
Mathematical and Computer Modelling 58 (2013) 886–897

Contents lists available at SciVerse ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

A parallel clustering algorithm on the star graph and
its performance
Hamid Sarbazi-Azad a,b,∗, Hamid R. Zarandi b,c, Mahdi Fazeli d
a Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
b School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
c Department of Computer Engineering and Information Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran,
Iran
d Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 17 December 2009
Received in revised form 9 March 2013
Accepted 30 March 2013

Keywords:
Interconnection networks
Star graph
Clustering
Parallel algorithm
Complexity

a b s t r a c t

In this paper, a parallel algorithm is presented for data clustering on a multicomputer with
star topology. This algorithm is fast and requires a small amount of memory per processing
element, which makes it even suitable for SIMD implementation. The proposed parallel
algorithm completes in O(K + S2 − T 2) steps for a clustering problem of N data patterns
withM features per pattern and K clusters where S and T are the minimum numbers such
that NM ≤ S! and KM ≤ T !, on the S-dimensional star graph.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Feature vector is a basic notion of pattern recognition. A feature vector v is a set of measurements (v1, v2, . . . , vM)which
map the important properties of a collection of data into a Euclidean space of dimension M [1]. A clustering algorithm
partitions a set of feature vectors into clusters. It is a valuable tool in exploratory pattern analysis, and helps making
hypotheses about the structure of data. It is important in syntactic pattern recognition, image segmentation, registration,
andmany other applications. There have beenmanymethods proposed in the literature for clustering feature vectors [1–6].

One popular clustering technique is the squared-erroralgorithm. This clustering algorithm is as follows [7]. Let N be the
number of patterns to be partitioned andM represent the number of features per pattern. Let F [0 . . .N − 1, 0 . . .M − 1] be
the feature matrix such that F [i, j] denotes the value of the (j + 1)th feature in the (i + 1)th pattern. Let s0, s1, . . . , sK−1 be
the K resulting clusters. Throughout the paper, we shall use terms ‘‘cluster k’’ and sk interchangeably. Each pattern belongs
to exactly one of the clusters. Let C[i] represent the cluster to which pattern i belongs. Thus, we can define sk as

sk = {i|C[i] = k, 0 ≤ i < N}, 0 ≤ k < K . (1)

Let |sk| be the cardinality or size of sk. The center of cluster k is a vector of size M defined as

center[k, j] =
1

|sk|


i∈sk

F [i, j], 0 ≤ j < M. (2)

∗ Corresponding author at: Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
E-mail address: azad@ipm.ir (H. Sarbazi-Azad).

0895-7177/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mcm.2013.03.011

http://dx.doi.org/10.1016/j.mcm.2013.03.011
http://www.elsevier.com/locate/mcm
http://www.elsevier.com/locate/mcm
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.mcm.2013.03.011&domain=pdf
mailto:azad@ipm.ir
http://dx.doi.org/10.1016/j.mcm.2013.03.011

H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897 887

Fig. 1. Algorithm One_Pass_Partitioning to find clusters with minimum squared-error patterns.

The squared distance d2 between pattern i and cluster sk is given by

d2[i, k] =

M−1
j=0

(F [i, j] − center[k, j])2. (3)

The squared error for cluster k is defined as

E2
[k] =


i∈sk

d2[i, k] (4)

and the squared error for the clustering is given by

Error =

K−1
i=0

E2
[i]. (5)

When applying the squared-error clustering algorithm to a set of N patterns, the ultimate goal is to minimize the value
of the squared error. To achieve this goal, the algorithm is realized with a different number of clusters (different values
for K). To partition the patterns for each amount of clusters, we begin with an initial set of arbitrary cluster centers, and
then we repeatedly perform the following two steps until no pattern changes its cluster: (1) we assign each pattern to the
nearest cluster (one of the clusters whose center has the least Euclidean distance from the pattern); (2) having all patterns
partitioned into different clusters, we compute the new center of each cluster.

Since different sets of initial cluster centers may result in different final configurations, the above approach does not
guarantee achieving the best configuration for each amount of clusters.

