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Multicast routing is regarded as a critical component in networks especially the real-time applications
become increasingly popular in recent years. This paper proposes a novel fast multi-objective evolution-
ary algorithm called MOEAQ for solving multicast routing problem (MRP) in MANET. The strengths and
limitations of the well-known multicast model are analyzed firstly in this work. Specifically, the ‘‘Greedy”
and ‘‘family competition” approach are integrated into MOEAQ to speed up the convergence and to main-
tain the diversity of population. The theoretical validations for the proposed method are presented to
show its efficiency. After that, a CBT-based improved protocol is then proposed to simplify the MRP,
and finally, the performance of MANET scaled from 20 to 200 nodes with different types of service is eval-
uated by OPNET, experimental results show that the proposed method is capable of achieving faster con-
vergence and more preferable for multicast routing in MANET compared with other GA-based protocol
well-known in the literature.

� 2009 Published by Elsevier Ltd.
1. Introduction

Multicast routing has drawn a lot of attention in recent years,
since it enables a source to send messages to multiple destinations
concurrently. The wireless communication technologies and mobile
devices have realized the important and useful applications of mo-
bile ad hoc network (MANET) with greatly advancement. Multicast
routing plays a critical role in the transmission of information, such
as video and other streaming data. Nevertheless, the main difficulty
in designing a routing protocol for mobile ad hoc networks is the
dynamical topology which results from the random movement of
mobile nodes within the source’s transmission range. MANET,
which is fundamentally different from conventional infrastruc-
ture-based networks, is self-configuring and formed directly by a
set of mobile nodes. In MANET, the heterogeneity of networks and
destinations makes it difficult to improve bandwidth utilization
and service flexibility. Therefore, mobility of hosts (nodes) makes
the design of multimedia distribution jobs greatly challenging.

Up to now, various works involved focus on design multicast
routing algorithm. An early summary of problems and general
technical solution related to multicast communication were given
by Diot, Dabbous, and Crowcroft (1997). Hanzo and Tafazolli
(2007) and Chen and Heinzelman (2007) present a survey of mul-
ticast routing under certain QoS constraints solutions for MANET.
As an NP-Complete problem, to develop different types of heuristic
algorithm for calculating near-optimum paths with multiple QoS
Elsevier Ltd.
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constraints is a research focus. For example, Wang, Cao, Cheng,
and Huang (2006) investigate three representative intelligent com-
putational methods (genetic algorithm, simulated annealing and
Tabu search) to construct the QoS multicast trees to support multi-
media group communication separately; the proposed algorithms
consider both the end-to-end delay constraint and network re-
source requirement; the simulation evaluates the performance of
three heuristics on a small-scale real-world multimedia communi-
cation network and a randomly generated large-scale network, and
then concludes that genetic algorithm shows the best performance
in terms of the solution quality. In 2008, Qu, Zhao, Zhao, Zhang, and
Shu (2008) propose a set of node-based rate constraints to model
the interference relationship among nodes in a wireless ad hoc net-
work and to provide rate constraints for its QoS flows, they demon-
strate that, the algorithm can always admit the feasible flows as
well as make full use of the bandwidth resource. Zahrani, Loomes,
Malcolm, and Albrecht (2006, 2008) import logarithmic simulated
annealing (LSA) as pre-processing of GA; the algorithm utilizes the
partially crossover operation (PMX) under the elitist model and the
landscape analysis is presented to estimate the depth of the deep-
est local minimal in the landscape generated by the routing tasks
and the objective function; experimental results show that the
algorithm is effective on the randomly generated networks. Yang,
Xu, Li, and Liu (2004) and Ikeda et al. (2006) focus on creating a ro-
bust path to find solution for specified networks; the genetic algo-
rithm is proposed and, respectively, the individuals of the
population are represented by trees, algorithm uses the single
point crossover and a mutation operation where the ‘‘tree
junctions” are chosen randomly, the algorithm employs the elitist
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model where the individual with the highest fitness value in a pop-
ulation is left unchanged in the next generation, the simulation re-
sults show that the algorithm is reasonably fast on small and
medium size networks. Differ from the above network architec-
ture, Rango, Tropea, Santamaria, and Marano (2007) and Mala
and Swlvakumar (2006) refer a scheme called Core Based Tree
(CBT) with genetic algorithm which provides a new way for realiz-
ing multicast routing protocol in wireless networks, however, it
needs much running time.

