
Sequential and Parallel Cellular
Automata-Based Scheduling Algorithms

Franciszek Seredynski and Albert Y. Zomaya, Senior Member, IEEE

Abstract—In this paper, we present a novel approach to designing cellular automata-based multiprocessor scheduling algorithms in

which extracting knowledge about the scheduling process occurs. This knowledge can potentially be used while solving new instances

of the scheduling problem. We consider the simplest case when a multiprocessor system is limited to two-processors, but we do not

imply any limitations on the size and parameters of parallel programs. To design cellular automata corresponding to a given program

graph, we propose a generic definition of program graph neighborhood, transparent to the various kinds, sizes, and shapes of program

graphs. The cellular automata-based scheduler works in two modes. In learning mode we use a genetic algorithm to discover rules of

cellular automata suitable for solving instances of a scheduling problem. In operation mode, discovered rules of cellular automata are

able to automatically find an optimal or suboptimal solution of the scheduling problem for any initial allocation of a program graph in

two-processor system graph. Discovered rules are typically suitable for sequential cellular automata working as a scheduler, while the

most interesting and promising feature of cellular automata are their massive parallelism. To overcome difficulties in evolving parallel

cellular automata rules, we propose using coevolutionary genetic algorithm. Discovered this way, rules enable us to design effective

parallel schedulers. We present a number of experimental results for both sequential and parallel scheduling algorithms discovered in

the context of a cellular automata-based scheduling system.

Index Terms—Cellular automata, coevolution, genetic algorithms, multiprocessor scheduling, two-processor systems.

æ

1 INTRODUCTION

AN increasing number of research problems and real-life
applications need massively parallel computing. It is

still not clear how future computing devices offering
needed enormous computational power will look. A great
hope today are naturally and bio-inspired nonstandard
computational techniques, such as neural networks, genetic
algorithms or simulated annealing, and new emerging
computational paradigms, such as immune systems, molecu-
lar computation, computation in cellular automata, and
quantum computing. One can notice an increasing number
of publications [7], [14], [19], [37], workshops, and confer-
ences [4], [8], [11], [24] devoted to these methods.

To the most interesting or promising results obtained
with use of bio-inspired techniques and recently reported
belongs discovery [3] of rules for the majority classification
problem, which are better than currently known human
rules, successfully solving a number of communication
problems like, fraud detection [5] in mobile-phone systems
or solving problems related to financial economics like, an
optimization portfolio problem [16].

Multiprocessor scheduling belongs to a special category
of computational problems. On one hand, it is closely
related to the issue of practical performance of current and
future computers. On the other hand is the problem, even

limited to the simplest case considered in this paper, when

we have to work with the two-processor system, but any

parallel program is an example of computationally difficult

an unsolved research problem, known as an NP-complete

problem [10].
Current works concerning the scheduling problem are

oriented to either derived exact solutions [2], [9] for selected
problems for which such solutions can be found or
designing heuristic algorithms to find usually near optimal
solutions. In the latter case, effective heuristics like, list
scheduling [35], clustering scheduling algorithms [12], or
critical path-based heuristics [17] were developed. The
prevailing majority of these scheduling algorithms are
sequential ones and a new perspective direction in this
area is developing parallel scheduling algorithms [1].

Commonly recognized weaknesses of the above men-

tioned heuristic scheduling algorithms is their sensitivity to

scheduling parameters, a lack of scalability and determin-

ism which is unable, in general, to reach optimal solutions.

Developing stochastic global search techniques based on

natural and bio-inspired methods opened new possibilities

to deriving good quality solutions. Heuristics based on

genetic algorithms (GA) [18], [39], [40], neural networks,

and simulated annealing [20], [23], are used effectively

today to solve scheduling problems.
Today, heuristic scheduling algorithms have passed a

long way in their evolution to be able to produce high
quality solutions, but they are still the subject of intensive
study to improve their performance. While scheduling
quality has been significantly improved, one of the main
problems remains the minimization of scheduling overhead
represented by cost of running the scheduler. One of the
main sources of scheduling overhead is neglecting potential

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 10, OCTOBER 2002 1009

. F. Seredynski is with the Polish-Japanese Institute of Information
Technologies, Koszykowa 86, 02-008 Warsaw, Poland, and the Institute
of Computer Science, Polish Academy of Sciences, Ordona 21, 01-237
Warsaw, Poland. E-mail: sered@ipipan.waw.pl.

. A.Y. Zomaya is with the School of Information Technologies, The
University of Sydney, Sydney, NSW 2006 Australia.
E-mail: zomya@it.usyd.edu.au.

Manuscript received 20 June 2001; accepted 14 Feb. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 114384.

1045-9219/02/$17.00 ß 2002 IEEE

Bargozide
Highlight

Bargozide
Highlight

Bargozide
Highlight

Bargozide
Highlight

knowledge about the scheduling problem which could be
gained during solving instances of the scheduling problem.

Note that the prevailing number of scheduling algo-
rithms do not extract, conserve, and reuse any knowledge
about the problem while solving instances of the scheduling
problem. Applying GA for scheduling may serve as a
typical illustration of this situation. To run a GA-based
scheduler, a random initial population of potential solution
is created and the population is evolved with the use of
genetic operators until a solution is found. To find a
solution of a new instance of the scheduling problem, the
instance which is only a modification of the previous
instance, or a composition of some instances solved earlier,
general knowledge about previous solutions cannot be
used. A new searching process must be started from the
beginning by creating an initial random population of
potential solutions.

The motivation of our work is to develop a framework
for designing scheduling algorithms where knowledge
about scheduling process can be extracted and potentially
used for solving new instances of scheduling problem. We
focus our attention in the paper on the first issue, extracting
knowledge about the scheduling process available during
solving instances of the scheduling problem. For this
purpose, we propose using a recently emerged and very
promising hybrid technique combining evolutionary com-
putation and computation with cellular automata (CA).

The CA presents a highly parallel and distributed system
of single, locally interacting units which are able to produce a
global behavior [22], [32], [36]. The CA can be considered as a
model of naturally existing systems produced by natural
evolution. Such systems are capable of producing globally
coordinated information processing, unguided by any global
criterion or central control. Information processing capabil-
ities of such systems are not explicitly represented in their
components but rather in their interconnections. These
capabilities are more powerful than ones done by elementary
components or their combinations. For these reasons, CA has
been used to model different physical and biological
phenomena such as fluid flow, galaxy formation, avalanches,
earthquakes, growth of stony corals, and other biological and
physical pattern formations.

Despite the known future of CA as machines which are
capable of universal computation, in the sense of a Turing
machine, these capabilities were not explored well enough
due to huge spaces of local CA rules representing possible
solutions. Most applications of CA were, therefore, a result of
clever, but time-consuming, hand-designing rather than an
oriented search. Only recent works [6], [3] on applying
evolutionary computation and, in particular, GA to design
CA opened new possibilities for doing it automatically.
Recent results show that such CA systems, combined with
evolutionary techniques for discovering local rules, can be
effectively used to solve complex problems such as classifica-
tion and synchronization [6], [3], [31] or cryptography [34].
We follow this line of research and, in this paper, we review
and extend the recently proposed technique for scheduling,
based on applying GA and CA [26], [28].

