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Abstract—Advances in sensor and computer technology are rev-
olutionizing the way that remote sensing data with hundreds or
even thousands of channels for the same area on the surface of the
earth is collected, managed and analyzed. In this paper, the clas-
sical Spectral Angle Mapper (SAM) algorithm, which is fit for par-
allel and distributed computing, is implemented by using Graphic
Processing Units (GPU) and distributed cluster respectively to ac-
celerate the computations. A quantitative performance compar-
ison between Compute Unified Device Architecture (CUDA) and
MATLAB platform is given by analyzing result of different par-
allel architectures’ implementation of the same SAM algorithm.
Especially for the property of GPU, this paper studied the bal-
ance between resource acquirement of each thread and the number
of active blocks, and the impact of computational complexity on
speedup. In addition, page-locked memory and stream are also in-
troduced to make CPU and GPU work collaboratively. Moreover,
we improved the SAM algorithm, in which several training sam-
ples are instead of a single one. Experimental results on hyperspec-
tral data have shown that recognition result of the improved SAM
algorithm is better than that only using single spectrum. On the
other hand, the GPU parallel implementation achieves a higher
speedup comparing with the multithread CPU counterpart. And
the asynchronous transfer function of CUDA covers the data trans-
mission latency effectively, thus improves the devices’ resource oc-
cupancy significantly.

Index Terms—High-performance computing, SAM, GPU, dis-
tributed computing.

I. INTRODUCTION

I N recent years, several efforts have been directed towards
the incorporation of high-performance computing (HPC)

models to remote sensing missions. A relevant example of the
use of HPC techniques (such as parallel and distributed com-
puting) is hyperspectral remote sensing, in which an imaging
spectrometer collects hundreds or even thousands of measure-
ments (at multiple wavelength channels) for the same area on
the surface of the earth [1]–[3]. Antonio et al. pioneered to re-
search on the utilization of HPC infrastructure in hyperspec-
tral imaging applications involving clusters, heterogeneous net-
works of computers, and specialized hardware devices, such
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as field programmable gate arrays (FPGAs) and GPUs [4]–[6].
Many algorithms such as unmixing using the pixel purity index
(PPI) or N-Finder algorithm to extract endmembers and prin-
cipal component analysis (PCA) have been implemented on
the platform of Compute Unified Device Architecture (CUDA)
with remarkable speedups [1]. Yang et al. [7], [8] implemented
SAM algorithm based on CUDA using a specific pixel value
as reference spectra without transferring image data asynchro-
nously. Lu and Park et al. [9]–[11] researched the key factors in
design and evaluation of image processing algorithms on the
massive parallel GPU using CUDA and proposed metrics to
show the suitability in predicting the effectiveness of an appli-
cation for parallel implementation. Now, the GPU architecture
with small size, low cost and low power dissipation is drawing
more attention than ever towards onboard and real-time analysis
of remote sensing data; and distributed architecture such as grid
computing and its evolution, cloud computing, currently repre-
sent a tool of choice for efficient distribution and management
of very high-dimensional data sets in remote sensing and other
fields [2]. Then, how to map traditional and classical algorithms
to both architectures to achieve high performance has become
one of the research interests recently.
SAM algorithm is a classical identification or classification

method for hyperspectral data, which is suitable for parallel and
distributed computing without any mutual influences between
different pixels in computing spectral angle [8].
A plurality of spectral angles between spectrum of each pixel

and training samples of the same class are calculated in the first.
If the maximum spectral angle is larger than a certain threshold,
this pixel is regarded as a target pixel. In the actual operation,
we use morphological erosion when extracting training samples
so that the mixed pixels are omitted. Similarly, morphological
opening operation is performed after recognition to eliminate
noise. Here, it is taken as an example to illustrate the parallel
implementation based on GPU and distributed clusters.
This paper is organized as follows. The key technique and

adopted approaches are explained in detail in Section II. The
experimental results and discussion are reported in Section III.
Finally, the conclusions are given in Section IV.

II. KEY TECHNIQUE AND METHODOLOGY

This section mainly introduces the classical spectral angle
matching algorithm and its improved implementation version.
Based on the MATLAB and CUDA platform, we designed
the algorithm in three different approaches: stand-alone,
multi-computer parallel and distributed computing. These are
part of our attempts to apply high-performance computing into
the field of remote sensing.
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Fig. 1. Ketch map for matrix operation.

