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a b s t r a c t

Balancing authorities are currently exploring options for preventing potential increases in ramping costs
of conventional generators in the grid by setting ramping limits on variable energy resources. In this
paper, we present the methodology and results of simulations on the smoothing performance of battery,
flywheel and ultra-capacitor energy storage technologies connected to single large-scale PV (photovol-
taics) plants subject to a 10%/minute ramping limit. The simulations were run using second-to-second
output data of four large-scale PV plants of which two are in the Southeast of Canada (5 MW and
80 MW) and two in the Southwest of the US (21 and 30.24 MW). Energy storage units are sized for each
plant on a baseline of 99% violation reductions and their performances are compared. We also present
two dispatch strategies tailored to low and high cycle-life storage technologies which are modeled
without forecasting measures and assuming perfect short-term forecast for the remainder of the aver-
aging period.

© 2015 Published by Elsevier Ltd.
1. Background

The primary challenge of integrating large amounts of solar
power into the electricity grid lies in the solar resource's variability.
In their continuous effort to balance supply and demand, grid au-
thorities have expressed concerns especially about fast, cloud
induced ramps of large-scale solar PV plants. Several studies have
shown that this variability greatly reduces when multiple plants'
output is summed, analogous to aggregating uncorrelated de-
mands. Our previous work was focused on assessing minute-by-
minute variability due to cloud movements of single utility-scale
PV plants, ranging from 5 to 80 MWac nameplate capacities. Sup-
ported with empirical data we showed that short-term ramp rates
become attenuated even within a single plant as the size of the
plant increases. We expanded on this study with higher frequency
(second by second) data and assessed the magnitude of power
fluctuations at a variety of timescales and plant sizes (currently up
to 250 MWac).

After plant variability was understood and quantified, we are
now investigating operating algorithms of ESU (energy storage
).
units) to perform ramp rate control at the plant level. The rationale
for this are the emerging concerns and proposed plans of grid
balancing authorities to deal with ramps of variable energy
resources (i.e. solar and wind): The PREPA (Puerto Rico Power
Authority) has recently included a ramp rate limit to their re-
quirements for large-scale PV facilities; currently this limit is 10% of
the rated capacity per minute although PREPA has not yet disclosed
full details of the regulations [1]. Also, the California ISO is currently
working on a market-based solution for ramps called the ‘Flexible
Ramping Product’ where costs will be allocated to generation and
load in accordance with cost causation principles [2]. ESUs can be
used to mitigate penalty fees from ramps and even allow for
additional revenue streams by participating in other grid balancing
markets (e.g. frequency regulation). This study aims to: 1) build and
optimize an ESU dispatch model; and 2) determine the size of ESU
needed for four plants in different locations to mitigate 99% of
violations compared to the baseline scenario of having no ESU
installed.
1.1. Geographic dispersion

In studying the effect of PV systems on the grid, we must
consider variability in the output of all grid-connected PV systems
located in a system operator's service area. Several studies have
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Fig. 1. Schematic of the interaction between a PV plant and an energy storage unit to
comply with ramp rate limits at the POI (Point of Interconnection) with the grid, set by
the power authority.
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detailed the effect of geographic dispersion on the output vari-
ability of many smaller systems or irradiance sensors. For example,
Wiemken et al. [3] found that the highest 5 min ramp rate for a
single system was 52% of system capacity, while 100 systems,
together totaling 243 kW, showed ramp rates up to only 5% of the
total capacity. Murata et al. [4] introduced the term ‘output fluc-
tuation coefficients’ as the ratio between the maximum observed
ramp rate in a certain time window, over the standard deviation of
ramp rates in that same time window. As the number of systems
increases, the coefficient reaches an asymptote depending on the
width of the time window, and the season. Besides that, pair-wise
correlations of PV-system ramp rates were derived from the data;
they were shown to be close to zero, even for distances around
50 km. In fact, 1 min correlations of step-changes already had
declined to 0.12 for two inverters within a single plant [5].