The remainder of the paper is organized as follows:
Section 2 presents the scheduling problem. Section 3 gives an
overview of CA. Section 4 presents the concept of multi-
processor scheduling with the use of CA. Section 5 contains
experimental results concerning sequential CA applied to

scheduling. Section 6 describes the coevolutionary GA-based
engine for discovering parallel CA scheduler and presents
experimental results concerning the discovery with coevolu-
tionary GA scheduling rules. Finally, Section 7 contains
conclusions and discusses future works.

2 MULTIPROCESSOR SCHEDULING PROBLEM

A multiprocessor system is represented by an undirected
unweighted graph Gs ¼ ðVs; EsÞ, called a system graph. Vs is
the set of Ns nodes of the system graph representing
processors with their local memories of a parallel computer
of MIMD architecture. Es is the set of edges representing
bidirectional channels between processors and defines a
topology of the multiprocessor system. Fig. 1a shows an
example of a system graph representing a multiprocessor
system consisting of two-processors P0 and P1. This
topology will be used in all experiments presented in this
work. It is assumed that all processors have the same
computational power and communication via links does
not consume any processor time.

A parallel program is represented by a weighted directed

acyclic graph Gp ¼ ðVp; EpÞ, called a precedence task graph or

a program graph. Vp is the set of Np nodes of the graph

representing elementary tasks, which are indivisible com-

putational units. There exists a precedence constraint

relation between the tasks k and l in the precedence task

graph if the output produced by task k has to be

communicated to the task l.

A program graph has two attributes: weights bk and

weights akl. Weights bk of the nodes describe the processing

time (computational cost) needed to execute a given task on

any processor of a given multiprocessor system. Ep is the set

of edges of the precedence task graph describing the

communication pattern between the tasks. Weights akl of

the edges describe communication time (communication

cost) between pairs of tasks k and l when they are located in

the neighboring processors. If the tasks k and l are located in

the same processor, then the communication delay between

them will be equal to 0.

Fig. 1b shows an example of the program graph consisting

of four tasks with their order numbers from 0 to 3. All

communication costs of the program graph are equal to 1 (see

marked edges). Computational costs of tasks (marked on

their left side) are 1, 2, 4, and 2, respectively.

The purpose of the scheduling is to distribute the tasks

among the processors in such a way that the precedence

constraints are preserved, and the response time T (the total

execution time) is minimized. Found optimal schedule is

1010 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 10, OCTOBER 2002

Fig. 1. Examples of (a) a system graph and (b) a precedence task graph.

Bargozide
Highlight

Bargozide
Highlight

Bargozide
Underline

Bargozide
Highlight

Bargozide
Highlight

Bargozide
Underline

Bargozide
Highlight

Bargozide
Underline

Bargozide
Highlight

usually represented by a Gantt chart (see Fig. 2a) showing

allocation of tasks to processors and time when a given task

starts and finishes execution.
For the purpose of the next sections, we will introduce

some additional notions. We assume that, for each node k of

a precedence task graph, there are defined sets of

predecessors(k), brothers(k) (i.e., nodes having at least one

common predecessor), and successors(k). For example, node

1 from Fig. 1b has the set of predecessorsð1Þ ¼ f0g, the set of

brothersð1Þ ¼ f2g, and the set of successorsð1Þ ¼ f3g. Nodes

without predecessors will be called starting nodes and

nodes without successors will be called exit nodes.
We also assume that two additional attributes can be

defined for each node k of a precedence task graph: the level

and the colevel. The level hk of a node k is defined as

hk ¼
bk; for an exit node
maxl2successorsðkÞðhk þ aklÞ þ bk; for other nodes;

�
ð1Þ

i.e., it is the maximal length of the longest path from a node k

to an exit node. The colevel dk of a node k is defined as

dk ¼
bk; for a starting node
maxl2predecessorsðkÞðdk þ alkÞ þ bk; for other nodes;

�
ð2Þ

i.e., it is the length of the longest path from the starting node

to node k. Values of the level and the colevel of a given task

are static and do not depend on the allocation of a program

graph in the processors of a parallel system. However, if we

calculate them for a task of a program graph allocated in the

system graph, these values will depend on the allocation.

We will call values of the level or colevel calculated for

tasks of a program graph allocated in the system graph the

dynamic level or colevel, respectively.

The response time T for a given precedence task graph

depends on allocation of tasks in multiprocessor topology
and scheduling policy applied in individual processors:

T ¼ fðallocation; scheduling policyÞ: ð3Þ

Let us assume that tasks 0, 1, and 2 from Fig. 1b are
allocated in processor P0 and the task 3 in the P1. After
execution of task 0, processor P0 may choose for execution

either task 1 or task 2, depending on a scheduling policy.
Figs. 2b and 2c show two different response times T

corresponding to the same allocation of tasks, but different
scheduling policies. We will assume that a scheduling

policy is fixed for a given run of a scheduling algorithm and
is the same for all processors.

3 CELLULAR AUTOMATA

One-dimensional CA [33], [36] is a collection of two-state
(binary) elementary automata (cells) arranged in a lattice of

length N and interacted locally in a discrete time t, usually
in a parallel and synchronous way. Fig. 3a shows the
example of such a CA. White or black color of a cell denotes

its actual state 0 or 1, respectively. For each cell i, called the
central cell, a neighborhood of a radius r is defined. Figs. 3b

and 3c show examples of the neighborhood of cell i of
radius r ¼ 1 and r ¼ 2, respectively, consisting of ni ¼
2rþ 1 cells, including cell i.

It is assumed that, a state qtþ1
i of the cell i at the time tþ 1

depends only on states of its neighborhood at the time t, i.e.,

qtþ1
i ¼ fðqti; qti1; qti2; . . . ; qtniÞ: ð4Þ

A transition function f defines a rule of updating cell i. It
is usually assumed that a CA is uniform (homogeneous),

i.e., the neighborhood relation and the transition function

SEREDYNSKI AND ZOMAYA: SEQUENTIAL AND PARALLEL CELLULAR AUTOMATA-BASED SCHEDULING ALGORITHMS 1011

Fig. 2. A schedule represented by a Gantt chart for a problem from Fig. 1. (a) Optimal schedule. (b) and (c) Schedules for different scheduling

policies.

Bargozide
Underline

Bargozide
Highlight

Bargozide
Underline

Bargozide
Highlight

Bargozide
Highlight

are the same for every cell, including cells 0 and N ÿ 1. For
such a CA, we can rewrite the dependence (4) as

qtþ1
i ¼ fðqtiÿr; . . . ; qtiÿ1; q

t
i; q

t
iþ1; . . . ; qtiþrÞ: ð5Þ

If we consider a neighborhood of a radius r ¼ 1, then a
set of possible neighborhood states is f000; 001; . . . ; 111g.
Table 1 lists all these states and shows the example of the
transition function fg.

A rule represented by this function and called the general
rule says that if, at time t a neighborhood of the cell i is f011g,
then the state of the cell at time tþ 1 should be equal to 0.

