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Abstract This article presents a new methodology for
transmission line protection that uses higher-order statistics
(HOS), cumulants, and artificial neural networks (ANNs).
The main objective is to design a distance relay algorithm.
Results for the fault-detection and -classification stages are
presented, as well as for fault location. The proposed method
combines a large number of samples of cumulants with differ-
ent features and the capability of ANNs to discriminate differ-
ent patterns. In summary, HOS are used for feature extraction
in the protection scheme. The ANNs receive these statistics
as inputs, and they are responsible for the logical function-
ing of the protection system, deciding if a trip is needed after
detecting, classifying, and locating a fault. The results have
shown that the proposed approach is suitable for protection
purposes. For the fault-detection stage, results have shown to
be immune to the high presence of additive noise and also to
the power-system frequency deviation. Moreover, the fault-
classification stage is computed without the need of current
information from the power system. Finally, the preliminary
results for fault location are precise for a correct estimation
of fault distance and determination of the fault zone. It must
be highlighted that this new distance protection approach is

J. R. de Carvalho · B. F. Paula
Federal Center of Technological Education of Minas Gerais
(CEFET-MG/Campus III), R. José Peres 558, Centro, Leopoldina,
MG CEP 36.700-000, Brazil

J. R. de Carvalho · D. V. Coury (B)
Electrical and Computer Engineering Department, São Carlos
School of Engineering, University of São Paulo (USP),
Av. Trabalhador São-Carlense, 400 Centro, São Carlos,
SP CEP 13.566-590, Brazil
e-mail: coury@sc.usp.br

C. A. Duque
Electrical Engineering Department, Federal University of Juiz
de Fora (UFJF), Juiz de Fora, MG CEP 36036-330, Brazil

essentially based on voltage signals, using current signals
only for determining the direction of the fault. This fact rep-
resents an innovation in distance relaying.

Keywords Transmission line protection · Higher-order
statistics · Artificial neural networks

1 Introduction

Transmission lines (TLs) are components of fundamental
importance in an electric power system (EPS), and they are
the only way of carrying electric energy. They are the largest
part of the transmission system and hence the majority of
faults are located on them. In this context, protection schemes
play an important role in eliminating a fault as quickly as pos-
sible and in providing the isolation of the minimum portion
of the electric network (Caminha 1977).

A complete model of distance protection of transmission
lines is shown in Fig. 1. This protection is described in the
following three steps:

• Fault Detection: This stage consists of identifying the
occurrence of the fault;

• Fault Classification: This stage indicates the type of fault,
i.e., it identifies the phases involved in the disturbance, as
well as the presence of ground;

• Fault Location: This stage is responsible for estimating
the distance d between the fault and the relay locations.

Several algorithms for the digital protection of TLs being
currently used are based on the estimation of the apparent
impedance (Coury et al. 2007). The performance of such
methods is directly related to the accuracy and precision of

123



238 J Control Autom Electr Syst (2014) 25:237–251

 kmd

faultG 1 G 2

 kmL

CT

PT

RELAY

Circuit

Battery

Protection

Scheme

breaker

Fig. 1 An electric power system with a fault in a transmission line, d
km far from the relay

those techniques used in phasor estimations of fundamen-
tal components of current and voltage signals. Thus, some
of the methods proposed in the literature deal with negative
aspects of phasor estimations such as errors due to fundamen-
tal frequency drifting, the presence of noise in the signals,
the presence of DC exponential decaying component, the
length of the data window used in analysis, etc. (Phadke et
al. 1983; Sá and Pedro 1991; Eichhorm et al. 1993; Alfuhaid
and El-Sayed 1999; Grcar et al. 2008; Chen et al. 2006; Yu
2006; Cho et al. 2009).

New methods have been proposed in the literature for
protection purposes in EPS based on alternative approaches
such as artificial intelligence techniques. The use of genetic
algorithms, intelligent agents, and artificial neural networks
(ANNs) should be emphasized (Coury et al. 2011). Talk-
ing specifically about neural networks, the use of this tool
in solving problems in EPS has been published since 1990
(Khaparde et al. 1991; Jongepier and Sluis 1997; Dalstein
and Kuliche 1995; Coury and Jorge 1998; Osman et al. 2005;
Zhang and Kezunovic 2007; Dutta and Kadu 2010). ANNs
are computational models inspired by the human brain, and
the interest in this technique is related to its useful properties
and characteristics, such as (Silva et al. 2010)the following:

• Learning by means of examples;
• Adaptive capability;
• Generalization capability;
• Fault tolerance; and
• Clustering capability.

