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1. Introduction

Feature vector is a basic notion of pattern recognition. A feature vector v is a set of measurements (vq, vy, ..., vy) Which
map the important properties of a collection of data into a Euclidean space of dimension M [1]. A clustering algorithm
partitions a set of feature vectors into clusters. It is a valuable tool in exploratory pattern analysis, and helps making
hypotheses about the structure of data. It is important in syntactic pattern recognition, image segmentation, registration,
and many other applications. There have been many methods proposed in the literature for clustering feature vectors [ 1-6].

One popular clustering technique is the squared-erroralgorithm. This clustering algorithm is as follows [7]. Let N be the
number of patterns to be partitioned and M represent the number of features per pattern. Let F[0...N —1,0...M — 1] be
the feature matrix such that F [i, j] denotes the value of the (j + 1)th feature in the (i + 1)th pattern. Let sg, s1, ..., Sk_1 be
the K resulting clusters. Throughout the paper, we shall use terms “cluster k” and sy interchangeably. Each pattern belongs
to exactly one of the clusters. Let C[i] represent the cluster to which pattern i belongs. Thus, we can define s; as

s ={i|Clil=k, 0<i<N}, 0<k<K. (1)
Let |sk| be the cardinality or size of s;. The center of cluster k is a vector of size M defined as
1
center[k,jl = — Y Fli,jl, 0<j<M. (2)

|5k| iesy
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ALGORITHM One_Pass_Partitioning (N, M, K)

// Step 1: Assign patterns to clusters
FORALL 0<i <N
// Find nearest cluster to pattern i
NewCluster [i] <—q such that d2 [i,q] = min {d2 [i,k]} for 0<k < K

// Step 2: Update clusters if necessary
IF (FORALL i, 0<i <N, NewCluster [i]= C[i]) THEN //Check terminate condition
Terminate execution;
ELSE
// Set NewCluster as current cluster
FORALL, 0<i <N
C [i]:= NewCluster]i];

// Step 3: Update cluster centers
FORALL;0<i <K
FORALL, 0<j <M

Compute center [i, j] based on the new configuration;

Fig. 1. Algorithm One_Pass_Partitioning to find clusters with minimum squared-error patterns.

The squared distance d? between pattern i and cluster s is given by

M-1
d?[i, k] = Z(F[i, j1 — center[k, j1)2. (3)

=0

The squared error for cluster k is defined as

E2[k] = Z d?[i, k] (4)

iesy

and the squared error for the clustering is given by

K—1
Error = ZEZ[i]. (5)
paury

When applying the squared-error clustering algorithm to a set of N patterns, the ultimate goal is to minimize the value
of the squared error. To achieve this goal, the algorithm is realized with a different number of clusters (different values
for K). To partition the patterns for each amount of clusters, we begin with an initial set of arbitrary cluster centers, and
then we repeatedly perform the following two steps until no pattern changes its cluster: (1) we assign each pattern to the
nearest cluster (one of the clusters whose center has the least Euclidean distance from the pattern); (2) having all patterns
partitioned into different clusters, we compute the new center of each cluster.

Since different sets of initial cluster centers may result in different final configurations, the above approach does not
guarantee achieving the best configuration for each amount of clusters.

Fig. 1 shows the pseudo code of one pass of a trivial algorithm to partition patterns into a given set of clusters. As
shown in the figure, only one pass of the previously described algorithm has a time complexity of O(NMK) on a uni-
processor system. To achieve an acceptable clustering configuration (or finding an optimal K value), the above code must
be executed several times. Thus, several works were conducted to parallelize and optimize a single pass of the clustering
algorithm to expedite the overall process. For example, in [8] a clustering algorithm was developed for systolic arrays. A
clustering algorithm was proposed for multiprocessors with orthogonally shared memories in [9]. An SIMD hypercube
algorithm with a run time complexity of O(K log NM) and memory requirement of O(K) for each processor on an SIMD
hypercube with N x M processing elements was developed in [ 10]. Ranka and Sahni [7] decreased the run time complexity
to O(K + log? K + log NMK) on the same hypercube topology.