A length Lg of the general rule and a number of
neighborhood states for a binary uniform CA is Lg ¼ 2n,
where n ¼ ni is the number of cells of a given neighborhood
and the number of such rules can be expressed as 2Lg . For a
CA with r ¼ 2, the length of the rule is equal to Lg ¼ 32 and
the number of such rules is 232 and grows very fast with Lg.
For this reason, some other types of rules are used to make
them shorter and decrease their total number.

4 MULTIPROCESSOR SCHEDULING WITH

CELLULAR AUTOMATA

4.1 A Concept of Cellular Automata-Based
Scheduler

We will assume that an elementary automaton (cell) is
associated with each task of the program graph. Each
elementary automaton is binary—since we consider two-
processor architectures. We use state 0 (1) of a cell to
indicate that the corresponding task is allocated to

processor P0 (P1). The concept of the CA-based scheduler
is illustrated in Fig. 4.

Initially, the program tasks are randomly allocated to the
processors. For example, task allocation ð0; 1; 1; 0Þ indicates
allocation of tasks 0 and 3 to processor P0, and tasks 1 and 2
to processor P1 (see Fig. 4 (upper)). An initial state of CA
corresponding to the program graph is set according to the
initial allocation of tasks (see Fig. 4 (lower left)). Next, the
CA starts to evolve according to some predefined rule.
Changing states of the evolving CA corresponds to
changing the allocation of tasks in the system graph, what
results in changing the response time T (see (3)). The final
state of the CA corresponds to the final allocation of tasks in
the system (Fig. 4 (lower right)).

To construct the CA-based scheduler, one must find
answer on several questions:

1. What is the topological structure of proposed CA:
linear, as shown in Fig. 4 (lower left), or nonlinear,
related in some way to the topological structure of a
program graph;

2. What kind of a local neighborhood of a program
graph is the most appropriate to design correspond-
ing CA; and

3. How to find in a huge space of CA rules, the rule
capable of solving the scheduling problem.

In the approach we adopt, the structure of the CA is
nonlinear and corresponds to the topology of the program
graph. We will use a generic definition of neighborhood,
transparent to the various kinds, sizes, and shapes of
potential program graphs. We use the following strategy:

1012 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 10, OCTOBER 2002

TABLE 1
Example of a General Rule for One-Dimensional CA with a Radius r ¼ 1

Fig. 3. (a) One-dimensional cellular automata of the length N, (b) a neighborhood of a radius r ¼ 1, and (c) a neighborhood of a radius r ¼ 2.

Bargozide
Highlight

The neighborhood for an elementary automaton, associated
with a task of the program graph, is based only on the sets
of the task’s predecessors, brothers and successors. Even
then, the potential neighborhood may vary in size—we will
use additional means to deal with this problem. A related
question is that of potential irregularities in program
graphs. For example, some tasks have no predecessors
(brothers, successors). For that, we extend the program
graph by adding dummy nodes and taking this into account
when coding the state of neighborhoods.

The ideas presented above only outline architectural
details for the CA-based scheduler. The actual architecture
will be more complex.

4.2 Selected Neighborhood

A neighborhood of a central task consists of three
subneighborhoods and includes this task. Each subneigh-
borhood of a cell associated with a task k is created only by
two selected representatives of a set of predecessors,
brothers, and successors, respectively. The representatives
are selected on the basis of, respectively, maximal and
minimal values of some attributes of tasks in the given set.
As we stated earlier, the following attributes are assigned to
task k of the program graph: akl, bk, static level, dynamic
level, and static and dynamic colevels.

In a given run of the scheduling algorithm, one attribute
for each set of predecessors, brothers and successor is
selected. The attributes selected for each set may be different.
If corresponding tasks of a subneighborhood are missing in a
program graph, dummy tasks are introduced. So, the selected
neighborhood of a given cell associated with a central task
always consists of seven cells and includes this cell. This type
of neighborhood we call a selected neighborhood.

Because the structure of a program graph and corre-
sponding CA is irregular, the number of predecessors,
brothers, or successors may be less than two, or they may

have the same values of attributes, the following solutions

for special cases have been accepted:

. If predecessors (brothers or successors) do not exist
for a given task, a subneighborhood corresponding
to such a situation is created by adding a pair of
dummy tasks and associating with them a pair of
cells; the states of these cells (denoting processors
where the tasks are allocated) are undefined and the
state of such a subneighborhood takes a special
value.

. If only one predecessor (brother or successor) exists
for a given task, the subneighborhood corresponding
to this situation is created by adding a single dummy
task/cell; the state of this cell will be the same as the
state of the existing cell (i.e., it is assumed that a
dummy task is allocated to the same processor as the
real task in the subneighborhood).

. If the number of predecessors (brothers or succes-
sors) is greater than two and all of them have the
same value of an attribute, then we select two
different tasks with the smallest and largest order
number.

Fig. 5 illustrates neighborhoods created for task 0 of the

program graph from Fig. 1. Task 0 does not have any

predecessors, so two dummy task-predecessors p0 and p1

are created (Fig. 5a). For the same reason, two dummy task-

brothers b0 and b1 are created. Real tasks 1 and 2 are

considered as task-successors s0 and s1 of task 0. After

constructing neighborhoods for all cells associated with

tasks, it is necessary to define states of the subneighbor-

hoods qpk, q
b
k, and qsk (Fig. 5b) and the state qneighk of the

selected neighborhood (Fig. 5c).
The central cell associated with task k takes the value 0 or

1. Values of each pair of cells corresponding to subneigh-

borhoods are mapped into one of five values describing the

state of the pair in the following way:

. State 0: Values of both cells of the pair are the same
and equal to 0 (both tasks corresponding to cells are
in the processor P0).

SEREDYNSKI AND ZOMAYA: SEQUENTIAL AND PARALLEL CELLULAR AUTOMATA-BASED SCHEDULING ALGORITHMS 1013

Fig. 4. An idea of a CA-based scheduler: an example of a program graph

and a system graph (upper), corresponding CA performing scheduling

(lower).

Fig. 5. (a) Selected neighborhood: creating a neighborhood for task 0

from Fig. 1, (b) a state of cell 0 depends on the states of

subneighborhoods created by predecessors, brothers, and successors,

and (c) the state of a neighborhood of the cell 0 is evaluated.

Bargozide
Highlight

. State 1: The first cell takes value 0 and the second
one takes value 1 (corresponding tasks are in P0 and
P1, respectively).

. State 2: The first cell takes value 1 and the second
one takes value 0 (corresponding tasks are in P1 and
P0, respectively).

. State 3: Values of both cells of the pair are the same
and equal to 1 (both tasks corresponding to cells are
in the processor P1).

. State 4: Values of cells are undefined (there are no
tasks corresponding to these cells).

Because state qk of the central cell may take two values
(f0; 1g) and states qpk, q

b
k, and qsk of respective subneighbor-

hoods may take five values (f0; 1; 2; 3; 4g), the total number of
states of the neighborhood is 2 � 5 � 5 � 5 ¼ 250. The length of
a rule is 250 bits and, thus, there are 2250 possible transition
functions.