Fig. 1 shows the pseudo code of one pass of a trivial algorithm to partition patterns into a given set of clusters. As
shown in the figure, only one pass of the previously described algorithm has a time complexity of O(NMK) on a uni-
processor system. To achieve an acceptable clustering configuration (or finding an optimal K value), the above code must
be executed several times. Thus, several works were conducted to parallelize and optimize a single pass of the clustering
algorithm to expedite the overall process. For example, in [8] a clustering algorithm was developed for systolic arrays. A
clustering algorithm was proposed for multiprocessors with orthogonally shared memories in [9]. An SIMD hypercube
algorithm with a run time complexity of O(K logNM) and memory requirement of O(K) for each processor on an SIMD
hypercube with N ×M processing elements was developed in [10]. Ranka and Sahni [7] decreased the run time complexity
to O(K + log2 K + logNMK) on the same hypercube topology.

This paper1 proposes a parallel algorithm for pattern clustering on the star graph with a run time of O(K) and a memory
usage of O(1). The star graph was proposed in [12] as an attractive alternative to the hypercube topology for interconnect-
ing processors in parallel computers. It has been extensively studied in different aspects and many algorithms have been
designed for it including communication algorithms [13], Fourier transform [14], load balancing [15], and sorting [16]. Our

1 An early version of this work was reported in [11].

888 H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897

algorithm combines several communication techniques in a novel way to perform pattern clustering on an NM-node star
graph. This algorithm relies on window broadcasting communication at some stages during computation, as will be dis-
cussed later. It also uses a special kind of processor ordering introduced in [17] in order to assign the data to the PEs in
the initialization phase. Due to careful scheduling used for the communication steps of the algorithm on a star graph, the
algorithm can be realized on both SIMD and MIMD parallel machines.

The rest of the paper is organized as follows. Section 2 gives some preliminaries starting with a description of the star
graph, and some useful definitions and tools that we shall later use to develop our parallel algorithm. Section 3 describes the
proposed parallel algorithm in detail. Performance analysis of the proposed algorithm is reported in Section 4, and finally,
Section 5 concludes the paper.

2. The star graph: properties and communication algorithms

This section gives some preliminaries necessary for developing our parallel algorithm.

2.1. The star graph

The n-star graph, denoted by Sn, has n! vertices (or nodes) corresponding to the n! permutations of n distinct symbols
1, 2, . . . , n. A vertex corresponding to permutation a1a2 . . . ai−1aiai+1 . . . an is connected to those vertices corresponding
to permutations aia2 . . . ai−1a1ai+1 . . . an for 2 ≤ i ≤ n, (that is, those permutations resulting from interchanging the first
symbol in the permutation a1a2 . . . ai−1aiai+1 . . . an with any of the remaining n−1 symbols). The edge connecting the vertex
associated with the permutation resulting from interchanging the first and the i-th symbol is called the i-th dimension edge
or connection. Thus, we can define a function Γ to give the permutation address of the node connected to a given node
a1a2 . . . an via the i-th connection as Γi(a1a2 . . . an) = aia2 . . . ai−1a1ai+1 . . . an. In this way, every vertex is an endpoint of
n− 1 edges, corresponding to n− 1 symbols that can be interchanged with the symbol in the first position of the associated
permutation. This is shown in Fig. 2 for three different sizes of stars, the 2-star (S2), 3-star (S3) and 4-star (S4). The degree
and diameter of the n-star are of linear order, O(n) = O(log n!/ log n), while they are of higher order, O(log n!) = O(n log n),
for the equivalent hypercube (with the same number of nodes N = n!) [18].