As ramp rate correlations on a per-minute basis drop signifi-
cantly over sub-km distances, multi-MW PV systems also exhibit
some degree of geographic dispersion. In fact, when plants extend
beyond the size of fast-moving cumulus clouds, variability is
reduced as the clouds cover only part of the plant. Another effect is
that clouds often do not move fast enough to completely cover a
plant from one time interval to the next, as we discuss later in this
section. With a 290- and 500 MW-plant under construction, it is
important to assess what variability can be expected from them.
Other multi-MW plants were shown to exhibit extreme (minute)
ramp rates of up to 50% for a 4.6 MW system [6], and 45% for a
13.2 MW system on a ‘highly variable day’ [5]. Kankiewicz et al.
assessed variations in the output of a 25 MW 2-axis tracker system
in Florida, recording minute-averaged ramp rates of up to ~20%
during a single day's output [7]. However, the outputs of these PV
plants can not be directly compared as the systems differ in shape,
size and panel orientation.

Hoff and Perez took a different approach in quantifying PV
output by using satellite imagery, which allows for the collection
of data for a large number of points on the map [8]. Their model
showed that the Relative Output Variability for a fleet of PV systems
is a function of the number of systems and the Dispersion Factor.
The Dispersion Factor is a dimensionless variable capturing the
relationship between PV fleet length (L), cloud velocity (V), and the
used time interval (Dt).

Lave et al. introduced an alternative method of quantifying
cloud-induced variability by applying wavelet decomposition of
a clear-sky index time signal [9]. They quantified the Variability
Reduction on different timescales (VRðtÞ) of a 48 MW plant versus
that of a single irradiance sensor. The same theory was then applied
in their WVM (Wavelet Variability Model) to turn a single irradi-
ance sensor's data into simulated 48 MW-plant power output, for
which the WVM was able to reproduce maximum ramp rates for 1,
10, 30 and 60 s timescales with errors <20% [10].

The data-sources in our study are First Solar PV plants that are
constructed in a uniform MW-array approach, so it is possible to
describe the effect of geographic dispersion at a single site for
different sized sub-plants. Similar to [7] and [11], where variability
wasdescribed fora stepwise increasingamountof capacity, our study
employed an ‘inverter shells method’ [12], wherein variability was
described with an increasing number of 0.5 MW inverters.

1.2. Energy storage dispatch

In grid systems with ramping limits like Puerto Rico, large-scale
PV plants need measures to reduce their ramp rates. Upward ramps
can be mitigated when sophisticated plant control systems can
curtail energy during the upward ramping event. Downward ramps
aremore problematic as no plant controls can counteract the lack of
irradiance. However, with short-term forecasting technologies like
the Total Sky Imager, energy can potentially be curtailed prior to the
downward ramp so that the resulting power decrease is within the
set ramping limits. Another option is to use a form of energy stor-
age, which can deal with both upward and downward ramps by
providing an energy buffer before the point of interconnection to
the grid. Perez et al. (2013) report that operational mitigation of
ramp rates across multiple time and spatial scales can be achieved
at a cost amounting to less than 10%e15% of a PV installation [13].
Their estimates show that this cost was dependent upon the
availability of solar forecasts that could be used to control the
operation of the intermittency absorbing buffers.

Fthenakis et al. (2012) present a comprehensive reviews of
applicable ESU options [14]. After analyzing the degree of vari-
ability at large-scale PV plants, we are now looking into the tech-
nical and economic feasibility of installing an ESU (Energy Storage
Unit) at a PV plant for ramp rate control, as shown in Fig. 1.

Previous work shows that energy storage ramp rate control for
solar PV requires a high power-to-energy ratio; thus it can be
considered a ‘power application’ as opposed to load peak-shaving
which is considered an ‘energy application’ [15]. This can be
demonstrated when we consider a transient cloud over a large-
scale PV system, the power output can drop rapidly from name-
plate capacity to the level of output we can expect from diffuse
irradiance alone (pshaded, ~0.1e0.2 p.u.). With RR (ramp rate) and
nameplate capacity (Pcap), we can describe this in a simplified
equation as follows:

PPV ðtÞ ¼ max
�
Pcapð1� RR$tÞ; Pcap$pshaded

�
(1)

If the PV plant is subject to a ramp rate limit (RRlim), the desired
output (including support from the ESU) would be:

PPVþESUðtÞ ¼ max
�
Pcapð1� RRlim$tÞ; Pcap$pshaded

�
(2)

The ESU power required during this event is naturally:

PESUðtÞ ¼ PPVþESUðtÞ � PPV ðtÞ (3)

Using (1), (2) and (3) we can solve for the maximum
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instantaneous power and total energy delivered, which are needed
for sizing the system.