State qk of the central cell is updated according to such a
function. GA will be used to search the space for the best
rule, i.e., a rule of CA providing a solution of scheduling
problem.

4.3 Discovery of CA Rules for Scheduling

Fig. 6 presents the architecture of the CA-based scheduler.
The scheduler operates in two modes: learning mode (Fig. 6
(left)) and operation mode (Fig. 6 (right)).

In the learning mode, CA rules are discovered by the
GA. It is expected that discovered rules will be suitable to
solve the scheduling problem for any initial allocation of

tasks for a given instance of the problem. Tasks of the
program graph representing a given instance of the
problem are initially randomly allocated to processors of
the parallel system. The CA is built for the program graph
and a predefined type of a local neighborhood.

An initial population of GA containing CA rules is created
and a set of test problems—initial random allocations of tasks
of the program graph is generated. States of the CA are
initialized according to the first test problem and the CA is
equipped with the rule from the population of rules. CA starts
to evolve, changing its states during predefined number of
steps, which results in changing the allocation of tasks of the
program graph.

The response time T for the final allocation is evaluated.
For a given rule, this evaluation procedure is repeated
predefined number of times for a set of test problems
represented by different initial allocations. This results in
evaluation of some fitness value T � for the rule, which is the
sum of values T corresponding to the individual runs.

After evaluation of the entire population, genetic
operators are involved. The evolutionary process continues
a predefined number of generations, after which the
discovered rules are stored (Fig. 6 (right)).

In the operation mode, the program graph used in the
learning mode is randomly allocated, CA is initiated and
equipped with a rule taken from the set of discovered rules.
We expect that, in this mode, for any initial allocation of
tasks of the given program graph, the CA will be able to
find, in a finite number of steps, allocation of tasks
providing the minimal value of T .

1014 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 10, OCTOBER 2002

Fig. 6. An architecture of a CA-based scheduler.

The GA [6], [13], [21] used to discover CA rules for the

CA-based scheduler is described below.

GA to discover CA rules:

t=0

create an initial population P ðÞ of size n_pop of rules

WHILE termination_condition NOT TRUE

BEGIN

create a set of a size n_test of test problems

FOR i ¼ 1 TO n_pop

BEGIN

T �ij ¼ 0

FORj ¼ 1 TO n_test

T �ij ¼ T �ij þ CA(rulei, testj, seq=par, CA steps)

END

sort P ðÞ according to T �i
move E of the best individuals from P ðtÞ to P ðtþ 1Þ

FOR k ¼ 1 TO n_pop - E

REPEAT

ruleparent1 =select()

ruleparent2 =select() 6¼ ruleparent1

(rulechild1 , rulechild2)= crossover(ruleparent1 , ruleparent2)

mutation(rulechild1 , rulechild2)
UNTIL Hamming (rulechild1 , rules)>¼ H

AND

Hamming (rulechild2 , rules)>¼ H
t ¼ tþ 1

END

problem_solution= the best rules from P ðÞ.
After creating an initial population P ðÞ of random rules

of the CA and a set of test problems, each rule is tested by
running the CA. The CA can run in one of two modes:
sequential ðseqÞ and in parallel ðparÞ. Each run of the CA
lasts a predefined number CA steps of time steps. After
evaluation of the fitness function T �i of each rule, the rules
are sorted. The best E rules (with minimal T �i) are moved to
the currently created population P ðtþ 1Þ. To the remaining
rules of the P ðtÞ, genetic operators of selection (select),
crossover, and mutation are applied. New rules are
accepted to the P ðtþ 1Þ if their Hamming distance to the
rules from the P ðtÞ is equal to or greater than a predefined
number H. A new set of test problems is created for rules in
a new generation. The evolutionary process is continued a
predefined number of generations. When it is completed,
discovered rules are stored.

After the run of the GA, its population contains rules
suitable for CA-based scheduling. We can find the quality
of these rules in the operation mode. We can generate a
number of test problems and use them to test each of the
rules we found.

5 SEQUENTIAL CA FOR SCHEDULING

In the experiments reported in this section, it is assumed
that the CA works asynchronously, i.e., at a given moment

SEREDYNSKI AND ZOMAYA: SEQUENTIAL AND PARALLEL CELLULAR AUTOMATA-BASED SCHEDULING ALGORITHMS 1015

Fig. 7. Program graphs: (a) gauss18, (b) g18, (c) g40, and (d) tree15.

of time, only one cell updates its state. An order of updating
states by cells is defined by their order number correspond-
ing to tasks in the precedence task graph. A single step of
running the CA is completed in Np (Np - a number of tasks).

A number of experiments with program graphs available
in the literature have been conducted. The first program
graph referred as gauss18 [17] is shown in Fig. 7a. It
represents the parallel Gaussian elimination algorithm
consisting of 18 tasks. The next program graph g18 is
shown in Fig. 7b [9]. Computational costs of tasks are
shown in the figure. Communication costs are all the same
and equal to 1. Fig. 7c presents a program graph g40 with
computational and communication costs equal to 4 and 1,
respectively. Fig. 7d shows a binary out-tree program
graph. We refer to it as tree15. Also, we use binary out-trees
tree63 and tree127. Computation and communication
weights of out-trees are equal to 1.

Experiment #1: Program Graph gauss18. In the learning
mode of this experiment, a population of rules of GA
was equal to 100. Figs. 8a and 8b present runs of the CA-
based scheduler for the rules found by the GA in the fifth
and the 100th generation. The left part of the figures
presents a space-time diagram of the CA consisting of 18
cells and the right part shows, graphically, a value of T

corresponding to the allocation found in a given step.

One can see that, after performance by the CA of step 0

(see Fig. 8a), all cells are in some states corresponding to

allocation of tasks (white cell—a corresponding task is

allocated in P0, black cell—a task is allocated in P1) and

the value of T corresponding to this allocation is greater

than 81. After a few steps, the CA starts to oscillate,

repeating a sequence of six states with resulting patterns

of task allocation and corresponding changing values of

T . Fig. 9a shows a response time T corresponding to the

initial tasks’ allocations (init T) and final tasks’ alloca-

tions (final T) corresponding to the best rule in a given

generation.
For each generation of the GA, a new set of four test-

problems is created. The CA with a given rule and an
initial state corresponding to a given initial allocation is
allowed to run 100 steps. An efficiency of a given rule is
evaluated as the average value of response times found
for each test-problem. To calculate T for a given final
allocation of tasks, a scheduling policy of the type of a
task with the highest value of a dynamic level-first, was
applied. After evaluation of all rules from a population,
GA operators are applied: Elitist strategy is applied to

1016 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 10, OCTOBER 2002

Fig. 8. Space-time diagrams of sequential CA-based scheduler with the best rule found for gauss18 (a) in generation 5 and (b) generation 100.

the set of the best rules, crossover with a probability
pc ¼ 0:95, and a bit-flip mutation with pm ¼ 0:001.

One can notice that GA discovers (see Fig. 9b), in
generation 46, a rule providing an allocation with an
optimal value T ¼ 44. The found rule is, however, not
absolutely the best. The rule does not pass a test on a test
problem created in generation 62 (see Fig. 9a). The GA
quickly modifies this rule and it successfully passes all
subsequent tests.

