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a b s t r a c t 

In this paper, we consider a general form of noisy compressive sensing (CS) where the sensing matrix is 

not precisely known. Such cases exist when there are imperfections or unknown calibration parameters 

during the measurement process. Particularly, the sensing matrix may have some structure, which makes 

the perturbation follow a fixed pattern. Previous work has focused on extending the approximate mes- 

sage passing (AMP) and LASSO algorithm to deal with the independent and identically distributed (i.i.d.) 

perturbation. Based on the recent VAMP algorithm, we take the structured perturbation into account and 

propose the perturbation considered vector approximate message passing (PC-VAMP) algorithm. Numeri- 

cal results demonstrate the effectiveness of PC-VAMP. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

Compressed Sensing (CS) aims to reconstruct an N -dimensional

parse signal from M underdetermined linear measurements y =
x + w , where M < N and w is additive noise. It has been shown

hat in the absence of noise, perfect reconstruction is possible

iven that the signal is exactly K sparse and the measurement ma-

rix satisfies certain properties (e.g., restricted isometry, spark, null

pace). In practical applications, the measurement matrix A may

ot be known exactly due to, e.g., model mismatch, imperfect cali-

ration and imperfections in the signal acquisition hardware. Con-

equently, several works have studied the recovery algorithm and

erformance bounds for the general signal with independent and

dentically distributed (i.i.d.) perturbation [1] . In addition, the mea-

urement matrix uncertainty in quantized settings has also been

tudied [2,3] . 

For the sparse signal recovery under i.i.d. perturbation, the re-

overy performance of algorithms such as basis pursuit (BP) and

rthogonal matching pursuit (OMP) algorithm are analyzed [4,5] .

hile the above works study the effect of perturbation on estab-

ished algorithms, there also exist some algorithms which take the

easurement matrix uncertainty into account. In [6] , the Sparsity-

ognizant Total Least Squares (S-TLS) approach is developed. A

odified version of the Dantzig selector dealing with the matrix
∗ Corresponding author. 
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ncertainty is proposed in [7] . To taking the structure of pertur-

ation into account, a weighted S-TLS (WS-TLS) is proposed, and

umerical results demonstrate that WS-TLS performs significantly

etter than S-TLS [6] . In [8] , the theoretical guarantees of both ro-

ust and stable signal recovery in compressed sensing with struc-

ured perturbation are provided. In addition, several effective con-

ex optimization based approaches are proposed, and the practical

irection of arrival (DOA) problems are applied. 

Approximate message passing (AMP) algorithm is a popular

ethod for performing high dimensional inference, due to its low

omputational complexity and good performance [9] . In [10] , a

eneralized AMP (GAMP) algorithm is proposed to cope with the

eneralized linear model [10] . Since then, AMP and GAMP algo-

ithm has been applied in various signal processing applications,

uch as data detection and channel estimation [11] . Recently, or-

hogonal AMP [12] and vector AMP (VAMP) algorithms [16] are

roposed, which can deal with a larger ensemble of measure-

ent matrix set, compared to the AMP algorithm. Given that some

tatistical parameters are unknown, expectation maximization ap-

roximate message passing (EM-AMP) and expectation maximiza-

ion vector approximate message passing (EM-VAMP) are proposed

o jointly recover the unknown signal and learn the statistical pa-

ameters [17,18] . 

In [19] , an AMP algorithm is extended to deal with the sparse

ignal recovery problem under matrix uncertainty. The perturba-

ion is treated as an additive white Gaussian noise, and the matrix

ncertainty GAMP (MU-GAMP) is proposed. Provided that the per-

urbation has some additional structure, an alternating MU-GAMP

https://doi.org/10.1016/j.sigpro.2019.107248
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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Fig. 1. The factor graph used for the derivation of the PC-VAMP algorithm. The cir- 

cles represent variable nodes and the squares represent factor nodes from (6) . 
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is proposed to jointly estimate the measurement matrix and sig-

nal, in contrast with this paper where the structured perturbation

is also treated as the random variables. In [20] , the robust ap-

proximate message passing algorithm is proposed, and the mean

squared error of the Bayes-optimal reconstruction of sparse signals

under matrix uncertainty is calculated via replica method. 

