
Future Generation Computer Systems 50 (2015) 62–74
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Energy efficient scheduling of virtual machines in cloud with deadline
constraint
Youwei Ding, Xiaolin Qin ∗, Liang Liu, Taochun Wang
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China

h i g h l i g h t s

• We develop a new VM scheduler to reduce energy cost for the cloud service providers.
• We deduce that there exists an optimal frequency for a PM to process certain VMs.
• We define the optimal performance–power ratio to weight the heterogeneous PMs in the cloud.
• The deadline constraint is satisfied by the definition of required resource of each VM.
• We achieve over 20% reduction of energy and 8% increase of processing capacity in best cases.

a r t i c l e i n f o

Article history:
Received 14 May 2014
Received in revised form
18 November 2014
Accepted 1 February 2015
Available online 11 February 2015

Keywords:
Energy efficiency
Virtual machine scheduling
Dynamic voltage and frequency scaling
Cloud computing

a b s t r a c t

Cloud computing is a scale-based computing model, and requires more physical machines and consumes
an extremely large amount of electricity, which will reduce the profit of the service providers and harm
the environment. Virtualization is widely used in cloud computing nowadays. However, existing energy
efficient schedulingmethods of virtualmachines (VMs) in cloud cannotworkwell if the physicalmachines
(PMs) are heterogeneous and their total power is considered, and typically do not use the energy saving
technologies of hardware, such as dynamic voltage and frequency scaling (DVFS).

This paper proposes an energy efficient scheduling algorithm, EEVS, of VMs in cloud considering the
deadline constraint, and EEVS can support DVFSwell. A novel conclusion is conducted that there exists op-
timal frequency for a PM to process certain VM, based onwhich the notion of optimal performance–power
ratio is defined to weight the homogeneous PMs. The PM with higher optimal performance–power ratio
will be assigned to VMs first to save energy. The process of EEVS is divided into some equivalent schedule
periods, in each of which VMs are allocated to proper PMs and each active core operates on the optimal
frequency. After each period, the cloud should be reconfigured to consolidate the computation resources
to further reduce the energy consumption. The deadline constraint should be satisfied during the schedul-
ing. The simulation results show that our proposed scheduling algorithm achieves over 20% reduction of
energy and 8% increase of processing capacity in the best cases.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing has been developed to store,manage and ana-
lyze the massive data. The initial aims of cloud computing are high
performance, scalability, capacity, cost of infrastructure and so on,
not including energy. With the growth of the number and the size
of data centers, energy consumption becomes a challenge for both
companies and governments. It is shown that the cost of energy

∗ Corresponding author.
E-mail addresses: dingyouwei@nuaa.edu.cn (Y. Ding), qinxcs@nuaa.edu.cn

(X. Qin), liangliu@nuaa.edu.cn (L. Liu), wangtc@nuaa.edu.cn (T. Wang).

http://dx.doi.org/10.1016/j.future.2015.02.001
0167-739X/© 2015 Elsevier B.V. All rights reserved.
consumed by a server during its lifetime will exceed the cost of
server itself [1]. A report of US Environmental Protection Agency
(EPA) indicated that IT infrastructures in USA consumed about 61
billion kWh for a cost of 4.5 billion dollars in 2006 [2]. This elec-
tricity consumption is about 1.5% of the total US electricity con-
sumption, and is more than double of that consumed by IT in 2000.
It was also noticed in [3] that servers consume 0.5% of the world’s
electricity produced, and itwill quadruple by 2020 if the trend con-
tinues. However, the utilization of a typical data center is around
20%–30% [4],whichmeans a large amount of energywill bewasted.

Virtualization is an important technology typically adopted in
cloud to consolidate the resources and support the pay-as-you-go
service paradigm. It has been reported that virtual machines could
be used for scientific applications with tolerable performance

http://dx.doi.org/10.1016/j.future.2015.02.001
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.02.001&domain=pdf
mailto:dingyouwei@nuaa.edu.cn
mailto:qinxcs@nuaa.edu.cn
mailto:liangliu@nuaa.edu.cn
mailto:wangtc@nuaa.edu.cn
http://dx.doi.org/10.1016/j.future.2015.02.001

Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74 63
punishment, and could provide desirable, on-demand comput-
ing environments for any users. Adapting virtualizations in cloud
computing, the platform often provides various virtual machine
templates, the jobs will be allocated with preconfigured virtual
machines once they arrive at the cloud, and then the virtual ma-
chine is started at proper physical machines, finally it will be shut
down if the job is finished.

Virtual machine scheduling is one of the most important and
efficient technologies of reducing energy consumption in cloud.
Beloglazov et al. [5] reported a survey of energy efficient data cen-
ters and cloud, they classified the research into hardware, operat-
ing system, virtualization and data center levels, and introduced
the techniques used to save energy consumption for each level.

The main idea of scheduling VMs energy efficiently is placing
them on only part of the physical machines and transforming the
other ones into low power state (sleep or off). Since the service
providers own all the details of the physical machines in the cloud
and the resource requirements of VMs from the users, they can
place VMs to proper physicalmachines tominimize the energy and
thusmaximize their profit. Existing schedulingmethodsmainly fo-
cus on minimizing the number of physical machines used to run
the VMs. However, less attention is paid to energy saving technolo-
gies in the hardware level though the information of hardware in
the cloud is known to the provider.

Dynamic voltage and frequency scaling (DVFS) is an efficient
technology to reduce processor energy consumption. Manufactur-
ers of processor have developed their patents on DVFS to make
their products operate on several frequencieswith different supply
voltages. DVFS has beenmainly used to achieve energy efficiency in
embedded, multicore andmultiprocessor systems. However, DVFS
technology is rarely adopted in the virtualized cloud systems to
save energy. SinceDVFS technology is adopted for the processors, it
is most efficient for computation-intensive VMs, but does not suit
for I/O-intensive or network-intensive VMs. We only focus on the
computation-intensive VMs in this paper.

Existing VMs scheduling methods using DVFS to reduce total
energy are mostly developed in homogeneous clusters, and only
the power of processors are measured. For example, a power-
aware algorithm of VMs scheduling [6] was proposed to allocate
the virtual machines in a DVFS-enabled cluster. They use as low as
possible frequency for the processor to run the VMs, and all physi-
cal machines are homogeneous. The criterion of selecting physical
machines for each VM is the power of the processors, which does
not fit the practical cloud, because the processors only consume
about 25% of the total energy of the server [7].

Example 1. Given two computation-intensive VMs vm1 and vm2,
and two servers n1 and n2 with the same processors but different
other components. Suppose the power of the processor is Pcpu on
fixed frequency f , and the power of the other components of n1
and n2 are Ps1 = Pcpu and Ps2 = 0.5Pcpu respectively. The servers
operate on frequency f unless they are powered down, and the ex-
ecution time of vm1 and vm2 are t1 and t2. Obviously, there are four
solutions for this case: (a) vm1 for n1 and vm2 for n2, (b) vm1 for n2
and vm2 for n1, (c) vm1 and vm2 for n1, and n2 is powered down, (d)
vm1 and vm2 for n2, and n1 is powered down. Therefore the energy
of n1 and n2 for processing the two VMs are Ea = (2t1 +1.5t2)Pcpu,
Eb = (1.5t1 + 2t2)Pcpu, Ec = 2(t1 + t2)Pcpu, Ed = 1.5(t1 + t2)Pcpu.
It can be seen that solution d is the optimal one in terms of energy
consumption. However, on the condition that the deadline is less
than t1 + t2, solution a is the optimal one if t1 < t2, otherwise
solution b is the optimal one.