The remainder of the paper is organized as follows. In Section 2
we state some basic conceptions of multi-objective optimization
and give the mathematical description for problem. A QoS-Aware
Multicast Routing architecture is given in Section 3. We outline
the design of proposed algorithm in Section 4. Section 5 analyses
the properties of our method. Section 6 implements the proposed
method into a QoS-Aware multicast protocol. The simulation re-
sults and performance evaluation are shown in Section 6 and the
last section presents our conclusion.

2. Notations and problem formulation

To begin with we will introduce some basic conceptions of mul-
ti-objective optimization before we describe the problem that
would help us know the model thoroughly.

2.1. Basic conceptions

Definition 1 (Multi-objective optimization problem, MOP). The MOP
consists of n decision parameters, k objective functions and m
constraints, without loss of generality

Maxmize y ¼ f ðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fkðxÞÞ
Subject to eðxÞ ¼ ðe1ðxÞ; e2ðxÞ; . . . ; emðxÞÞ 6 0

where x ¼ ðx1; x2; . . . ; xmÞ 2 X; y ¼ ðy1; y2; . . . ; ynÞ 2 U: x is decision
vector, y is objective vector, X denotes the decision space formed
by x;U denotes the objective space formed by y.

Definition 2 (Pareto Dominance ). A vector a ¼ ða1; a2; . . . ; anÞ is
said to dominate b ¼ ðb1; b2; . . . ; bnÞ if and only if a is partially less
than b, i.e.

8i 2 f1;2; . . . ;ng; ai 6 bi ^ 9j 2 f1;2; . . . ;ng; aj < bj:

Definition 3 (Pareto Optimal). A decision vector xb is said to be
Pareto Optimal if and only if there is no xa 2 X where
FðxaÞ ¼ a ¼ ða1; a2; � � � ; anÞ dominates (use Definition 2’s scheme)
FðxbÞ ¼ b ¼ ðb1; b2; � � � bnÞ.

Definition 4 (Pareto Front). The set of all Pareto Optimal decision
vectors is called the Pareto Optimal set of the problem and the cor-
responding set of objective vectors is called Pareto Front.

As we know, most of problems in the world are known as non-
linear problems. In a linear problem, each component is indepen-
dent, so that any improvement to any one part will lead to an
improvement of the entire system. But few real-world problems
like this, while most of real world problems are nonlinear, one
component changing may have ripple effects on the entire system,
and thus we should treat the problem as a multi-objective
optimization model.
Communication Cost

Fig. 1. Relationship between Pareto solution and solution space.
2.2. Problem formulation

A network can be modeled as an undirected graph G ¼ ðV ; EÞ,
where V is the set of nodes that represent routers and E is the set
of arcs (arcs represent path between nodes). Each link between
two nodes is bi-directional, it means that if there is a link
e ¼ ðu;vÞ, the link e0 ¼ ðv ;uÞ also exists. We employ the metrics of
bandwidthðeÞ, delayðeÞ, packet lossðeÞ ratio and delay jitterðeÞ, which
could describe the QoS request of most services from our previous
study, to evaluate each link e (Liu, Tang, Wang, & Sun, 2005). Let
pðs; dÞ be a path from the source node s to the destination d, the total
bandwidth of the path pðs; dÞ is the minimum of bandwidth of all
links along pðs; dÞ and it is denoted as Bandwidthðpðs; dÞÞ