2.2. Ordering nodes

We need an ordering for the nodes of the n-star and a function that maps this ordering to positive integers in order
to develop our algorithm. The processor ordering defined in [12] is used where an ordering ≺ on the nodes of the n-star is
defined as follows.We say a1a2 . . . ai . . . an ≺ b1b2 . . . bi . . . bn if there exists an i, 1 ≤ i ≤ n, such that ai > bi, and aj = bj for
all j > i. The binary relation≺ is therefore a strict partial ordering being non-reflexive, transitive and asymmetric. Using this
relation, we can order patterns in the graph. Let us now describe a function that maps the permutations ordered according
to ≺ into the first n! integers 1, 2, . . . , n!. For each permutation a1a2 . . . ai . . . an, we define πi for each ai, 2 ≤ i ≤ n, as

πi =

ai − i −
n

j=i+1


ai > aj

 (i − 1)! (6)

where 
ai > aj


=


1 if ai > aj
0 otherwise. (7)

Then the associated positive number for permutation a1a2 . . . ai . . . an is given by

Π(a1a2 . . . an) = 1 +

n
j=2

πj. (8)

For example, for n = 4, the permutations of {1, 2, 3, 4} ordered according to ≺, and the associated positive numbers (Π)
are given in Table 1. As shown in this table, Π4321 = 1 + π2 + π3 + π4 = 24 (where π2 = 1, π3 = 4, π4 = 18).

We shall interchangeably use Pa1a2...an or PΠ(a1a2...an) to indicate a processor node associatedwith the permutation address
a1a2 . . . an in n-star [17].

2.3. Routing and data communication in the star graph

This section first introduces some useful definitions, notations, and a routing algorithm that we shall use in the clustering
process.

Definition 1. The notation Sn−1(i), for 1 ≤ i ≤ n, is used to indicate a sub-graph of Snwhere every node address has i as its
last symbol [13].

H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897 889

Table 1
Permutation of the nodes in a 4-star ordered according to the ordering defined by ≺.

Permutation Π Permutation Π Permutation Π Permutation Π

1234 (1) 1243 (7) 1342 (13) 2341 (19)
2134 (2) 2143 (8) 3142 (14) 3241 (20)
1324 (3) 1423 (9) 1432 (15) 2431 (21)
3124 (4) 4123 (10) 4132 (16) 4231 (22)
2314 (5) 2413 (11) 3412 (17) 3421 (23)
3214 (6) 4213 (12) 4312 (18) 4321 (24)

(a) 2-star (S2). (b) 3-star (S3). (c) 4-star (S4).

Fig. 2. Star graphs of 2, 3 and 4 dimensions.

A sub-star Sn−1(i) is an (n−1)-star defined on symbols {1, 2, . . . , n}−{i}. Thus, the n-star Sn can be decomposed into n sub-
(n − 1)-stars, Sn−1(i), for 1 ≤ i ≤ n. For example, the 4-star S4 in Fig. 2(c) contains four 3-stars, namely S3(1), S3(2), S3(3),
and S3(4).

Definition 2. Letm1 andm2 be two distinct symbols from {1, 2, . . . , n}. We use notationm1∗m2 to represent a permutation
of {1, 2, . . . , n} whose first and last symbols are m1 and m2, respectively, with * representing any permutation of n − 2
symbols in {1, 2, . . . , n} − {m1,m2}. Similarly, m1∗ is a permutation of n symbols whose first symbol is m1, and ∗m2 is a
permutation of n symbols whose last symbol ism2 [13].

Definition 3. Two ormore nodes from distinct Sk−1’s are corresponding if they have the same index in their respective Sk−1’s
according to the processor ordering scheme Π as in Eq. (8). For example the nodes with addresses 2341, 1342, 1243, 1234
are the corresponding nodes in S4.

In our parallel algorithm, a useful function called Send is used to transmit the contents of the nodes of Sk−1(i) to the corre-
sponding nodes of Sk−1(j) in the host network is Sn. Therefore, the last n−k symbols of the upper level Sk (inwhich the Sk−1(i)
and Sk−1(j) are embedded) are the same. This function gets four values as inputs: i and j as the k-th symbols of two Sk−1’s, k as
the dimension of the upper level sub graph inwhich Sk−1(i) transmits its nodes’ contents to the nodes in Sk−1(j), and n as the
dimension of the host network Sn. Notation δk,n represents the last n−k similar symbols. Thismeans that δm,n can be given as

δm,n =


Xm+1Xm . . . Xn, ifm < n
null, ifm = n. (9)

Fig. 3 shows the pseudo code of function send.