A. SAM Algorithm and Its Improvement for Target Detection

SAM algorithm is an identification method that permits rapid
mapping by calculating the spectral similarity between the
image spectra and reference reflectance spectra. The reference
spectra can either be taken from laboratory or field measure-
ments or extracted directly from the image. SAM measures
the spectral similarity by calculating the angle between the
two spectra which are treated as vectors in n-dimensional
space. The main advantage of the SAM algorithm is that it’s
an easy and rapid method for mapping the spectral similarity
of image spectra to reference spectra through some paralleled
techniques such as multiple threads or multiple cores. It is also
a very practical identification method because it restrains the
influence of shading effects to accentuate the target reflectance
characteristics.
In order tomitigate the spectral mixture problem for target de-

tection, we select some reference spectra extracted from the ref-
erence target (such as plane) whose edges are eroded by math-
ematical morphology methods which can avoid mixed pixels to
compute spectral angle with each pixel. These reference target
spectrums come from special spectral database or the current
hyperspectral image itself by manual selection. In this paper,
we use the latter for the sake of simplification. The algorithm
was implemented in the way of serialization and parallelization
on the platform of MATLAB and CUDA.

B. Sequential Implementation of SAM

Spectral angle calculation is the most elapsed time segment
of the whole algorithm. As a result, the parallel methods based
on multi-core and multi threads are applied to accelerate the
processing [12].
The original serial implementation method is as follows:
1) Record all bands values through “triple for loop” for each
pixel.

2) Calculate spectral angle between current pixel and refer-
ence spectra.

3) Combine computational results.
In order to use the special advantage of matrix operation for

MATLAB, the improved implementation scheme is proposed
based on matrix operation. The sketch map of the scheme is
shown in Fig. 1.
From Fig. 1, the source hyperspectral data is shown as a three-

dimensional matrix Data (M N L, M: lines of source data,

N: columns of source data, L: bands of source data). Matrix A
(M L) comes from a slice of source data and Matrix B stands
for training samples coming from source data (I J, I:bands of
reference spectra, J:number of samples). The matching process
will be conducted by using the following formula:

(1)

Where nb represents the number of bands, and represent
test spectrum and reference spectrum, respectively.

Algorithm 1:

For

For

SpectraForCompare Spectrum of pixel (iRow,
iColumn)

Calculate between SpectraForCompare and each
training sample by (1)

Find max

Compare to the threshold

Record result

End

End

C. Parallel Implementation of GPU

The improved SAM algorithm is implemented in three dif-
ferent ways through GPU accelerating processes. The first way
is based on the platform of MATLAB2010b which supports
GPU Array operation through calling the special function such
as gpuArray (); the second one is achieved with the support of
MATLAB Jacket Engine (Jacket Engine is developed specifi-
cally to accelerate MATLAB codes by introducing GPU com-
putation. Through its high-level interface, the complexity of the
underlying hardware is transparent to users). The third way is
GPU-based implementation which is developed using CUDA
[13].
The flow chart of CUDA implementation is shown in Fig. 2.
The key step of the flow chart is asynchronous execution be-

tween transferring data from host to device and GPU computa-
tion which can improve resource utilization rate through hiding
overhead of loading data [14], [15]. So the whole procedures
are shown as follow:
1) Load image data to page-locked memory.
2) Initialize GPU device.
3) Create streams and initialization (manage coincidences).
4) Create events (monitor devices progress and record the
exact execution time).

5) Load m kernels, each kernel deals with specific data of
itself (n slices of data are processed by a kernel each time.
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Fig. 2. Flow chart of CUDA implementation.

A slice of data serves as a cross session of the hyperspectral
data cube).

6) Load p times ‘cudaMemcpyAsync ()’ asynchronously (p
equals the number of streams).

