Evolution of Buffer Management in Relational
Database Management Systems

Kaveh Razavi

November 1, 2010

Abstract

Database buffer management has gone through tremendous changes
since the beginning of relational database management systems. This
report is going to look through this evolution between 1975 and 2000.
Most notably, traditional algorithms are discussed and compared with
query aware memory allocation like hot set, QLSM and marginal gains.
New bottlenecks as memory becomes cheaper and thus larger is iden-
tified and solutions on overcoming them are then discussed.

1 Introduction

Underlaying structure and functionality for data management is a key el-
ement in performance characteristics of a database management system
(DBMS). Buffer manager is a name given to a DBMS subsystem which is in
control of the lowest level of memory management. Basically it is respon-
sible for bringing pages containing the data from the hard disk to memory
by means of a “PIN” operation and write the pages back from memory to
disk by means of an “UNPIN” operation. When to do these operations
and which pages to do these operations on, are the main tasks of the buffer
manager and they have been a topic of research for a while. The problem
is thus simple: Given the fact that buffers are there to hide the latency of
disks, buffer manager should decide which pages of the database it should
keep into the limited memory it is provided by the operating system.

The first buffer managers used the basic page replacement algorithms
which performed well for operating system memory manager. However, it
turned out that by exploiting the predictability of database queries’ memory
requirement, buffer managers could use the available buffers in a much more
sophisticated way. There is a road path that researchers took to make the

best out of this predictability. The emergence of highly parallel workloads
also becomes apparent during this time and researchers studied the behavior
of the proposed buffer management algorithms on these workloads as well.
The next two sections is going to discuss two of these new algorithms. In the
next section, after looking at traditional algorithms for buffer management,
I am going to overview “hot set” which is the first algorithm to exploit pre-
dictability of database memory references and then I am going to discuss
“DBMIN” an improvement to “hot set” algorithm. In section 3, an algo-
rithm based on “marginal gains” which outperforms previous algorithms is
then reviewed.

Around a decade later, with increased amount of system memory, the
problem shifted one layer closer to CPU, where the data actually gets pro-
cessed. System researcher realized in most of the cases the main memory is
no longer the bottleneck. CPU caches are very fast on-chip memory which
act as a buffer to hide main memory’s latency. To be fast and to be able to
run on a fast clock to have low latency with CPU, cache memory is usually
small and from a few kilo-bytes up to a few mega-bytes. Cache memory
itself is usually divided into multiple levels called L1, L2 and sometimes L3.
The higher the number, more memory can be buffered and thus slower it
gets. Section 4, discusses this problem and possible solutions in more detail
and the last section concludes this report.

2 Query aware buffer management

This section first discusses the traditional methods for buffer management.
Then the hot set model is described and after that comes query locality set
model (QLSM) which DBMIN algorithm is based on.

2.1 Traditional methods for buffer management

Traditionally, database systems all used basic LRU or some forms of it to
minimize the number of page faults in the system. It has been shown [1]
that LRU among other basic page replacement algorithms performs best
under typical workloads and apart from that, it is simple to implement
which makes it a good candidate for high performance subsystems. However
as it is discussed, many situations occur during processing a query which
LRU does not perform well. For example, when executing multiple queries
together, effects of one query could have bad effects on the execution of the
others. Sequential scans are an example of these queries. Another problem
which happens frequently is during nested loop joins when the buffer is not

big enough to hold the pages of inner relation in memory. In this situation,
LRU performs the worst. Other problems arise due to the fact that LRU has
no mechanism to prevent thrashing under heavy workload. These problems
are referred to as internal and external thrashing [5]. To avoid such problems
two new algorithms were proposed:

Domain Separation Reiter [2] suggested that it is important to differ-
entiate between the “type” of a page. For example, consider a query which
randomly accesses data pages through a B-Tree index. In this example, the
root of the B-Tree is always going to be access in each data reference. The
pages in the second level of the B-Tree is not as important as the root page
but still is going to be accessed with a high probability. And generally an
index page is much more important than a data page. Based on these ob-
servations, he suggested that each type of pages should have its own domain
and LRU should be taken in each domain and domains can use frames from
other domains in case they run out of memory. As a simple scheme, he
used one domain for each level of the B-Tree index and one domain for the
leaf level (data pages) and it showed 8 — 10% throughput improvement in
comparison to basic LRU.