Bandwidthðpðs; dÞÞ ¼ min
e2pðs;dÞ

½bandwidthðeÞ� ð1Þ

Delayðpðs; dÞÞ ¼
X

e2pðs;dÞ
delayðeÞ ð2Þ

Lossðpðs;dÞÞ ¼ 1�
Y

e2pðs;dÞ
ð1� lossðeÞÞ ð3Þ

Jitterðpðs;dÞÞ ¼ max½Delayðpðs;dÞÞ� �min½Delayðpðs;dÞÞ� ð4Þ

QoS multicast routing problem can be defined as follows

min F ¼minf�F1; F2; F3; F4g ð5Þ

where

F1 ¼ min
e2pðs;dÞ

½BandwidthðeÞ�

F2 ¼
P

e2pðs;dÞ
DelayðeÞ

F3 ¼ 1�
Q

e2pðs;dÞ
ð1� ðLossðeÞÞ

F4 ¼max½Delayðpðs;dÞÞ� �min½Delayðpðs;dÞÞ�

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

In contrast, this model imports a scalarization scheme to depict the
problem rather than to aggregate the multi-metric into a single va-
lue. Ikeda et al. (2006) describe the relationship between Pareto
solution and the solution space (see Fig. 1). Fig. 1 indicates that
solutions obtained by GA are rare in the Pareto solution space. It
can be predicted that we will get no solution in the Pareto solution
space if the coefficients are not appropriate. Due to contradiction
among metrics, GA will make only one of them prone to optimum.

Accordingly, it is improper to aggregate the multi-metric into a
single value among multi-objective problem, and thus our defini-
tion for solving multicast problem is more preferable.
3. QoS-Aware Multicast Routing architecture

Fig. 2 illustrates the change of topology of MANET. It is more
complex to construct a Steiner tree for the group with dynamic
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Fig. 2. Dynamic topology of MANET.
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change in group members. Thus the CBT technique is chosen, and
one node will be regarded as the Rendezvous Point (RP). Rango
et al. (2007) shows details that how the CBT protocol works when
nodes are allowed to join and leave the multicast group dynami-
cally. We focus on the RP (core) selection herein rather than ad-
dress the details again. Nevertheless, as a key point of CBT, it
adopts link costs for the core selection, namely, it aims at only
one component of the problem instead of all.

In order to overcome the difficulty of selecting core, we redefine
the costðpðs; dÞÞ:

costðpðs;dÞÞ ¼ x1 � Bandwidthðpðs;dÞÞ þx2 � Delayðpðs; dÞÞ
þx3 � Lossðpðs;dÞÞ þx4 � Jitterðpðs;dÞÞQ4
i¼1

xi ¼ 1

8>>><
>>>:

ð7Þ

Let rðpðs;dÞÞ be the sum of cost, the mean cost associated to core
node c can be expressed as follows:

costðcÞ ¼ 1
jVMGj

X
x2VMG

rðpðc; xÞÞ ð8Þ

where jVMGj is the amount of members in multicast group.
The multicast routing architecture can be described as Fig. 3.

We divide the multicast routing problem into two segments: one
is formed by the multicast group and the core via improved CBT
protocol that uses new policy in selecting core showed in formula
(7) and (8); the other is the combination of the source and the core,
using the proposed method (we will show it in the next section) to
find the optimum path from the source to the core. It means that
the MRP is divided into ‘‘Unicast” segment and ‘‘Multicast” seg-
ment (see Fig. 3).

Proposition 1. The II-segments division of MRP does not change its
property of NP-Complete.
Multicast

Group

Wireless

Networks

Source

RP(core)

Segment II

Segment I

Fig. 3. II-segments architecture of multicast routing.
Proof. Wang and Crowcroft (1996) has proved that two or more
additive and multiplicative metrics in any possible combination
is NP-Complete. In our architecture, the delay is an additive metric
and the loss is multiplicative, therefore, it is still an NPC problem
after division of MRP in MANET. �
4. Design of MOEAQ

4.1. Multi-objective evolutionary algorithm

EAs have been recognized to be possibly well-suited to multi-
objective optimization since early in their development. Multiple
individuals can search for multiple solutions in parallel, eventually
taking advantage of any available similarities in the family of pos-
sible solutions to the problem. The ability to handle complex prob-
lems, involving features such as discontinuities, multimodality,
disjoint feasible spaces and noisy function evaluations, reinforces
the potential effectiveness of EA in multi-objective search and opti-
mization, which perhaps is a problem area where Evolutionary
Computation distinguishes itself from other multi-objective algo-
rithms (see Fig. 4).

More stuff about multi-objective evolutionary algorithm (e.g.
NSGA-II, SPEA2) can be found in Deb’s book (Deb, 2001).

4.2. MOEAQ for MANET

Throughout this paper, ~XðnÞ denotes the nth generation popula-
tion, ~X denotes the current population. Xi is the individual in ~X.
Probabilities for crossover and mutation are denoted by pc and
pm � Tsð�Þ; Tcð�Þ and Tmð�Þ stand for the selection, crossover and
mutation for population respectively.