Now, some acceleration strategies are applied to improve
computational performance of GPU. The SIMD architecture
of GPU provides a fine granularity, and underlies the tight
relationship between the number of threads invoked and the
computation. These threads are identified in the two-layer
hierarchy with several built-in variables. The more threads
invoked, the greater the parallel granularity. But as a conse-
quence, more threads would need more resources, and cause
performance degradation [17]–[19]. In Section 3, there is a
concrete description that how to configure threads scheduler.
After threads optimization, a page-locked host memory

technique is used to increase the data transfer speed between
host memory and device memory. In general, cudaMalloc ()
function is used to allocate memory on the GPU. However,
the CUDA runtime offers its own mechanism for allocating
host memory: cudaHostAlloc () called pinned memory or
page-locked memory. Page-locked buffers have an important
property: the operating system (OS) guarantees that it will
never page this memory out to disk, which ensures its residency
in physical memory. The corollary to this is that it becomes
safe for the OS to allow an application access to the physical
address of the memory, since the buffer will not be evicted or
relocated. So we further optimize the algorithm by introducing
this kind of memory; the thread assignment is the optimum
what we found above. In our GPU program, we restrict their
use to memory which is used as a source or destination in
calls to cudaMemcpy() such as loading hyperspectral images
and reference samples from host memory to device memory
and freeing them when they are no longer needed rather than

waiting until application shutdown to release the memory.
Page-locked memory can improve the data transfer speed by
almost 2 times. This is because page-locked memory does not
follow the dynamic paging of OS and can be accessed by the
data transfer engine of graphics device independently [20].
At last, covering the data transmission latency is the third ac-

celeration strategies through the asynchronous transfer function
of CUDA. The stream function of CUDA platform allows us to
occupy both the computation engine and the data transfer engine
simultaneously. The whole task is divided into several pieces,
each for a single stream.Within the stream, all the steps are exe-
cuted sequentially, but the executing sequence between streams
are generally random. While one stream is computing, another
can begin its data transfer step at the same time. So that the data
transfer latency can be covered.

D. Distributed Implementation Based on MATLAB 2010b
Cluster

In distributed computing, the whole task is divided into n sep-
arated pieces, and the master node arranges them to be done by
different terminals in the network. Then, after all of the task
pieces are finished, the master node sums up the partial results
into a single one [13].
Distributed algorithm implementation is under the platform

of MATLAB2010b based on Parallel Computing Toolbox. The
source Data is divided into n subsets (M (N/n) L, N is a
multiple of n), every subset is distributed to different worker-
node to compute. The final computational result is produced
through combining all the results of sub-Data on the master-
node. The algorithm flow is the same as others. The description
of distributed algorithm implementation is shown in Fig. 3.
Client and Job Manager are distributed onto the master node,

which is responsible for task assignment, scheduling, and result
presentation. Node 1 Node N is child node, which are respon-
sible for finishing tasks and returning partial results.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Environment

1) Experimental Data: The source hyperspectral Data (400:
lines of source data, 400: columns of source data, 224: bands of
source data) is a low altitude AVIRIS image whose resolution is
3.5 m and radiation wavelengths is from 0.4–2.5 m. The truth
map is extracted from the original image.
2) Software Environment: Operating System: Windows

XP/Ubuntu 10.10
Development platform: CUDA 4.0/MATLAB 2010b/Jacket

1.8
3) Hardware Environment: GPU: NVIDIA GTX 560 Com-

pute Capability: 2.1 (Tesla S2050)
Cluster node: (Pentium Dual-Core E5300 @2.6 GHz 2 GB

Memory) X4

B. Experimental Results

Different parallel architectures are fit for different applica-
tion environments. Even though under the same parallel archi-
tecture, different speed-up ratios can be achieved by using dif-
ferent parameters [16]. In order to obtain comparable data, sev-



QU et al.: PARALLEL ACCELERATION OF SAM ALGORITHM AND PERFORMANCE ANALYSIS 1175

Fig. 3. Distributed architecture of MATLAB.