The use of higher-order statistics (HOS) in power quality
(PQ) issues concerning detection and classification of dis-
turbances motivated this study. Ribeiro et al. (2007) deals
specifically with the problem of detection of PQ disturbances
aiming at an automatic monitoring system capable of stor-
ing data windows containing electric signals. Gerek and Ece
(2006) and Ferreira et al. (2009) deal with the problem of
disturbance classification. The aim of these articles is an

automatic system which can identify the type of disturbance
which occurred in the electric signals. In the protection field,
the use of HOS in classification of faults of TLs with series
compensation should be mentioned (Pradhan et al. 2004)

In this study, the present authors use HOS of electric sig-
nals for feature extraction. The statistics used are cumulants,
and they are obtained from sliding data windows. The cumu-
lants are the inputs of ANNs used in the scheme. Inherent
characteristics of HOS, such as noise immunity, the large
number of statistics, among others, classify the method as
appropriate for transmission line protection purposes. The
article is organized as follows. Section 2 presents a brief
introduction to HOS and ANNs. Section 3 describes the pro-
posed protection system. The simulated power system and
the results are shown and discussed in Sect. 4. Finally, Sect.
5 presents the concluding remarks.

2 Higher-Order Statistics and Artificial Neural
Networks

This section provides a succinct and objective description of
the two tools used in this study.

2.1 Higher Order Statistics

The use of HOS has been reported to solve detection prob-
lems, as in Giannakis and Tsatsanis (1990) and Colonnese
and Scarano (1999). More precisely in the early 1990s, there
was a wide interest in these statistics and their applica-
tions (Mendel 1991). They provide more information about
a process, compared with the information of mean values
and variance (Marques 2007). Thus, it can be expected that
they have a better way of discriminating patterns in some
applications. The HOS are defined in terms of moments and
cumulants of higher order. The latter ones are the statistics
used in this study. In this section, the definitions of cumulants
are presented based on the theory available in Mendel (1991)
and on the considerations by Marques (2007).

Let X be a stochastic process with n random variables
(x1,x2,…,xn). Real-valued random variables with zero mean
have cumulants of the 2nd-, 3rd-, and 4th-order defined as
(Mendel 1991),

cum(x1, x2) = E(x1x2),

cum(x1, x2, x3) = E(x1x2x3),

cum(x1, x2, x3, x4) = E(x1x2x3x4) − E(x1x2)E(x3x4)

−E(x1x3)E(x2x4)

−E(x1x4)E(x2x3), (1)

where E(·) is the expectation operator. Supposing {x(t)}
a stationary random process with zero mean, its kth-order
cumulants can be defined in terms of signals x(t), x(t +
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τ1), . . . , x(t + τk), Thus, from (1), the cumulants can be
rewritten as

C2,x (τ1) = E {x(t)x(t + τ1)} ,

C3,x (τ1, τ2) = E {x(t)x(t + τ1)x(t + τ2)} ,

C4,x (τ1, τ2, τ3) = E {x(t)x(t + τ1)x(t + τ2)x(t + τ3)}
−C2,x (τ1)C2,x (τ2 − τ3)

−C2,x (τ2)C2,x (τ3 − τ1)

−C2,x (τ3)C2,x (τ1 − τ2), (2)

where τ1, . . . , τ3 are time lags (or, simply, lags) and C2, C3,
and C4 are, respectively, the cumulants of 2nd-, 3rd-, and
4th-order. Assuming a single time lag τ1 = τ2 = τ3 = τ , the
following can be obtained:

C2,x (τ ) = E {x(t)x(t + τ)} ,

C3,x (τ ) = E
{

x(t)x2(t + τ)
}

,

C4,x (τ ) = E
{

x(t)x3(t + τ)
}

− 3C2,x (τ )C2,x (0). (3)

If the analyzed signal is a N -length discrete sequence
{x[n]}, then (3) can be approximated (Marques 2007) as fol-
lows:

C2,x (τ ) = 1

N/2

N/2−1∑
k=0

x[k]x[k + τ ],

C3,x (τ ) = 1

N/2

N/2−1∑
k=0

x[k]x2[k + τ ],

C4,x (τ ) = 1

N/2

N/2−1∑
k=0

x[k]x3[k + τ ]

− 3

(N/2)2

N/2−1∑
k=0

x[k]x[k + τ ] ·
N/2−1∑

n=0

x2[k].