4.2.1. Coding
Chromosome coding, the chief matter and key issue when

applying the evolutionary algorithm, affects not only the methods
of decoding and fitness evaluation, but also the realization of selec-
tion, crossover and mutation procedures. There are many works
focusing on coding. Zhou, Gen, and Wu (1996) summarize three
normal coding approaches and conclude that Prǘfer coding is more
feasible because of lower complexity. However, for the specificity
of MRP in MANET, coding methods can be divided into two catego-
ries: one is that the individual is represented by a tree (Ikeda et al.,
Start
population

Fitness
evaluation

Gen<=Max_Gen
Genetic 

operation

Fitness
evaluation

Get optimal 
solution

End

yesno

Fig. 4. Framework of EA.
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2006), however, whether this method could traverse the whole
state space or not needs to be proven despite it can eliminate cy-
cles and invalid paths after genetic operations; the other is path
coding, which utilizes the visiting sequence of nodes as the coding
principle that conforms to Dejong’s block assumption.

In this paper, we adopt path coding and attach a visiting vector
to each chromosome. It is simple and doable; moreover, it does not
generate invalid paths after genetic operation (see Fig. 5).

4.2.2. Fitness function
The algorithm sorts all the chromosomes according to Pareto

Dominance relationship between two individuals when evaluating
each individual’s fitness; i.e. it defines the first batch of Pareto
Dominant individuals’ fitness, which is called ‘‘Pareto Rank”, equal
to 1, and then removes these individuals from the population. In
the residual population, the second batch of Pareto Dominant indi-
vidual’s fitness is defined as 2, and the rest may be similarly de-
duced till all individuals are defined.

4.2.3. Selection
By means of individual’s fitness evaluation, we can conclude

that individuals in the same Pareto Dominant have the same Pareto
rank. So, the selection can be described as

PfTsð~XÞ ¼ Xig ¼
f ðXiÞPn

k¼1
f ðXkÞ

ð9Þ
4.2.4. Crossover
We first define the ‘‘adaptive back-off selection probability” as

p ¼ jNj � jMweight kj
jNj ð10Þ

where jNj is the number of individuals, and jMweight kj stands for the
number of individuals whose Pareto rank equals to k. Because adap-
tive back-off selection is an ideal way to implement ‘‘family compe-
tition”, it can avoid two potentially negative effects – the loss of
population diversity and trapping at a local optimal.

Hence, when one individual is chosen randomly, the other one
that participates in crossover could be selected by:

PfTsð~XÞ ¼ Xjg ¼

f ðXjÞPn

k¼1
f ðXkÞ
� p Xj 2 Mweight k

f ðXjÞPn

k¼1
f ðXkÞ
� ð1� pÞ Xj R Mweight k

8><
>: ð11Þ

where ~XðnÞ is the nth generation population, ~X stands for the cur-
rent population and Xi is the individual in ~X.

To speed up convergence of MOEAQ, greedy algorithm is im-
ported. Greedy, a useful and powerful means in many optimization
problems (Liu & Huang, 2007, 2008; Zahrani et al., 2006),
converges very quickly but it is liable to trap at a local optimal.
That is the reason why we employed ‘‘family competition”. So,
the crossover operation can be described as follows:
Step 1: Select N individuals independently from the group ~XðnÞso
as to get the population of ~XðnÞ ¼ ðX1;X2; � � � ;XNÞ.

Step 2: Select two individuals according to ‘‘family competition”:
XiðnÞ ¼ ðv1;v2; . . . ;vnÞ ð12Þ
XjðnÞ ¼ ðv1;v 02; . . . ;vnÞ ð13Þ
Step 3: Let v1 be the first gene of Xiðnþ 1Þ, find the next gene of
v1 in (12) and (13), evaluating their Pareto Dominant
Relationship, then choose one (such as v2) that dominates
the other as the second gene of Xiðnþ 1Þ and set the cor-
responding unit of its visiting vector to 1.

Step 4: Find the position v2 in (12) and (13), compare their tail
gene to confirm which is better, then choose it as the next
gene of Xiðnþ 1Þ and set its corresponding unit of visiting
vector to 1 analogously.

