achieve the
same revenues because the worst-case scenario is modeled and
considered in the method in [36].

Then the base case S1 is simulated with different ramping
prices to investigate the ramping capabilities of the MG under dif-
ferent levels of prices. With the prices of energy and reserve
unchanged, the bidding curves of upward and downward FRPs pro-
vided by the MG at 10:00 are shown in Fig. 10.

From the bidding curves of FRPs, when the prices go up, the
FRPs provided by the MG will increase. The maximal ramping
capacities of the MG at 10:00 with different robustness parameters
are shown in Table 7.

Under different degrees of conservatism, the bidding curves of
the MG for FRPs have similar shapes. However, with the decrease
of the degree of conservatism, the maximal ramping capacities of
the MG will increase because more renewable generation is
expected.
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Fig. 10. The bidding curves of upward and downward FRPs provided by the MG at
10:00.

Table 7
The maximal ramping capacities of the MG at 10:00.
r=1 =06 r=02
Upward FRP (MW) 10.09 10.27 10.45
Downward FRP (MW) 18.24 18.42 18.60

6. Conclusions

Integrated with rapid ramping DERs, an MG is a promising
energy resources to provide flexible ramping products for the
power system. In this paper, flexible ramping products are incorpo-
rated in an optimal bidding framework for MGs for the first time.
The bidding model aims at maximizing the expected revenues
from the day-ahead energy, reserve and FRP markets. To address
the uncertainties in renewable energy and day-ahead market
prices, a hybrid stochastic/robust optimization approach is
adopted. The bidding problem with uncertain coefficients can be
transformed into a mixed-integer linear programming model.

Case studies based on an MG with various DERs demonstrate
the market behavior of the MG using the proposed bidding model.
According to the simulation results, 1) Compared with the cases
where the MG only bids in the energy market and bids in energy
and reserve markets, the MG is able to increase the revenues when
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Fig. 9. The revenues and the growth rates of the MG with different robustness parameters.
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participating in joint energy, reserve and FRP markets by 24.75%
and 8.02%, respectively. 2) A smaller conservatism degree indicates
that a larger amount of available renewable generation is expected,
thereby leading to an increase in the ramping capacities of the MG.
3) By increasing the FRP prices by 20%, the total revenues of the MG
will increase by 2.40%, and more available capacities will be pro-
vided for FRPs; By reducing the FRP prices by 20%, the total rev-
enues of the MG will decrease by 2.27%, while more capacities
will be provided for energy and reserve instead.

By incorporating FRPs in the bidding framework of the MG, on
one hand, the MG is able to increase the revenues from market bid-
ding; on the other hand, the power system will benefit from the
improvement of the dispatch flexibility and the adequacy of the
ramping resources. The proposed model will provide new insights
in the development of MGs.

Appendix A

A general robust optimization problem involving uncertain
right-hand-side coefficients b; is expressed as follows:

iR oy (40)

subject to

Za,‘j){j < b;, Vi (41)
J

X <X <X, Y (42)

where x;, Vj represents the decision variable. x; and X; are the lower
and upper bounds of x;. ¢;, Vj and a;;, Vi,j are constant. Uncertainties
only affect right-hand-side coefficients b; of the inequality con-
straints. b; is a random variable taking values in the interval
[bi, bi), where b; and b; are the lower and upper bounds of b;. Then
the problem can be transformed as follows:

MDY @)
subject to
1 - .
> aix +zli+q; - i(bi +b;) <0, Vi (44)
J
1 - .
Zi+(q; + i(bi —b))y; =0, vi (45)
zi,q; = 0, Vi (46)
yi=1vi (47)
X <X <X, Y (48)

where z; and g; are the dual variables of the original problem while
y; is an auxiliary variable. I'; € [0,1] is the robustness parameter
which is used to adjust the degree of conservatism. The larger the
robustness parameter I is, the higher degree of conservatism is.
More details can be found in [30].
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