This paper! proposes a parallel algorithm for pattern clustering on the star graph with a run time of O(K) and a memory
usage of O(1). The star graph was proposed in [12] as an attractive alternative to the hypercube topology for interconnect-
ing processors in parallel computers. It has been extensively studied in different aspects and many algorithms have been
designed for it including communication algorithms [13], Fourier transform [14], load balancing [15], and sorting [16]. Our

1 an early version of this work was reported in [11].
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algorithm combines several communication techniques in a novel way to perform pattern clustering on an NM-node star
graph. This algorithm relies on window broadcasting communication at some stages during computation, as will be dis-
cussed later. It also uses a special kind of processor ordering introduced in [17] in order to assign the data to the PEs in
the initialization phase. Due to careful scheduling used for the communication steps of the algorithm on a star graph, the
algorithm can be realized on both SIMD and MIMD parallel machines.

The rest of the paper is organized as follows. Section 2 gives some preliminaries starting with a description of the star
graph, and some useful definitions and tools that we shall later use to develop our parallel algorithm. Section 3 describes the
proposed parallel algorithm in detail. Performance analysis of the proposed algorithm is reported in Section 4, and finally,
Section 5 concludes the paper.

2. The star graph: properties and communication algorithms

This section gives some preliminaries necessary for developing our parallel algorithm.

2.1. The star graph

The n-star graph, denoted by S,, has n! vertices (or nodes) corresponding to the n! permutations of n distinct symbols
1,2,...,n. A vertex corresponding to permutation aa, . .. a;—10;a;41 - . . G, i connected to those vertices corresponding
to permutations a;a, . . . ;_1a1Gi4+1 - - - ay for 2 < i < n, (that is, those permutations resulting from interchanging the first
symbolin the permutationa;a; . . . ;_10;ai41 - . . @, with any of the remaining n— 1 symbols). The edge connecting the vertex
associated with the permutation resulting from interchanging the first and the i-th symbol is called the i-th dimension edge
or connection. Thus, we can define a function I" to give the permutation address of the node connected to a given node
a14, . . . a, via the i-th connection as I';(a;a; . ..a,) = a;d; ...0a;_1a1Gi+1 - . - ay. In this way, every vertex is an endpoint of
n — 1 edges, corresponding to n — 1 symbols that can be interchanged with the symbol in the first position of the associated
permutation. This is shown in Fig. 2 for three different sizes of stars, the 2-star (S;), 3-star (S3) and 4-star (S4). The degree
and diameter of the n-star are of linear order, O(n) = O(log n!/ log n), while they are of higher order, O(logn!) = O(nlogn),
for the equivalent hypercube (with the same number of nodes N = n!) [18].

2.2. Ordering nodes

We need an ordering for the nodes of the n-star and a function that maps this ordering to positive integers in order
to develop our algorithm. The processor ordering defined in [12] is used where an ordering < on the nodes of the n-star is
defined as follows. We say a1a; ... a;...a, < biby ... b;...b,ifthereexistsani, 1 <i < n,suchthata; > b;,and a; = b; for
allj > i. The binary relation < is therefore a strict partial ordering being non-reflexive, transitive and asymmetric. Using this
relation, we can order patterns in the graph. Let us now describe a function that maps the permutations ordered according

to < into the first n! integers 1, 2, ..., n!. For each permutation aa, .. .q;. .. a,, we define 7; for each a;, 2 <i < n, as
n
m=lo—i— Y (&> a) (-1 (6)
j=it1
where
(a; > @) = {(1) gttlllie?w(ilée. (7)

Then the associated positive number for permutation aqa; ... a;. . . a, is given by
n
H(alaz...an)zl—f—an. (8)
j=2

For example, for n = 4, the permutations of {1, 2, 3, 4} ordered according to <, and the associated positive numbers (I7)
are given in Table 1. As shown in this table, ITy3,; = 1+ 715 + 713 + 74 = 24 (Where 71, = 1, 13 = 4, 14 = 18).

We shall interchangeably use Py, g, ...q, OF Pr7(a,a,...q,) to indicate a processor node associated with the permutation address
a4, . .. a, in n-star [17].

2.3. Routing and data communication in the star graph

This section first introduces some useful definitions, notations, and a routing algorithm that we shall use in the clustering
process.