(4)

The use of (4) is responsible for a loss of information
because a few samples of signal x[n] are not used in compu-
tation of cumulants. In fact, if k exceeds N/2−1, thenk + τ

exceeds the length of the input signal. Thus, the strategy used
in Marques (2007) is to provide a circular shift in such a way
that all samples are used in computation of (4). Mathemati-
cally, this operation can be represented by

mod(k + τ, N ) = (k + τ) − bN , (5)

where b is the integer number obtained from the division of
k + τ by N . Thus, the following can be obtained:

C2,x (τ ) = 1

N

N−1∑
k=0

x[k]x[mod(k + τ, N )],

C3,x (τ ) = 1

N

N−1∑
k=0

x[k]x2[mod(k + τ, N )],

C4,x (τ ) = 1

N

N−1∑
k=0

x[k]x3[mod(k + τ, N )]

− 1

N 2

N−1∑
k=0

x[k]x[mod(k + τ, N )] ·
N−1∑
k=0

x2[k].

(6)

In Eq. (6), τ = 0, 1, . . . , N −1. These equations, in asso-
ciation with ANNs, are the basis of the proposed method
to detect and classify faults in transmission lines. Finally, it
is important to mention that cumulants provide higher-order
correlations of a process, and they are also a measure of the
“distance” of the process from a Gaussian process with the
same mean and variance (Mendel 1991). In fact, the cumu-
lants with an order higher than two are all zero for Gaussian
processes.

In order to exemplify the application of HOS in detec-
tion problems, let us consider the signals of Fig. 2. In (a), a
sinusoidal electric signal is presented, and in (b), the signal
consists of a high-frequency oscillatory decaying component
superimposed on a sinusoidal signal component. Thus, the
latter signal presents a PQ transient event normally due to
switching of capacitor banks. Let us consider the application
of eq. (6) in the two data windows specified in the figure.
Marques (2007) demonstrated that the cumulants can provide
features for discriminating signals with and without distur-
bances as shown in Fig. 3. More specifically, the 2nd-order
cumulant with lags 17 and 32 and the 4th-order cumulant
with lag 2 were used. It should be mentioned that the rep-
resentation of cumulants of Fig. 3 was obtained considering
several PQ disturbances instead of the transients represented
in Fig. 2 uniquely.1

2.2 Artificial Neural Networks

Artificial neural networks (ANNs)can be defined as a set of
processing units (neurons) interconnected by a large number
of connection links (synapses) (Silva et al. 2010). Mathe-
matically, the synapses are weights and are responsible for
storing information, in other words, for the learning process
of the network.

Among all applications of ANN, a majority of them are
concentrated on pattern’s recognition and function approxi-
mation. In the former, the network must evaluate the pattern at
the inputs recognizing its respective class from the predefined

1 Figure from Marques (2007).
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Fig. 2 Electric signals a pure
sinusoidal; b pure sinusoidal
with high-frequency transient
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Fig. 3 Using cumulants for discriminating signals with power-quality
disturbances

ones. In function approximation, the network must estimate
an output for the data at the inputs, performing the function
of an arbitrary system.

A model for the basic processing unit of an ANN (the
neuron) is represented in Fig. 4. The inputs x1, . . . , xN are
multiplied by their respective synaptic weights w1, . . . wN ,
and the results are added, including the term θ , in the linear
combiner. This parameter is the threshold for the activation
of the neuron. The output of the linear combiner, u, is the
input of the activation function, g(.), resulting in the neuron
output, y. Mathematically,
⎧⎨
⎩

u =
N∑

i=1
wi xi − θ,

y = g(u).

(7)

Considering the input x0 = −1, the threshold θ can be
represented by a weight w0, i.e.,

1

2

N

g

x
1

x
2

x
N

u y

w

w

w

Σ

θ

Fig. 4 Neuron model (Perceptron)

⎧⎨
⎩

u =
N∑

i=0
wi xi ,

y = g(u).

(8)

In engineering problems, most applications of neural net-
works use Multilayer Perceptron (MLP). They are Feedfor-
ward networks with an input layer (x1, . . . , xN ), at least one
hidden layer, and an output layer. All these layers are spec-
ified in Fig. 5 considering an MLP with two neuron layers:
N input signals compose the input, N1 neurons are present
in the hidden layer, and N2 neurons are present in the output
layer. Each circle represents the sum block and activation
function of a basic neuron of Fig. 4.

The MLP belongs to the ANN class concerning super-
vised learning. This means that this network can be applied
to problems in which a set of inputs, x1(k), . . . , xN (k), and
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its respective set of outputs, d1(k), . . . , dN2(k), are avail-
able. The learning process is carried out adjusting the weight
matrixes so that the kth pattern at the input produces an out-
put y j (k) approximately equal to the desired output d j (k)

( j = 1, . . . , N2).
The training process of MLP is performed using the Back-

propagation algorithm (Haykin 1999), also known as the
Generalized Delta Rule. In the middle of the 1980s, this algo-
rithm was responsible for restarting research in ANNs (Silva
et al. 2010). The algorithm consists of two steps:

• Forward The data are applied at the input of the ANN,
and the signals are diffused through it interacting with
the synaptic weights;

• Backward From the resulting outputs y j (k), an error is
calculated and diffused back to adapt the weight matrixes.