Fig. 8b shows a space-time diagram of such a rule
existing in the generation 100. One can see that the CA-
based scheduler working with the found rule needs
about 15 time steps to find the tasks’ allocation
corresponding to the minimal value of T .

After the run of the GA, its population contains rules
suitable for CA-based scheduling. The rules are denoted as
rulesð250Þ, which means that they were found for the
selected neighborhood and the length of each rule is
L ¼ 250. The quality of these rules can be found in the
operation mode. We generate a number of test problems
and use them to test each of the found rules. Fig. 9b shows
the results of the test conducted with an initial allocation of
100 random gauss18. For each found rule, the average

value of T (avr T) found by CA in the test problem is
shown. One can see that 29 rules are able to find an optimal
scheduling for each representative of the test.

Experiment #2: Program Graph. A population of rules of
size 200 was used in the learning mode in this
experiment. For each of the GA generations, a set of five
test problems was created. Fig. 10a shows that rules of
CA providing optimal scheduling with a response time
T ¼ 80 were found after 160 generations. Fig. 10b shows
the performance of found rules evaluated in the
operation mode. One can see that the best rules found
in the learning mode provide near optimal solutions in
the operation mode.

Fig. 11 shows a run of CA-based scheduler with the
best found rule. One can see that the CA finds a steady-
state corresponding to an allocation providing an
optimal response time T ¼ 80 in step 14.

Experiment #3: Program Graph g18. The scheduling policy
of the type, the highest value of a static level-first, was
used in this experiment. GA needs about 20 generations
(see Fig. 12a) to discover, in a learning process, a CA rule
providing an optimal solution with T ¼ 46. Fig. 12b

SEREDYNSKI AND ZOMAYA: SEQUENTIAL AND PARALLEL CELLULAR AUTOMATA-BASED SCHEDULING ALGORITHMS 1017

Fig. 9. Sequential CA-based scheduler for gauss18: (a) learning mode and (b) operation mode.

Fig. 10. Sequential CA-based scheduler for g40: (a) learning mode and (b) operation mode.

shows the performance of found rules evaluated in the
operation mode. Near 20 generations, the best rules were
found in the learning mode, providing the optimal
solution in the operation mode. Fig. 13 shows a space-
time diagram of the CA-based scheduler for the best
found rule for this instance problem.

Experiment #4: Program Graphs tree15, tree63, and

tree127. The GA needs less than five generations (not
shown) to discover a CA rule for the program graph
tree15 providing an optimal response time T ¼ 9. The
experiment was conducted with scheduling policy of the
type: the lowest order number of a task-first. CA rules
discovered the small size of a binary out-tree can be
effectively used in the operation mode to schedule binary
out-trees of much greatest sizes. Found CA rules are able
to solve the scheduling problem with the binary out-tree
consisting with much more tasks. Fig. 14 shows a space-
time diagram of CA working with the same rule and
solving the problem with the binary out-tree tree127
consisting of 127 tasks.

6 PARALLEL CA FOR SCHEDULING

Results of experimental study presented in the previous
section, obtained with the version of the CA-based
scheduler running under DOS have shown that GA was

able to discover effective rules for scheduling for a number
of program graphs from the known literature. However,
discovered rules were working in a deterministic sequential
mode of CA, i.e., only one cell could update its state in time.
The order of updating was predefined by numbering the
tasks in a program graph. This means that one of the most
interesting features of CA—their massive parallelism—was
not explored. For this reason, an attempt to develop a new
enhanced Windows’98 version of the scheduler was under-
taken. The main feature of the scheduler is a new, much
more powerful coevolutionary GA-based engine for dis-
covery CA rules and some visualization tools enabling
tracing the work of the scheduler.

6.1 Coevolutionary Genetic Algorithm
for Discovery CA Rules

One of the most promising lines of research in the area of
parallel evolutionary computing is a development of
coevolutionary algorithms [27]. The idea of coevolutionary
algorithms comes from the biological observation of natural
selection, which shows that coevolving a number of species
defined as collections of phenotypically similar individuals,
is more realistic than simply evolving a population contain-
ing representatives of one species. So, instead of evolving a
population of similar individuals representing a global
solution, it is more appropriate to coevolve subpopulations
of individuals representing specific parts of the global
solution.

1018 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 10, OCTOBER 2002

Fig. 11. Space-time diagram of a CA-based scheduler for g40.

Fig. 12. Sequential CA-based scheduler for g18: (a) learning mode and (b) operation mode.

Among recently proposed coevolutionary algorithms is
the coevolutionary GA [25], based on a predator-prey para-
digm [15]. The algorithm is described below, with the use of
a parallel processing language OCCAM-like notation. In
particular, sequential and parallel processes are specified by
SEQ and PAR constructors, respectively. Output process
send! x and input process receive? y are used to denote
sending a value x, receiving a value y, respectively.
Comments concerning the algorithm follow the symbols
ÿÿ .

Coevolutionary GA:

chromosome 1: global structure representing a solution

of a problem

chromosome 2: additional structure representing constraints

�yy of a problem

optimization criterion: global function fð�xx; �yyÞ
population 1: main subpopulation P 1ðÞ
population 2: additional subpopulation P 2ðÞ
population structure: two interacting subpopulations

t ¼ 0

SEQ

initialize P 1ðtÞ and P 2ðtÞ
WHILE termination_condition NOT TRUE

SEQ

t ¼ tþ 1

SEQ i ¼ 1 FOR n_encounters

SEQ

PAR j ¼ 1 FOR 2 ÿÿ
running coevolving subpopulations

SEQ

select individuals IjkðtÞ from PjðtÞ
confront selected individuals
evaluate result (fitness of individuals)

of confrontation

select a pair of parents in both

P 1ðtÞ and P 2ðtÞ

crossover over pairs of parents

mutate in children

replace parents in P 1ðtÞ and P 2ðtÞ
problem_solution= the best individual �xx

from the subpopulation P 1ðtÞ.
The algorithm operates on two subpopulations: the main

subpopulation P 1ðÞ containing individuals �xx and an
additional subpopulation P 2ðÞ containing individuals �yy
coding some constraints, conditions, or simply test points
concerning a solution �xx. Both, or only one, subpopulation,
evolve to optimize a global function fð�xx; �yyÞ.

A single act of coevolution is based on independent
selection of individuals �xx and �yy from subpopulations, to
encounter them and evaluate their fð�xx; �yyÞ. The manner of
assigning a fitness to the individuals stems from the
predator-prey relation. The success of one individual
should be a failure of the second one. During one
generation, individuals are confronted a predefined num-
ber n_encounters times. At the end of the evolution process,
the best individual from P 1ðÞ is considered as a solution of a
problem.

In the case of the CA-based scheduler, the main population
of the coevolutionary GA contains theNmain CA rules and the
additional population contains the Ntest tests—the initial
allocations of a program graph. During a given generation,
each individual from the main population is tested, as
previously stated, on each individual of the additional
population. The same genetic operators as described earlier
are applied to the main population. The additional popula-
tion is initially randomly created, but, opposite to the
previous version of the system, the set of tests in the next
generations will be controlled by its own GA.