In this paper, we consider a kind of general structured per-

turbation. This structure arises because the sensing matrix has

known structure such that its elements can not be chosen arbitrar-

ily. For example, in data detection, the convolving operation be-

tween channel and data can be reformulated as a linear regression

problem in which the sensing matrix has a Toeplitz structure. For

the image deblurring problems, the sensing matrix has a Toeplitz

structure and a circulant structure for the zero boundary condi-

tions and periodic boundary conditions [21] , respectively. As a re-

sult, the structure of model uncertainty has to be taken into ac-

count to improve the reconstruction performance. Since the equiv-

alent noise (perturbation plus additive noise) is coloured and cor-

related to the unknown signal, in contrast with the white Gaus-

sian noise in [19] , conventional AMP and VAMP algorithm can not

be applied in this scenario. Here we propose a perturbation con-

sidered VAMP (PC-VAMP) algorithm which iteratively approximate

the nonGaussian likelihood function as a Gaussian distribution, and

numerical results demonstrate the effectiveness of PC-VAMP. 

2. Problem setup 

The mathematical model we consider in this paper is [22] 

y = 

( 

A + 

q ∑ 

i =1 

e i E i 

) 

x + w . (1)

where we assume that y ∈ R 

M , A ∈ R 

M×N denotes the random

known sensing matrix and ‖ A ‖ 2 
F 

= N, where ‖ · ‖ F denotes the

Frobenius norm, E i ∈ R 

M×N denotes the known structure of the

perturbation, e i , i = 1 , · · · , q are i.i.d. random variables and satis-

fying e i ∼ N (e i ; 0 , γ −1 
e ) , 1 x ∈ R 

N . The prior distribution of signal

x follows x ∼ ∏ N 
i =1 p(x i ) , where p ( x i ) is a sparsity-inducing prior,

w ∼ N (0 , γ −1 
w 

I M 

) . Note that [19] and [22] study model (1) . How-

ever, [19] treats { a i } q i =1 
as unknown deterministic parameters in

contrast to [22] as random parameters, which correspond to two

classical ways to model measurement uncertainty. As shown in

[22] , the strategy of modeling measurement uncertainty as random

parameters yields accurate results. The drawback is that one needs

to estimate the statistics of the random parameters. Compared to

[22] which assumes an unknown deterministic vector x , this paper

enforces prior distribution of x . The perturbation model in (1) is

very general and we list some specific structure of perturbation as

follows: 

• i.i.d. perturbation, where the perturbation takes the form∑ M 

i =1 

∑ N 
j=1 e i j E i j , e i j ∼ N (0 , γ −1 

e ) and E ij is a all zero matrix ex-

cept that the ( i, j )-th element is one. 
• Matrix-restricted structured perturbation where the perturba-

tion takes the form DEC with D and C being known matrices.

This structure can model the scenario in which the coefficients

of the sensing matrix have unequal uncertainties, as shown in

[22] . 
1 Here N (e i ; 0 , γ −1 
e ) means that e i follows Gaussian distribution with mean zero 

and variance γ −1 
e . Sometimes we use N (0 , γ −1 

e ) instead when the random variable 

is clear. 

s

b  
• Circulant structure perturbation. Here the N × N circulant ma-

trix A is of the form 

A = 

⎡ 

⎢ ⎢ ⎣ 

a 1 a 2 · · · a N 
a N a 1 · · · a N−1 

. . . 
. . . 

. . . 
. . . 

a 2 a 3 · · · a 1 

⎤ 

⎥ ⎥ ⎦ 

. (2)

As a result, the perturbation also takes this form [22] . 

. PC-VAMP Algorithm 

This section presents the detailed derivation of the PC-VAMP

lgorithm. 