We can see that heterogeneities and the total power of the
physical machines are the main challenges of energy efficient
scheduling in cloud computing, while the adoption of DVFS tech-
nology is another challenge for the scheduling of virtual machines.
This paper focuses on dynamic scheduling of virtual machines
to achieve energy efficiency and satisfy deadline constraints in the
cloud with heterogeneous physical machines. The main contribu-
tions of this paper are as follows. We conduct that there exists
optimal frequency for a physical machine to process certain vir-
tual machines, and each PM should operate on at least the optimal
frequency. Then the notion of optimal performance–power ratio
is defined to weight the heterogeneities of the physical machines,
VMs will be allocated prior to the PMs with higher optimal perfor-
mance–power ratio. The scheduling is divided into some equiva-
lent periods, and the cloud will be reconfigured after each period
to consolidate the computation resource to further reduce the en-
ergy consumption. Finally, the deadline constraint ismaintained by
the definition of required resource, VM can be completed on time
as long as it is allocated successfully to a PM.

The rest of this paper is organized as follows: Section 2 reviews
the existing research on energy efficient cloud computing and
scheduling of virtual machines. Section 3 defines the problem and
describes the power and virtualmachinemodels used in this paper.
In Section 4, we present an energy efficient algorithm to schedule
virtual machines in cloud computing using DVFS technology.
Section 5 shows the simulation results for the proposed algorithm,
and Section 6 concludes the paper and points out future work.

2. Related works

Energy efficient scheduling of tasks in cloud is studied widely.
Jacob Leverich et al. [8] proposed a strategy of selecting part of
the physical machines in a Hadoop cluster to execute the tasks
while powering down other ones to reduce the power consump-
tion. However, Willis Lang et al. [9] indicated that using all physi-
cal machines to run the workloads and then powering down them
simultaneously can save more energy. Both the two methods can-
not work well if workloads are data-intensive, because powering
down some physical machines will result in data unavailability
while using all ones will cause frequent data migrations. A repli-
cation scheme named Chained Declustering was used in [10] to
ensure data available when powering down partial physical ma-
chines in a cluster, and it also guaranteed load balance between the
activemachines. Since the replication scheme is the basis of power-
ing down physical machines and load balance, it is not suitable for
the deployed clusters. Considering the energy consumption during
both execution time and idle periods, powering down fractional
machines is an accepted method to make clusters energy efficient.

Virtualization is widely used in cloud computing to fully utilize
the resources and improve the performance. Various VM schedul-
ing methods [11–13] have been proposed to dynamically allocate
and consolidate the VMs in cloud computing environment. The al-
location algorithms can be mainly divided into two types, allocat-
ing VMs onto PMs and assigning PMs to VMs. The consolidation is
typically achieved by VMmigrations. Energy consumptionwas not
considered in traditional VM scheduling in cloud computing.

Energy efficient VMs scheduling in data centers mainly focuses
on fully utilizing each physical machine to reduce energy con-
sumption. They take a physical machine as a whole and use the
formula P = Pidle + (Pmax − Pidle)∗u to compute the power of each
node, where u is the utilization of a physical node, Pidle and Pmax are
the idle and peak power of the node. It is an experimental formula,
and has been tested in many data centers for a period of time. It is
the simplest to estimate the total energy consumption of the data
center using this formula, but may be not the optimal solution for
the computation-intensive VMs.

It is reported that we can save energy via appropriate VM
scheduling [14]. Energy efficient virtual machine scheduling is of-
ten viewed as an allocation or mapping problem, which is an op-
timization problem. It was abstracted to multi-dimensional space

64 Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74
partition model in [15], based on which a VM placement algo-
rithm EAGLE was proposed. But it needed two predefined pa-
rameters balance factor and satisfaction factor, which is hard for
users without expert knowledge. Gergő Lovász et al. [16] mod-
eled the energy-optimal VM allocation as a variant of multidimen-
sional vector packing problem, and proposed a model to predict
the performance of VM consolidation considering the tradeoff be-
tween power consumption and service performance. It was also
abstracted as the combination of bin packing and quadratic assign-
ment problems in [17] and a geedy algorithmwas proposed to im-
prove resource utilization and reduce the number of active PMs.

The issue can also be solved using different heuristics such as
genetic, and simulated annealing. Nguyen et al. [18] proposed a
genetic algorithm to power-aware allocate the VMs in a private
cloud, which is a static algorithm. Xiaofei Liao et al. [19] proposed
a heuristic method based on simulated annealing to dynamically
remap VMs to a set of physical machines to form a green cluster.
However, these methods require iterations for scheduling a VM
and they cannot suit for the case of real-time applications.

Anton Beloglazov [20] set two utilization thresholds for each
processor and defined a VM placement algorithm and threemigra-
tion policies. Meanwhile, five open research challenges for energy
efficient management of cloud computing environment were also
presented. And a modification of [20] is proposed in [21], physi-
cal machines are placed in racks, which are coarser granularity of
scheduling VMs. Nakku Kim et al. [22] revealed that billing users
only based on processor time or the number of virtual machine in-
stances in cloud is not sufficient, and proposed a model for esti-
mating the energy consumption of each virtual machine using the
in-processor events. And then a VM scheduling method is devel-
oped according to the energy budget. The thresholds are experi-
mental values andmay be different for various applications, hence
it is hard for users to set the thresholds.

There are twomain challenges for energy efficient VM schedul-
ing in cloud environment, heterogeneous PMs and practical energy
consumption of the PMs. The assumption of homogeneous PMs is
often adopted in energy efficient VM scheduling in cloud comput-
ing,which is not actual in practice. The energy of processors is often
used to replace the energy of PMs for scheduling of computation-
intensive VMs, while low energy of processors does not mean low
energy of physical machines especially for heterogeneous PMs.

In addition, modern hardware provides some opportunities to
save energy. The most popular technology is DVFS, which is used
in almost all processors nowadays. DVFS technology provides the
finer grain of controlling the power of processors, which results
in another way to reduce the energy consumption of the cloud.
However, it is adopted in only few researches on energy efficient
scheduling of VMs in cloud.

One of the first studies of energy efficient VMs scheduling using
DVFS in clusters was proposed in [6]. Only the energy consumed
by the processors is measured, which is not enough to reflect the
energy efficiency of a cluster, because processors only consume
about a quarter of total energy consumption, and the ratio will
be even smaller when the operating frequency is low. Christine
et al. [23] extended Xen’s default credit scheduler to support DVFS
scaling operations, which is a way of reducing power consumption
in a virtualized cluster while guaranteeing the performance. But
these researches do not pay enough attention to the heterogeneity
of the physical machines.

There have been some researches on the energy cost of VM
migration. Haikun Liu et al. [24] constructed two application-free
models for live migration of VMs to estimate the performance and
energy costs based on the knowledge learned from the history.
Anja Strunk et al., [25] experimentally investigated that the factors
affecting the energy consumption of virtual machine migration
are the size of the virtual machine and the available network
bandwidth. The performance overhead [26] and the policies [27]
of VM migration were also studied, but they are not the keynotes
in this paper.

In this paper we study how to schedule computation-intensive
VMs in cloud to improve the energy efficiency. Physical machines
in the cloud are heterogeneous, and the energy of all components of
each PM is considered.Meanwhile, the DVFS technology is adopted
in the scheduling to further reduce the energy consumption of
PMs. We make an assumption in this paper that the energy and
performance penalty are ignored.

3. Systemmodel

This section describes the models of the cloud and the virtual
machines. These models are the basis of the scheduling algorithm
in Section 4. We only deal with the computation-intensive virtual
machines, hence all the components of an active physical machine
except for processor can be viewed as a whole, and their power
consumption keeps constant.

3.1. Power model

The power consumption of modern processors can be divided
into two parts, dynamic power and static power, Pcpu = Pstatic +

Pdynamic . The dynamic power Pdynamic = aCV 2f , where a is the
switching activity, C is the physical capacitance, V is the supply
voltage and f is the operating frequency. The values of switching
activity and capacitance can be viewed as constants because they
are only determined by the low-level system design. It is assumed
that supply voltage V is in proportion to the operating frequency
f , then we get Pdynamic ∝ f 3. However, the dynamic power is not
strictly in proportion to the cubic of the operating frequency in
practice, so we assume Pdynamic = αf h, (α, h > 0) in this paper,
and P f

dynamic = (f /fmax)
h Pmax

dynamic , where P f
dynamic, P

max
dynamic are the dy-

namic power of the processor operating on frequencies f and fmax
respectively.