Ppeak½MW � ¼ Pcapð1� pshadedÞ
�
1� RRlim

RR

�
(4)

And the Total Energy required:

EESU ½MWh� ¼ Ppeak

�
1� pshaded
2RRlim

��
1hr

60min

�
(5)

Fig. 2 shows a hypothetical ESU dispatch for an 80 MW plant
with pshaded ¼ 0.15 p.u., RRlim ¼ 0.1 p.u./min and RR ¼ 0.25 p.u./min.
The total energy capacity delivered by the ESU during this event is
2.9 MWh, while its peak power output amounts to 41 MW. This
translates into a P:E ratio of around 14.

In actuality, the time series power output of a PV plant does not
obey the linearity shown in Fig. 2 due to the dynamic and complex
nature of clouds. For this reason, we wanted to investigate ESU
dispatch using actual PV plant power output time series.

2. Dispatch algorithm

The goal of this research is to design a dispatch algorithm for
different ESU technologies to control PV ramp rates, assuming
there is a ramp rate limit (RRlim) of 10%/minute. A violation will be
counted at the end of each minute if the power average over that
period differs more than 10% of plant nameplate capacity from the
last minute's power average.

The simulation will happen ‘real-time’ with second-by-second
time steps, so in determining the ESU dispatch decision, no data
beyond the last second are used. A crucial factor in this analysis
is short-term forecasting, as ESU-dispatch could be improved if
PV output for the remainder of the period was known.We therefore
define the following scenarios: 1) assuming we know nothing
about future power output and 2) assuming we know exactly what
the future output on the remainder of the 1 min period will be
(perfect forecasting). In order to make sensible projections on
output in the first scenario, we use a linear extrapolation of recent
(10 s) power output [16].

2.1. Algorithm structure

The ESU dispatch algorithmwas built using a modular approach
so that the performance of elements in the model can easily be
tested and compared with alternatives such as different dispatch
Fig. 2. Example cloud transient event where a 0.25 pu/min sustained ramp rate is
adjusted by an ESU to meet the 0.1 pu/min ramp rate limit. The required ESU power
and energy capacity are ~41 MW and 2.9 MWh.
strategies (Dynamic Rest and Rest Recover), which will be
explained later. An overview of the model is shown in Fig. 3.

The algorithm cycles through a second-by-second time series of
raw PV plant power output and decides on the dispatch of the ESU.
Information is logged for several parameters in the model:

- PV Power (PPV)
- ESU Power e after losses for discharging, before losses for
charging (PESU)

- Grid Power (PGRID ¼ PPV þ PESU)
- ESU inefficiency losses (Ploss ESU)
- ESU State of charge (SOCESU)
- Moving average of period e PV power (PmovavgPV)
- Moving average of period e Grid Power (PmovavgGRID)
- Power limits (Plim-up and Plim-low)

The objective is to minimize the number of ramp rate violations
(>10%/min) while keeping the load on the ESU and lost energy due
to charge/discharge inefficiencies at a minimum. Using the model,
we simulated different energy storage technologies to get a per-
formance comparison by varying a number of parameters related to
the ESU (e.g. self-discharge rate, lifetime and charge/discharge
efficiency).

2.2. ESU technologies

In this paper, we present the results from simulations of five
different ESU technologies (li-ion and lead-acid batteries, two types
of flywheels and ultra-capacitors). The characterizations of these,
which are used in our model, are shown in Table 1.

2.3. Flywheels

Flywheels are mechanical devices that store energy in the form
of rotational (kinetic) energy. When net torque is applied in the
direction of angular velocity (for example by an electric motor),
energy is stored. Energy is released when reverse torque is applied
and can be recovered with the same electric motor acting as a
generator. Specifications used in this study are from a commer-
cially available flywheel storage system that is developed by Bea-
con Power (now acquired by Rockland Capital). Their devices have
been operating in at least one grid-connected flywheel storage
plant. Compared to batteries, they have a relatively high cycle life
and power-to-energy ratio and therefore seem a good candidate
for this power burst smoothing application. However, their self-
discharge rate is significant and increases proportionally with
angular velocity squared, which suggests keeping its SOC (state of
charge) low when possible [20]. In this study we simulated two
flywheel systems with different P:E ratios, both manufactured by
Beacon Power.