By defining z = 

∑ q 
i =1 

e i E i x + w , model (1) is equivalent to 

 = Ax + z , (3)

here z ∼ N (0 , �(x )) and �( x ) is defined as 

(x ) � 

q ∑ 

i =1 

γ −1 
e E i xx 

T E 

T 
i + γ −1 

w 

I M 

. (4)

In the following text, we derive the PC-VAMP briefly. 2 We start

ith the joint probability density function of x and y as 

p(y , x ) = p(x ) p(y | x ) = p(x ) N (y ; Ax , �(x )) . (5)

y splitting x into two identical variables x 1 and x 2 , we obtain an

quivalent factorization 

p(y , x 1 , x 2 ) = p(x 1 ) δ(x 1 − x 2 ) N (y ; Ax 2 , �(x 2 )) , (6)

here δ( · ) denotes the delta function. The factor graph corre-

ponding to the above factorization (6) is presented in Fig. 1 . Then,

essages are passed on this factor graph to perform estimation.

e initialize the message of the factor node δ(x 1 − x 2 ) to the

ariable node x 1 with μδ→ x 1 
(x 1 ) = N (x 1 ; r 1 k , γ

−1 
1 k 

I N ) where k = 0 .

hen we detail the steps. 

.1. Calculating the message from x 1 to δ(x 1 − x 2 ) 

Combining the factor node p ( x 1 ), the sum product (SP) belief

n variable node x 1 is 

 sp (x 1 ) ∝ p(x 1 ) N (x 1 ; r 1 k , γ
−1 

1 k 
I N ) . (7)

here ∝ means proportional to. We calculate the posterior means

nd variances componentwisely as 

ˆ 
 1 k = E[ x 1 | b sp (x 1 )] , (8a)

−1 
1 k 

= < Var [ x 1 | b sp (x 1 )] >, (8b)

here < x > = ( 
N ∑ 

i =1 

x i ) /N, Var[ · | b sp ( x 1 )] is the variances taken with

espect to the belief estimate b sp ( x 1 ). According to expectation

ropagation, the above belief b sp ( x 1 ) is approximated as a Gaus-

ian distribution b app ( x 1 ) given by 

 app (x 1 ) = N (x 1 ; ˆ x 1 k , η
−1 
1 k 

I N ) . (9)
2 The derivation here is similar to that of VAMP. For the detailed derivation of 

VAMP utilizing expectation propagation [13–15] , please refer to [16] . 
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Fig. 2. NMSE versus algorithm iteration in a single realization. 

Fig. 3. Mean NMSE versus SNR e . The reported NMSE is averaged over 50 realiza- 

tions. 
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hen we calculate the message from the variable node x 1 to the

actor node δ(x 1 − x 2 ) , which is the ratio of the most recent ap-

roximate belief b app ( x 1 ) to the most recent message from δ(x 1 −
 2 ) to x 1 , i.e., 

x 1 → δ = N (x 1 ; r 2 k , γ2 k I N ) ∝ N (x 1 ; ˆ x 1 k , η
−1 
1 k 

I N ) / N (x 1 ; r 1 k , γ
−1 

1 k 
I N ) ,

(10) 

here r 2 k and γ 2 k are calculated according to line 5 in

lgorithm 1 . 

lgorithm 1 PC-VAMP for CS with structured matrix perturbation.

1: Initialize r 10 and γ10 ≥ 0 and set the maximum number of iter-

ations K it ; 

2: for k = 0 , 1 , · · · , K it do 

3: // Denoising 

4: Calculate ˆ x 1 k and η1 k according to (8). 

5: γ2 k = η1 k − γ1 k , r 2 k = (η1 k ̂  x 1 k − γ1 k r 1 k ) /γ2 k 

6: // Whitening 

7: Approximate �(x 2 ) with �2 k and obtain the equivalent y 2 k 
(12), A 2 k (13) and γw, 2 k . 

8: // LMMSE estimation 

9: Calculate ˆ x 2 k and η2 k according to (16a). 