As a fitness function of an individual-test of the
additional population, we choose the value of T �test, which
is the average of final values of T obtained by all rules of the
main population on this test. Genetic operators of tourna-
ment selection with elitism, crossover, and mutation are

SEREDYNSKI AND ZOMAYA: SEQUENTIAL AND PARALLEL CELLULAR AUTOMATA-BASED SCHEDULING ALGORITHMS 1019

Fig. 13. Space-time diagrams of CA-based scheduler for g18.

Fig. 14. Space-time diagram of CA-based scheduler using rulesð128; tree15Þ for tree127.

applied to individuals of the population. We expect that this

coevolutionary mechanism will develop more valuable tests

for the population of rules, better than random population

of tests, which should significantly improve the quality of

discovered rules.

6.2 Experimental Results: outÿ tree31 Case Study

The main purpose of the performed experiments was to
study the influence of the coevolutionary GA on discovery
scheduling rules for parallel CA. For this purpose, a
program graph tree31 was selected. The program graph
consists of 31 tasks with computational and communication
costs equal to 1 and is an enlarged version of tree15.

In all of the conducted experiments, the following
parameters were used: The size of a population of rules
Nmain was equal to 100, with the size of elite equal to 20. Not
only elite but all individuals from the population could take
part in mating with a probability of crossover pmainc ¼ 0:9
and a probability of mutation pmainm ¼ 0:1. A selected
neighborhood was created using level as attributes of task-
predecessors and task-brothers and dynamic level as an
attribute of task-successors. To calculate T for a given
allocation of tasks, a scheduling_policy of the type a task with
the highest value of a dynamic level-first was applied.

CA was allowed to run 25 time steps and the value of T
corresponding to a final allocation of tasks was calculated as
the average on the base of the three last steps of CA. The
size of a population of tests Ntest was equal to 30. When
coevolution was turned on, the following genetic operators
were applied to the population of tests: tournament
selection and elite with size equal to 1, crossover with
ptestc ¼ 0:9, and mutation with ptestm ¼ 0:005. The evolution-
ary process was observed during 500 generations.

Experiment #5: Discovery of Rules for Deterministic

Sequential CA. In the experiment reported in this

section, it is assumed that CA works sequentially and

deterministically (as in previous experiments). A single

step of CA is completed in Np (Np—a number of tasks of

a program graph) moments of time. A run of CA consists

of a predefined number G ¼ 25 of steps, with time steps

equal to G �Np ¼ 25 � 31 ¼ 775.

Fig. 15 shows the results of a typical experiment with
evolving scheduling rules for deterministic sequential
CA. Figs. 15a and 15b present learning and operation
modes of the scheduler, respectively. The experiment is
conducted without coevolution and one can see (Fig. 15a)
that evolving scheduling rules for deterministic sequen-
tial CA is an easy problem for this type of a program
graph.

GA discovers a rule providing an optimal scheduling
with T ¼ 17 after about 20 generations (see avr fin T of the
best rule in Fig. 15a). The average value of initial
allocations avr initial T of allocs generated randomly in
each generation of GA oscillates around a value of
T0 ¼ 19:2. It means that rules exposed to test problems
are, on the average, of the same degree of difficulty
during the whole evolutionary process.

To see how difficult generated allocations are, we
define, for each of them, the average final T over all rules
from a population which was tested on this allocation.
Observing the average final T of the most difficult
allocation avr fin T of best alloc one can see that, generated
randomly, tests become easier for rules in each genera-
tion. After generation 20, when the best rule was
discovered, each statistical rule finds an allocation with
final T better than a statistical initial allocation with
corresponding T0.

Fig. 15b shows the operation mode of the scheduler.
In this mode, each rule in the final population is exposed
to 1,000 random initial allocations of the program graph.
The figure shows that the near 20 the best rules in the
sequential CA find the optimal scheduling with T ¼ 17
in all tests.

Experiment #6: Discovery of Rules for Parallel CA,

without Coevolution. We now assume a parallel work

of CA, which means that, at a given moment of time all

cells update their states. In this experiment, GA without

coevolution is applied to discover rules for CA. Fig. 16

shows results of a typical experiment with evolving

scheduling rules for parallel CA, without coevolution.
Fig. 16a shows the first 250 generations of the learning

mode of the scheduler. One can see that the value of
avr fin T of the best rule characterizing the best rule in each

1020 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 10, OCTOBER 2002

Fig. 15. Evolving scheduling rules for deterministic sequential CA: (a) learning mode of the scheduler and (b) operation mode.

generation approaches the optimal value but never
reaches it. It achieves its local minimum in generation
125 and stabilizes its value around 17.40 in about
generation 200.

The average value avr initial T of allocs of initial
allocations (see Fig. 16b) generated randomly in each
generation of GA behaves in the same manner as in the
previous experiment. However, observing the average
final T of the most difficult test-allocation avr fin T of best
alloc, one can notice that the value decreases only to
generation 125, only as long as the best rule improves its
quality. After this generation, no new valuable sequence
of initial allocations appears in the set of tests to be
exposed to the population of rules. Therefore, the
learning process in the population of rules is stopped
and a better rule for parallel CA will be not discovered.
The corresponding value of the avr initial T of allocs
becomes equal to average value T0 of initial allocations.

Fig. 16b shows the operation mode of the scheduler,
when each rule in the final population is exposed to 1,000
random initial allocations of the program graph. The
figure shows the frequency of convergence of CA with a
given rule to the allocation corresponding to the optimal

value of T ¼ 17. One can see that the best rules found for
parallel CA converge to the optimal T in only nearly
60 percent of the cases.

Experiment #7: Discovery of Rules for Parallel CA, with

Coevolution. In this experiment, we assume that we

have to do the with parallel CA-based scheduler and we

apply GA-based engine with coevolution to discover

rules for CA. Fig. 17 shows results of the experiment.
One can see (Fig. 17a) that GA with coevolution

discovers the best rule providing convergence of parallel
CA-based scheduler to the optimal value of T ¼ 17 in
about 100 generations. The dynamic of changing the value
of avr fin T of the best rule in each generation is different than
the one in the experiment without coevolution. Also, the
behavior of the average value avr initial T of allocs of initial
allocations (see Fig. 17a) is different. One can notice that
improvement of avr fin T of the best rule is correlated with
changing avr initial T of allocs.

The coevolution mechanism which controls changing
initial allocations makes the average value avr initial T of
allocs of initial allocations perform a number of hill
climbings, with subsequent falling down, instead of

SEREDYNSKI AND ZOMAYA: SEQUENTIAL AND PARALLEL CELLULAR AUTOMATA-BASED SCHEDULING ALGORITHMS 1021

Fig. 16. Evolving without coevolution scheduling rules for parallel CA: (a) learning mode of the scheduler and (b) operation mode.

Fig. 17. Evolving with coevolution scheduling rules for parallel CA: (a) learning mode of the scheduler and (b) operation mode.

random oscillation. During hill climbing, a sequence of
initial allocations with increasing value of T0 is gener-
ated. These sequences make initial allocations more
difficult (see avr initial T of allocs in Fig. 17a) and this in
turn stimulates GA to improve rules.