The process of adapting weights is performed by means
of the Gradient of the squared error:

∈ (k) = 1

2

N2∑
j=1

[
d j (k) − y j (k)

]2
. (9)

Because of the use of the gradient, the transfer functions
must be differentiable. The use of the log-sigmoid transfer
function can be highlighted, given by

g(u) = 1

1 + e−βRNAu
, (10)

where the βRNA factor describes the range of transition of the
function. This function takes the input, which can have any
value between plus and minus infinity, and limits the output
in the range from 0 to 1.

A general equation for adapting the weight connecting
the jth neuron of the current layer to the its ith input can be
written as

w j i (t + 1) = w j i (t) + ηδ j yi , (11)

where η is the learning rate, δ j is the local gradient of neuron
j , and w j i (t) and w j i (t + 1) are the weights at epochs t and
t + 1, respectively. In this study, the Levenberg–Marquardt
algorithm was adopted for the training process. This algo-
rithm combines gradient descent with the Newton’s method.
This is chosen because this method makes use of second-
order gradients and is consequently responsible for a faster
training process (10–100 times faster than the traditional
Backpropagation algorithm). The improved characteristics
of convergence of the algorithm are related to the use of the
Hessian Matrix. More details of the Backpropagation and
Levenberg–Marquardt algorithms can be found in Silva et
al. (2010) and Haykin (1999).

3 The Proposed Protection Scheme

3.1 General Description of the Protection Scheme

The general structure for TL protection using cumulants and
neural networks is shown in Fig. 6. The connection of the
three main blocks should be mentioned: Fault-Detection, -
Classification, and -Location Stages. Initially, the operation
of the fault-detection stage only should be emphasized. This
block has the voltage signals as its inputs. If the system oper-
ates normally, i.e., without the occurrence of a fault, then this
is the only subsystem in operation. It provides the EPS moni-
toring and must indicate a faulty condition immediately after
its inception. It can be observed that the method uses voltage
signals only in this process. A dedicated ANN is used in this
step to recognize the pre and postfault conditions. With the
inception of a fault, the detection subsystem enables a counter
and waits until a predefined threshold is attained, confirming
the faulty condition. At this time, the detection subsystem is
disabled, and the fault-classification one is started.

The fault-classification subsystem has ten outputs, each
one equivalent to one of the faults considered in this study:
(a) Phase-to-Phase faults (Ph–Ph), including A–B, B–C, and
C–A faults; (b) Phase-to-Ground faults (Ph–G), including A–
G, B–G, and C–G faults; (c) Phase-to-Phase-to-Ground faults
(Ph–Ph–G), including A–B–G, B–C–G, and C–A–G faults;
and, finally Phase-to-Phase-to-Phase fault (Ph–Ph–Ph), i.e.,
A–B–C. This stage also uses a counter to register the number
of consecutive samples to indicate the type of fault.

After disabling the fault-classification stage, the fault-
location stage is enabled. This latter subsystem is divided
into four parts, with each one being responsible for each
type of fault, as specified before:
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Ph–Ph, Ph–G, Ph–Ph–G, and Ph–Ph–Ph: The output of
this block consists of an estimation of the fault distance mea-
sured from the relay location.

Depending on the power-system configuration, a direc-
tional algorithm should precede the location stage, as shown
in Fig. 6. In this study, a simple and traditional method to dis-
tinguish the direction of fault was used (Phadke and Thorp
2009). The method is based on the analysis of phase angles of
electric signals extracted from the faulty phase. Using the tra-
ditional Discrete Fourier Transform (DFT) for phasor estima-
tions, the representation of the directional algorithm is shown
in Fig. 7. As demonstrated in Phadke and Thorp (2009), there
are two possible conditions (trip or block) for the phase angle
θ (between current and voltage signals in a faulty phase), as
shown in the figure.

3.2 Description of the System Components

The three subsystems of the proposed method (fault detec-
tion, classification, and location) can be represented by only
one block diagram. This diagram is shown in Fig. 8. As can
be observed, there are three stages to be executed: (a) the
filtering stage; (b) the HOS computation stage; and (c) the
ANN stage. More specifically, the filtering stage is common
to all the subsystems. In contrast, the HOS and ANN stages
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Fig. 8 General structure for fault-detection, -classification, and - loca-
tion stages

are particular and specific for each subsystem of the proposed
method.