TABLE I
TIME FOR DIFFERENT PARALLELED TECHNIQUES (S)

eral group experiments have been conducted. The results are
given from four aspects:
1) Parallel Performance Analysis Under the Platform of

MATLAB: Five experiments for different paralleled techniques
have been done. The results are shown in Table I.
Four time indicators are figured through averaging five ex-

perimental results. Transmission time and core computational
time are key evaluated parameters. The designations of four ex-
periments are shown as follow:

Mat (1): original method implementation on the platform
of MATLAB 2010b
Mat (2): improved method implementation on the platform
of MATLAB 2010b
Mat (3): improved method implementation on the platform
of MATLAB 2010b with GPU
Mat (4): improved method implementation on the platform
of MATLAB 2010b with Jacket GPU accelerating
t1: time needed for loading data from hard disk to host
memory;
t2: time needed for SAM computation;
t3: time needed for summing up and presenting results.

From the chart above we can find that the one exploiting
Jacket Engine has reached the highest speedup, the total time
is only 2.68 s, in which 1.04 s are computation time.
2) Performance Analysis Under the Platform of CUDA: To

find the optimum thread assignment, we consider the executing
time as a function of its two parameters: block size and grid

Fig. 4. Schedule of threads configuration.

size. The following experiment is to find the minimum of this
function. Since the NVidia GTX560 device has 7 Multiproces-
sors with 48 cores each, it is reasonable to set the grid size as a
multiple of 7. Note that the warp size are 32, we can reduce the
amount of tests by setting block size a multiple of 8. So we get
the value of this 2-D function, indicate the relationship between
thread assignment and computation performance. Theminimum
point is found when grid size is 140, and block size is 8.
So in our threads schedule, the grid size and block size are

140 and 8 respectively. This means that there are 1120 threads
activated in computing simultaneously.
To make the efficient of page-locked memory clear, we set

the number of training sample as 1. The experimental results
are given in Table II.

Time : time needed for SAM computation;
Time : total time (for GPU: computation times add
data transmission time between host-memory and de-
vice-memory);

A: CPU running time based on C code
B–G: GPU running time
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TABLE II
COMPUTATIONAL TIME FOR CPU AND GPU (MS)

Fig. 5. Influence of streams.

B: program in which thread assignment is not opti-
mized
C: after optimization of thread assignment
D: page-locked memory is introduced
E: page-locked memory is introduced and thread as-
signment optimized
F: stream and page-locked memory are all introduced
and thread assignment optimized
G: the executing time of F on Tesla S2050

It is obvious to draw the conclusion from the chart above that
the thread allocation and the CPU and GPU asynchronous col-
laborative work mode have an efficient impact on the perfor-
mance of the program. Due to the increased data transfer band-
width and number of computing cores, Tesla reaches a higher
acceleration performance than GTX 560.
The efficiency of this multi-stream execution mode is related

to the number of streams: generally, the more streams, the better
performance. However, with the number of streams increase,
the computation time increase. The performance reduces by
reason of large system resource acquirement of myriads of
streams. Fig. 5 shows the relation between computation time
and number of streams. In the experiment, the best number of
streams is set to 20.
From the hardware architecture of GPU, the main objective is

to achieve parallel computation oriented the throughput of data
using a large number of threads. Now we focus on this issue by
the following experiment: test the speedups while thread assign-
ment and the number of streams are fixed and only the size of
training samples is different. The result is shown in Fig. 6.
The horizontal axis in Fig. 6 represents the number of training

samples, each spectrum calculates spectral angle with every
training samples. It is equivalent to an increase of computation.
The speedup in the vertical axis is drawn when comparing with
the C language.
The experiments in this section demonstrate that the

stream-based algorithm in the CUDA platform accelerates
SAM process the most, yielding an optimized executing time
of 54.87 ms. Thread assignment and stream number impact

Fig. 6. The relationship between speedup and computation.

speedup a lot. Graphics devices are more suited to compute-in-
tensive applications.
3) Performance Subject to Different Task Size: This exper-

iment mainly analyzes the relationship between performances,
data transfer and calculation amount for large amount of remote
sensing data onMATLABDistributed Computing platform. The
remote sensing image is divided into blocks (2, 4 or 8 blocks),
each one corresponding to a task; then the master (or dispatch)
node distribute these tasks to the appropriate node (a dual-core
CPU is deemed as two nodes); each node returns its result back
to the dispatch node after the completion of its portion. Even-
tually the dispatch node generates the final results. Task alloca-
tion is designed in three ways: (1) file dependency: the master
node distribute instructions and data to the child node; (2) path
dependency: each child node gets its data from a unified data
sharing pool, e.g., a shared disk in the LAN, the master node
distribute only the control instructions; (3) mixed dependency:
master node distribute control data and image data to the child
node, the child nodes return processing results to the master
node. In order to make the result more obvious, the algorithm is
implemented by triple loop structure.
Under distributed environment mode, the balance of compu-