Definition 1. The notation S,_; (i), for 1 < i < n, is used to indicate a sub-graph of S,where every node address has i as its
last symbol [13].
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Table 1
Permutation of the nodes in a 4-star ordered according to the ordering defined by <.
Permutation [T Permutation 7 Permutation  I7 Permutation  I7
1234 (1) 1243 (7) 1342 (13) 2341 (19)
2134 (2) 2143 (8) 3142 (14) 3241 (20)
1324 (3) 1423 (9) 1432 (15) 2431 (21)
3124 (4) 4123 (10) 4132 (16) 4231 (22)
2314 (5) 2413 (11) 3412 (17) 3421 (23)
3214 (6) 4213 (12) 4312 (18) 4321 (24)
1234 4231
3214 2134 3241 2431
S;(4) S, (1)
2314 3124 2341 3421
1324 4321
3
123
2143 314
321 213 1243 4123 1342 413
1 2
5,3) 5
12 231 312 4213 1423 4312 1432
2 1.1/ 2413 3412
3
(a) 2-star (S,). (b) 3-star (Ss3). (c) 4-star (S4).
Fig. 2. Star graphs of 2, 3 and 4 dimensions.
A sub-star S,_1(i) is an (n — 1)-star defined on symbols {1, 2, ..., n} — {i}. Thus, the n-star S, can be decomposed into n sub-

(n — 1)-stars, S;,_1(i), for 1 < i < n. For example, the 4-star S, in Fig. 2(c) contains four 3-stars, namely S3(1), S3(2), S3(3),
and S3(4).

Definition 2. Let m; and m, be two distinct symbols from {1, 2, . .., n}. We use notation m; «m, to represent a permutation
of {1, 2, ..., n} whose first and last symbols are m; and mj, respectively, with * representing any permutation of n — 2
symbols in {1, 2, ..., n} — {my, my}. Similarly, m;* is a permutation of n symbols whose first symbol is my, and xm, is a
permutation of n symbols whose last symbol is m; [13].

Definition 3. Two or more nodes from distinct S;_1’s are corresponding if they have the same index in their respective S;_1’s
according to the processor ordering scheme I7 as in Eq. (8). For example the nodes with addresses 2341, 1342, 1243, 1234
are the corresponding nodes in S.

In our parallel algorithm, a useful function called Send is used to transmit the contents of the nodes of S;_1(i) to the corre-
sponding nodes of S;_1 (j) in the host network is S,. Therefore, the last n— k symbols of the upper level Sy (in which the S;_1 (i)
and Si_1 (j) are embedded) are the same. This function gets four values as inputs: i and j as the k-th symbols of two S;_1's, k as
the dimension of the upper level sub graph in which Si_ (i) transmits its nodes’ contents to the nodes in S;_1(j), and n as the
dimension of the host network S,,. Notation §y , represents the last n—k similar symbols. This means that §,, , can be given as

Xm+1Xm .. -Xna
null,

ifm<n
ifm=n.

Sm,n =

(9)
Fig. 3 shows the pseudo code of function send.

Rule 1. Every node value in a particular node of Sx_1 (i) is sent to its corresponding node in Sx_1(j) using the Send function,
ifi and j are in a descending order in the symbol set (i.e. j is less than i and greater than the other remaining symbols).

Proof. LetS = X1 Xz ... X1 XkSkn Xi € {1,2,3,....,n}, 1 <i <k, be the source node in the particular Si_1, and the Send
function be used to transmit the node contents of S;_1 (X)) to S_1(Xk_1). The routing steps are as follows:

Step 1: X1 X5 . .. Xk—1XkSkn — XiXz - . . Xk—1X10k n



890 H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886-897

FUNCTION Send (i, j, k, n)
{
FOR ALL s=*i 5, , DO IN PARALLEL // Step 1

Node P, sends datum to its neighbor along connection &;

FOR ALL w=i*/5, ,, [ # j DO IN PARALLEL /I Step 2

k>
Node P, send datum to its neighbor Pj*l 5,0
FOR ALL v=j*/ 54»,”’ [ # iDO IN PARALLEL // Step 3
Node P, sends datum along connection £;
IF i=minimum symbol {Symbol Set - é‘k’n } THEN
FOR ALL u, [<u<k-2
FOR ALL s=*i 5,”, DO IN PARALLEL

Node P, sends datum to its neighbor along connection u;

Fig. 3. Pseudo code of function Send.