The main limitation of Domain Separation is that the concept of domain
is static. An importance of a page could vary between different queries.
The very unimportant data page in a B-Tree reference could become very
important if used as an outer relation of a nested loop join. It also does
not take into account the relative importance of one domain to another.
And there are a couple of other problems which I do not mention for the
sake of briefness. To address these problems, a couple of buffer management
algorithms based on or similar to Domain Separation were proposed.

“New” algorithm Another step forward in the improvement of database
buffer management was these two observations by Kaplan [4] in his Master
thesis: importance of page is defined by the relation it belongs to and not
the page itself and each relation should have a “working set” [3]. Based
on these observations, Kaplan designed “new” algorithm, which worked by
defining a working set for each relation. These sets are put in a priority
queue with the free list on top. Whenever a page fault occurs, a search is
started from the priority list to find a suitable frame. If pages of a relation
is less likely to be accessed it is put on top of the priority queue. Each
relation can have one “fixed” page and the working set is handled with
MRU algorithm. Although “new” algorithm brought in a novel idea in to

the area of buffer management, it failed to perform better in comparison
to LRU and the reason for this was mainly because the use of MRU within
each working set is not very well justified. However, the novelty of the idea
was reused in the hot set model.

2.2 The hot set model

The host set model [5], is one of the first models which tried to take database
memory reference predictability into account. That made it able to cope
with most of the deficiencies of traditional methods. It tries to predict the
size of pages that a query spends most of its calculation based on the size
of the relations that the query is working on and the type of database
operation it needs. This size o is the size of the query’s hot set. For
example, if it is required to do a nested loop join to answer a query, then hot
set size of the query is 1+ sizeof(R2) where R2 is the inner relation. Based
on different database operations, different heuristics are used to predict the
hot set sizes of given queries. These heuristics are then used with a buffer
management algorithm. As one can see, the idea of allocating memory to
relations is followed from the “new” algorithm.

The implemented algorithm based on the hot set model works as follows:

1. Initialize: put all the available frames in a free LRU list.

2. New query comes in: allocate a new empty list with two values numref
o and numall = 0. Get as ¢ many page as you can from free list and
set numall to that number. Note that if not enough frames are avail-
able then numall will be less than o.

3. Query requests a page:

(a) Page is in memory: if in local LRU list, update the usage infor-
mation. Else, do nothing.

(b) Page is not in memory: page fault. If we have free frames, bring
the page in local LRU list. If not, if there is an unfixed page,
based on LRU principle, flush it to disk and use it and if all
pages are fixed try to get one from free list based on LRU and
increase numall. If free list is empty get one unfixed page (again
based on LRU) from the query with largest numref — numall
since they are already bad (i.e. do not have enough pages for
their hot set).

4. Fix the page: increase its referee count. Do computation. Fixing
means the page is now in the hot set.

5. Unfix the page: decrease reference count.

6. Release page: query does not this page anymore. We take lazy step
and do nothing here.

7. Query leaves: Find queries with numref — numall > 0 and try to
satisfy their needs. If there is none, give pages back to the free list.

The hot set model clearly overcomes or avoids most of the problems
of traditional algorithms for buffer management like internal and external
thrashing by predicting the memory needs of a query. Next subsection, after
introducing DBMIN, shows performance comparison results of hotset and
DBMIN with traditional algorithms.

2.3 Query locality set model

Query locality set model [6] (QLSM) took the idea of hot set model one
step further in the sense that it tries to separate the modeling of reference
behavior from any particular buffer management algorithm like LRU or
MRU. Roughly speaking, QLSM uses more information about the type of
operation for page replacement instead of just simply using LRU. QLSM
does this by decomposing the memory reference pattern of each operation
into the composition of a number of simple reference patterns. To do this,
QLSM uses the notion of file which is allocated a certain number of memory
frames. Each query, based on the relation which it works on during its
execution, opens and closes these files.