The static power, also called leakage power, is caused by leakage
currents which are present in any active circuits. The static power
is mainly determined by the type of transistors and the process
technology. It is reported that the idle power of a processor may
sometimes exceed 50% of the peak power, and the main part of
the idle power is the static power. Therefore, we suppose that
Pstatic = βPmax

dynamic, (0 < β ≤ 1).
The total power of a PM is mainly consumed by the proces-

sor, memory, disk and other components. When processing the
computation-intensive tasks, the power consumption of a PM is
assumed to be P = Pcpu +Ps in this paper, where Pcpu and Ps are the
power of processor and all other components including memory,
disk and so on. Additionally, we assume that Ps is fixed when the
VMs are computation-intensive, while Pcpu is changed dynamically
according to the number of active cores and their operating fre-
quencies. For the simplicity of descriptions, we assume that Ps =

γ Pmax
dynamic, (γ > 0). Then we can get the total power and energy of

a PM, P = Pdynamic + Pstatic + Ps, E = (Pdynamic + Pstatic + Ps)t , where
t is the execution time for the PM to process the computation-
intensive VMs. The execution time is affected by the computation
of the VM and the operating frequency of the core, i.e. t = w/f ,
where w is the computation of the VM. So the energy of the PM

will be P =


f

fmax

h
+ β + γ


Pmax
dynamic

w
f .

It is noticed that the processor or PM is active if it is used to
process the VMs, and the cores on which VMs run are called active
cores. The cores except the active ones of a processor are called
inactive cores or idle cores, they will sleep until some VMs are al-
located to them. The active cores are assumed to be 100% load, and

Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74 65
it will sleep as soon as it finishes its workload. If the cores of a pro-
cessor can be controlled independently, the dynamic power of an
active core operating on frequency f is P f

dynamic/nc , where nc is the
number of cores of the processor, while that of any idle core will
be 0. The static power of both active and idle cores is assumed to
be Pstatic/nc unless they are powered down. Hence the power of an
active processor cpu is Pcpu = Pstatic +

1
nc

nc
i=1 x (i) P f (i)

dynamic , where
P f (i)
dynamic is the dynamic power of processor running on frequency

f (i), and x(i) = 1 if the ith core is active, otherwise x(i) = 0.
The inactive processor will be powered down, and Pcpu = Pstatic =

Pdynamic = 0.
The energy of the whole physical machine is

E = Es + Ecpu = (γ + β) Pmax
dynamic

nc
max
i=1

{ti}

+
1
nc

Pmax
dynamic

nc
i=1

x (i)


f
fmax

h

ti (1)

where ti is the execution time of the ith core of processor cpu, and
ti = 0 if the core is idle. Obviously, the energy caused by Ps and
Pstatic is determined by the maximum execution time of the cores,
since the processor and other components should be activated as
long as any core is active.

3.2. Physical machines model

In this paperwe focus on the cloudwith heterogeneous physical
machines, and it is assumed that all PMs support DVFS and cores
of any processor can be controlled independently. Each physical
machine in the cloud, also called node, may be personal computers
or servers, and typically contains several cores which can be
operated on multiple frequencies. The set of heterogeneous PMs is
PM = {pm1, pm2, . . . , pmn}, where n is the number of PMs. Each
PM is divided into two parts, the processor and other components,
and the power of the former Pcpu varies on different frequencies,
while that of the latter Ps keeps stable.

The processor of each PM is defined as cpu = (nc, ns, Pstatic, F ,
P), where nc and ns are the number of cores and the number of op-
erating states of the processor, Pstatic is the static power of cpu, F
and P are the sets of operating frequencies and dynamic power re-
spectively. We assume that the nc cores of PM pm are homoge-
neous, so F = {f1, f2, . . . , fns}, P = {p1, p2, . . . , pns}, where fj and
pj are the frequency and dynamic power of processor cpui’s jth op-
erating status.Without loss of generality, we suppose f1 < f2 < · · ·

< fns and p1 < p2 < · · · < pns, and the minimal and maximal of
the operating frequency and dynamic power are fmin = f1, fmax =

fns and pmin = p1, pmax = pns. And if the core sleeps, its frequency
and dynamic power are set to zero.

The energy of the cloud consisting of n heterogeneous PMs
when processing given tasks is consumed by all active PMs. The
active PM will be powered down when the VMs allocated to it are
finished, and the energy of each active PM can be computed ac-
cording to Eq. (1). Therefore, the total energy consumption of the
cloud for processing given tasks is

E =

n
i=1

y (i)

 
Pi,s + Pi,static

 nci
max
j=1

{ti,j}

+
1
nci

nci
j=1

x (i, j) P f (i,j)
i,dynamic ti,j


(2)

where y(i) = 1 if pmi is active, otherwise y(i) = 0 Pi,static is the
static power of pmi, P

f (i,j)
i,dynamic and ti,j are the dynamic power and

processing time of the jth core of pmi’s processor, Pi,s is the power
consumption of all components except processor of pmi. Themean-
ing of x(i, j) in Eq. (2) is similar to that of x(i) in Eq. (1), x(i, j) = 1
if the jth core of pmi is active, otherwise x(i, j) = 0. For any given
active PM pmi, f (i, j) ∈ Fi and P f (i,j)

dynamic ∈ Pi, while no energy will
be consumed by the inactive PMs.

3.3. Virtual machine model

We focus on computation-intensive VMs which arrive contin-
uously to be processed on the cloud in this paper. The set of VMs
is VM = {vm1, vm2, . . . , vmm} and each virtual machine vmi is
assumed to be processed by a core at any time, i.e. vmi cannot run
on two or more cores at the same time. But VMs can be migrated
from one core to another during the process. The execution time
and power consumption of migrations of the virtual machine are
ignored in this paper.

Each VM is defined as vmi = (w, at, d, st), wherew is the com-
putation of vmi in terms of Million Instructions, at, st and d are
the arriving time, actual starting time and the deadline of vmi. The
operating frequency can also be transformed by the unit of MIPS,
hence the execution time can be computed by dividing the oper-
ating frequency of the core by the computation of the VM. When a
virtual machine vmi arrives, its w, at and d are pre-given, st is the
time when vmi is allocated successfully to a physical machine. We
can see that vmi should be finished between at and d, otherwise it
will be marked as failed VM. The failed VMs will not be processed
further to reduce the resource wastes.

Definition 1. The required resource rr of each VM is the minimal
computation resource required to maintain that it can be finished
successfully before its deadline. Required resource of a VM is the
ratio of its computation uncompleted to the time period from now
to the deadline.

The required resource of vmi can be computed as

vmi.rr =
vmi.w − vmi.wf

vmi.d − t
(3)

where vmi.wf is the computation finished and t is the current time.
Obviously, a VM vmi cannot be assigned to the PM pmj, if vmi.rr >
pmj.fmax. According to Eq. (3), the initial required resource of vmi
is vmi.rr = (vmi.w − vmi.wf)/(vmi.d − vmi.at). If vmi cannot
be allocated once arriving, it will be reallocated at time vmi.at + 1
and its required resource should be updated vmi.rr ′

= (vmi.w −

vmi.wf)/(vmi.d−vmi.at−1). The required resource of vmi will be-
come larger if it still cannot be allocated at time vmi.at+1 or later.

If the required resource of vmi is larger than the maximum fre-
quency of the processors in cloud, vmi will be marked as failed VM
because it cannot be completed before the deadline. If vmi is allo-
cated to a physical machine pm at time t (vmi.at ≤ t < vmi.d), at
least vmi.rr computation resource on pm will be used to run vmi
unless it is completed ormigrated to other PMs. Therefore, vmi can
be completed successfully if it is allocated to a PM before its dead-
line.