Step 5: Repeat the above steps, till Xiðnþ 1Þ is formatted.Xjðnþ 1Þ
can be generated similarly, just with the difference of get-
ting the next gene from the reversed direction. Then
crossover can be described as follows:
�

PfTcðXi;XjÞg ¼

ðl1 þ l2Þpc Xi–Xj

1� pc Xi ¼ Xj
ð14Þ
where l1 and l2 is the length of chromosome Xi and Xj; pc is the prob-
ability of crossover.

4.2.5. Mutation
The single point mutation is adopted in MOEAQ

PfTmð~XÞ ¼ Yg ¼ pdðX;YÞ
m ð1� pmÞ

l�dðX;YÞ ð15Þ

where pm is the probability of mutation, and dðX;YÞ represents the
number of gene pairs that the corresponding gene in X and Y is dif-
ferent with each other.
5. Analysis of MOEAQ

We assumed that jV j is the number of nodes in networks; c � jV j
is the size of population, c is a constant; jGen:j denotes iterative
times of MOEAQ, the pseudo-code of MOEAQ is shown as Fig. 6.

5.1. Time complexity

Firstly, for population initialization that takes Oðc � jV j�ðjV j � 1ÞÞ;
secondly, the algorithm needs to sort all of the individuals when
evaluating fitness, which takes Oðc2 � jV j2Þ; moreover, operations
selection, crossover (it contains ‘‘family competition” selection
for crossover) and mutation take Oðc � jV jÞ, Oðc � jV j þ c � jV j3Þ and
Oðc � jV jÞ respectively. Therefore, the one time of evolutionary oper-
ation takes Oðc � jV j � ðjV j � 1Þ þ c� jV j þ c � jV j þ c � jV j3 þ c � jV jÞ. So,
the time complexity of MOEAQ is



1. Void Main
2. {
3. set generation=0;
4. While (generation <= .Gen ) 
5. {
6. Initialization;
7. Fitness evaluation;
8. Selection;
9.    Select two individuals by “family competition”;
10. Crossover;
11. Mutation;
12. }
13. }

Fig. 6. Pseudo-code for MOEAQ.
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TMOEAQ ¼ OðjGen:j � ðc � jV j � ðjV j � 1Þ þ c � jV j þ c � jV j þ c

� jV j3 þ c � jV jÞÞ

¼ OðjGen:j � jV j3Þ ð16Þ
GAQ, which proposed by Liu and Chen (2006), takes Oðc�
jV j � ðjV j � 1ÞÞ for population initialization; Oðc � jV j2Þ for fitness
evaluation; Oðc � jV jÞ;Oðc � jV j2Þ and Oðc � jV jÞ for selection, crossover
and mutation respectively, besides, it eliminates the circle and invalid
path that needs Oðc � jV j3Þ, therefore, the time complexity of GAQ is

TGAQ ¼ OðjGen:j0 � ðc � jV j � ðjV j � 1Þ þ c � jV j þ c � jV j2 þ c � jV j

þ c � jV j3ÞÞ

¼ OðjGen:j0 � jV j3Þ ð17Þ

where jGen:j0denotes the iterative times of GAQ.
Based on our previous research in traveling salesman problem

(TSP) [], we can conclude that jGen:j0 >> jGen:j. So, theoretically,
MOEAQ can converge much faster than GAQ.
Packet Length

8 bit

Message type Vtime

8 bit

Originato

Time to Live Reserved

Mes

Originato

Time to Live Reserved

Mes

Packet Header

Message Header

Message body

Message block

Fig. 7. Packet Form
5.2. Convergence analysis of MOEAQ

To validate the convergence of MOEAQ, two definitions are re-
quired as follows:

Definition 5 (Satisfactory Population Value). Fð~XÞ ¼ maxff ðXiÞ;
i 6 Ng is the satisfactory population value of ~X ¼ fX1;X2; . . . ;XNg.

Definition 6 (Satisfactory Population Set). M� ¼ f~X; Fð~XÞ ¼max
ff ðXÞ; X 2 Sgg is satisfactory population set.

Lemma 1. Utilizing formula (7) to depict fitness is the sufficient con-
dition of Pareto rank in MOEAQ.