There are two questions that need to be answered with this model: How
many frames should be allocated to each file and what local replacement
policy should be used within each file? The answer to the first question is
somewhat what hot set model tried to come up with. However, the second
question is the main idea behind the QLSM because now the replacement
policy for each relation is not something general like LRU and instead based
on the reference pattern of the type operation the query opened the file for.
Examples of these patterns are sequential references, random references and
hierarchical references. These patterns are then further divided depending
on the type of operation.

DBMIN is a buffer management algorithm based on QLSM. Assume
there are N frames in the system. [;; is the maximum number of frames

that can be allocated to jth file of query ¢ and r;; is the actual number of
frames that is currently allocated to jth file of query i. At first all the N
frames are in a global free list DBMIN avoids thrashing by suspending a
query if it requests a file of size [and (I + XXI;;) becomes bigger than N.
All the pages are also accessible through two global free and busy lists.

When a file is opened, its [and r values are passed to the buffer manager.
When a page is requested by a query a search is made through global lists.
Three possible scenarios might happen:

1. Page is in global and local list: its information required by the local
replacement policy is updated

2. Page is in global but not in local list: if it has an owner simply add it
to the locality list. If not, add it to the locality set and increase r now
if r => [, choose one page according to local replacement policy and
add it to the free list.

3. Page is not in memory: initiate a disk read to a buffer in free list and
then proceed like 2.

It is obvious that these local files are just there to maintain the working
set of the relation which query is working on and the actually swapping
happens in the global lists. The last thing to discuss for the implementation
of DBMIN is how to determine [and the replacement policy of each file.
As mentioned while describing QLSM, these are identified by the study of
memory reference pattern in different database operation required to execute
a query. I will briefly explain two examples of these patterns and others could
be found in [6].

Straight Sequential (SS) References Happens for example in the outer
relation of a nested loop join where every data page is accessed only once.
Hence only one memory page is required and is overwritten when a the next
page is requested.

Looping Sequential (LS) References Happens for example in the in-
ner relation of a nested loop join where the whole data pages are scanned
repeatedly. Here obviously MRU performs best and it is good to give the
file as many page as possible till the whole file could fit in memory. Here [
is the size of file then.

Thus, when a nested loop join is to be performed, the buffer manager
opens two files; One with SS policy for the outer relation and another with

LS policy for the inner relation. Chou and DeWitt also introduced a new
hybrid simulation for assessing the performance of DBMIN over hot set
and other traditional algorithms which I am not going into for the sake of
briefness.

2.4 Comparison of buffer management algorithms

There are many figures in [6] comparing different queries and environments.
The authors decided on three query mixes which is described below.

Query Query Selectivity Access path Join Access path
number operations® factor (%) of selection method of join
1 Select (A} 1 Clustered
index
11 Select (B) 1 Moneclustered — —
index
I Select (A) 2 Clustered Index Clustered
join B index join index
on B
v Select (A") 10 Sequential Index Nonclustered index
join B scan Jjoin on B
v Select (A) 3 Clustered Nested Sequential
join B’ index loops scan over B’
VI Select (A) 4 Clustered Hash Hash on result
join A’ index join of select (A)

* A, B: 10K tuples; A" 1K tuples; B': 300 tuples; 182 bytes per tuple.

Query Type Type Type Type Type Type
mix I(%) 1 {%) 100 (%) IV (%) V(%) VI (%)
M1 16.67 16.67 16.67 16.67 16.66 16.66
M2 25.00 25.00 12.50 12.50 12.50 12.50

M3 37.50 37.50 6.25 6.25 6.25 6.25

I am only putting the figures regarding query mix M3 here since it seems
to be more realistic in comparison to real world workloads. Figure on the
left shows the comparison without data sharing and the figure on the right
shows the results using full data sharing between queries.

Clearly, DBMIN is working better compared to traditional buffer man-
agements and also the one using the hot set model.