The process of detecting, classifying, and locating a fault
starts with the application of parameterized notch filters to
voltage signals. The transfer function of these filters is given
by (Mitra 2006)

H(z) = 1 + α

2
· 1 − 2βz−1 + z−2

1 − β(1 + α)z−1 + αz−2 . (12)

This filter is designed to completely remove the funda-
mental component of the electric signal ( f0 = 60 Hz). Para-
meter β controls the position of the notch frequency, and
parameter α controls the length of the rejection band. The
outputs of these filters are defined as error signals, and the
use of such signals is based on the fact that several detec-
tion techniques are based on error signals. In normal opera-
tions, the signals in the EPS are sinusoidal and, consequently,
the outputs of equation (12) are zero or possibly a noisy
component.

Thus, the following formulation can be introduced to rep-
resent the problem under study. This formulation is based on
two hypotheses,

H0 : ev[n] = rv[n],
H1 : ev[n] = rv[n] + tv[n], (13)

where v = {A, B, C} represents each one of the three
phases of the EPS. The noise signal rv[n] is a Gaussian com-
ponent and tv[n] is a transient component. The null hypothe-
sis H0 is associated with normal operation conditions of the
protected transmission line. On the other hand, the alternative
hypothesis H1 is associated with the faulty condition.

After the filtering stage, the HOS are computed for N -
length sliding windows of error signals (eA, eB e eC ). In
this study, it was decided to investigate only the 2nd- and
4th-order cumulants. Marques (2007) found out that the 3rd-
order cumulants were not significant for problems involving
Power Quality. In addition, as stated by Mendel (1991), some
distributions have lower 3rd-order cumulants. Thus, at time
instant n, the outputs of the second stage are
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C2,v(τ, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

C2,v(0, n)

C2,v(1, n)

...

C2,v(N − 1, n)

⎤
⎥⎥⎥⎥⎥⎥⎦

;

eC4,v(τ, n) =

⎡
⎢⎢⎢⎢⎢⎢⎣

C4,v(0, n)

C4,v(1, n)

...

C4,v(N − 1, n)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14)

In (14), index v can assume any value of the set {A, B, C},
representing a specific phase in analysis. Therefore, it can be
concluded that certain amounts of N 2nd-order cumulants
and N 4th order cumulants are available, per phase, to be used
in fault- detection, -classification, and -location subsystem.
Hence, it must be emphasized that there is a large number of
statistics available for implementing the operation logic of
the proposed relay. However, only a small portion of these
statistics are actually used. The choice of the subset of cumu-
lants used in the proposed algorithm obeys some criterion of
the parameter selection that is not considered in the present
study.

Some combinations of cumulants of phases A, B, and C
consist of the input of the third and last stage. This stage
is composed of neural networks. Each subsystem has a spe-
cific ANN using an MLP architecture. For fault-detection and
-classification stages, the network performs pattern recogni-
tion functions. In the first case, the ANN must identify the
faulty and nonfaulty conditions and only one output is suf-
ficient to this process. In the second case, the ANN must
identify the type of fault, and ten outputs are necessary for
this task. Finally, the location stage applies neural networks
performing function approximations. In other words, for a
certain combination of cumulants as its inputs, the network
must provide an estimation of the fault distance from the
relay location. For this task, only one output is needed.

3.3 Obtaining Data for ANN Training

The general principle adopted for the development of the
three subsystems (fault detection, classification, and loca-
tion) is presented in Fig. 9. It can be observed from the discus-
sion above, that the three stages operate consecutively. Thus,
the samples are divided into three groups or datasets as shown
in Fig. 9. The first partition is used for implementing the fault
detection stage, aiming at speed and reliability. The second
dataset is used in the development of the fault-classification
stage. Finally, the last partition is used in development of
the fault-location stage. Since the fault-classification stage is
performed before the fault-location stage, four different sys-
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Fig. 9 Window division of postfault electric signals for detecting, clas-
sifying, and locating faults using the proposed structure

tems for locating faults can be used, each one specialized in
one type of fault considered in this study.

The strategy of partitioning the data aims at simplifying
the protection stages without degrading their performance.
The lengths of windows of Fig. 9 do not obey a specific rule
but should be as short as possible. For instance, lengths which
are fractions of one period of fundamental component could
be used. The design of the fault-detection module also uses
a dataset before the fault inception for correctly identifying
the pre and postfault conditions.

4 Simulation Results

4.1 The EPS Studied

Figure 10 shows the simulated EPS which consists of three
transmission lines. Line 1 is 80 km long and is located
between busbars A and B. Line 2 is 150 km long and is
located between busbars B and C. This line is the focus of
the present article, and the relay is located at busbar B for
protection of this part of the EPS. Finally, Line 3 is located
between busbars C and D and is 100 km long.