2.4. Li-ion and lead-acid batteries

Batteries store energy in the form of chemical energy. The
most widely used chemistries of batteries are lead-acid and
lithium-ion, which are most used in respectively vehicles and
portable electronics. Due to the batteries’ low cycle life, it is
desirable to minimize usage of the battery when possible.
Extremely low and high SOC levels should be avoided as well.
Their power-to-energy ratio depends on the internal design (for
lead-acid: thickness of the plates) and is in trade-off with the
battery lifetime (thinner plates have higher output but shorter
lifetime). As of now, the algorithm assumes efficiency is constant
(independent of charge/discharge rate) but future algorithms will 

 



Fig. 3. Decision diagram: the algorithm cycles through the time series and calculates an ESU power dispatch in case the ramp rate is expected to exceed the ramping limit. The
dashed boxes show two variations of dispatch strategies that suit low cycle-life and high cycle-life energy storage technologies.
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include more detailed efficiency considerations like the KiBaM
model [21].

2.5. Ultra-capacitors

Ultra-capacitors, also known as supercapacitors, are devices that
store energy in the form of electrochemical energy by separation of
charge carriers between two active electrodes. The electrodes are
separated by a layer of porous, activated carbon with a large
surface-area to increase capacitance and a thin, ion-permeable
insulator to prevent short-circuiting. Similar to batteries, multiple
of these can be connected in series to step up the voltage. Like
flywheels, ultra-capacitors have a characteristic high power ca-
pacity that makes them suitable for ‘burst applications’ e high
power for short durations. Also, they have a long life and can handle
hundreds of thousands of full chargeedischarge cycles. Device
specifications were retrieved from Maxwell, a manufacturer of
ultra-capacitors for various applications [22]. Like batteries, their
charge and discharge efficiency depends on how fast they are
charged or discharged [23].

2.6. Dispatch strategies

Considering the big range in cycle-life and P:E ratios of the ESU
technologies described above, we developed two separate strate-
gies for dispatch algorithms: 1) RR (Rest-Recover) and 2) DR (Dy-
namic Rest). The Rest Recover strategy is tailored to low cycle-life
technologies like batteries, as it minimizes ESU usage. It employs a
Table 1
Overview of Energy Storage Units simulated in this study.

Technology Flywheel [17] Flywheel [17] Ultr

Type Beacon Power
‘High Power’ flywheel

Beacon Power
‘Power & Energy’ flywheel

Ma

Acronym FWHP FWPE UCA
Charge/Discharge efficiency 0.92/0.92 0.92/0.92 0.9
Power:Energy ratio 12 4 50
Cycle Life 100,000 100,000 1,0
Self-discharge 10% of SOC per hour 10% of SOC per hour 2%
Dispatch Strategy Dynamic Rest Dynamic Rest Dyn
SOC range of 40e60% in which the battery is on stand-by for
possible upcoming ramps. After the battery is used for a ramping
event it will gradually be brought back to this range to get it ready
for the next event. In contrast, the Dynamic Rest strategy is fit for
high cycle-life ESUs (e.g. flywheels and ultra-capacitors) as it has
the ESU's SOC level actively following the PV plant's relative output.
This will result in a more effective use of the ESU's limited energy
capacity, which is useful for high P:E ratio devices. For example,
when the PV plant is operating at 100% of its nameplate capacity,
the ‘rest state’ of the ESU is at 100% SOC. At this time, only down-
ward PV output ramps are possible so it is best to keep the ESU fully
charged. At nighttime, PV output is zero, so the flywheel is at 0%
SOC, preventing unnecessary self-discharge losses.
3. Data

Simulations for all ESUs were run on data from four large-scale
PV plants of which two are in the Southwest of the US (21 and
30.24 MW) and two are in Ontario Canada (5 and 80 MW). For each
plant, two years of second-by-second power output data were
collected. Some data errors were found and filtered out from the
simulated data set. It was previously shown [12] that each of these
plants yield per-minute ramp rates of up to 0.43, 0.53, 0.65 and 0.7
times their corresponding capacity. Due to the effect of geographic
dispersion we can expect a decrease in the ramps exceeding 10%
per minute with increasing plant size, thereby decreasing loads on
ESUs.
a-capacitor Li-ion battery VRLA battery