The energy consumption of a PM for processing a VM is the
energy consumed by the PM from the starting time to the deadline
of the VM. As a PMmay processmany VMs simultaneously, and the
VMsmay be migrated to a PM to another, the energy consumption
of the cloud to process given VMs is the energy consumed by all
the PMs from the earliest arriving time to the latest finishing time
of the VMs.

Since the power meters work periodically and scaling the
power of the processors frequently may cause the overhead power
consumption unnegligible, the scheduling can be divided into
some equivalent schedule periods (each period is a second in this
paper). Therefore, VMs will be scheduled at the beginning of each

66 Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74
period and the energy of each physical machine will be the sum of
energy consumed in all periods. As mentioned before, the energy
andperformance penalty of physicalmachines’ state transition and
task migration are ignored in this paper.

4. Energy efficient scheduling of virtual machines

4.1. Preliminaries

We describe the details of our scheduling algorithm based on
aforementioned models. The cloud consists of many heteroge-
neous PMs, each of which supports DVFS and has different com-
putation resources and power consumption. To schedule virtual
machines efficiently in the cloud, we must solve the following two
issues at first.

(1) Which PM and core in the cloud should be allocated to a VM?
(2) Which frequency does the selected core operate on to

minimize total energy consumption?

As the heterogeneity of the PMs, each PMprovides various com-
putation capacities and power consumption. We give the notion
of performance–power ratio to weight the physical machines for
electing proper PMs to run the VMs.

Definition 2. Performance–power ratio, ppr , for a physical ma-
chine pm is the ratio of its computation capacity to the peak power,
that is pm.ppr = (pm.nc∗ pm.f max)/(pm.ps + pm.pcpu), where
pm.pcpu and pm.ps are the peak power of pm’s processor and that
of other components.

Intuitively, the PM with higher performance–power ratio can
provide more computation resource than that of lower ppr with
certain power budget, and it consequently takes priority over the
other ones when allocating VMs.

Given a VM vmwith computationw and a PM pmwith nc inde-
pendent cores. We suppose vm is assigned to core cj of pm, and cj
operates on frequency f (j). Then the energy consumption of pm is
E =


Ps + Pstatic + P f (j)

dynamic


t . From Section 3.1, we can get

E = (β + γ)
w

ϕfmax
Pmax
dynamic +

1
nc

ϕh−1

fmax
wPmax

dynamic (4)

where f (j) = ϕfmax, (0 < ϕ ≤ 1) is the operating frequency of
core cj, and t = w/f (j) is the execution time of cj.

The variable in Eq. (4) is ϕ, and we compute the derivative of
Eq. (4) and set it to be 0, then we get the optimal value ϕ∗

=
h
√
nc (β + γ) / (h − 1), and the optimal frequency f (j) can be ob-

tained.
If q VMs (vm1, vm2, . . . , vmq) are allocated to a PM, there

are ncq ways to select active cores, and much more ways to run
considering the operating frequencies of each active core. We can
see from Eq. (1) that the difference of each core’s execution time
should be minimized to reduce energy waste caused by the sleep
cores. Meanwhile, the VMs should be first assigned to the inactive
cores of the PM rather than active ones to reduce the energy
overhead since Ps and Pstatic are stable for any active PM.

There are two novel ways to reduce energy consumption,
minimizing the difference of execution time of all active cores, and
minimizing the imbalance of the workload of active cores. In the
former way, states of active cores should be changed frequently
whichwill lead tomuch energy and time overhead. And sometimes
the difference of execution time cannot be reduced because of the
discrete frequency of the processor and deadline constraint of the
VMs. In this paper we choose the latter method, minimizing the
imbalance of workload of active cores, in which all active cores
operate on the same frequency to further minimize the difference
of their execution time.

Suppose W = vm1.w + vm2.w + · · · + vmq.w, k cores are
used to process the q virtual machines, and each core has the same
computation ideally, then the execution time of each active core is
W/(kf) and the energy consumption of the PM will be

E (k, f) = (β + γ) Pmax
dynamic

W
kϕfmax

+
W
nc

ϕh−1

fmax
Pmax
dynamic . (5)

Obviously, Eq. (5) is a monotonically decreasing function on
variable k. Therefore, the more cores used for a processor, the less
energy is consumed by the PM, because the power of other compo-
nents and static power of the processor are shared by more cores.
This is consistentwith the aforementioned analysis. Computing the
derivative of Eq. (5) about variable ϕ and setting it to be 0, we can
get the optimal frequency for the active cores

ϕ∗
=

h

nc (β + γ) / (k (h − 1)). (6)

Specifically, ϕ∗
=

h
√

(β + γ) / (h − 1) when all cores are used.
Since the operating frequency of the processor must be in in-

terval [fmin, fmax], that is fmin/fmax ≤ ϕ ≤ 1. Then the theoretical
optimal frequency of the active cores should be

f ∗
=

fmax, ϕ∗
≥ 1

fmin, ϕ∗
≤ fmin/fmax

ϕ∗fmax, otherwise.
(7)

Unfortunately, the operating frequency for the processor is dis-
crete, f ∈ {f1, f2, . . . , fns}, thus the theoretical optimal frequency f ∗

will not always be the operating status. Finally we get the practical
optimal frequency that active cores should operate on

fopt =


fi, f ∗

= fi, 1 ≤ i ≤ ns
argmin {E (fi) , E (fi+1)} , fi < f ∗ < fi+1, 1 ≤ i < ns (8)

where fi ∈ pm.F , fi+1 ∈ pm.F , E(fi) and E(fi+1) are the energy con-
sumption of pm when it operates on frequency fi and fi+1 and can
be computed using Eqs. (4) or (5). In the rest of this paper, f ∗ is re-
ferred to as theoretical optimal frequency while fopt is called prac-
tical optimal frequency or optimal frequency for short.

In practice, the workload of each active core may not balance
as VMs arrive continuously and any VM cannot run on more than
one active core at the same time. Therefore, we should try best
to balance the workload of active cores of the PM at each sched-
ule period. If not all cores of a PM are active, the idle cores should
be first assigned to the VMs, otherwise the active core with mini-
mal workload is chosen to run the VMs. Any active core of the PM
should operate on the optimal frequency computed by Eq. (8) if
the VMs can be completed before corresponding deadlines. Perfor-
mance–power ratio cannot be used as theweight of heterogeneous
PMs, because it has no relationshipwith the optimal frequency. The
valid weight must reveal the performance–power ratio of the PMs
operating on optimal frequency.

Definition 3. Optimal performance–power ratio, oppr , for a phys-
ical machine pm is the ratio of the computation resource to the
power of pm when all cores are operating on optimal frequency.
It can be computed as

pm.oppr =
pm.nc∗ fopt

pm.Ps + pm.Pstatic + pm.P fopt
dynamic

(9)

where fopt is computed by Eqs. (7)–(8) using ϕ∗
=

h
√

(β + γ) / (h − 1),
that is all cores of pm are active.

Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74 67
In some previous researches, only the dynamic power of pro-
cessor is considered, that is E = Pdynamic t . Awell-known conclusion
that processor running on lower frequency consumes less energy
can be deduced in that case. This conclusion violates the result of
Eqs. (6)–(8), because the dynamic and static power of processor
and the power of other components are taken into account in this
paper.

Therefore, three conclusions can be obtained from the afore-
mentioned analysis, which is the basis of our scheduling algorithm
described in Sections 4.2–4.5.

(1) The PM with higher optimal performance–power ratio is allo-
cated prior to VMs.

(2) VMs are prior placed on the idle cores of active PMs.
(3) There exists optimal frequency for each PM to process the VMs

to minimize the total energy consumption.