Step 2: Xi Xz . . . Xk—1X18kn = Xk—1X2 . .. XiX10k,n

Step 3: Xx—1Xa . . . XiX18kn = XiXa . . XiXk—10k.n-
In this rule, for the sake of clarity, we suppose that X, > Xi_1 > X¢_2--- > Xj. According to our processor ordering
scheme node X1X; . .. Xk—1Xk0k n has the least index in Sx_; (X;) and the node X1X; . . . XgXk—18k n also has the least index in

Sk—1(Xk—1); therefore, the node X;X; . . . XiXk—16k.» which is selected as a destination node is the corresponding node of the
source node. O

Rule 2. Two consecutive neighboring nodes v; and v, in Sg(«) send data to consecutive neighboring nodes w; and w, in
Sk(B), if @ and B are in the descending order in the symbol set.

Proof. Suppose that node v1 = X1Xa...¢ ... Xk—106k n and node v, = Y1Ys ... ... Yy a8y in S¢—1 () are two consecu-
tive neighbors, and ¢ and « are in the descending order in the symbol set. After sending the contents of the nodes of Sy («)
to the nodes of Sy_1(¢), we have the following steps for sending data from node X1 Xy ... ¢ ... Xk_10¢ n:

Step 1:X1X5 ... Q.. .Xk,laék,n — aX;... Q.. .Xk,]X]Sk’n

Step 2: OlX2 RPN (/30N ~Xk7]X]8k.11 — (/)Xz R0 2 -ka]X]Sk,n

Step 3: (pXZ [ ¢ 2N ~Xk7]X]8k.n — X]Xz [ 0 2N .Xk,ﬂp(Sk,n

and the following steps for sending data from node Y1Y, ... ¢ ... Y108k n:

Step1:Y1Y2...0... Yk_1a5k’n —>aYr...0... Y 1Y10kn
Step2:aYy...@... Y 1Yibkn = @Yo ... . Yi1Y16kn
Step3:@Yy...a... Y 1Yidkn = YiYa. ... Yo 1900k n.

The nodes w; = X1Xz ...« ... Xk—198kn and wy, = Y1Ys...00...Yk_198k n in Sx_1(p) are also consecutive neighboring
nodes because exchanging symbols ¢ and « does not affect the ordering of the nodes. O

Rule 3. In transmission from nodes of Sy_ () to nodes of S;_;(8), where « is the minimum symbol in the corresponding
symbol set and S is the greatest one, k — 2 exchange steps are required within S;_(«) to send data to the corresponding
nodes in S;_1(8).

Proof. If the content of node X»X3 . . . XiX18y n is transmitted by function send to Sy (Xi), where X > X,_1 > --- > Xy, the
following steps are performed in the first phase of the send function:

Step 1: X5X3 . .. XiX16kn — X1 X3 ... XiX26k.n

Step 2: X1 X3... ~XkX28k,n — XiXs3 .. .X1X28k,n

Step 3: X X3 .. .X1X28k,n — XoX3 ... X1 X0k n-

Itis clear that X, . . . Xi X1 8k » has the least index among other nodes in Si_1 (X1). Thus, in a correct transmission, the contents
of this node should be transmitted to a node in S,_1 (X;) that has the least index (according to the processor ordering), but
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use of the proposed algorithm does not accomplish this task in the first 3 steps. To do so, k — 2 exchange steps are required
in Si,_1(Xy) as follows:

Step 1:X2X3 .. .X1Xk8k,n — X3X2 . .X1Xk8k,n
Step 2: X3X2 . X1X,<5k,,., — X4X2X3 .. ~X1Xk8k,n )
.. k — 2 steps are required.