THROUGHPUT THROUGHPUT
050+ —__ 0.60+

0.50¢ A T:—H\/\w/"\——-f"

N,
L 0.304 W\
Y “a “,
il N -——- RAND {(load control) N —_ RAND
0.20 "\:;,‘ FIFO (load control) 0.20 \.x\ FIFO
A CLOCK (load control) =T ~ CLOCK
' HoT “THO
1 - HOT
0.10 DEMIN 0.10 —— DEMIN
0.00——— —— NC 0.00 —— — ——+ NCI
0 4 8 12 16 20 24 28 32 Q 0 4 & 12 16 20 24 28 32 Q

(c)

Figure 1: Performance comparison of DBMIN with other algorithm in work-
load M3

3 A more flexible solution using marginal gains

As NG et la [7] suggested, there are a couple of problems with QLSM which
causes low buffer utilization and throughput. For example, if a file for the
inner relation of nested loop join requires 10 buffers and there are only 9 free
buffers available in the system, DBMIN does not start the operation. Or
even if there are 5 free buffers in the system, DBMIN always allocates one
buffer for a random reference (for example through a hash join). They argue
that traditional buffer management algorithms only take into account the
availability of buffer and newer algorithms like hot set or DBMIN care only
about memory reference pattern and only reason about available buffers in
a static manner.

Based on this observation, a flexible buffer management based on marginal
gains was introduced. This new model reasons about available buffers in the
system as well as memory reference patterns of the operation. Thus, it is ac-
tually very similar to DBMIN except the fact that current available buffers
are also taken into account when allocating buffers to files. The goal of the
new model is to maximize page hits when allocating buffers to database
operations.

To explain the new model a formalization of database memory access
pattern is given and then based on that the new model is described. I will
briefly go through the process of modeling random references using Markov
chains seems it seems to be the most interesting case and then I will explain

the proposed new algorithm based on this new model and after that we see
how it performs compared to DBMIN.

3.1 Modeling of random references using marginal gains

Reference Ref of length k to a relation is a sequence of page references
< Pp, P, ..., P, > of that relations that needs to be read in order.

Random Ref Rj y of length k of a relation of size N pages is a reference
of size k, where the page references are uniformly distributed over all the N
pages of the relation and each reference is independent of the other one.

Ef(RkN,s) is the expected number of faults using s buffers in a random
reference Ry, .

mg(Ry n,s) is the marginal gain of using s buffers instead of s — 1 for a
random reference Ry, n and equals Ef(Ryn,s —1) — Ef(Rg.n,$)-

Using this definition, it is clear that marginal gain is more flexible than
that of locality set sizes in DBMIN because now the algorithm can decide for
available buffers although they may not be enough for a certain operation
(e.g. alooping reference). What remains to be discussed is how to calculate
Ef or expected number of faults using Markov chains.

Assume P(f,k,s,N) is the probability that there there f number of
faults in k access in the relation of size N using s buffers. Then:

Ef(RhN,S) = Z‘I)ﬁzl f‘P(f7k73aN)

To calculate the probability P two cases needs to be considered. Either
kth access has produced a fault or it has not. Based on this and the fact the
number of faults could be bigger or smaller than the number of allocated
buffer, section 3.2 of [7] devises the following formula in the mentioned cases
using Markov chains:

P(f’k’st)_{ FIN«P(fk—1,5,N)+(N—f+1)«P(f—1,k—1,5,N) f>s

And the base case is P(0,0,s, N) = 1. However, there does not exist a
simple closed formula for E f but below is a very close approximation to the
answer:

) Nx[1-(1-1/N)¥| k<k
Ef(Rk,N,S)—{ s+ (k—ko)* (1 —s/N) kzk(o]

ko =1In(q—s/N)/in(1 —1/N)

More detail about the formula could be found in the mentioned section.
The important thing is that the calculated formula could be used in mg
formula to derive the number of buffers that needs to be allocated to this
random reference to maximize the number of page hits based on the available
buffers in the system.

3.2 MG-x-y a new algorithm based on marginal gains

The best buffer allocation algorithm best on marginal gain would be when-
ever there are N free buffers in the systems, choosing the queries in the
waiting list which maximizes the total marginal gain. This computation is
expensive however. MG-x-y is a class of algorithms based on marginal gains
with low computational costs. The only difference between DBMIN and
MG-x-y is that MG-x-y takes the available buffers into account when try-
ing to allocate buffers to a query. After this number is determined MG-x-y
works exactly like DBMIN. Whenever buffers are released by a new com-
pleted operation, MG-x-y invokes the following algorithm for the queries in
the waiting FIFO queue in a loop until there are no more queries or free
buffers left. x and y are the inputs of MG-x-y and R is the reference pattern
at the head of the queue:

e R is a looping reference: (not discussed, refer to [7]) (argument x is
used here)

e R is a random reference Ry n: as long as the mg is positive allo-
cate as many buffers as possible till the number of allocation is <
min(Available buffers, y)

e R is a sequential reference: allocate 1 buffer

3.3 Comparison of MG-XY with DBMIN

The figures below is the environment setup for the simulation. The same
simulation setup as DBMIN is used.