xwell Lithium Cobalt Oxide Valve Regulated Lead Acid

P Li-ion VRLA
5/0.95 0.98/0.95 0.90/0.90

2 2
00,000 or 15yrs 1900 @80% DoD [18] ~700 @80% DoD [18,19]
of SOC1 per hour 0.02% of nameplate per hour 0.0014% of nameplate per hour
amic Rest Rest-Recover Rest-Recover
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The two vastly different climates in which these plants are
located can give us insights into how their variability affects loads
on ESU support. However, it is important to note that the findings
from this research do not apply directly to similar sized plants in
any other region in the world, as the cloud dynamics in a
geographic region may be completely different from what is stud-
ied here. For example, the difference in variability for three simu-
lated 60MWplants in San Diego CA, Oahu HI andMayaguez, Puerto
Rico was shown in a study by researchers at UCSD [24]. We do aim
to apply the ‘tool’ that we designed here to other time series of data,
which can potentially be sourced from single irradiance sensors
after a ‘scale up’ conversion process is applied, according to a recent
study [25].
Table 2
Exponential fit (Equation (6)) parameters for violation reduction performance
observed for High Power Flywheels at the four plants studied.

Plant capacity 5 MW 21 MW 30.24 MW 80 MW

ε �2.143 �0.518 �0.360 �0.213
R2 0.9898 0.9985 0.9898 0.9944
4. Results

First, a baseline was established by counting the 10%/min ramp
rate violations for the raw data, without an ESU to provide ramp
rate control. For two years of data for each plant, we found
2500e9000 violations, which is between 0.5 and 1.7% of all minutes
in the year (Fig. 4). We took the year with the most violations to
carry out the rest of the simulations presented in this paper.

After these simulations, we started adding different sizes of ESU
and observed the decreasing number of violations as ESU size
increased.

Fig. 3 is a graph of ~240 iterations (4 min) of the model at the
80 MW PV plant in Ontario Canada, simulating a 700 kWh,
8.4 MW ‘High Power Flywheel’ utilizing the ‘Dynamic Rest’ algo-
rithm and a 10%/min ramping limit. The plant output is leveled at
70 MW when a cloud starts covering the plant at the 1 min mark.
During the second minute, PGRID drops below the lower ramping
limit, but the 60s-period average is still within the limits and
therefore no ESU support was needed. In the third minute how-
ever, PV power continues its drop and the flywheels start dis-
charging to bring the PmovavgGRID right above Plim-low, therefore
complying with the set 10%/min ramping limit. In the last minute
we see that the continued drop in PV power pushes the flywheel
ESU to output maximum power, but it appears insufficient to
prevent a violation: the PmovavgGRID falls below the allowed ramp
range.

As mentioned before, the model incorporates two different
dispatch strategies (Dynamic Rest and Rest Recover), depending on
what ESU technology is used. High cycle life technologies use
Dynamic Rest, making better use of their often limited energy ca-
pacity, while low cycle life technologies such as batteries employ
Fig. 4. Number of 10%/minute violations recorded over two years of data at four
different plants.
the Rest Recover strategy so to minimize their mileage. In Figs. 6
and 7, we show about an hour of dispatch during variable output
conditions with the two different dispatch strategies. It shows how
the flywheels' State of Charge on the left side is continuously
following the PV plant's output: charging when the plant ramps up
and discharging when it ramps down.

For each plant, we simulated ESU performance for different
energy storage capacities and plotted the number of violations as a
function of energy and power capacity.

We can make an exponential fit of the violation reduction per-
formance Y for the High Power Flywheel (P:E ¼ 12:1) as a function
of its power capacity (P):

Y ¼ eε$P � 100% (6)

Table 2 shows the resulting exponents (ε) and accompanying R2

values for the trend lines fitted on each plant. All show similar
profiles as the right side of Fig. 7, where ESU technologies (with
P:E < 12:1) are grouped together, indicating their operations were
primarily power-limited, not energy limited.

 

Because the PV variability depends on plant size and geographic
location, we decided to iterate ESU simulations until we found the
energy and accompanying power capacity at which roughly 99%
of violations are prevented for each plant (Fig. 8). From equation
(6), the ESU power capacity would be:

P ¼ lnð0:01Þ
ε

(7)

In order to reduce ramping violations to 1% of the baseline, all
technologies except ultra-capacitors showed similar power capac-
ity requirements (right side of Fig. 8). This implies that at least up to
12:1 P:E ratio, the ESU performance is power-limited, not energy-
limited. We also see that for the energy-limited ultra-capacitors
(P:E ratio of 50:1), the energy capacity requirement for 5, 21, 30.24
and 80 MW plants are equal to respectively 1.7, 1.9, 1.7 and 1.2 min
of full plant capacity.