Proof. It is obvious that, the individual who with the lowest Pareto
rank in the population is definitely to be with the highest fitness
depicted by Eq. (7), i.e. the former is the sufficient condition of
the latter. �

According to the above two definitions and the Lemma we as-
sumed that QEA uses formula (7) to evaluate fitness and the same
genetic operators mentioned in Section 4, then we have:

Theorem 1. Assume that f~XðnÞ; n P 0g is the initial population
generated by QEA then f~XðnÞ; n P 0g is a homogeneous Markov chain.

Proof. Firstly, QEA is a Markov chain for the reason that there is no
following effect after genetic operations; secondly, we know that
Pf~Xðnþ 1Þ ¼ ~Y=~XðnÞ ¼ ~Xgis independent of n, so it is homoge-
neous. In summary, f~XðnÞ; n P 0g is a homogeneous Markov
chain. �

Theorem 2. f~XðnÞ; n P 0g converges to M�
0 ¼ f~Y ¼ ðY1;Y2; . . . ;YNÞg

with probability one.

Proof. In terms of formula (9), (11), (14) and (15), if ~X;~Y 2 M�
0;

then crossover operator can guarantee that Pnð~X;~YÞ > 0 and
Pnð~Y ;~XÞ > 0, i.e. ~X $ ~Y; if ~X 2 M�

0;
~Y R M�

0; we have Pnð~X;~YÞ ¼ 0,
i.e. ~X could not arrive ~Y and there must exist a stationary distribu-
tion p which makes that:
Packet Sequence Number

16 bit

Message Size

r Address

Message Sequence Number

sage

r Address

Message Sequence Number

sage

.

.

.

Packet
B

ody

at for MOEAQ.
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lim
n!1

Pf~XðnÞ ¼ ~Y=~Xð0Þ ¼ X0g ¼
pð~YÞ; Y 2 M�

0

0; Y R M�
0

(
ð17Þ

Obviously, Pð1Þ has a unique, irreducible, non-periodic, and posi-
tive recurrence class M�

0, and S=M�
0 is a non-recurrence class, so

f~XðnÞ; n P 0g is strongly ergodic, to an arbitrary initial state
~Xð0Þ ¼ X0, we have

lim
n!1

Pf~XðnÞ ¼ ~Y=~Xð0Þ ¼ X0g ¼ pð~YÞP
~Y2M

p1ð~YÞ ¼ 1

8><
>: ð18Þ

Therefore, we get:

lim
n!1

Pf~XðnÞ ¼ ~Y=~Xð0Þ ¼ X0g ¼
X
~Y2M

p1ð~YÞ ¼ 1 ð19Þ

From the validation of Theorems 1 and 2, we know that QEA can
achieve convergence. According to the lemma, utilizing formula
(7) to depict fitness is the sufficient condition of Pareto rank in
MOEAQ, and we have that MOEAQ can achieve convergence too. �
6. MOEAQ-based QoS multicast routing protocol

As mentioned in Section 3, MRP was divided into two segments,
one is formed by the multicast group and the core via improved
CBT protocol; the other is the combination of the source and the
core, using the proposed method to find the optimum path from
32 bit

I Address

Destination Address

Fig. 8. Packet Format of RREQ.

Tx_Address

Rx_Address

Bandwidth Delay Pkt_Loss_ratio Reserved

8 bit 8 bit 8 bit 8 bit

Fig. 9. Routing Table for MOEAQ.
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Fig. 10. Route Find
the source to the core. We now give a protocol based on MOEAQ
for the ‘‘Unicast” segment.

6.1. Message format

The given protocol communicates using a unified packet format
(showing in Fig. 7) for all data related to the protocol. The purpose
of this is to facilitate extensibility of the protocol without breaking
backwards compatibility. This also provides an easy way of piggy-
backing different ‘‘types” of information into a single transmission,
and thus for a given implementation to optimize towards utilizing
the maximal frame-size, provided by the network. These packets
are embedded in UDP datagrams for transmission over the
network.

Each packet encapsulates one or more messages. The messages
share a common header format, which enables nodes to correctly
accept and (if applicable) retransmit messages of an unknown
type.

Fig. 8 gives the packet format of Routing REQuest.
Fig. 9 presents the routing table.
The meaning of each field in the packet format and routing table

were explained in Huang et al. (2009).