10

query query selec- access path Jjoin access path reference
type operators tivity of selection method of join type
I select{A) 10 % clustered index - - S50.500
11 select(B) 10 % | non-clustered index - - Raoas
III select(A)NB | 1% sequential scan index join | non-clustered index on B | Rig0,15
v select(A) M B 4% clustered index nested loop sequential scan on B £300,15

relation A | 10,000 tuples

relation B 300 tuples 1 1I 11 \Y
tuple size 182 bytes mix 1 [10% [46% [46% | -
page size 4K mix 2 | 10% | 10% | 10% | 70%

The purpose of mix 1 is to evaluate the effect of allocation of buffers in
random references. Mix 2 is out of the scope of this report. Figures below
show the performance comparison of various MG-x-y and DBMIN. Note
that DBMIN is actually a specific case of MG-x-y. The left figure shows
the comparison of mix 1 and the results with full data sharing (queries have
read access to the pages of other queries) in mix 2 is on the right for the
sake of completeness.

155, 1.50
150 MG-100-14 MG-100-12 145
< xR ues,
1 45 -8 - ey MG-50-12 g)
¢ MG-100-13 r 1.40 .
a 1404 a
’ >~
!oiss Al T -~ b 1354
° " IMG-100-8 Te ° N s
1 1 304 s MG-100- 1304 SR MG-50.8
n o135 s h e
/ 1.25 MG-50-1
;' 1204 B 4 . t
e Al A a h 120
ro 15 h » -
o ¢ ALG-100-15 o
u 110, . u 115
g g
h 105 . b0
5 3 p MG-100-12
ltl 1004 : u P
; t LT T e
oosd . DBMIN(MG-108-1) 1.08 ., ,
0904 & 100 ——
DBMIN(MG-108-1)
G 35 drpremmesmom e ey 095
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16

multiprogrammng level multiprogramming level

Multiprogramming here means the number of concurrent queries running
in the system. Clearly, MG-x-y is superior in terms of throughput compared
to DBMIN.

11

4 Buffer management on modern hardware

Later in 1999, with the emergence of new processors with larger cache mem-
ory, Ailamaki et la [8] discovered that even if the database in completely
in memory, 50% of the time the CPU is waiting on cache stalls. In this
section, I am going to go through why this is the case and how database
researchers could overcome these problems.

4.1 Instruction execution on modern processors

Figure below shows the simplified block diagram of a modern processor
operation. Whenever the processor wants to execute an instruction, the
instruction decode unit reads the first byte from the I-cache and then based
on that, it reads the other bytes. If an L1 I-cache miss occurs here the
processor needs to wait for L2 and if L2 cache miss occurs then it needs to
wait for main memory. The instruction is then put in the instruction pool to
be scheduled for execution. When executing, it could be that the processor
needs data which is not in the registers. Then it tries to read them from
L1 D-cache and if it misses it goes through (data and instruction unified)
L2 cache and then if another miss occurs here, the processor needs to go to
main memory. The retire unit then checks among executed instruction to
see if they can be committed.

INSTRUCTION
POOL

I |
[}
1 FETCH/ DISPATCH/ |
| DECODE EXECUTE RETIRE |
; UNIT UNIT UNIT o T+ Ty !
I |
— =
[} |
: ‘ L1 I-CACHE ‘ ‘ L1 D-CACHE ‘ |
[}

|
|) A |
I
; ‘ L2 CACHE ‘ ;
I |
[} |

__

During the first two phase of execution (fetch and execution), it might
be that a miss occurs and the processor needs to stall the pipeline. Pro-
cessor tries to do some useful work while waiting for data like: Non-
blocking caches, out-of-order execution and Speculative execution

12

with branch prediction. The details of these methods could be found in
the section 3.1 of [8].