Rule 1. Every node value in a particular node of SK−1(i) is sent to its corresponding node in SK−1(j) using the Send function,
if i and j are in a descending order in the symbol set (i.e. j is less than i and greater than the other remaining symbols).

Proof. Let S = X1X2 . . . Xk−1Xkδk,n, Xi ∈ {1, 2, 3,, n}, 1 ≤ i ≤ k, be the source node in the particular Sk−1, and the Send
function be used to transmit the node contents of Sk−1(Xk) to Sk−1(Xk−1). The routing steps are as follows:

Step 1: X1X2 . . . Xk−1Xkδk,n → XkX2 . . . Xk−1X1δk,n

890 H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897

Fig. 3. Pseudo code of function Send.

Step 2: XkX2 . . . Xk−1X1δk,n → Xk−1X2 . . . XkX1δk,n

Step 3: Xk−1X2 . . . XkX1δk,n → X1X2 . . . XkXk−1δk,n.

In this rule, for the sake of clarity, we suppose that Xk > Xk−1 > Xk−2 · · · > X1. According to our processor ordering
scheme node X1X2 . . . Xk−1Xkδk,n has the least index in Sk−1(Xk) and the node X1X2 . . . XkXk−1δk,n also has the least index in
Sk−1(Xk−1); therefore, the node X1X2 . . . XkXk−1δk,n which is selected as a destination node is the corresponding node of the
source node. �

Rule 2. Two consecutive neighboring nodes v1 and v2 in Sk(α) send data to consecutive neighboring nodes w1 and w2 in
Sk(β), if α and β are in the descending order in the symbol set.

Proof. Suppose that node v1 = X1X2 . . . ϕ . . . Xk−1αδk,n and node v2 = Y1Y2 . . . ϕ . . . Yk−1αδk,n in Sk−1(α) are two consecu-
tive neighbors, and ϕ and α are in the descending order in the symbol set. After sending the contents of the nodes of Sk−1(α)
to the nodes of Sk−1(ϕ), we have the following steps for sending data from node X1X2 . . . ϕ . . . Xk−1αδk,n:

Step 1: X1X2 . . . ϕ . . . Xk−1αδk,n → αX2 . . . ϕ . . . Xk−1X1δk,n

Step 2:α X2 . . . ϕ . . . Xk−1X1δk,n → ϕ X2 . . . α . . . Xk−1X1δk,n

Step 3:ϕ X2 . . . α . . . Xk−1X1δk,n → X1X2 . . . α . . . Xk−1ϕδk,n

and the following steps for sending data from node Y1Y2 . . . ϕ . . . Yk−1αδk,n:

Step 1: Y1Y2 . . . ϕ . . . Yk−1αδk,n → α Y2 . . . ϕ . . . Yk−1Y1δk,n

Step 2:α Y2 . . . ϕ . . . Yk−1Y1δk,n → ϕ Y2 . . . α . . . Yk−1Y1δk,n

Step 3:ϕ Y2 . . . α . . . Yk−1Y1δk,n → Y1Y2 . . . α . . . Yk−1ϕδk,n.

The nodes w1 = X1X2 . . . α . . . Xk−1ϕδk,n and w2 = Y1Y2 . . . α . . . Yk−1ϕδk,n in Sk−1(ϕ) are also consecutive neighboring
nodes because exchanging symbols ϕ and α does not affect the ordering of the nodes. �

Rule 3. In transmission from nodes of Sk−1(α) to nodes of Sk−1(β), where α is the minimum symbol in the corresponding
symbol set and β is the greatest one, k − 2 exchange steps are required within Sk−1(α) to send data to the corresponding
nodes in Sk−1(β).

Proof. If the content of node X2X3 . . . XkX1δk,n is transmitted by function send to Sk−1(Xk), where Xk > Xk−1 > · · · > X1, the
following steps are performed in the first phase of the send function:

Step 1: X2X3 . . . XkX1δk,n → X1X3 . . . XkX2δk,n

Step 2: X1X3 . . . XkX2δk,n → XkX3 . . . X1X2δk,n

Step 3: XkX3 . . . X1X2δk,n → X2X3 . . . X1Xkδk,n.