Simulink/Matlab� was used in the simulations. The
faults were implemented with a phase-to-phase (Ph–Ph) fault
resistance R f and a phase-to-ground (Ph–G) fault resistance
Rt , as shown in Fig. 11. Typical signals of fault simulations
using this software are presented in Fig. 12. In this case, sig-
nals of a fault involving phase A and Ground (A–G fault) are
presented, 45 km far from the busbar B. In all simulations,
ideal models for current and potential transformers are used.

The fault conditions were obtained by varying the follow-
ing parameters: (a) distance d between the relay position and
the fault location; (b) the fault resistances; (c) the fault incep-
tion angle; and (d) the type of fault. Table 1 shows the values
considered for each one of the aforementioned parameters.
It can be noticed that a total of 6,264 distinct cases of faults
are available for this study. Finally, the sampling rate used in
all simulations is fS = 256 × f0 Hz.
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Fig. 10 The electric power
system simulated
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Fig. 11 Electric connections for simulating faults

4.2 Fault-Detection Stage

A large dataset was generated initially considering the
EPS operating with nominal frequency f0 = 60 Hz.
From the total number of cases, the following values were
used to generate data for the neural network training:
d = {5, 25, . . . , 145 km}, φ = {0◦, 90◦, 120◦, 210◦}, Rt =
{0.1, 100 	} and R f = {0.01, 10 	}. The results of the
fault-detection stage were compared to the results of tradi-
tional sample-to-sample and cycle-to-cycle comparison tech-
niques (Mohanty et al. 2008).

The cumulants were computed considering sliding data
windows with a quarter of the fundamental cycle, i.e., 64
samples. The 32 samples before the fault inception formed
the prefault class. The postfault class was also formed by
32 samples collected from the 64th sample after the fault
inception. Thus, the patterns were generated without mixing
voltage samples of pre and postfault conditions. This strat-
egy facilitates the task of class discrimination and provides
reliability to the process.

A combination of the 4th-order cumulants used in the
fault-detection stage is shown in Fig. 13. In this figure,

Fig. 12 Electric signals of a
voltages and b currents for a
fault at Line 2, 45 km far from
the busbar B and involving the
phase A and Ground (A–G)
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Table 1 Parameters for
simulating faults Fault type Location (km) Inception angle (◦) Fault resistance (	)

F–G 5, 10, . . . , 145 0, 30, . . . , 330 RT = 0.1, 1.0, 10, 100, 400

F–F 5, 10, . . . , 145 0, 30, . . . , 330 RF = 0.1, 1, 10, 50

F–F–G 5, 10, . . . , 145 0, 30, . . . , 330 RT = 0.1, 1.0, 10, 100, 400

F–F–F 5, 10, . . . , 145 0, 30, . . . , 330 RF = 0.1, 1, 10, 50
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Fig. 13 Representation of patterns of pre and postfault conditions in a
cumulant space for the three phases

cumulants of prefault condition (black patterns) and postfault
condition (gray patterns) can be seen. The data in this figure
were generated considering the addition of white Gaussian
noise-to-voltage signals with SNR (Signal-to-Noise Ratio)
of 35 dB.

A neural network consisting of three inputs and two neural
layers was trained to recognize classes in Fig. 13. The first
neural layer has N1 = 6 neurons, and the output neural layer
has N2 = 1 neuron. A quantum of 90 % of data was used in
the training process, and the mean squared error (MSE) was
0.00259 after 3,000 epochs of training. The remaining 10 %
of data was used in the validation process. The hit rate in this
process was 98 %.

A particular result of fault detection, considering a C–A–
G fault with d = 70 km, R f = 0.01 	, Rt = 0.1 	, and
φ = 90◦, is shown in Fig. 14. In (a) the electric signals are
presented. The cumulants are shown in (b). The fault is sim-
ulated at sample 128, and the fault detection of the event by
the proposed method is shown in (c). In (d), the results of
cycle-to-cycle (sc) and sample-to-sample (sa) comparison
techniques are presented, considering the voltage of phase
A. Fault detection using the sa and sc indexes of these two
techniques needs a threshold for comparison. In the proposed
technique, the neural network performs all the tasks concern-
ing analyzing the signals, and no threshold is needed.