6.2. Operations

Fig. 10 shows the route finding of the protocol. We assume that
node A is the source, node I is the destination. In the initial time, A
floods a RREQ, node B and D then receive the RREQ which comes
from A. B and D reply a message RREQ-Ack respectively, after A re-
ceive the RREQ-Ack messages, A can compute the for QoS parame-
ters according the round-trip time and reserved them as route
entries. In the similar way, node B will have a route entry about
C, D will have route entries about F and G. A short period later,
the routing information converged, that means each node will
know the neighbor node, in this time, each node transmit their
routing table to the node A, and then A know the topology of the
entire network, now A can use the MOEAQ to obtain a optimum
QoS-aware path.

7. Simulations and performance evaluation

The main concern of this section is to test the efficiency of
MOEAQ in providing multicast users with QoS and satisfying the
service requirements of multimedia applications. We focus on
quantitative aspects of efficiency such as throughput, delivery de-
lay, media access delay and packet loss ratio. The simulations are
conducted using OPNET Modeler 14.0 Educational Version and
Wireless Module. The results are aggregated for a multicasting sce-
nario with typical two QoS classes. The simulation parameters are
defined in Table 1.
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Table 1
Simulation parameters for MANET.

Number of nodes 200
Type of node Mobile terminal
Area 1000� 1000 m2

Transmission protocol TCP, UDP
Type of service FTP, Video Conferencing
Simulation time 240 s
Service start time 100 s
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Fig. 11 compares the iteration times and running time of
MOEAQ and GAQ. As we have discussed in our previous study
(Liu & Huang, 2008), we set the crossover and mutation probability
for MOEAQ are 0.45 and 0.1 respectively, while for GAQ they are
set to 0.6 and 0.05. From the figure, we can see that with respect
to the iteration times (generation) and running time, GAQ needs
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Fig. 12. Performance comparison of
more than three times as much as MOEAQ. This result follows
the analysis in Section 5 that MOEAQ can converge much faster
than GAQ. As the nodes increase, MOEAQ acts more effectively.
MOEAQ, integrating greedy and ‘‘family competition” approach,
can not only stabilize the search behaviors, but also yield solutions
of higher quality and cost less running time. In summary, MOEAQ
is a promising method for MANET multicast routing within reason-
able time.

Fig. 12 is the comparison of performance between MOEAQ and
GAQ with FTP service. The data drop curve is not given herein be-
cause FTP uses TCP to transmit data to ensure the number of data
drop to be zero. The graph indicates that the system throughput of
MOEAQ is higher than GAQ, but the delay, media access delay and
delay jitter are lower than GAQ, i.e. MOEAQ has better system per-
formance than GAQ.
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Fig. 13 is the comparison of performance between two algo-
rithms with Video Conferencing service. It is quite obvious that
the MOEAQ and GAQ have almost the same throughput, delay
and media access delay. However, MOEAQ’s data drop ratio is low-
er than GAQ. Consequently, MOEAQ not only has better perfor-
mance than GAQ but also can deal with multi-objective problem
effectively, moreover, it is more preferable for the dynamic topol-
ogy of MANET since it can get a Pareto set rather than one ‘‘opti-
mal” solution acquired from GAQ.

8. Conclusions

In this work, we analyzed strengths and limitations of the well-
known multicast model firstly, and then an improved CBT protocol
was proposed to simplify the QoS multicast routing problem in
MANET; Based on the protocol, we came up with a novel fast mul-
ti-objective evolutionary algorithm to overcome the defection of
slow convergence and liable to ‘‘premature” of conventional GA.
The algorithm absorbs the ‘‘greedy” and ‘‘family competition” ap-
proaches which can speed up the convergence of algorithm and
maintain the diversity of population; Apart from those traits, the
proposed algorithm also can synthesize multi-objective effectively.
Through the theoretical analysis, we obtained conclusions that (1).
MOEAQ needs less running time than typical method GAQ; (2).
MOEAQ can achieve convergence. The simulation results validate
the correctness of these conclusions. Finally, the performance eval-
uation of two methods (GAQ & MOEAQ) are given, experimental re-
sults show that MOEAQ has better performance than that of GAQ.
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