Step k — 2: Xp_1X2X3 .. -Xlxkak,n — X1 XoX3.. ch—]Xkak,n

From Rules 1-3, it can be concluded that each node in S;_;() sends data to its corresponding node in S;_1(8) by the
send function, if « and B are in the descending order, except when « is the minimum and 8 is the greatest symbol in the
corresponding symbol set. The following transmission sequence shows a correct order of transmission:

Sk—1(Xe) = Ske1Kk—1) = -+ = Si1(Xy) = Si1 (X)) where Xy > X > Xgp > - > Xp. O

3. The parallel algorithm

The parallel algorithm consists of three main phases: Initialization Phase, Cluster Finding Phase, and Center Update Phase.
The number of patterns in this algorithm, N, the number of clusters, K, and the number of features, M, should satisfy
conditions NM = S!, KM = T!,and M = R!. If the number of patterns, clusters or features are not in a factorial manner, one
can add enough dummy entries so that the above conditions are satisfied and the clustering results are not affected [7].

3.1. The initialization phase

During this phase, two index numbers are associated with each PE according to the mentioned node ordering scheme.
The first index shows the order of PE in the host network Ss and the second one is the order of PE in the corresponding St.
Then patterns are associated with different Sg’s in such a way that the i-th feature of each pattern resides on a PE whose

index number satisfies condition index u i. Then, the first St in Ss is considered as the master cluster window (the choice of
initial cluster centers in the master cluster window is arbitrary), and its contents are copied into all other St’s, so that the
current cluster center selection is reported to all other cluster windows. Register R; of each node is used to store the squared
distance of node to its cluster. Register R, is temporary and register R; represents the value of squared node distance to the
current cluster. Registers F; and C; are used to store feature values and their cluster centers.

3.2, The cluster finding phase

The aim of this phase is to compute the distance d?(i, k) of the i-th pattern in each cluster window (i.e., the k-th cluster)
from the current selection of cluster centers, and to choose the minimum distance to all cluster centers. We then assign this
cluster to the pattern according to the selected choice.

First, distances between the features and current centers available in each node of a S; are computed in a parallel fashion
among all Sg’s in the network as (F; — C;)2.

Then by using function Group Accumulate [ 17], the value of d (i, k) which represents the distance between the i-th pattern
and the current center is calculated and compared to its old value; the smaller one is selected as the cluster to where this
pattern belongs.

In the second step, the values of the Sg’s present in all the Sg1’s available in the Ss are rotated once via the send function
in parallel, as previously described. These steps will be repeated R+ 1 times, until all Sg’s present in all Sg;’s get each other’s
data.

The next step would be to rotate the data values of Sg1’s in all Sg;5’s in parallel once, and repeat the first and second
steps R+ 2 times. The addition of the levels of sub-graphs and their rotation continues until St ; is reached; in other words,
we reach one level higher than the cluster windows (St’s).

By the end of the Cluster Finding Phase, all the patterns have been assigned their cluster membership in the corresponding
higher order node (according to PE ordering). These steps are shown in the pseudo code in Fig. 4.

In Fig. 4, §(K) is a function that selects the maximum symbol among symbol set {X;, X5, ..., Xx_1} where the chosen
symbol is less than Xj; if this is not possible the maximum value in the symbol set is selected. Thus, §(K) can be written as

Max{X1,Xo, ..., Xk1 | Xi < X}, ifitexists

8(K) = {Max(X1,X2, v, Xee1), otherwise. (10)

In this figure, procedure Split divides a set, say I] = {X;, Xy, ..., X} into two subsets I = {X1, X3, ..., X2} and ] = {Xj/241,
X242, - . ., Xi}, where the division operator */” means an integer division which results in an integer. Now, in the final phase,
using these procedures the contents of registers R; in all processors are accumulated in register P, x,.... xgsp ; (R1), where
X,‘ > Xifl [17]

,,,,,
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FUNCTION Cluster_Finding (K)

1 IFK # R THEN

2 FOR ALL j, 1<i<k

3 FOR ALL S, | IN.S; DO IN PARALLEL

4. Send(X,, 0(K),K,R) /I X represent the k" symbol of a particular node;
5 Cluster_Finding (K-1);

6 ELSE

7. Compute_Distance ();

}

(a) Cluster finding function.