4.2. Scheduling algorithm

Since the VMs arrive continuously, they are scheduled once ar-
riving. Fig. 1 shows the framework of scheduling at the tth period.
The scheduler first picks the VMs that failed to allocate before t
(vml1 and vml2) and the ones that arrive currently (vma1, vma2 and
vma3), and places each of them to a proper PM, and further a core of
the PM. The PMs are sorted with decreasing optimal performance–
power ratio in advance (pma1.oppr ≥ pma2.oppr ≥ pms1.oppr ≥

pms2.oppr), and the one with higher oppr is prior to be assigned
to the virtual machines. If all the active physical machines (pma1
and pma2) are not suitable for the virtual machine, some sleep ones
(pms1 and pms2) must be activated. The scheduling repeats until all
VMs are finished or failed.

At each period, the scheduling can be divided into three phases:
allocating VMs, updating VMs, and reconfiguring the cloud. In the
first phase, we place each VM waiting for being scheduled in this
period onto the proper PM and core. Then an optimal frequency
should be set for each active core and update the information of
both VMs and PMs in the second phase. Finally the cloud should be
reconfigured to consolidate the computation resource tominimize
the energy consumption. DVFS technology is adopted to set
optimal frequency of each physical machine. The details of these
three phases are shown in Sections 4.3–4.5. It is noticed that all the
PMs should be sorted with decreasing oppr before the scheduling.
This is supported by the three conclusions in Section 4.1.

Algorithm 1. EEVS
Input: set of physical machines PM , set of virtual machines
VM
Output: schedule of VM , energy consumption, processing
time
1 sort PM with decreasing oppr;
2 foreach period t do

// VMAllocation, shown in Algorithm 2
3 allocate each VM in VM(t);

// VMProcess, shown in Algorithm 3
4 set frequency of each active PM;
5 update the information of active PMs and running
VMs;

// Reconfiguration, shown in Algorithm 4
6 reconfigure the cloud;
7 if all VMs are finished or failed then
8 return Schedule, Etotal, Ttotal;

Our energy efficient VM scheduling algorithm for the cloud,
EEVS, is shown in Algorithm 1. The idea of EEVS is as follows.
The set of physical machines is sorted with optimal performance–
power ratio decreasing in advance, thus VMswill be prior allocated
Fig. 1. The framework of the scheduling.

Table 1
Variables and their meanings used in Algorithm 1–4.

Variable Meaning

VM(t) The set of VMs need to be allocated at period t
Etotal Total energy of the cluster for processing all VMs
Ttotal Execution time of the cluster for processing all VMs
AllocationList The set of allocations of all VMs, in form of

(vm, pm, core)
Schedule The schedule of the VMs, in form of (vm, pm, core, t)
PMIoppr The set of active PMs with increasing oppr
core.w Sum of required resource of VMs allocated to core of PM
pm.w Sum of required resource of VMs allocated to PM pm
core.f The optimal frequency of core for processing core.w

to the PM with higher oppr . In each period t , VMs arriving at t and
left in the periods before t will be placed onto proper cores of the
PMs.When all VMs are allocated, we set optimal frequency of each
active core and update the information of all running VMs and ac-
tive PMs because the extra computation resource of the cores are
also used to process VMs and some VMsmay be finished. Reconfig-
uration is needed to consolidate the computation resources of the
PMs to save energy. The process of period t+1 will continue if any
VM is under processing or newVM arrives, otherwise, the schedul-
ing is terminated. The descriptions of the variables used in Algo-
rithm 1–4 are shown in Table 1. Transforming the operating states
(i.e. frequencies) of each core is achieved by the DVFS-supported
processors of all physical machines.

The total energy consumption of the cloud is the accumulation
of the energy of all PMs at each period, sowe get Etotal =

T
t=0 Et =T

t=0
n

i=0 Ei,t =
T

t=0
n

i=0(Ei,t(cpu) + Ei,t(s)), where Et and
Ei,t are the energy consumptions of the cluster and the ith PM at
the tth period, Ei,t(cpu) and Ei,t(s) are the energy consumed by the
processor and other components of the ith PM at the tth period.

4.3. VM allocation

The phase of VM allocation, as shown in Algorithm 2, is to find a
proper physical machine and core for each VM in VM(t). According
to the conclusions in Section 4.1, VMs are allocated prior to the PMs
with higher optimal performance–power ratio and their idle cores.

Since the PMs are sorted with decreasing oppr , we traverse the
set PM and the first PM pm which has enough resource is just the
proper one for a given VM. If there exist one or more idle cores on
pm, one of the idle cores will be assigned to the VM, as shown in
steps 3–4 of Algorithm 2. Otherwise, a core with enough computa-
tion resource on pm will be assigned to the VM, as shown in steps
6–8. When a VM is allocated successfully, its starting time is set
to be current time t and its required resource should be added to
the workload of the corresponding core and PM, as shown in steps
9–11.

68 Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74
Algorithm 2. VMAllocation
1 foreach vm in VM(t) do
2 foreach pm in PM do
3 if pm has idle cores then
4 an idle core is allocate for vm;
5 else
6 foreach core of pm do
7 if core has enough resource for vm then
8 core is assigned to vm;
9 AllocationList.add(vm, pm, core);
10 vm.st = t;
11 core.w+ = vm.rr;
12 if vm is not allocated successfully then
13 update vm.rr;
14 insert vm into the head of VM(t + 1);
15 return AllocationList;

As to the VMs that failed to be allocated at period t , they will
be left for scheduling in next period t + 1. And these VMs should
be first scheduled in the (t + 1)th period to avoid that the required
resource becomes too larger to exceed the maximum frequency of
the PMs, as shown in steps 12–14.

4.4. VM processing

After all VMs are allocated to the proper cores on the PMs or fail
to be allocated, we should set optimal frequency for each active
core to run the VMs energy efficiently. This phase includes two
sub-phases, as shown in Algorithm 3, setting optimal frequency for
active cores (steps 15–22) and updating information of active PMs
and running VMs (steps 5–13).

For each active PM, the number of active cores is used to com-
pute the theoretical optimal frequency according to Eqs. (4) and
(5). And the practical optimal frequency fopt can be obtained using
Eq. (6). If the required computation resource of the VMs on the core
is larger than fopt , the optimal frequency of this core is set to be the
minimal frequency that is no less than the required computation
resources, i.e. core.f = min{fi|fi > core.w & fi ∈ pm.F}. Otherwise,
the optimal frequency of corewill be fopt .

Algorithm 3. VMProcess
1 foreach pm in PM do
2 foreach core in pm do
3 if core is active then
4 SetOptFrequency(core);
5 foreach (vm, pm, core) in AllocationList do
6 if vm is completed in this period then
7 core.w− = vm.rr;
8 pm.w− = rm.rr;
9 if core.w = 0 then
10 translate core into sleep state;
11 if pm.w = 0 then
12 translate pm into sleep state;
13 AllocationList.delete(vm, pm, core);
14 return AllocationList;
SetOptFrequency(pm, core)
15 foreach pm in PM do
16 count active cores of pm;
17 compute fopt for pm using Eqs. (4)–(6);
18 foreach active core in pm do
19 if core.w ≥ fopt then
20 core.f = min{fi|fi > core.w & fi ∈ pm.F};
21 else core.f = fopt ;
22 return core.f ;
Then all active cores operate on their optimal frequencies in
any period, and each VM vm occupies the core for a sub-period of
vm.rr/core.w of the period. All the VMs on each active core should
be updated after the period, including their computation finished
and required resource. If some VMs are completed successfully,
they must be removed from AllocationList . The core and PM will
be transformed into sleep state if there are no VMs on it, as shown
in steps 6–13.

4.5. Cluster reconfiguration

In the phase of cluster reconfiguration, theVMswill bemigrated
to some PMswith higher optimal performance–power ratio to save
energy, as shown in Algorithm 4. The VMs on the physical machine
with lowest oppr will be migrated first.