For the 21 MW plant, we simulated the violation reduction
performance on the other year of data for the same ESU sizes. We
found a slightly higher but narrow range of violation reduction
performance (99.5e99.6%) across all ESU technologies compared to
the 99.0% for the first year. This percent difference amounts to an
additional 15 violations over the whole year. This implies that at
these high violation reduction percentages, a couple extra days
with fast-moving clouds inducing high ramp rates can contribute a
significant amount of additional violations in one year compared to
another.

4.1. ESU mileage and losses

We calculated the total absolute State Of Charge changes of the
ESU for the whole year and found large differences between the
Dynamic Rest and Rest Recover strategies as expected. The Rest
Recover strategy e Dispatch only when necessary e shows 26e61
and 16e50 cycles/year for VRLA and LIION, respectively. Larger P:E
ratio technologies (Flywheels and Ultra-capacitors) utilizing the
Dynamic Rest strategy showed 873e1708 cycles.  



Fig. 5. 4 min excerpt from the modeled time series. The horizontal lines show the
upper and lower averaging limits for each minute which are ±8 MW of the last mi-
nute's power average. The moving averages start at the beginning of the minute period.
Note that instantaneous PV þ ESU power output may exceed these limits as long as the
average complies with the ramping limit.
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The model accounts for two types of ESU losses; the self-
discharge losses (Ls) and transfer losses associated with charge/
discharge efficiencies (Lt). The technologies that employ the Dy-
namic Rest dispatch strategy have higher mileage and therefore
Fig. 6. Difference in ESU dispatch shown for the Dynamic-Rest (left) and Rest-Recover (righ
the ESU, but underutilizes its energy capacity range. Like Fig. 5, the horizontal red and blue lin
reader is referred to the web version of this article.)

Fig. 7. Simulation results for a year of data from the 21 MW PV plant in the Southwest of th
technologies. Right: Normalized number of violations as a function of the ESU power capac
higher losses than the Rest Recover strategy. For 99% violation
reduction, we see that the total energy lost ranges from 0.03% (Li-
ion) to 0.96% (FWPE) for the largest plant in the fleet and 0.07%e
1.48% for the smallest plant (Table 4). These are percentages of AEP
(Annual Electricity Production) for the year recorded.

4.2. Forecasting

All the foreshown results were gathered assuming no fore-
casting was in place. Instead of active forecasts, we made pro-
jections of short-term future output using extrapolations of recent
(10 s) PV output. However, it would be interesting to see how
dispatch performance would be affected if we had some form of
forecasting in place. To find the boundary of improvement because
of this we simulated a scenario of ‘perfect forecast’ of output for the
remainder of the period. Any added form of forecasting would then
perform somewhere in between the extrapolation (no forecast) and
perfect forecast scenarios.

For ESUs sized to mitigate 99% of violations, perfect forecasting
for the remainder of the averaging period (1 min) further reduced
violations by up to 24%. In three plant-ESU combinations, perfect
forecasting did not further reduce the number of violations beyond
99% (see Fig. 9).

4.3. 5%/Minute ramping limit

Another interest was to run simulations for an even stricter
ramping limit (e.g. 5%/minute). For the same hypothetical 25%/

 

t) strategies during 1 h of a variable day: August 5th, 2012. The RR puts less mileage on
es are 60 s long. (For interpretation of the references to colour in this figure legend, the

e US. Left: Number of violations for different energy capacity sizes in kWh of ESUs and
ity in MW (100% ¼ 4977 violations).  



Fig. 8. Energy Storage Unit sizes for Energy capacity (left) and corresponding power capacity (right) to mitigate 99.0% of violations from the baseline scenario. All bars correspond to
99.0% reduction of violations, with the exception of the 80 MW Li-ion (99.1%), FWPE (99.1%) and UCAP(Ultra-capacitors) (99.4%) scenarios.
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minute sustained PV ramp rate in Fig. 2, we would see only a slight
increase in maximum ESU power demand (54 MW) but a large
increase in the necessary energy capacity (~8 MWh), therefore
reducing the P:E ratio to around 7:1. The performance of the
different ESU technologies reflect this, as the FWHP (12:1) shows
lower reduction in violations compared to the other technologies
(Fig. 10).
4.4. Simple cost analysis

Cost data for energy storage units are listed in the DOE/EPRI
2013 Handbook [19] and other publications; these are summarized
in Table 5.