Even with these effective methods, it could still be that the processor
needs to stall for memory to become available while executing a query. And
thus the execution time T for a query could be formulated as follow:

To=Tc+Tuy+T+Tr—TovL

Where T¢ is the useful computation time, Tj is time waiting for mem-
ory, T is branch mis-prediction penalty, Tg is resource stalls (enough re-
sources like ALU is not available) and since these stalls could overlap Toy
is introduced in the equation.

Tc computation time
T stall time related to memory hierarchy
Tiip stall time due to L1 D-cache misses (with hit in T.2)
Ty stall time due to L1 I-cache misses (with hit in L.2)
T T stall time due to L2 data misses
Tro stall time due to L2 instruction misses
Tome stall time due to DTLB misses
Trms stall time due to ITLB misses

Ty branch misprediction penalty

Tr resource stall time
Try stall time due to functional unit unavailability
Toer stall time due to dependencies among instructions
Tamse stall time due to platform-specific characteristics

The breakdown of these waiting times is in the table above.

4.2 Measurement of different stall times

Section 4 and 5 of [8] goes deeply into details of setting up the environment
and measuring the results which I am not going into for the sake of briefness.
A real world representative database workload is consisting of sequential
range selection, indexed range selection and a sequential join was devised to
run on a Pentium II Xeon with the following specification:

Characteristic L1 (split) 12

Cache size 16KB Data 512KB
16KB Instruction

Cache line size 32 bytes 32 bytes

Associativity 4-way 4-way

Miss Penalty 4 cycles (w/ L2 Main
hit) memory

Non-blocking Yes Yes

Misses outstanding | 4 4

‘Write Policy L1-D: Write-back | Write-back
L1-I: Read-only

13

The table below shows the method of measuring each of the stall time com-
ponents:

Stall time component Description Measurement method
Tc computation time Estimated minimum based on uops retired
Ta Tiip L1 D-cache stalls #misses * 4 ¢ycles
Tru L1 I-cache stalls actual stall time
T Top | L2 data stalls #misses * measured memory latency
T | L2 instruction stalls #misses * measured memory latency
Toms DTLB stalls Not measured
Tme ITLB stalls #misses * 32 cycles
Ty branch misprediction penalty # branch mispredictions retired * 17 cycles
Tx Try functional unit stalls actual stall time
Toep dependency stalls actual stall time
Tunp Instruction-length decoder stalls | actual stall time
Tovp overlap time Not measured

The workload was executed on the Pentium II Xeon using 4 different
commercial databases and the main results for different stall times are shown
below:

10% Se quential Range Selection 10% Indexed Range Selection Join
100% — 100% 100%
“E‘ 80% 1 80% | 80%
;: 60% 1 60% + 60% -
2 0% 40%] 40% |
E 20% -—_ 20% - 20% A
0% T T T 0% T T 0% T T T
A B c D B c D A B € D
| OL1 D-stalls (bottom) EL1I-stalls OL2 D-stalls HL2 |-stalls OITLB stalls (top) |

The I'TLB stalls are due to virtual to physical memory translation in the
instruction pages of the N'T operating system. Another experiment including
the sequential range scan and TPC-D workload calculated based on clock
per instruction comes below:

14

10% Sequential Range Selection 100 MB TPC-D

2.0

=

S

§ 1.5 1

B

£ 1.0

8

a

2 0.5 +

Q

o

© 0.0 T T T T

A B D A B D

O Computation EMemory stalls

OBranch mispredictions M Resource stalls

4.2.1 Breakdown of different stall times

Below is the cache related stall times while executing 10% sequential range
scan and TPC-D workload:

10% Sequential Range Selection 100 MBTPC-D

©100%

E

= 80% 1

s

> 60% =

8

= 40%

f

g 20%

© ===

S 0% T
A
OL1 D-stalls EL1 I-stalls
OL2 D-stalls HL?2 I-stalls

And below are the stall times for branch mis-prediction and resource
stalls (Tpgp) like low level dependency between instruction (i.e. one needs to
be completed for the other to start or continue) which prevents the usage of
pipeline and also functional unit (Tpy) stalls caused due to lack of resources
to answer burst of CPU instructions:

15

SRS: Sequential Selection, IRS: Indexed Selection, SJ: Sequential Join

@ 25% o 20%

b E

d o =

c 20% 515%

S 15% E

K 2 10%

2 10% o

= &

: 5% 3 5%

3 il :

L [/ N : : o 0%+

A B c D 0% 1% 5% 10% 50% 100%
DBMS Query selectivity
| O SRS HIRS aosJ | |E| Branch mispred. stalls L1 I-cache stalls

o 25% 25%
£ Tper — Tru
= 20% — 20% H

5 —
§ 15% — — 15% 4

X 10% - | - 10% H

e — —

s 5% H H - - 5% H —u’
s 0% : : : 0% =il | —
= A B c D A B c D

OSRsS BIRS osJ | | O SRS BIRS osJ

4.2.2 Places with prominent optimization

As one could see from the main results presented in section 4.2, most of
the waiting time of the processor are due to memory stall times. Branch
mis-prediction penalty and also stalls due to resource contention are out of
the hand of database developers and needs subtle design changes in CPUs.

However, database developers could benefit a lot by reducing the memory
stalls and as the graph with cache related stall suggests mainly by reducing
L1 I-cache misses and L2 D-cache misses. L1 I-cache misses are mainly due
to volcano model of processing and L2 D-cache misses are mostly due to
row wise data storage in most of the queries. Thus, new design in relational
databases are required to address these issues. MonetDB X100 [9] is one
example of these new designs.

16

5 Conclusion

This report studied the evolutions of buffer managements in relational database
systems roughly between 1975 and 2000 up until the realization of a new
bottleneck in buffer management. The road path in database memory man-
agement started to part ways by that of the operating system by introducing
domain separation. The “new” algorithm sparked the way for accounting
memory to database relations instead of generally allocation memory. Based
on this the hot set model was introduced which worked by allocating mem-
ory based on the memory requirement of each operation. QLSM pushed the
idea even further by separating the memory reference pattern and replace-
ment policy and finally a model based on marginal gains pushed the buffer
allocation to its edges.

More than 10 years ago researchers realized that the memory -becoming
cheaper- is no more a bottle neck for database performance. What is not
studied in this report is the past 10 years of research which mostly focuses
on data processing on modern hardware. Realizing the i-cache misses due
to volcano model of processing and also high d-cache misses due to row-wise
storage are now the main bottlenecks in database performance, researchers
started implementing databases based completely on new ideas [9].

What I could not find, is research on adapting DBMS memory manage-
ment to new NUMA processors. New non cache coherent processors are also
going to be a challenge for database researchers. This might remain a topic
of research for a while since OS researchers are still trying to come up with
answers regarding these systems and these answers would greatly influence
database performance based on its memory behavior.

References

[1] T. Lang, C. Wood, and I. B. Fernandez: Database buffer paging in
virtual storage systems, ACM Trans. Database Systems, 1977.

[2] A. Reiter: A study of buffer management policies for data management
systems, Technical Summary Report 1619, Mathematics Research Cen-
ter, University of Wisconsin, Madison, 1976.

[3] P. J. Denning: The working set model for program behavior, Comm.
ACM, 11 (1968), 323-333.

[4] J. A. Kaplan: Buffer management policies in a database environment,
Master Report, University of California, Berkeley, 1980.

17

[5]

G. M. Sacco and M. Schkolnick: A mechanism for managing the buffer
pool in a relational database system using the hot set model, VLDB
1982: 257-262.

Hong-Tai Chou, David J. DeWitt: An Evaluation of Buffer Management
Strategies for Relational Database Systems, VLDB 1985: 127-141.

16. Raymond T. Ng, Christos Faloutsos, Timos K. Sellis: Flexible Buffer
Allocation Based on Marginal Gains, SIGMOD 1991: 387-396.

Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, David A. Wood:
DBMSs on a Modern Processor: Where Does Time Go?, VLDB 1999:
266-277

M. Zukowski, P. A. Boncz, N. Nes, S. Heman: MonetDB/X100 - A
DBMS In The CPU Cache. IEEE Data Engineering Bulletin, 28(2):17-
22, June 2005.

18