tation time is shown in Fig. 7.
As can be seen from Fig. 7, the program is the most efficient

while 6 nodes (6-core) involved in the calculation and the image
data is loaded from the shared disk. If the number of nodes con-
tinues to grow, the total amount of data to load will be even
greater, thus reducing the performance.
4) Impact of I/O: Testing the impact of I/O on the per-

formance, the number of nodes keeps constant. A four-node
network is built in the experiment. And we designed five ex-
periments in which the amount of I/O decreases monotonically.
Under distributed environment mode, the total computation
time is shown in Table III.
“A” stands for four nodes to compute with file dependence

based on original method; “B” stands for four nodes to compute
with path dependence based on original method; “C” stands for
four nodes to compute with remote access data based on new
method; “D” stands for four nodes to compute with local ac-
cess data based on new method, in which each child node loads
the image data from local address; “E” stands for four nodes to
compute with less return data based on new method. In addition
to load the image data from the local address, each child node
further processes the result so that only a binary image is needed
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Fig. 7. Time for different size of task (s).

TABLE III
TIME FOR DIFFERENT DISTRIBUTED IMPLEMENTATION TECHNIQUES (S)

to be transmitted to the master node. Thus we can further reduce
the amount of data transfer.
It can be seen that the performance bottleneck is I/O. While

the computing power of each node keeps constant, minimizing
the amount of I/O will increase overall acceleration perfor-
mance.
From the above experiments, it can be seen that improvedma-

trix operation accelerates computing speed relative to original
“triple for loop” code for segment of spectral angle computa-
tion on the platform of MATLAB 2010b. The key is that many
fast algorithms based on multi-core and multi-thread are used
to accelerate the speed of matrix operation. The method based
on GPU of MATLAB 2010b platform could not achieve ideal
effect, because there are many operations of data interaction
from CPU-memory to GPU-device and from GPU-device to
CPU-host which consume a lot of time. Another issue is that the
efficiency of entailing GPU on MATLAB is lower than CUDA.
In the latter platform, only 54.87 seconds are needed to finish
the whole algorithm. However, the method based on Jacket ac-
celerating of MATLAB 2010b platform which supports index
of matrix speeds up by reducing time of data interaction. The
computation speed is raised further by CUDA through optimum
design of blocks and threads on GPU device, even though the
data loading time (2.36 s) is added to the total executing time.
Under the distributed environment, the whole computation time
depends on computational power of worker-node and transmis-
sion delay. The shortest computation time (5.71 s) is based on
four same worker-nodes through improved method and local
data access. For small-scale image data processing, single com-
puter parallel implementation is superior to multiple nodes (2.68
s–5.71 s) because of less I/O.

IV. CONCLUSION

In this paper, HPC techniques have been introduced into hy-
perspectral remote sensingmissions. A notable acceleration per-

formance of SAM algorithm is achieved by using different par-
allel architectures such as GPU and distributed clusters. En-
couraging experimental results show that GPU based on CUDA
platform has played a role in accelerating improved SAM algo-
rithm with a speedup of 63.9 (taking 24 spectra as training
samples), as the computation loads increases, the speedups are
more obvious (while taking 128 spectra as training samples, the
total speed up reaches 141.6 ). On the other hand, what inhibits
our further improvement on computation efficiency is the bot-
tleneck of I/O. The algorithm which has a trait of intensive com-
putation and less I/O is suitable for GPU to acceleration. Dis-
tributed clusters system is useful to resolve task-parallel rather
than data-parallel problem. For SAM algorithm, if the source
data is huge amount, distributed computing is the first candidate
method; if the computation amount increase for the algorithm
structure, accelerating by GPU will achieve better effect. The
future work will consider how to realize parallel implementation
and quantificational evaluation the acceleration performance of
GPU for a general remote sensing application algorithm.
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