A simplified cost analysis for mitigating a certain percent of
violations can be conducted based on the cost data of Table 5, the
storage power capacities shown in Fig. 8 and the equivalent full
cycles performed from Table 3. Thus for mitigating 99% of the
violations for the 80 MW plant, the necessary power capacity for
the technologies except for ultracapacitors is approximately 22MW
(Fig. 8). With this number and the number of equivalent full cycles
from Table 3, we can make a rough calculation for the total capital
expense needed to perform ramp rate control using the considered
technologies listed, and whether any cell replacements may be
necessary:
Fig. 9. Percentage violation reduction improvement of having a perfect forecast for the
remainder of the 1 min averaging period compared to the extrapolation of recent
power output. The ESU sizes were kept the same is for the 99% violation reduction seen
in Fig. 8.
For FWPE: 22,000 kW * $2159/kW ¼ $47.5M; similarly for Li-ion:
$32.5M, and for VRLA: $37.3M

The number of equivalent full cycles per year for FWPE, Li-ion
and VRLA are relatively low e respectively 477, 16 and 26 e and
given the cycle life of the batteries we can expect that cycle life will
not be the limiting factor for any necessary replacements, although
calendar life potentially could have an impact. If we assume no cell
replacements are necessary, we can compare fixed and variable
O&M as follows:

FWPE: $5.8/kW/yr * 22,000 þ 477 * 5500 kWh * 2 *
0.0003 ¼ $127,600/yr þ $1574/yr ¼ ~$129,000/yr
Li-ion: $8.3/kW/yr * 22,000 þ 16* 11,000 kWh * 2 *
0.0110 ¼ $182,600/yrþ $3872/yr ¼ ~$186,500/yr
VRLA: $9.2/kW/yr * 22,000 þ 26 * 11,000 kWh * 2 *
0.0008 ¼ $202,400/yr þ $458/yr ¼ ~$202,900/yr

According to this simple analysis, Li-ion batteries are the most
economic option for the considered case as it has a definite capex
advantage, as well as an O&M advantage over VRLA batteries. The
O&Mcost of FWPE is lower than that of the batteries but its capex is
much higher.

A more complete economic analysis would be the topic of future
work.
Fig. 10. Normalized number of 5%/minute violations as a function of the ESU power
capacity in MW (100% ¼ 4977 violations). The graph reflects how the stricter ramping
limit demands a higher energy capacity from the ESU, as the Flywheel High Power (P:E
ratio ¼ 12:1) has moved away from the cluster of lower P:E ratio technologies
compared to Fig. 7.  



Table 3
Number of full cycles performed by the Energy Storage Unit over a full year at each
plant. The ESU is sized to reduce 99.0% of violations.

Full cycles VRLA Li-ion FWHP FWPE UCAP

Cycle life 700 1000 100,000 100,000 1,000,000

5 MW 61 50 766 494 861
21 MW 37 27 586 443 614
30.24 MW 55 44 735 519 783
80 MW 26 16 589 477 606
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5. Conclusions

Many studies have shown how large numbers of small PV sys-
tems together yield reduced power output variability, analogous to
loads on the grid. However, grid balancing authorities are
concerned about large-scale PV variability and have initiated reg-
ulations to limit ramp rates of individual plants to avoid potential
frequency regulation issues on their grid. In this study, we
developed a model to simulate effective dispatch of Energy Storage
Units to provide ramp rate control for individual plants. With
second-by-second power output time series obtained from four
multi-MW PV plants, we simulated ramp rate control performance
for five storage technologies and a range of storage sizes. We
developed two dispatch strategies, tailored to high and low cycle
life technologies. Overall, we find that the model developed can
be useful in finding the appropriate size ESU for a certain perfor-
mance requirement (i.e. mitigation of ramp limit violations). This
can then be used in determining the added cost of ESU ramp rate
support.