It is clear that X2 . . . XkX1δk,n has the least index among other nodes in Sk−1(X1). Thus, in a correct transmission, the contents
of this node should be transmitted to a node in Sk−1(Xk) that has the least index (according to the processor ordering), but

H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897 891

use of the proposed algorithm does not accomplish this task in the first 3 steps. To do so, k − 2 exchange steps are required
in Sk−1(Xk) as follows:

Step 1: X2X3 . . . X1Xkδk,n → X3X2 . . . X1Xkδk,n
Step 2: X3X2 . . . X1Xkδk,n → X4X2X3 . . . X1Xkδk,n
...
...

Step k − 2: Xk−1X2X3 . . . X1Xkδk,n → X1X2X3 . . . Xk−1Xkδk,n

 k − 2 steps are required.

From Rules 1–3, it can be concluded that each node in Sk−1(α) sends data to its corresponding node in Sk−1(β) by the
send function, if α and β are in the descending order, except when α is the minimum and β is the greatest symbol in the
corresponding symbol set. The following transmission sequence shows a correct order of transmission:

Sk−1(Xk) → Sk−1(Xk−1) → · · · → Sk−1(X1) → Sk−1(Xk) where Xk > Xk−1 > Xk−2 > · · · > X1. �

3. The parallel algorithm

The parallel algorithm consists of three main phases: Initialization Phase, Cluster Finding Phase, and Center Update Phase.
The number of patterns in this algorithm, N , the number of clusters, K , and the number of features, M , should satisfy
conditions NM = S!, KM = T !, andM = R!. If the number of patterns, clusters or features are not in a factorial manner, one
can add enough dummy entries so that the above conditions are satisfied and the clustering results are not affected [7].

3.1. The initialization phase

During this phase, two index numbers are associated with each PE according to the mentioned node ordering scheme.
The first index shows the order of PE in the host network SS and the second one is the order of PE in the corresponding ST .
Then patterns are associated with different SR’s in such a way that the i-th feature of each pattern resides on a PE whose

index number satisfies condition index
M
≡ i. Then, the first ST in SS is considered as the master cluster window (the choice of

initial cluster centers in the master cluster window is arbitrary), and its contents are copied into all other ST ’s, so that the
current cluster center selection is reported to all other cluster windows. Register R1 of each node is used to store the squared
distance of node to its cluster. Register R2 is temporary and register R3 represents the value of squared node distance to the
current cluster. Registers F1 and C1 are used to store feature values and their cluster centers.

3.2. The cluster finding phase

The aim of this phase is to compute the distance d2(i, k) of the i-th pattern in each cluster window (i.e., the k-th cluster)
from the current selection of cluster centers, and to choose the minimum distance to all cluster centers. We then assign this
cluster to the pattern according to the selected choice.

First, distances between the features and current centers available in each node of a SR are computed in a parallel fashion
among all SR’s in the network as (F1 − C1)

2.
Then by using functionGroup Accumulate [17], the value of d2(i, k)which represents the distance between the i-th pattern

and the current center is calculated and compared to its old value; the smaller one is selected as the cluster to where this
pattern belongs.

In the second step, the values of the SR’s present in all the SR+1’s available in the SS are rotated once via the send function
in parallel, as previously described. These stepswill be repeated R+1 times, until all SR’s present in all SR+1’s get each other’s
data.

The next step would be to rotate the data values of SR+1’s in all SR+2’s in parallel once, and repeat the first and second
steps R+2 times. The addition of the levels of sub-graphs and their rotation continues until ST+1 is reached; in other words,
we reach one level higher than the cluster windows (ST ’s).

By the end of the Cluster Finding Phase, all the patterns have been assigned their clustermembership in the corresponding
higher order node (according to PE ordering). These steps are shown in the pseudo code in Fig. 4.