FUNCTION Compute_Distance ()
{
1. FOR ALL SR IN SS DO IN PARALLEL
2. FOR ALL nodes IN SR DO IN PARALLEL
3, R (F -G
4. FOR ALL i <~ R DOWNTO 2
5. IJ(—{X],XZ,...,/\Ij} where X, > X, |
6. WHILE 1 # { X, } DO
7. Split (11, 1, J);
8. Group_Accumulate (1, ], i, R);
9. U<« JU{X,};
10. Py vy xR Py v v, (R + Py v, s, (RS
11. FOR ALL PE’s whose index MOD R/ = 0 DO IN PARALLEL ?UNCTIONG"’”P—A“’””""‘” (& J, m, n)
12. IF R, < R, THEN 1. FOR ALL k, 1<k<m/2 DO IN PARALLEL
13. R, <R C—Crpronss 2. Accumulate (iy, j,,m,n);
} )
(b) Compute Distance algorithm. (c) Group Accumulate function.
FUNCTION Accumulate (i, j, m, n)
{
1. FORALL s= X\ X,.. X, id, . (X, €{l.2,...,n} —{j})) DO IN PARALLEL
2. Py, X XS (R,) =F.(R)
3. FORALL w=iX\X,.. X, ko, ., (X, ke{l,2,.,n}—{i,j})) DO IN PARALLEL
4. P/'Xz...X,,,iXH,_.X,,,,lkb'm_" (Rz) — R«r (Rz )
5. FOR ALL v= X X,..X, ,K5, . (X, k €{l2,.,n}—1{i,j})) DO IN PARALLEL
6. Py, x,, S (R,) <=P,(R)
7. Plexz X278 (R] ) - Ple/\'z X 27O (R2) + Ple/\'z X 27O (Rl )
}
(d) Accumulate function.

Fig. 4. Functions in Cluster Finding phase.
3.3. The center update phase

As mentioned before, all cluster windows (Sr’s) have been indexed such that every node contains a variable T = [’”gij
that shows the cluster center data each Sg in a cluster window is responsible for. This value is a pre-computed constant for

each Sz (which would contain a feature vector). This phase has two steps: Broadcast Cluster Center and Cluster Center Update.

3.3.1. Broadcast cluster center

Here, all Sg’s in Sg broadcast their cluster numbers computed in the previous phase and stored in their highest indexed
node.
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As mentioned earlier, the center number of patterns is stored in a node with the highest index within the Sg’s. Let
X1Xa ... X.6g 1 be the node with the highest index in the corresponding Sg. The following optimal broadcasting algorithm [19]
can broadcast the content of this node to the PEs in Sg_1(X;).

Definition 4. Let the IT A-decomposition of a star graph S, be defined as follows. Let IT;, 1 < i < n, be the graph induced
by the set of vertices of the form X1X; ... X,_iiand let A;, 1 <j < n, be the graph induced by the set of vertices of the form
JX3 ... Xn. The node X1X; . . . X; 6 r whose data shall be broadcast belongs to both sub-graphs /Ty, and Ay, .

Now, three actions must be taken in this step as:

(1) Merging: broadcast the information from Ay, to every other Iy, , X; > X;.
(2) Placement: send the information from every Ay, to every ITx,, for all X; # X;.
(3) Recursion: broadcast within each Ix,.

This step has a run time of O(n + Zz;; [logkl).

3.3.2. Cluster center update

In this phase, all Sg’s of the Sg1 exchange their values R + 1 times. In each rotation step, the contents of nodes in Sg’s,
which include cluster number and feature value are transmitted to their corresponding node in the next Sg. In each node of
Sg’s, if the cluster number T is equal to the cluster number it receives (from the previous window Sg), the PE adds its feature
value to the feature value it gets, otherwise it does nothing.

Next, the dimension of the last step is increased once, in fact Sg;1’s exchange data R + 2 times inside the corresponding
Skr+2. In each exchange operation, the above steps are repeated again until Sy 4 is reached.

Through the last step, all St's of a St41 exchange their nodes’ contents with their corresponding St’s, T + 1 times. Since
corresponding Si’s in two different St’s (Sg’s with similar values of T) contain similar cluster center information, the nodes of
each Sy just add their former contents to the newly received ones; there is no need for any comparison or similar operation.

The last step is repeated until we reach Ss. There will be 5(52—“) - @ + K addition and send operations. The pseudo
code of this phase is shown in Fig. 5.

4. Performance analysis

In this section, we evaluate the performance of the proposed clustering algorithm. To this end, we suppose Tji,x and Tepy
being the time needed for communication over a link and calculating an expression inside a PE, respectively.