A second fault situation is carried out considering the EPS
operating with frequencies different from the nominal fre-
quency f0 = 60 Hz. The frequency values in these sim-
ulations are {59; 59, 5; 60, 5; 61} Hz. Moreover, the voltage
signals are considered to be a sinusoidal signal superimposed

with white Gaussian noise component (SNR) = 35 dB. The
same topology of neural network is used to obtain a new
fault-detection stage. In Fig. 15, a particular result for a fault
involving phases C and A (A–C fault) is shown consider-
ing d = 35 km, R f = 0.1 	,φ = 120◦, f = 61 Hz and
SNR = 30 dB. It can be observed that this situation degrades
the performance of traditional techniques if compared with
the result of the proposed algorithm. As can be seen, the pro-
posed method is capable of detecting the fault in the presence
of noise and frequency drifting.

4.3 Fault-Classification Stage

After the fault-detection stage, the next step is to classify
the fault. Considering the EPS operating with nominal fre-
quency ( f = 60 Hz), the following parameters were used
for generating training data: d = {5, 30, . . . , 140 km}, φ =
{0◦, 30◦, . . . , 330◦}, Rt = {0.1, 1, 100, 400 	} e R f =
{0.1, 10 	}. In this stage, the MLP has an input layer with
three signals and two neural layers. The first one has N1 = 40
neurons, and the output neural has N2 = 10 neurons. The
types of faults and the corresponding outputs of ANN are
shown in columns 1 and 3 of Table 2.

The cumulants of the fault-detection stage were computed
by using sliding windows with a length equal to one funda-
mental period, i.e., 256 samples. The dataset used for neural
network training was obtained considering 128 consecutive
samples from the 64th sample after the fault inception. A
result of pattern generation is shown in Fig. 16, considering
all the faults involving phase A. It can be noticed that the 2nd-
order cumulants are calculated for all phases. In addition, it
can be seen that the cumulants occupy different portions of
the space according to the type of fault. Using partitions of
90 and 10 % for training and validating stages, respectively,
a MSE = 0.0019 was obtained after 1,457 epochs with a hit
rate of 96.8 %.

A particular result of the fault-classification stage oper-
ation is shown in Fig. 17. The fault involves phase B and
ground and was simulated with d = 15 km, Rt = 1 	, and
φ = 30◦. It can be seen that the output y2, associated with
B–G faults is activated showing a B–G fault. The other out-
puts are identically zero. A total of 468 cases of faults were
considered to test the fault-classification module. The results
are shown in Table 2. As can be observed, only four cases
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Fig. 14 Fault-detection stage
result for the operation of EPS
with nominal frequency
f = 60 Hz: a voltage signals; b
cumulants; c fault-detection
result; d traditional methods

0 50 100 150 200 250
−1

0

1

A
m

pl
itu

de
 (

pu
)

(a)

0 50 100 150 200 250

0.8

0.9

1
A

m
pl

itu
de

(b)

0 50 100 150 200 250

0

0.5

1

A
m

pl
itu

de

(c)

0 50 100 150 200 250

0

0.5

1

A
m

pl
itu

de

Sample (n)

(d)

C
4,vb

(128)
C

4,vc
(64) C

4,va
(128)

s
a

s
c

Phase A

Phase B

Phase C

were erroneously classified, and the general performance of
this stage shows 99.15 % of correct results.

4.4 Fault-Location Stage

Figure 18 shows a representation of cumulants that indicates
a close relationship between the position of these statistics in
the space and distance of the fault. In fact, this relationship
exists and can be verified for all types of faults. Thus, ANNs
can be used as a function approximation agent, instead of a
pattern recognizer, to estimate the fault distance.

Considering faults involving one phase and ground (Ph–
G) only, a result of the fault location is discussed in this

section. An MLP with three inputs and two neural layers
(N1 = 200 and N2 = 1) was trained for locating faults.
After the training process, a total of 100 samples were ran-
domly chosen for validation. This result is shown in Fig. 19.
It can be seen that the output of the ANN appropriately fol-
lows the curve of desired output. This result indicates that
the fault distance can be correctly determined using neural
networks. It must be emphasized that when operating in this
stage, several samples are available for estimating the fault
distance, and the result can be accurately and precisely deter-
mined from the statistical analysis of the neural network out-
put. Finally, in this case, the last half cycle of the first fun-
damental period after fault inception was used for pattern
generation.
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Fig. 15 Fault-detection stage
results for the operation of EPS
with frequency f = 61 Hz, and
in the presence of noise: a
voltage signals; b cumulants; c
fault detection result; d
traditional methods
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Table 2 Results of the fault-classification stage

Type of fault Total of simulations Correct output Correct answers

A–G 54 y1 54

B–G 54 y2 54

C–G 54 y3 54

A–B–G 54 y4 54

B–C–G 54 y5 54

C–A–G 54 y6 54

A–B 36 y7 36

B–C 36 y8 36

C–A 36 y9 36

A–B–C 36 y10 32

Total 468 Hits 464

4.5 Joint Operation of the Protection Subsystems

A complete protection scheme of TL performs all the dis-
tance protection stages mentioned earlier. Taking this into
account, this section deals with the joint operation of fault-
detection, -classification, and -location stages. The algorithm
can be synthesized as shown in Fig. 20. The evaluation of the
algorithm shown in this figure is performed for a single-phase
fault, involving phase A and ground (A–G fault).