Algorithm 4. Reconfiguration
1 foreach pm in PMIoppr do
2 foreach core in pm do
3 for each vm on core do
4 (pm′, core′) = MigrateVM(vm, pm);
5 if pm ≠ pm′ then
6 update: core.w− = vm.rr, pm.w− = vm.rr;
7 update: core′.w+ = vm.rr, pm′.w+ = vm.rr;
8 AllocationList.delete(vm, pm, core);
9 AllocationList.add(vm, pm′, core′);
10 return AllocationList;
MigrateVM(vm, pm)
11 foreach pm′ with ppr higher than pm in PM do
12 foreach core′ in pm do
13 if core′ has enough resource for vm then
14 return (pm′, core′);
15 return (vm, pm);

We traverse PMIoppr sequentially to checkwhether the VMs on
each PM pm can be migrated to another PM pm′ with higher oppr .
If a core of pm′ has enough resource for a VM vm on pm, then vm
can be migrated to the core core′ on pm′. Then the sum of required
resource of pm, pm′, core and core′ should be updated, meanwhile
the AllocationList should be also updated, as shown in steps 6–9 in
Algorithm 4.

5. Performance evaluation

5.1. Simulation setup

We use simulation test to evaluate our proposed algorithms. In
our simulated cloud environment, the processors of the PMs are
shown in Table 2. We use four PC processors and four server pro-
cessors to show the heterogeneity of the PMs. The idle power and
peak power are the power of the PM running at status of 100%
load and idle, the information are referred from tom’s hardware
website [28] and SPEC result website [29]. Other information is got
from Intel and AMD website, CPU power is the max power of the
processor. The power of components except processor of each PM
Ps = PeakPower − CPUPower , and the static and max dynamic
power of the processor are Pstatic = IdlePower − Ps, Pdynamic =

CPUPower − Pstatic . Then parameters β and γ can be easily com-
puted. We generate PMs using the processor shown in Table 2, Ps
of each PM is randomly simulated with γ ∈ (0, 2). The dynamic
power of each processor is assumed to be a cubic function of fre-
quency, i.e. P f

dynamic = (f /fmax)
3 Pmax

dynamic .
Each schedule period is assumed to be 1 s, the tasks arrive at the

beginning of each period. All the tasks arrive between 0 and 100 s,

Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74 69
Table 2
The processors of PMs in the cloud.

PM Processor Number of cores Max frequency (GHz) CPU power (W) Idle power (W) Peak power (W)

1 AMD Athlon II X2 250 2 3.0 65 56 101
2 Intel Core i5-2300 4 2.8 95 45 112
3 Intel Core i7-970 6 3.2 130 79 198
4 AMD Athlon II X6 1055T 6 2.8 95 79 164
5 Intel Xeon X3220 4 2.4 105 79.8 132
6 Intel Xeon E3110 2 3.0 65 75.2 117
7 Intel Xeon E3-1265Lv3 4 2.5 45 19 58.5
8 Intel Xeon E3-1240V2 4 3.4 69 14.1 72.5

(a) Power consumption of 100 PMs. (b) Performance–power ratio of 100 PMs.

Fig. 2. Power and performance–power ratio of 100 simulated PMs.
and their durations differ from 1 to 100 s. Since only computation-
intensive workload is considered and the computation of each VM
is in terms of Million Instructions in this paper, each task is the ac-
cumulation of float with different sizes. The accumulation can be
transformed into instructions easily and is the basis of many sci-
entific computations. In some extent the size of the accumulation
can be viewed as the computation of each task, and the deadline is
the bearable waiting time. A VM will be created for each task, the
VM has more computation resource than the required resource of
the task. Each VM cannot run on more than one core at the same
time, but it can be migrated from one core to another. The VM that
cannot be completed before deadline is marked as failed VM.

Fig. 2 shows the information of 100 simulated PMs. Fig. 2(a)
reveals the power consumption of the PMswhile Fig. 2(b) gives the
performance–power ratio and optimal performance–power ratio
of each PM. The legends ‘Ptotal’, ‘Pcpu’, and ‘Ps’ are the total power,
the power of processor and power of other components of each
PM respectively. It can be seen from Fig. 2(a) that the PMs with
the same power of processor typically have different total power.
We can also see in Fig. 2(b) that optimal performance–power ratio
is larger than the performance–power ratio in most cases, and
the optimal performance–power ratio of each PM has uncertain
relationship with the performance–power ratio.

Fig. 3 reflects the information of 100 simulated VMs. Fig. 3(a)
shows the arriving time and deadline of each VM, and the VMs
are ordered with increasing arriving time. The required resource
of each VM is shown in Fig. 3(b).

We implement our proposed algorithm EEVS, a naïve algorithm
without sorting the physical machines named as EEVS-N, the
modification of algorithmproposed in [6] named asHomogeneous,
and the MBFD algorithm proposed in [20]. The only difference
between EEVS and EEVS-N is that the latter does not sort the set of
PMs, so EEVS-N randomly chooses a PM to run the VM. Scheduling
in [6] is modified to suit for heterogeneous PMs here. And random
selection for VMmigration is used in MBFD. We compare the total
energy consumption, processing time, failure of virtual machines
and the number of active physical machines of the four algorithms.
We run 100 to 5000 virtualmachines on the cloudwith the number
of heterogeneous physical machines from 100 to 500.

5.2. Simulation results

5.2.1. Energy consumption
Fig. 4 shows the total energy consumption of 100 PMs for light

(100–1000 VMs) and heavy (1000–5000 VMs) load. From Fig. 4(a)
we can see that the energy consumptionof all algorithms are nearly
proportional to the number of PMs, but the slope of EEVS is the
least, that of EEVS-N is the largest. Since more PMs must be acti-
vated for processing more VMs, and EEVS chooses the PMs with
higher optimal performance–power ratio, EEVS costs the least en-
ergy for certain VMs. For example the energy consumption of EEVS,
Homogeneous and MBFD are 22430.1, 24 614.1 and 19874.9 J
for the case of 100 VMs, while they consume 298598, 351612,
342668 J for processing 800VMs. EEVS consumes 14.8% less energy
than MBFD for the case of 800 VMs. It can be seen from Fig. 4(b)
that the proportionalities of all algorithms are destroyed, and the
energy consumption of Homogeneous is the least when the num-
ber of VMs is no less than 3000. The main reason is that they can-
not process all the VMs for heavy load, in other words, only part of
the VMs are completed on time. And Homogeneous completed the
least VMs, the details are shown in Fig. 8.

Fig. 5 reveals the energy consumption of 500 PMs for light and
heavy load. Since 500 PMs can complete 5000 VMs on time for all
the algorithms, the energy consumption of EEVS, EEVS-N, Homo-
geneous and MBFD are linear to the number of VMs. EEVS has the
least slope, Homogeneous has the largest slope, and the slope of
MBFD is also larger than that of EEVS-N and Homogeneous. For

70 Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74
(a) Arriving time and deadline of 100 VMs. (b) Required resource of 100 VMs.

Fig. 3. Information of 100 simulated VMs.

(a) 100 physical machines for light load. (b) 100 physical machines for heavy load.

Fig. 4. Total energy consumption of the cloud with 100 PMs.
(a) 500 physical machines for light load. (b) 500 physical machines for heavy load.

Fig. 5. Total energy consumption of the cloud with 500 PMs.

Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74 71
(a) 100 Virtual Machines

(c) 1000 Virtual Machines

(b) 500 Virtual Machines

(d) 5000 Virtual Machines

Fig. 6. Energy consumption of the cloud with different number of PMs when processing 100, 500, 1000 and 5000 VMs.

example, the energy consumptions of EEVS, EEVS-N, Homoge-
neous and MBFD for the cases of 100, 1000 and 5000 VMs are
(24758.5 J, 61 634.2 J, 28 922.1 J, 22 046.2 J), (266717 J, 637659 J,
354657 J, 299515 J) and (1903450 J, 3143500 J, 2663800 J,
2208540 J) respectively. EEVS consumes 24.8% less energy than
Homogeneous, and 11% less than MBFD for processing 1000 VMs.
The reason that MBFD has the largest slope of the algorithms ex-
cept for EEVS is that MBFD views the processor as a whole, and the
computation resource can be highly used while the others view
core as the scheduling unit thus some computation resource on
each core may be ‘fragments’ and cannot be used.