In Fig. 4, δ(K) is a function that selects the maximum symbol among symbol set {X1, X2, . . . , XK−1} where the chosen
symbol is less than XK ; if this is not possible the maximum value in the symbol set is selected. Thus, δ(K) can be written as

δ(K) =


Max{X1, X2, . . . , Xk−1 | Xi < Xk}, if it exists
Max(X1, X2, . . . , Xk−1), otherwise. (10)

In this figure, procedure Split divides a set, say IJ = {X1, X2, . . . , Xl} into two subsets I = {X1, X2, . . . , Xl/2} and J = {Xl/2+1,
Xl/2+2, . . . , Xl}, where the division operator ‘‘/’’ means an integer divisionwhich results in an integer. Now, in the final phase,
using these procedures the contents of registers R1 in all processors are accumulated in register PX1,X2,...,XRδR,T (R1), where
Xi > Xi−1 [17].

892 H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897

(a) Cluster finding function.

(b) Compute Distance algorithm. (c) Group Accumulate function.

(d) Accumulate function.

Fig. 4. Functions in Cluster Finding phase.

3.3. The center update phase

As mentioned before, all cluster windows (ST ’s) have been indexed such that every node contains a variable T =
 Index

R!


that shows the cluster center data each SR in a cluster window is responsible for. This value is a pre-computed constant for
each SR (which would contain a feature vector). This phase has two steps: Broadcast Cluster Center and Cluster Center Update.

3.3.1. Broadcast cluster center
Here, all SR’s in SS broadcast their cluster numbers computed in the previous phase and stored in their highest indexed

node.

H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897 893

As mentioned earlier, the center number of patterns is stored in a node with the highest index within the SR’s. Let
X1X2 . . . XLδR,T be the nodewith the highest index in the corresponding SR. The following optimal broadcasting algorithm [19]
can broadcast the content of this node to the PEs in SR−1(XL).

Definition 4. Let the Π∆-decomposition of a star graph Sn be defined as follows. Let Πi, 1 ≤ i ≤ n, be the graph induced
by the set of vertices of the form X1X2 . . . Xn−1i and let ∆j, 1 ≤ j ≤ n, be the graph induced by the set of vertices of the form
jX2 . . . Xn. The node X1X2 . . . XLδR,T whose data shall be broadcast belongs to both sub-graphs ΠXL and ∆X1 .

Now, three actions must be taken in this step as:

(1) Merging: broadcast the information from ∆X1 to every other ΠXL , XL > X1.
(2) Placement: send the information from every ∆Xi to every ΠXi , for all Xi ≠ X1.
(3) Recursion: broadcast within each ΠXi .

This step has a run time of O(n +
n−1

k=3 ⌈log k⌉).

3.3.2. Cluster center update
In this phase, all SR’s of the SR+1 exchange their values R + 1 times. In each rotation step, the contents of nodes in SR’s,

which include cluster number and feature value are transmitted to their corresponding node in the next SR. In each node of
SR’s, if the cluster number T is equal to the cluster number it receives (from the previous window SR), the PE adds its feature
value to the feature value it gets, otherwise it does nothing.

Next, the dimension of the last step is increased once, in fact SR+1’s exchange data R + 2 times inside the corresponding
SR+2. In each exchange operation, the above steps are repeated again until ST+1 is reached.

Through the last step, all ST ’s of a ST+1 exchange their nodes’ contents with their corresponding ST ’s, T + 1 times. Since
corresponding SR’s in two different ST ’s (SR’s with similar values of T) contain similar cluster center information, the nodes of
each ST just add their former contents to the newly received ones; there is no need for any comparison or similar operation.

The last step is repeated until we reach SS . There will be S(S+1)
2 −

T (T+1)
2 + K addition and send operations. The pseudo

code of this phase is shown in Fig. 5.

4. Performance analysis

In this section, we evaluate the performance of the proposed clustering algorithm. To this end, we suppose Tlink and Tcpu
being the time needed for communication over a link and calculating an expression inside a PE, respectively.

4.1. The initialization phase

The first step in the proposed algorithm is to scatter data among PEs. This step is done once during the algorithm. Lets
Tinit be the time needed for this step.