Figure 21 shows a particular result of the proposed scheme
simulating a real-time operation. The A–G fault has the fol-
lowing parameters: d = 105 km, Rt = 10 	, and φ = 0◦.
The voltage signals are presented in (a) where one prefault
cycle and one postfault cycle can be seen. The fault-detection
system is responsible for monitoring continuously the volt-
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age signals to identify the fault inception at sample 256. After
this event, it can be observed in (b) that the fault-detection
stage indicates the occurrence of the short circuit immedi-
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Fig. 19 Results of validation of the ANN used for locating faults
involving one phase and ground
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Fig. 20 Algorithm proposed for joint operation of fault-detection, -
classification, and -location stages

ately. A counter is enabled to verify the consistence of this
result. After counting 64 samples consecutively, the fault-
classification stage is then enabled and the fault-detection
stage is disabled. In Fig. 21c, it can be verified that the out-
put y1 is correctly activated indicating an A–G fault. The
other outputs of the fault classification stage remains inac-
tive. Again, a counter is used in the process to confirm the
result. After 64 samples, the fault classification stage is dis-
abled, and the fault-location stage is enabled. This system
provides distance estimations for the simulated fault. As can
be seen, the result presents good precision.
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Fig. 21 Particular result for the
joint operation of fault-detection,
-classification, and -location
stages for an A–G fault 105 km
far from the relay
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The result presented in this section demonstrates one pos-
sible configuration for the protection stages of the proposed
method. The counters can be adjusted considering aspects
as the required speed and reliability. It must be emphasized
that a relay based on the proposed algorithm could take deci-
sions in less than one fundamental cycle (16, 67 ms). In the
simulation above, considering the reach of 80 % for the pri-
mary zone of protection, the relay would send a trip signal
to isolate TL2.

The traditional technique for distance protection based on
the calculation of the apparent impedance was considered for
comparing results. The phasors used in the impedance calcu-
lation were extracted applying the DFT of the first postfault
cycle of voltage and current signals. The apparent impedance
is shown in the R–X diagram of Fig. 22 (black dot). It can
be observed that the impedance is out of zone 1 for a quadri-
lateral traditional curve. Thus, this technique requires more
samples to correctly identify the fault zone. Considering the
result of the proposed technique, the distance can be deter-
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Fig. 22 Comparison of the proposed technique with the traditional one
using the calculation of apparent impedance obtained using DFT
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mined by the average of the neural network estimations.
Hence, the distance of the fault can be stated as 104.3 km,
and in the R–X plane, it was plotted as the gray dot, as shown
in Fig. 22. As can be seen, the proposed technique combines
speed with consistent and precise responses.

5 Conclusions

This article presents a new and alternative approach for TL
protection. In general, the following concluding remarks can
be stated. First, the ability of quickly responding to tran-
sient components from the fault inception was responsible
for fast responses. This is a basic requisite of updated pro-
tection systems. Second, the immunity to noise present in
this methodology consists of an important characteristic as,
in practice, real electric signals are superimposed with it.
Especially in the fault-detection stage, the pre and postfault
conditions must be reliably distinguished despite the noise.
Finally, the use of ANN implies in an auto-adjustment sys-
tem. In the fault-detection stage, for example, it is not neces-
sary to use thresholds for correct operation. On the contrary,
the network must be trained with the appropriate SNR, and
the system will operate properly.

The results demonstrated that combining cumulants with
ANNs could indeed be used for designing a distance relay.
The individual operation of all stages of the distance protec-
tion was found to be efficient, as well its joint operation. The
fault-detection process was successful in all simulated cases
(100 % accuracy). In addition, 99 % of faults were correctly
classified. Finally, the location procedure was successfully
performed for single phase-to-ground faults.

Despite the need of using an additional algorithm for deter-
mining directionality of the fault, all the stages of the pro-
posed scheme use voltage signals only. This characteristic
implies in a methodology that is immune to common prob-
lems found in the traditional apparent impedance method.
Among others, the problems caused by exponential decay-
ing DC components and current transformer saturation are
not present in this methodology. Thus, on the whole, the pro-
posed method contributes considerably to the improvement
of transmission line digital protection.
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