Fig. 17b shows the normal operating mode of the
scheduler. The figure shows that the frequency of
convergence of CA with a given rule to the allocation
corresponding to the optimal value of T is about
80 percent. This value is much higher than in the
experiment without coevolution, but smaller than in the
sequential CA-based scheduler. However, Fig. 18a shows
that the average final T obtained with the use of these
rules is close to the optimal T and, what is crucial, these
near optimal solutions are found in a few time steps of
parallel CA (see Fig. 18b) instead of a few hundred steps
of sequential CA.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a novel approach to
designing sequential and parallel CA-based scheduling
algorithms. We proposed a generic definition of a program
graph neighborhood to construct a corresponding CA for
any program graph and a coding scheme which maps the
essential information about tasks allocation into CA states.
We used GA in the learning mode of work of the scheduler
to discover scheduling rules of CA. In this mode, knowl-
edge about solving a given instance of the scheduling
problem is extracted and coded into CA rules. Rules were
discovered which are used in the operation mode by
sequential CA for automatic scheduling.

Also, we have shown that coevolutionary algorithms are
a very promising technique stimulating the process of
discovering effective rules for parallel CA-based algo-
rithms. We compared sequential and parallel CA-based
scheduling algorithms and shown advantages of parallel
approach. A number of questions in this area are still open.
The most important of them is how to use the knowledge
extracted during the learning process and coded into CA
rules. Some results of study [28], [29] show that rules
discovered for different instances of the scheduling problem
may be ranked according to their possibility of solving

automatically, in the operation mode, other instances of the
scheduling problem. It leads to the concept of an artificial
immune system for scheduling problem [30] in which
discovered rules are reused to solve new instances of the
scheduling problem.

The other related questions are the optimal choice of the
CA structure and extending the results on a number of
processors greater than two. While we have used a complex
nonlinear structure of CA to build a scheduler, one
promising direction of research simplifying this structure
is using a linear structure. All of these questions are the
subject of our current study.

REFERENCES

[1] I. Ahmad and Y.-K. Kwok, “On Parallelizing Multiprocessor
Scheduling Problem,” IEEE Trans. Parallel and Distributed Systems,
vol. 10, no. 4, pp. 414-432, Apr. 1999.

[2] J. Blazewicz, K.H. Ecker, G. Schmidt, and J. Weglarz, Scheduling in
Computer and Manufacturing Systems. Springer, 1994.

[3] D. Andre, F.H. Bennet III, and J.R. Koza, “Discovery by Genetic
Programming of a Cellular Automata Rule that Is Better than Any
Known Rule for the Majority Classification Problem,” Proc. First
Ann. Conf. Genetic Programming J.R. Koza, D.E. Goldberg,
D.B. Fogel, and R.L. Riolo, eds., pp. 3-11, 1996.

[4] Proc. BioSp3: Workshop Bio-Inspired Solutions to Parallel Processing
Problems, in conjunction with Int’l Parallel and Distributed Processing
Symp. (IPDPS 2002), Apr. 2002.

[5] A. Boukerche and M.S.M. Notare, “Applications of Neural
Networks to Mobile Communication Systems” Solutions to Parallel
and Distributed Computing Problems. Lessons from Biological Sciences,
A.Y. Zomaya, F. Ercal, and S. Olariu, eds., pp. 255-268, Wiley &
Sons, 2001.

[6] R. Das, M. Mitchell, and J. Crutchfield, “A Genetic Algorithm
Discovers Particle-Based Computation in Cellular Automata,”
Parallel Problem Solving from Nature-PPSN III, pp. 344-353,
Y. Davidor, H.-P. Schwefel and R. Männer, eds., Springer, 1994.

[7] Artificial Immune Systems and Their Applications, D. Dasgupta, ed.
Springer, 1999.

[8] CEC 2002: Congress on Evolutionary Computation, May 2002.
[9] H. El-Rewini and T.G. Lewis, “Scheduling Parallel Program Tasks

onto Arbitrary Target Machines,” J. Parallel and Distributed
Computing, vol. 9, pp. 138-153, 1990.

[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, New York: W.H. Freeman, 1979.

[11] Proc. GECCO-2002: Genetic and Evolutionary Computation Conf., July
2002.

[12] A. Gerasoulis and T. Yang, “A Comparison of Clustering
Heuristics for Scheduling DAG’s on Multiprocessors,” J. Parallel
and Distributed Computing, vol. 16, no. 4, pp. 276-291, 1992.

1022 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 10, OCTOBER 2002

Fig. 18. Parallel CA with coevolution: (a) the average final T of evolved rules in normal operating mode and (b) example of the behavior of CA.

[13] D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, Mass.: Addison-Wesley, 1989.

[14] T. Gramb, S. Bornholdt, M. Grob, M. Mitchell, and T. Pellizari,
Non-Standard Computation. Wiley-VCH, 1998.

[15] W.D. Hillis, “Coevolving Parasites Improve Simulated Evolution
as an Optimization Procedure,” Artificial Life II, C.G. Langton,
C. Taylor, J.D. Farmer, and S. Rasmussen eds., Addison-Wesley,
1992.

[16] J.J. Korczak, P. Lipinski, and P. Roger, “Evolution Strategy in
Portfolio Optimization,” Proc. Fifth Int’l Conf. Artificial Evolution,
pp. 225-236, 2001.

[17] Y.-K. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling:
An Effective Technique for Allocating Task Graphs onto Multi-
processors,” IEEE Trans. Parallel and Distributed Systems, vol. 7,
no. 5, pp. 506-521, May 1996.

[18] Y.-K. Kwok and I. Ahmad, “Efficient Scheduling of Arbitrary Task
Graphs to Multiprocessors Using a Parallel Genetic Algorithm,” J.
Parallel and Distributed Computing, vol. 47, no. 1, pp. 58-77, 1997.

[19] Artificial Life. An Overview, G. Langton, ed., Bradford Book/MIT
Press, 1995.

[20] J.W. Meyer, “Self-Organizing Processes,” Proc. Int’l Conf Parallel
and Vector Processing (CONPAR94-VAPPVI), B. Buchbeger and J.
Volker, eds., Springer, 1994.

[21] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Springer, 1992.

[22] M. Mitchel, “Computation in Cellular Automata,” Artificial Life II,
pp. 95-140, C.G. Langton, C. Taylor, J.D. Farmer, and S. Rasmussen
eds., Addison-Wesley, 1992.

[23] T.M. Nabhan and A.Y. Zomaya, “A Parallel Simulated Annealing
Algorithm with Low Communication Overhead,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 12, pp. 1226-1233, Dec.
1995.

[24] Proc. PPSN VII: Parallel Problem Solving from Nature, Sept. 2002.
[25] J. Paredis, “Coevolutionary Life-Time Learning,” Proc. Parallel

Problem Solving from Nature—PPSN IV, H.-M. Voigt, W. Ebeling,
I. Rechenberg and H.-P. Schwefel, eds., pp. 72-80, 1996.