4.2. Cluster finding phase

Fig. 6 shows the required time for each of the functions for finding clusters in the proposed algorithms based on Fig. 4.
In each part of this figure, the time consumed at each step (or line of the algorithm) is specified. Next, the accumulated
execution time of each algorithm is shown at the bottom of each table.

Based on these estimated times, it is easy to find the overall execution time of Cluster_Finding algorithm.

4.3. The center update phase

Moreover, Fig. 7 portrays execution time of each function for finding clusters in the proposed algorithm based on Fig. 5.
For each algorithm in Center Update phase, the execution time is estimated and shown in Fig. 7. Therefore, the total execution
time of the Cluster_Center_Update algorithm can be easily obtained.

Since the proposed algorithm is synchronous and there is no network contention, the execution time of the algorithm
can be analytically calculated based on the figures above. In order to better understand the effect of different parameters on
the overall performance, MATLAB tool version 2010a (7.10.0) is used to investigate the effect of each parameter on the total
execution time. Without loss of generality, we have fixed the parameters shown in Table 2. It is noteworthy that different
values of these parameters may change the calculated latency but will not change the final conclusion. As we want to see
the effects of the number of patterns, features and clusters on the total execution time, other parameters listed in Table 2
are fixed to some constant values, i.e. time complexity of O(1).

Figs. 8–10 show the effects of different parameters on the total execution time of the proposed algorithm. In Fig. 8, it is
shown that the number of patterns (N) has a logarithmic impact on the total execution time. It is because in our algorithm,
parameter N contributes in parameter S with an inverse factorial relation. Fig. 9 also shows the effect of the number of

894 H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897

(a) Center computer function.

(b) Algorithm to accumulate center.

(c) Algorithm to update center in clusters.

Fig. 5. Pseudo code for Cluster Center Update step.

Table 2
Parameters used in the simulation tool.

Parameter Latency (cycles)

Tlink 1
Tcpu 1
Tsplit 10
Tunion 10

clusters (K) on total execution time. This figure shows that parameter K has an exponential effect on total execution time.
Finally, Fig. 10 shows the effect of the number of features (M) on total execution timewith a logarithmic contribution. As can

H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897 895

a

d

e

b

c

Fig. 6. Timing analysis of Cluster Finding phase.

a b

c

Fig. 7. Timing analysis of Cluster Center Update phase.

Fig. 8. Total time consumption of the algorithm vs. number of patterns N (#features = 200, #clusters = 64).

be seen in the figure, for some consecutive values of M , the total execution time does not change which is due to rounded
inverse-factorial values.

Fig. 11 shows the effect of the number of clusters on the performance of proposed algorithm compared to the algorithm
presented in [7] for the same sized hypercube (let it be called the hypercube algorithm). Since the hypercube algorithm can
be used only for situations where the number of clusters is a power of 2, we have compared the two algorithms for the

896 H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897

Fig. 9. Total time consumption of the algorithm vs. number of clusters K (#patterns = 32, #features = 20).

Fig. 10. Total time consumption of the algorithm vs. number of featuresM (#clusters=100, #patterns=200).

Fig. 11. The normalized total time consumption of Star-based andHypercube-based algorithms vs. number of clustersK (#patterns= 512, #features= 20).

number of clusters being a power of 2. For each algorithm, the total execution time is normalized to the case where number
of clusters is 16. In the hypercube algorithm, the number of clusters contributes linearly in the total execution time while
in our algorithm it is almost exponential. It should be noted that in the hypercube algorithm, the best execution time is
achieved when the number of clusters and patterns are a power of 2, while in our algorithm, the best result is given when
number of clusters, patterns and features satisfy relations N · M = S! and K · M = T !.

H. Sarbazi-Azad et al. / Mathematical and Computer Modelling 58 (2013) 886–897 897

Fig. 12. The normalized efficiency of Star-based and Hypercube-based algorithms vs. number of PE (#patterns = 1024, #features = 20, #clusters = 100).