We found individual PV plant ramp rate control to be a ‘power
application’, thus the Energy Storage Unit benefits from a rela-
tively high power capacity. For Power:Energy ratios up to 12:1
(discharge time >5 min) we found that the ESU size needed to
overcome 10%/minute ramping violations is dependent on its
power capacity, not energy capacity. For all plants studied in this
paper, the violation reduction performance closely follows an
exponential decay function with increasing power capacity. For
ultra-capacitors with a P:E ratio of 50:1 we saw energy-limited
ramp rate control, therefore the need to scale up the ESU to
satisfy the necessary energy capacity, which amounts to 1.7, 1.9, 1.7
and 1.2 min of storage for the 5, 21, 30.24 and 80 MW plants,
respectively. Because the FWHP (High Power Flywheel) system on
Table 4
Losses associated with the operation of ESUs to achieve 99% reduction of ramping violat
losses and Lt is ‘transfer losses’ related to charge and discharge efficiencies.

Losses
[% of AEP]

VRLA Li-ion FWH

Ls Lt Ls Lt Ls

5 MW 0.168% 0.020% 0.024% 0.046% 0.35
21 MW 0.112% 0.009% 0.016% 0.016% 0.34
30.24 MW 0.110% 0.007% 0.016% 0.026% 0.32
80 MW 0.109% 0.003% 0.016% 0.009% 0.22

Table 5
Energy storage unit costs.

Technology Flywheel [17] (15 min)

Total plant cost $2159/kW, $8636/kWh
Maintenance Costs
Fixed/Variablea

$5.8/kW/yr,
$0.0003/kWh

Cycle life 100,000

a Variable O&M is for both charging and discharging.
the left side of Fig. 8 is close to these ultra-capacitor energy ca-
pacities, we believe that its accompanying P:E ratio of 12:1 is close
to the optimum P:E ratio to overcome 10%/minute violations for
the plants studied here. For an even stricter ramping limit of 5%/
minute, we see a shift to a lower P:E ratio, as the necessary ESU
energy capacity increases compared to the maximum power
output.

For the ESUs sized to mitigate 99% of violations, we found an
additional violation reduction of up to 24% when perfect fore-
casting was assumed for the remainder of the averaging period.
Since forecasting allows the dispatch model to more evenly
spread out power production over the averaging period, we
expect that forecasting will be even more beneficial for smaller
ESU systems that often yield violations due to power limitations,
but this is one of the topics of further research as described
below.

 

6. Further research needs

This study investigated the operation of ESUs under a 10%/
minute ramping limit for the specific plants and their respective
locations and climate contexts. Therefore, further research is
needed to test the algorithm on a wider variety of PV plants in
different geographic regions.

The wide variety of user input parameters in the model
allow for an extensive sensitivity analysis to study the impact
of parameters on results. For example, a range of Power-to-
Energy ratios can be simulated for a single ESU technology to
find the optimum ratio for violation reduction. Also, more Energy
Storage technologies (e.g. battery chemistries) can be simulated
and their operational performance compared. In addition,
we intend to investigate the benefit of using two ESU technolo-
gies in parallel (e.g. ultra-capacitors and batteries) for ramp rate
control.

An important consideration for plants operating under ramping
limits is the added cost of the ESU. The benefits of the ramp rate
support from the ESU need to offset the capital and operating costs.
As shown in the previous section, cost analyses can be based on the
minimum required capacity for satisfying a given level of ramp-rate
control for each of the considered ESUs. Recent investments on
battery research, development and deployment create the potential
for drastic cost reductions; thus technology and life-expectancy
improvements would be included in prospective cost analyses.
ions, expressed in percent of annual energy production. Ls stands for self-discharge

P FWPE UCAP

Lt Ls Lt Ls Lt

3% 0.249% 1.006% 0.472% 0.056% 0.151%
8% 0.135% 0.994% 0.298% 0.061% 0.082%
4% 0.162% 0.943% 0.341% 0.056% 0.099%
1% 0.122% 0.660% 0.300% 0.040% 0.077%

Li-ion battery [19] VRLA battery [19]

$1475/kW, $2949/kWh $1695/kW, $3391/kWh
$8.3/kW/yr,
$0.0110/kWh

$9.2/kW/yr, $0.0008/kWh

1900 @80% DoD [18] ~700 @80% DoD [18,19]
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The economic benefits would depend on electricity market pricing
and ramping rate violation fees.
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