[26] F. Seredynski, “Discovery with Genetic Algorithm Scheduling
Strategies for Cellular Automata,” Proc. Parallel Problem Solving
from Nature—PPSN V, A.E. Eiben, T. Back, M. Schoenauer, and
H.-P. Schwefel, eds. pp. 643-652, 1998.

[27] F. Seredynski, “New Trends in Parallel and Distributed Evolu-
tionary Computing,” Fundamenta Informaticae, vol. 35, no. 1-4,
pp. 211-230, Aug. 1998.

[28] F. Seredynski and C.Z. Janikow, “Designing Cellular Automata-
based Scheduling Algorithms,” GECCO-99: Proc. Genetic and
Evolutionary Computation Conf., W. Banzhaf, J. Daida, A.E. Eiben,
M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, eds., pp. 587-
594, July 1999.

[29] F. Seredynski, “Evolving Cellular Automata-Based Algorithms for
Multiprocessor Scheduling,” Solutions to Parallel and Distributed
Computing Problems. Lessons from Biological Sciences, A.Y. Zomaya.
F. Ercaland, and S. Olariu, eds., pp. 179-207, John Wiley & Sons,
2001.

[30] F. Seredynski and A. Swiecicka, “Immune-Like System Approach
to Multiprocessor Scheduling,” Proc. Fourth Int’l Conf. Parallel
Processing and Applied Math., Sept. 2001,

[31] M. Sipper, “Evolution of Parallel Cellular Machines,” The Cellular
Programming Approach, Springer, 1997.

[32] P.M.A. Sloot, J.A. Kaandorp, A.G. Hoekstra, and B.J. Overeinder,
“Distributed Cellular Automata: Large-Scale Simulation of Nat-
ural Phenomena,” Solutions to Parallel and Distributed Computing
Problems. Lessons from Biological Sciences, A.Y. Zomaya, F. Ercal,
and S. Olariu, eds., pp. 1-46, John Wiley & Sons, 2001.

[33] T. Toffoli and N. Margolus, Cellular Automata Machines. MIT Press,
1997.

[34] M. Tomassini, M. Sipper, and M. Perrenoud, “On the Generation
of High-Quality Random Numbers by Two-Dimensional Cellular
Automata,” IEEE Trans. Computers, vol. 49, no. 10, pp. 1140-1151,
Oct. 2000.

[35] Q. Wang and K.H. Cheng, “List Scheduling of Parallel Tasks,”
Information Processing Letters, vol. 37, pp. 291-297, Mar. 1991.

[36] S. Wolfram, “Universality and Complexity in Cellular Automata,”
Physica D., vol. 10, pp. 1-35, 1984.

[37] A.Y. Zomaya, J.A. Andreson, D.B. Fogel, G.J. Milburn, and G.
Rozenberg, “Non-Conventional Computing Paradigms in the
New Millennium,” Computing in Science and Engineering, vol. 3,
no. 6, pp. 82-99, Nov./Dec. 2001.

[38] Solutions to Parallel and Distributed Computing Problems. Lessons
from Biological Sciences. A.Y. Zomaya, F. Ercaland, and S. Olariu,
eds., John Wiley & Sons, 2001.

[39] A.Y. Zomaya and Y.-W. Teh, “Observations on Using Genetic
Algorithms for Dynamic Load-Balancing,” IEEE Trans. Parallel and
Distributed Systems, vol. 12, no. 9, pp. 899-911, Sept. 2001.

[40] A.Y. Zomaya, C. Ward, and B. Macey, “Genetic Scheduling for
Parallel Processor Systems: Comparative Studies and Performance
Issues,” IEEE Trans. Parallel and Distributed Systems, vol. 10, no. 8,
pp. 795-812, Aug. 1999.

Franciszek Seredynski received the MS and
PhD degrees in computer science from the State
Electrotechnical University, St. Petersburg, in
1973 and 1978, respectively, and the DSc
degree from the Institute of Computer Science,
Polish Academy of Sciences in 1998. He is
currently a professor of computer science at the
Polish-Japanese Institute of Information Tech-
nology, Warsaw, and an associate professor at
the Institute of Computer Science, Polish Acad-

emy of Sciences, Warsaw. He was a visiting researcher at the Institut
National Polytechnique de Grenoble, France (1991-1992), International
Computer Science Institute, Berkeley, California (1995), Centre for
Mathematics and Computer Science, Amsterdam, (1996), and a visiting
associate professor at the University of Missouri, St. Louis (1998-1999).
His research interests include evolutionary computation techniques,
collective behavior of cellular and learning automata, multiagent
systems and distributed artificial intelligence, and parallel and distributed
processing. He has published more than 100 papers in international
journals and conferences. He has served on program committees for a
number of international conferences in the areas of evolutionary
computing, multiagent systems, and parallel and distributed processing.

Albert Y. Zomaya received the PhD degree
from the Department of Automatic Control and
Systems Engineering, Sheffield University, Uni-
ted Kingdom. He is currently the CISCO
Systems Chair Professor of Internetworking in
the School of Information Technologies, Uni-
versity of Sydney, Australia. Prior to taking up
the current position, he was a full professor in
the Department of Electrical and Electronic
Engineering, University of Western Australia,

where he spent the period spanning 1990-2001. He was also an adjunct
professor in the Department of Electrical and Electronic Engineering,
University of Western Australia Dr. Zomaya has to his credit 13 book
titles and more than 150 publications in technical journals, collaborative
books, and conferences. He is an associate editor for the International
Journal on Parallel and Distributed Systems and Networks, the Future
Generation Computer Systems Journal, Journal of Interconnection
Networks, and International Journal of Foundations of Computer
Science. He is also the founding editor-in-chief of the Wiley Book
Series on Parallel and Distributed Computing. He also served in the past
(for two terms) on the editorial boards of the IEEE Transactions on
Parallel and Distributed Systems and the IEEE Transactions on
Systems, Man, and Cybernetics. Dr. Zomaya is the editor-in-chief of
the Parallel and Distributed Computing Handbook (McGraw-Hill, 1996)
and serves on the executive board of the International Federation of
Automatic Control (IFAC) committee on Algorithms and Architectures for
Real-Time Control and the IEEE Task Force on Cluster Computing and
he is the chair of the IEEE Technical Committee on Parallel Processing.
He was awarded the 1997 Edgeworth David Medal by the Royal Society
of New South Wales for outstanding contributions to Australian Science.
In September 2000, he was awarded the IEEE Computer Society’s
Meritorious Service Award. Dr. Zomaya’s research interests are in the
areas of parallel and distributed computing, computational machine
learning, biological and adaptive computing systems, networking, mobile
computing and wireless networks, cluster and grid computing, data
mining, and scientific computing. He is the founding cochair of the
Workshop on Bio-Inspired Solutions to Parallel Processing Problems
(BioSP3). He has served in different capacities on the programs of more
than a 140 national and international conferences. He is a chartered
engineer and a fellow of the Institution of Engineers (UK), a senior
member of the IEEE, and a member of the ACM.

SEREDYNSKI AND ZOMAYA: SEQUENTIAL AND PARALLEL CELLULAR AUTOMATA-BASED SCHEDULING ALGORITHMS 1023

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