Fig. 12 shows the normalized efficiency of the proposed and hypercube algorithm. Here, efficiency is calculated based
on the gained speedup divided by the number of employed processing nodes. When efficiency approaches 1, it means that
the gained speedup becomes higher and when it is close to 0, it shows poor speedup gain. As can be shown in Fig. 12, when
the number of processors increases, the proposed algorithm exhibits better efficiency over the hypercube algorithm. Note
that for some cases in our star-based algorithm, efficiency remains unchanged as a result of the rounded inverse-factorial
function.

5. Conclusions

The star graph was proposed as an attractive alternative to the hypercube topology for interconnection between
processors in parallel computers. It has been extensively studied in different aspects and many algorithms have been
designed for it. In this paper, a clustering algorithm for the star graph based multicomputer was presented and evaluated.
This algorithm is fast and requires a little amount ofmemory per processing node. The algorithm completes inO(K+S2−T 2)
steps for a clustering problem of N patterns, with M features per pattern, and K clusters, where S and T are the minimum
numbers such that NM ≤ S! and KM ≤ T !, on an NM-node multiprocessor.

References

[1] D.H. Ballard, C.M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ, 1985.
[2] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.
[3] K.S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974.
[4] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, New York, 1972.
[5] A. Rosenfeld, A.C. Kak, Digital Picture Processing, Academic, New York, 1982.
[6] J.T. Tou, R.C. Gonzalez, Pattern Recognition Principles, Addison-Wesley, Reading MA, 1974.
[7] S. Ranka, S. Sahni, Clustering on a hypercube multicomputer, IEEE Transactions on Parallel and Distributed Systems 2 (2) (1991) 71–82.
[8] L.M. Ni, A.K. Jain, A VLSI systolic architecture for pattern clustering, IEEE Transactions on Pattern Analysis andMachine Intelligence 7 (1) (1985) 80–89.
[9] K. Hwang, D. Kim, Parallel pattern clustering on a multiprocessor with orthogonally shared memory, in: Proceedings of International Conference on

Parallel Processing, 1987, pp. 913–916.
[10] X. Li, Z. Fang, Parallel algorithms for clustering on hypercube SIMD computers, in: Proceedings of Conference on Computer Vision Pattern Recognition,

1986, pp. 130–133.
[11] M. Fazeli, H. Sarbazi-Azad, R. Farivar, Parallel clustering on the star graph, in: Proceedings of ICA3PP, 2005, pp. 287–292.
[12] B. Akers, D. Harel, B. Krishnamurthy, The star graph: an attractive alternative to the n-cube, in: Proceedings of the International Conference Parallel

Processing, 1987, pp. 393–400.
[13] S. Akl, K. Qiu, A novel routing scheme on the star and pancake networks and its applications, Parallel Computing 19 (1) (1993) 95–101.
[14] P. Fragopoulou, S. Akl, A parallel algorithm for computing Fourier transform on the star graph, IEEE Transactions on Parallel and Distributed Systems

5 (5) (1994) 525–531.
[15] K. Qiu, S. Akl, Load balancing, selection and sorting on the star and pancake interconnection networks, Parallel Algorithms & Applications 2 (1994)

27–42.
[16] A. Menn, A.K. Somani, An efficient sorting algorithm for the star graph interconnection network, in: Proceedings of the International Conference

Parallel Processing, III, 1990, pp. 1–8.
[17] H. Sarbazi-Azad, M. Ould-Khaoua, L.M. Mackenzie, S.G. Akl, A parallel algorithm for Lagrange interpolation on the star graph, Journal of Parallel and

Distributed Computing 62 (2002) 605–621.
[18] S. Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997.
[19] P. Berthone, A. Ferreira, S. Perennes, Optimal information dissemination in star and pancake networks, IEEE Transaction on Parallel and Distributed

Systems 7 (1996) 1292–1300.

	A parallel clustering algorithm on the star graph and its performance
	Introduction
	The star graph: properties and communication algorithms
	The star graph
	Ordering nodes
	Routing and data communication in the star graph

	The parallel algorithm
	The initialization phase
	The cluster finding phase
	The center update phase
	Broadcast cluster center
	Cluster center update

	Performance analysis
	The initialization phase
	Cluster finding phase
	The center update phase

	Conclusions
	References