4.1. The initialization phase

The first step in the proposed algorithm is to scatter data among PEs. This step is done once during the algorithm. Lets
Tinic be the time needed for this step.

4.2. Cluster finding phase

Fig. 6 shows the required time for each of the functions for finding clusters in the proposed algorithms based on Fig. 4.
In each part of this figure, the time consumed at each step (or line of the algorithm) is specified. Next, the accumulated
execution time of each algorithm is shown at the bottom of each table.

Based on these estimated times, it is easy to find the overall execution time of Cluster_Finding algorithm.

4.3. The center update phase

Moreover, Fig. 7 portrays execution time of each function for finding clusters in the proposed algorithm based on Fig. 5.
For each algorithm in Center Update phase, the execution time is estimated and shown in Fig. 7. Therefore, the total execution
time of the Cluster_Center_Update algorithm can be easily obtained.

Since the proposed algorithm is synchronous and there is no network contention, the execution time of the algorithm
can be analytically calculated based on the figures above. In order to better understand the effect of different parameters on
the overall performance, MATLAB tool version 2010a (7.10.0) is used to investigate the effect of each parameter on the total
execution time. Without loss of generality, we have fixed the parameters shown in Table 2. It is noteworthy that different
values of these parameters may change the calculated latency but will not change the final conclusion. As we want to see
the effects of the number of patterns, features and clusters on the total execution time, other parameters listed in Table 2
are fixed to some constant values, i.e. time complexity of O(1).

Figs. 8-10 show the effects of different parameters on the total execution time of the proposed algorithm. In Fig. 8, it is
shown that the number of patterns (N) has a logarithmic impact on the total execution time. It is because in our algorithm,
parameter N contributes in parameter S with an inverse factorial relation. Fig. 9 also shows the effect of the number of
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FUNCTION Center_Compute (m)
{
1. IF m# R+1 THEN
2. Center_Compute (m-1);
3. ELSE
4. {
5. FORALL 1<i<m
6. {
7. FOR ALL Sm—l IN Sm DO IN PARALLEL
8. Send (X ,,, 5(m),m,R);
9. FOR ALL rodes IN S; DO IN PARALLEL
10. IF Current Cluster Number <— T (where T = Index/R!) THEN
11. E <~ E + FCHI‘I‘C’H[;
12. /* it means the current received feature belongs to a pattern which has the
13. same cluster number as the current feature */
14. }
15. }
}
(a) Center computer function.
FUNCTION Accumulate_Center (n)
{
1. IF n# T +1THEN
2. Accumulate_Center (n-1)
3. ELSE
4. {
5. FORALLS, | INS, DO IN PARALLEL
6. Send (X ,,, 6(m),m,R);
7. FOR ALL nodes IN S ;DO IN PARALLEL
8. Fi <~ E + FCurrenl; >
9. }
}
(b) Algorithm to accumulate center.

FUNCTION Cluster_Center_Update (S)

{

1 FOR ALL SR IN SS DO IN PARALLEL

2. Broadcast the highest order node to the other nodesin corresponding Sy,
3. FOR ALL ST s IN Ss DO IN PARALLEL

4 Center_Compute (T) ;

i

Accumulate Center (S) ;

!

(c) Algorithm to update center in clusters.

Fig. 5. Pseudo code for Cluster Center Update step.

Table 2

Parameters used in the simulation tool.
Parameter Latency (cycles)
Tiink 1
Tcpu 1
Tsplir 10
Tum‘an 10

clusters (K) on total execution time. This figure shows that parameter K has an exponential effect on total execution time.
Finally, Fig. 10 shows the effect of the number of features (M) on total execution time with a logarithmic contribution. As can
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a[ Send () function

b Cluster_Finding () function

Step1:
Step2:
Step3:
Step4:
Worst case:
other cases:

Tlink If K<>R then return K X Tsend + TClusterFinding(K - 1)
Tiink Else return T computebistance
Tiink
K+R
(K —2) X Tink TClusterFinding(K) = Tsena X x (K-—R+1)
0

1
Tsena =3 X Tijnge + x> (K —2) X Tiing

+ TComputeDistance

C | Compute_Distance () function

T::pu

(R — 1)times
o1)

log, (R) times
Tsplit

TGroupA::rumulate (E)