10: γ1 k +1 = η2 k − γ2 k , 

r 1 k +1 = (η2 k ̂  x 2 k − γ2 k r 2 k ) /γ1 k +1 

11: end for 

12: Return 

ˆ x 1 K it . 

.2. Calculating the message from x 2 to δ(x 1 − x 2 ) 

For the factor node δ(x 1 − x 2 ) , the message μδ→ x 2 
(x 2 ) from

he factor node δ(x 1 − x 2 ) to the variable node x 2 can be calcu-

ated directly as 

δ→ x 2 (x 2 ) = μx 1 → δ(x 1 ) | x 1 = x 2 = N (x 2 ; r 2 k , γ
−1 

2 k 
I N ) (11) 

hich can be viewed as the prior of the variable node x 2 . For the

ightmost factor node N (y ; Ax 2 ;�(x 2 )) , its covariance matrix de-

ends on the unknown x . As a result, we approximate �( x 2 ) as 

(x 2 ) ≈ E x 2 ∼N (r 2 k ,γ
−1 

2 k 
I ) [ �(x 2 k ) ] 

= 

q ∑ 

i =1 

γ −1 
a A i (r 2 k r 

T 
2 k + γ −1 

2 k 
I ) A 

T 
i + γ −1 

w 

I m 

� �2 k . 

s a consequence, we obtain an approximate model with the like-

ihood N (y 2 k ; A 2 k x 2 ;γ −1 
w, 2 k 

I M 

) , where 

 2 k = γ
− 1 

2 

w, 2 k 
�

− 1 
2 

2 k 
y , (12) 

 2 k = γ
− 1 

2 

w, 2 k 
�

− 1 
2 

2 k 
A , (13) 

here γ
− 1 

2 

w, 2 k 
is to ensure ‖ A 2 k ‖ 2 F 

= N and γw, 2 k = ‖ �− 1 
2 

2 k 
A ‖ 2 

F 
/N. With

uch an approximation, the SP belief on variable x 2 is 

 sp (x 2 ) ∝ N (y 2 k ; A 2 k x 2 ;γ −1 
w, 2 k 

I M 

) N (x 2 , r 2 k , γ
−1 

2 k 
I N ) . (14) 

tilizing the expectation propagation, the SP belief b sp ( x 2 ) on vari-

ble x 2 can be further approximated as 

 app (x 2 ) = N (x 2 ; ˆ x 2 k , η
−1 
2 k 

I N ) , (15) 

here 

ˆ 
 2 k = (γw, 2 k A 

T 
2 k A 2 k + γ2 k I ) 

−1 (γw, 2 k A 

T 
2 k y 2 k + γ2 k r 2 k ) , 

−1 
2 k 

= 

1 

Tr 
[
(γw, 2 k A 

T 
2 k A 2 k + γ2 k I ) 

−1 
]
. (16a) 
N w
We then obtain the message from the variable node x 2 to the

actor node δ(x 1 − x 2 ) with 

x 2 → δ(x 2 ) ∝ b app (x 2 ) / N (x 2 , r 2 k , γ
−1 

2 k 
I N ) = N (x 2 ; r 1 k +1 , γ

−1 
1 k +1 

I N ) , 

(17) 

here r 1 k +1 and γ −1 
1 k +1 

are given in line 10 in Algorithm 1. Sim-

larly, we calculate the message μδ→ x 1 
(x 1 ) from the factor node

(x 1 − x 2 ) to the variable node x 1 as 

δ→ x 1 (x 1 ) = μx 2 → δ(x 2 ) | x 2 = x 1 , (18) 

hich closes the loop of the proposed PC-VAMP algorithm and is

hown in Algorithm 1. 