Fig. 6 reflects the energy consumption of the cloud with
different number of PMs (from 100 to 500 PMs) for running certain
VMs (100, 500, 1000 and 5000 VMs). It is obvious that the energy of
EEVS is the least for all the cases except for 100 PMs and 5000 VMs,
while EEVS-N consumes the most energy for all the cases except
for 300 PMs and 5000 VMs. The energy of EEVS, Homogeneous and
MBFD decreases with more physical machines in most cases when
processing certain VMs and all of them can be finished on time.
While EEVS-N consumes nearly the same energy for processing
certain VMs using different number of PMs when all VMs can
be completed successfully, because EEVS-N randomly chooses the
physical machines to execute the VMs. For example, the energy
consumptions of EEVS, Homogeneous and MBFD in Fig. 6(c) are
(429050 J, 311664 J, 281639 J, 261592 J, 266717 J), (554127 J,
418483 J, 359566 J, 370210 J, 354657 J), and (444722 J, 309475 J,
294379 J, 287208 J, 299515 J) respectively, while that of EEVS-
N are (673079 J, 571225 J, 597566 J, 690297 J, 637659 J). It can
also be seen from Fig. 6 that the MBFD gets more profit than
Homogeneous in terms of energy consumption when the multiple
of the number of VMs and PMs becomes larger, because MBFD
utilizes the PMs more efficiently.
5.2.2. Execution time
The execution time of the cloud for process given tasks is the

time period from the earliest arriving time to the latest finishing
time of the tasks. Fig. 7 depicts the execution time of the cloud
with different number of PMs (from 100 to 500 PMs) for running
certain VMs (100, 500, 1000 and 5000 VMs). A few conclusions can
be obtained form Fig. 7. First of all, all algorithms spend more time
to process more VMs for certain PMs. For example, the execution
time of EEVS, EEVS-N, Homogeneous and MBFD for 100 PMs in
Fig. 7(a)–(d) are (183 s, 172 s, 183 s, 169 s), (188 s, 183 s, 191 s,
182s), (191 s, 190 s, 149 s, 183 s) and (195 s, 193 s, 192 s, 189 s)
respectively. The second conclusion is that MBFD spends the least
time in all the cases, because all active PMs operate on the maxi-
mum frequency in MBFD, while EEVS and EEVS-N use the optimal
frequency and Homogeneous uses the minimum frequency which
should be no less than the required resource of the VMs. Finally
we can see that the execution time of each algorithm for certain
VMs is nearly the same when all VMs can be completed on time.
The execution time is mainly determined by the VMwhich arrives
latest and the one with latest deadline if there is enough compu-
tation resource. For example, the execution time for EEVS, EEVS-N,
Homogeneous and MBFD in Fig. 7(c) are (191 s, 194 s, 192 s, 191 s,
189 s), (190 s, 192 s, 190 s, 188 s, 189 s), (194 s, 194 s, 191 s, 191 s,
188 s) and (183 s, 184 s, 185 s, 182 s, 182 s) respectively.

5.2.3. The number of failed VMs
The number of failed VMs for all algorithms is shown in Fig. 8.

Since the cloud with 200 or more PMs can process all the VMs, we
only show the case of 100 PMs.We can first see that Homogeneous
cannot deal with the case of 2000 VMs, while the others failed in
the case of 3000 VMs. Since Homogeneous operates on the mini-
mal frequency which is no less than the required resource, some
VMs may always wait for being allocated and finally cannot be

72 Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74
(a) 100 Virtual Machines

(c) 1000 Virtual Machines

(b) 500 Virtual Machines

(d) 5000 Virtual Machines

Fig. 7. Execution time of the cloud with different number of PMs when processing 100, 500, 1000 and 5000 VMs.

scheduled as the increasing required resource. Since MBFD always
chooses the PMwhich may consume the least energy for each VM,
someVMswith larger required resourcemaybe failed to allocate as
no PM can provide the enough computation resource for the VMs
for the case of heavy load. Therefore MBFD leads to the most failed
VMs. EEVS and EEVS-N lead to less failed VMs than Homogeneous
and MBFD, because they consolidate the computation resources
of the PMs after each period and PMs operate on the optimal fre-
quency. The number of failed VMs of EEVS, EEVS-N, Homogeneous
and MBFD for 4000, 4500 and 5000 VMs are (387, 432, 719, 1459),
(775, 809, 896, 2073) and (731, 958, 1167, 2205) respectively. EEVS
completes 10.1%, 3.9% and 15.4% more VMs successfully than Ho-
mogeneous for processing 4000, 45000 and 5000 VMs.

The number of failed VMs is the criteria of performance. Each
failed VMmeans that a task cannot be finished before deadline, and
maybe the user gives up this cloud service. Hence reducing energy
consumption should not lead to much performance penalty. Our
EEVS algorithm satisfies this rule according to the results shown in
this section.

5.2.4. Active PMs
Fig. 9 shows the number of active PMs when scheduling 500

and 5000 VMs on the cloud of 100 PMs. We can see that EEVS uses
the least PMs (13 PMs at most) while MBFD uses the most PMs
(22 PMs at most) most of the times in Fig. 9(a). That is because
EEVS fully utilizes the computation resources of each active PM,
while MBFD greedily chooses PM consuming the least energy for
each VM and thus more PMs should be activated. The number of
active PMs of EEVS-N and Homogeneous are both between that of
EEVS and MBFD, because they randomly choose the PMs. Since all
VMs arrive before 100 s, more PMs should be activated to process
the increasing VMs from the beginning of the scheduling until the
latest VM arrives. After that no sleep PMs will be activated for all
algorithms after 100 s for the case of light load. In Fig. 9(b), MBFD
Fig. 8. Number of failed VMs on the cloud with 100 PMs.

activates more PMs than others most of the times. The results of
EEVS and EEVS-N are nearly the same, because the heavy load
makes full use of all PMs. Homogeneous uses less active PMs than
the others after all PMs are activated, because the first failed VMs in
Homogeneous appear earlier than that of EEVS, EEVS-N andMBFD.

6. Conclusion and future work

How to reduce energy consumption of data centers has been an
open challenge for both academe and industries. Cloud computing
has been used in more and more fields, and virtualization is
typically adopted in cloud computing nowadays. We can find that
the main challenges for energy efficient scheduling of VMs in
cloud computing are the heterogeneity of the PMs, the total power
consumption of each PM and the adoption of some energy saving
technologies for hardware such as DVFS.

To overcome these issues, we propose EEVS, an energy efficient
scheduling algorithm of virtual machines to reduce the total en-
ergy consumed by the cloud, which also supports DVFS well. From

Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74 73
(a) 100 physical machines and 500 virtual machines. (b) 100 physical machines and 5000 virtual machines.

Fig. 9. Number of active PMs when processing 500 and 5000 VMs on the cloud with 100 PMs.

the computation of total energy of a PM, we conduct that there is
an optimal frequency for it to process certain VMs. Based on the
optimal frequency we define the optimal performance–power ra-
tio to weight the heterogeneities of the PMs. The PM with highest
optimal performance–power ratio will be used to process the VMs
first unless it does not have enough computation resources.

The process of EEVS is divided into some equivalent periods to
simply the computation of total energy consumption of the PMs.
In each period, we first find the VMs need to schedule and allo-
cated them to the proper cores of the PMs, and then the optimal
frequency of each active core can be computed according to the
sum of the required resources of the VMs on it. Then the infor-
mation of the VMs and PMs should be updated after each period
especially when some VMs finished successfully. Finally the cloud
should be reconfigured to consolidate the computation resources
of the PMs to further reduce the energy consumption.

Though our EEVS consumes less energy and processes more
VMs successfully than the existing methods in most cases, there
are still some shortcomings. Two important assumptions aremade
in this paper, the performance and power penalties of status tran-
sitions of processor and VM migrations are ignored, and the PMs
andworkload are simulated though some information are checked.
These assumptions do not work well in practical cloud environ-
ment.Wewill do a further study based on practical cluster and real
workload in the next step to find more research issues.