Tuni on

T cpu XO(1)

d Group_Accumulate (m) function t/:nes4.2-3:
Line 1: Z times ne %
. 2 Line 5:
Line 2: Taccumulate Line 6:
m ]
TGraupAccumulate = ? X T pccumulate Ll_ne 7
Line 8:
Line 9:
€ [ Accumulate () function Line 10:
Lines 1-2: Tiink Lines 11-13:
Lines 3-4: Tiink
Lines 5-6: Tiink
Line 7: Tepu
Taccumutate = 3 X Tying + Tcpu

R
{0(1) + 1092 (R) X (Tsplit + TGroupAccumulale (_)

+ Tunian) + Tcpu} + 0(1)

TComputeDistance = Trpu + (R - 1) X

2

Fig. 6. Timing analysis of Cluster Finding phase.

TCenterCompute(m) = (m R+ 2) X 0(1) +mX (Tsend + Tcpu)

A | Center_Compute()function b Accumulate_Center()function
Line 1: (m — R) times Line 1: (n—T) times
Line 2: o(1) Line 2: o(1)
Line 5: (m) times Lines 5-6: Tsend
Lines 7-8: Tsend Lines 7-8: Tspu
Lines 9-13: Tspu T, latecenter (1)

= Mm—-T)X0(1)+Tgena + Tcpu

c

Totaltime (Cycle)

Cluster_Center_Update()function

Lines 1-2: TBroadcasI

Lines 3-4: TCenteLCompute

Line 5: Ta late_Center

TClusterCenterledate = TBraudcasl + TCenterCampute + TAccumuluteCenter

Fig. 7. Timing analysis of Cluster Center Update phase.
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Fig. 8. Total time consumption of the algorithm vs. number of patterns N (#features = 200, #clusters = 64).

895

be seen in the figure, for some consecutive values of M, the total execution time does not change which is due to rounded

inverse-factorial values.

Fig. 11 shows the effect of the number of clusters on the performance of proposed algorithm compared to the algorithm
presented in [7] for the same sized hypercube (let it be called the hypercube algorithm). Since the hypercube algorithm can
be used only for situations where the number of clusters is a power of 2, we have compared the two algorithms for the
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Fig. 10. Total time consumption of the algorithm vs. number of features M (#clusters=100, #patterns=200).
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Fig. 11. The normalized total time consumption of Star-based and Hypercube-based algorithms vs. number of clusters K (#patterns =512, #features = 20).

number of clusters being a power of 2. For each algorithm, the total execution time is normalized to the case where number
of clusters is 16. In the hypercube algorithm, the number of clusters contributes linearly in the total execution time while
in our algorithm it is almost exponential. It should be noted that in the hypercube algorithm, the best execution time is
achieved when the number of clusters and patterns are a power of 2, while in our algorithm, the best result is given when
number of clusters, patterns and features satisfy relations N - M = S!and K - M = T!.
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Fig. 12. The normalized efficiency of Star-based and Hypercube-based algorithms vs. number of PE (#patterns = 1024, #features = 20, #clusters = 100).

Fig. 12 shows the normalized efficiency of the proposed and hypercube algorithm. Here, efficiency is calculated based
on the gained speedup divided by the number of employed processing nodes. When efficiency approaches 1, it means that
the gained speedup becomes higher and when it is close to 0, it shows poor speedup gain. As can be shown in Fig. 12, when
the number of processors increases, the proposed algorithm exhibits better efficiency over the hypercube algorithm. Note
that for some cases in our star-based algorithm, efficiency remains unchanged as a result of the rounded inverse-factorial
function.

5. Conclusions

The star graph was proposed as an attractive alternative to the hypercube topology for interconnection between
processors in parallel computers. It has been extensively studied in different aspects and many algorithms have been
designed for it. In this paper, a clustering algorithm for the star graph based multicomputer was presented and evaluated.
This algorithm is fast and requires a little amount of memory per processing node. The algorithm completes in O(K +5? —T?)
steps for a clustering problem of N patterns, with M features per pattern, and K clusters, where S and T are the minimum
numbers such that NM < S!and KM < T!, on an NM-node multiprocessor.
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