Now we discuss the computation complexity of Algorithm 1 .

or the VAMP presented in [16] , the main computational burden

ies in the SVD of the sensing matrix, which performs only once.

or Algorithm 1 , the main additional computational burden lies

n line 7, which involves in calculating the eigendecomposition of

2 k and the singular value decomposition of A 2 k for each itera-

ion. For some cases, the computation complexity of Algorithm 1 is

omparable to that of VAMP. Given that the model is y = (A +
 ) x + n and the elements of perturbation E are i.i.d., where E i j ∼
 (0 , γ −1 

e ) , one can see that �(x ) = (γ −1 
w 

+ γ −1 
e ‖ x ‖ 2 2 ) I M 

and the

hitening operation in line 7 is unnecessary. 
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Fig. 4. 64 × 64 image recovery results. 
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4. Numerical results 

In this section, numerical results are performed to verify the ef-

fectiveness of the proposed PC-VAMP. The performance of the fol-

lowing algorithms are evaluated: 

• The oracle GAMP algorithm with precisely known sensing ma-

trix, 
• GAMP algorithm which does not take the perturbation into ac-

count, 
• MU-GAMP algorithm presented in [19] , 
• oracle VAMP algorithm with precisely known sensing matrix, 
• PI-VAMP algorithm which ignores perturbation, 
• PC-VAMP algorithm shown in Algorithm 1 which considers

model perturbation. 

In the numerical simulation, the sparse signal x follows

Bernoulli Gaussian distribution, i.e., p(x i ) = (1 − ρ) δ(x i ) +
ρN (x i , μx , σ 2 

x ) , where ρ = 0 . 2 , μx = 0 and σ 2 
x = 1 . For the

first two numerical experiments, the elements of matrix A are

i.i.d. drawn from Gaussian distribution. The elements of E i are

drawn i.i.d. N (0 , 1) unless stated otherwise, and we set M = 0 . 5 N

and q = N. The normalized mean squared error (NMSE) is defined

as NMSE ( ̂ x ) = 10 log 
‖ x −ˆ x ‖ 2 

2 

‖ x ‖ 2 
2 

, where x denotes the true value. We

also define SNR w 

� 10 log ‖ Ax ‖ 2 
‖ w ‖ 2 and SNR e � 10 log 

‖ ∑ q 
i =1 

e i E i x ‖ 2 
‖ w ‖ 2 . The

maximum number of iterations is K it = 60 . 

In the first numerical simulation, the NMSE versus iteration is

presented. We set SNR w 

= 30 dB and SNR e = 20 dB. From Fig. 2 ,

one can see that the oracle VAMP and GAMP algorithm achieves

the lowest NMSE, and the oracle VAMP achieves the fastest speed

of convergence. For unknown structured perturbation, PC-VAMP

works better than MU-GAMP. 

In the second simulation, all the parameters are the same as

that in the first simulation and SNR w 

= 30 dB. In Fig. 3 , we see that

there exists obvious performance gap between PI-VAMP algorithm

and MU-GAMP given SNR e ≤ 30dB. Compared to the MU-GAMP al-

gorithm, PC-VAMP algorithm works better. When the perturbation

is small such that SNR e ≥ 35dB, the performances of all the AMP

and VAMP algorithms are similar. 

The last experiment investigates the performance of PC-VAMP

algorithm for real image recovery. We threshold the wavelet co-
fficients such that the sparsity rate is ρ = 0 . 4133 . We set μx =
 . 0 × 10 −4 , σ 2 

x = 1 . 7 × 10 −2 . We use a N × N circulant matrix (2) ,

et a i = 0 . 3 i , i = 0 , · · · , N − 1 and N = 64 2 . The perturbation also

as the circulant structure. We use a random matrix to compress

he observations such that the measurement ratio is 0.9. For this

ompressed observation model, we set SNR w 

= 40 dB and SNR e =
0 dB. From Fig. 4 , it can be seen that PC-VAMP yields the best re-

overy results with the perturbation being unknown, and the PSNR

s 25dB. 

. Conclusion 

In this paper, we propose a matrix-uncertainty extension of the

AMP algorithm, when some structured perturbation is added on

he sensing matrix. By iteratively approximating the original likeli-

ood function with constant covariance matrix, we obtain a modi-

ed PC-VAMP algorithm. Numerical results demonstrate the effec-

iveness of the proposed algorithm. 
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