Acknowledgments

This work is supported by National Natural Science Foundation
of China (61373015), Research Fund for the Doctoral Program of
High Education of China (No. 20103218110017), a project funded
by the Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD), the Fundamental Research Funds
for the Central Universities (Nos. NP2013307, NZ2013306).

References

[1] L.A. Barroso, The price of performance, Queue 3 (7) (2005) 48–53.
[2] US EPA ENERGY STAR Program, Report to congress on server and data center

energy efficiency, Public law, 2007, pp. 109–431.
[3] W. Forrest, How to cut data centre carbon emissions? Website, Decem-

ber 2008. Available: http://www.computerweekly.com/Articles/2008/12/05/
233748/how-tocut-data-centre-carbon-emissions.htm.

[4] L. Barroso, U. Holzle, The case for energy proportional computing, IEEE
Comput. 40 (12) (2007) 33–37.

[5] A. Beloglazov, R. Buyya, Y.C. Lee, A. Zomaya, A taxonomy and survey of energy-
efficient data centers and cloud computing systems, Adv. Comput. 82 (2011)
47–111.
[6] G. Laszewski, L. Wang, A.J. Younge, X. He, Power-aware scheduling of virtual
machines in DVFS-enabled clusters, in: IEEE International Conference on
Cluster Computing and Workshops, 2009, pp. 1–10.

[7] X. Fan, W.-D. Weber, L.A. Barroso, Power provisioning for a warehouse-sized
computer, in: Proceedings of the 34th Annual International Symposium on
Computer Architecture, 2007, pp. 13–23.

[8] J. Leverich, C. Kozyrakis, On the energy (in)efficiency of Hadoop clusters, Oper.
Syst. Rev. 44 (1) (2010) 61–65.

[9] W. Lang, J.M. Patel, Energy management for MapReduce clusters, PVLDB 3
(1–2) (2010) 129–139.

[10] W. Lang, J.M. Patel, J.F. Naughton, On energy management, load balancing and
replication, SIGMOD Rec. 38 (4) (2009) 35–42.

[11] Zhen Xiao, Weijia Song, Qi Chen, Dynamic resource allocation using virtual
machines for cloud computing environment, IEEE Trans. Parallel Distrib. Syst.
24 (6) (2013) 1107–1117.

[12] S. Bazarbayev, M. Hiltunen, K. Josh, Content-based scheduling of virtual
machines (VMs) in the cloud, in: International Conference on Distributed
Computing Systems, 2013, pp. 93–101.

[13] I. Hwang, M. Pedram, Hierarchical virtual machine consolidation in a
cloud computing system, in: IEEE Sixth International Conference on Cloud
Computing, 2013, pp. 196–203.

[14] W. Vogels, Beyond server consolidation, Queue 6 (1) (2008) 20–26.
[15] X. Li, Z. Qian, S. Lua, J. Wu, Energy efficient virtual machine placement

algorithm with balanced and improved resource utilization in a data center,
Math. Comput. Modelling 58 (5–6) (2013) 1222–1235.

[16] G. Lovász, F. Niedermeier, H. Meer, Performance tradeoffs of energy-aware
virtual machine consolidation, Cluster Comput. 16 (3) (2013) 481–496.

[17] J. Dong, X. Jin, H.Wang, Y. Li, P. Zhang, S. Cheng, Energy-saving virtualmachine
placement in cloud data centers, in: IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2013, pp. 618–624.

[18] N.Q. Hung, P.D. Nien, N.H. Nam, N.H. Tuong, N. Thoai, A genetic algorithm
for power-aware virtual machine allocation in private cloud, in: Interna-
tional Conference on Information and Communication Technology, 2013,
pp. 183–193.

[19] X. Liao, H. Jin, H. Liu, Towards a green cluster through dynamic remapping of
virtual machines, Future Gener. Comput. Syst. 28 (2) (2012) 469–477.

[20] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing,
Future Gener. Comput. Syst. 28 (5) (2012) 755–768.

[21] S. Esfandiarpoor, A. Pahlavan, M. Goudarzi, Virtual machine consolidation for
data center energy improvement, CoRR, 2013. arXiv:1302.2227.

[22] N. Kim, J. Cho, E. Seo, Energy-credit scheduler: an energy-aware virtual
machine scheduler for cloud systems, Future Gener. Comput. Syst. 32 (2014)
128–137.

[23] C.M. Kamga, G.S. Tran, L. Broto, Extended scheduler for efficient frequency
scaling in virtualized systems, SIGOPS Oper. Syst. Rev. 46 (2) (2012) 28–35.

[24] H. Liu, C. Xu, H. Jin, J. Gong, X. Liao, Performance and energy modeling for live
migration of virtual machines, Cluster Comput. 16 (2) (2013) 249–264.

[25] A. Strunk, W. Dargie, Does live migration of virtual machines cost energy,
in: IEEE International Conference on Advanced Information Networking and
Applications, 2013, pp. 514–521.

[26] S. Sotiriadis, N. Bessis, P. Gepner, N. Markatos, Analysis of requirements
for virtual machine migration in dynamic clouds, in: IEEE International
Symposium on Parallel and Distributed Computing, 2013, pp. 116–123.

[27] V. Medina, J.M. García, A survey of migration mechanisms of virtual machines,
ACM Comput. Surv. 46 (3) (2014) 1–33.

[28] M. Masiero, A. Roos, December 23, 2012. http://www.tomshardware.com/
reviews/cpu-performance-comparison,3370-17.html.

[29] SPEC, 12 November, 2014. http://www.spec.org/power_ssj2008/results/
power_ssj2008.html.

http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref1
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://www.computerweekly.com/Articles/2008/12/05/233748/how-tocut-data-centre-carbon-emissions.htm
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref4
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref5
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref8
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref9
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref10
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref11
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref14
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref15
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref16
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref19
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref20
http://arxiv.org/1302.2227
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref22
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref23
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref24
http://refhub.elsevier.com/S0167-739X(15)00036-9/sbref27
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.tomshardware.com/reviews/cpu-performance-comparison,3370-17.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html
http://www.spec.org/power_ssj2008/results/power_ssj2008.html

74 Y. Ding et al. / Future Generation Computer Systems 50 (2015) 62–74
Youwei Ding is a Ph.D. Candidate at the College of
Computer Science and Technology, Nanjing University
of Aeronautics and Astronautics, China. His research
interests include energy efficient data management, cloud
computing and data mining.

Xiaolin Qin is a Professor at the College of Computer Sci-
ence and Technology, Nanjing University of Aeronautics
and Astronautics, China. His research interests include se-
curity database, temporal–spatial database, data manage-
ment and security in distributed environment.
Liang Liu is an associated professor at the College of
Computer Science and Technology, Nanjing University of
Aeronautics and Astronautics, China. He receives his Ph.D.
degree in 2012 form Nanjing University of Aeronautics
and Astronautics. His research interests include wireless
sensor network and data management in distributed
environment.

Taochun Wang is a Ph.D. Candidate at the College of
Computer Science and Technology, Nanjing University of
Aeronautics and Astronautics, China. He is also an asso-
ciate professor at College of Mathematics and Computer
Science, Anhui Normal University, China. His research in-
terests include wireless sensor networks, privacy preser-
vation and data management in distributed environment.

	Energy efficient scheduling of virtual machines in cloud with deadline constraint
	Introduction
	Related works
	System model
	Power model
	Physical machines model
	Virtual machine model

	Energy efficient scheduling of virtual machines
	Preliminaries
	Scheduling algorithm
	VM allocation
	VM processing
	Cluster reconfiguration

	Performance evaluation
	Simulation setup
	Simulation results
	Energy consumption
	Execution time
	The number of failed VMs
	Active PMs

	Conclusion and future work
	Acknowledgments
	References

