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ABSTRACT:

This paper presents an investigation of the geometric quality of depth data obtained by the Kinect sensor. Based on the mathematical
model of depth measurement by the sensor a theoretical error analysis is presented, which provides an insight into the factors
influencing the accuracy of the data. Experimental results show that the random error of depth measurement increases with
increasing distance to the sensor, and ranges from a few millimetres up to about 4 cm at the maximum range of the sensor. The
accuracy of the data is also found to be influenced by the low resolution of the depth measurements.

1. INTRODUCTION

Low-cost range sensors are an attractive alternative for
expensive laser scanners in application areas such as indoor
mapping, surveillance, robotics and forensics. A recent
development in consumer-grade range sensing technology is
Microsoft’s Kinect sensor (Microsoft, 2010). Kinect was
primarily designed for natural interaction in a computer game
environment (PrimeSense, 2010). However, the characteristics
of the data captured by Kinect have attracted the attention of
researchers from the field of mapping and 3d modelling. A
recent demonstration of the potential of Kinect for 3d modelling
of indoor environments can be seen in the work of Henry et al.,
(2010).

The Kinect sensor captures depth and colour images
simultaneously at a frame rate of about 30 fps. The integration
of depth and colour data results in a coloured point cloud that
contains about 300,000 points in every frame. By registering the
consecutive depth images one can obtain an increased point
density, but also create a complete point cloud of an indoor
environment possibly in real time. To reach the full potential of
the sensor for mapping applications an analysis of the
systematic and random errors of the data is necessary. The
correction of systematic errors is a prerequisite for the
alignment of the depth and colour data, and relies on the
identification of the mathematical model of depth measurement
and the calibration parameters involved. The characterization of
random errors is important and useful in further processing of
the depth data, for example in weighting the point pairs in the
registration algorithm (Rusinkiewicz and Levoy, 2001).

Since Kinect is a recent development — it was released in
November 2010 — little information about the geometric quality
of its data is available. The geometric investigation and
calibration of similar range sensors, such as the SwissRanger,
has been the topic of several previous works (Breuer et al.,
2007; Kahlmann and Ingensand, 2008; Kahlmann et al., 2006;
Lichti, 2008). However, the depth measurement principle in
Kinect is different from that of SwissRanger.

In this paper our primary focus is on the depth data. The
objective of the paper is to provide an insight into the geometric
quality of the Kinect depth data through an analysis of the
accuracy and density of the points. We present a mathematical
model for obtaining 3d object coordinates from the raw image

measurements, and discuss the calibration parameters involved
in the model. Further, a theoretical random error model is
derived and verified by an experiment.

The paper proceeds with a description of the depth
measurement principle, the mathematical model and the
calibration parameters in Section 2. In Section 3, the error
sources are discussed, and a theoretical error model is
presented. In Section 4, the models are verified through a
number of experiments and the results are discussed. The paper
concludes with some remarks in Section 5.

2. PRINCIPLE OF DEPTH MEASUREMENT BY
TRIANGULATION

The Kinect sensor consists of an infrared laser emitter, an
infrared camera and an RGB camera. The inventors describe the
measurement of depth as a triangulation process (Freedman et
al., 2010). The laser source emits a single beam which is split
into multiple beams by a diffraction grating to create a constant
pattern of speckles projected onto the scene. This pattern is
captured by the infrared camera and is correlated against a
reference pattern. The reference pattern is obtained by capturing
a plane at a known distance from the sensor, and is stored in the
memory of the sensor. When a speckle is projected on an object
whose distance to the sensor is smaller or larger than that of the
reference plane the position of the speckle in the infrared image
will be shifted in the direction of the baseline between the laser
projector and the perspective centre of the infrared camera.
These shifts are measured for all speckles by a simple image
correlation procedure, which yields a disparity image. For each
pixel the distance to the sensor can then be retrieved from the
corresponding disparity, as described in the next section. Figure
1 illustrates the depth measurement from the speckle pattern.

Figure 1. Left: infrared image of the pattern of speckles
projected on the object; Right: the resulting depth image.



2.1 Mathematical model

Figure 2 illustrates the relation between the distance of an object
point k£ to the sensor relative to a reference plane and the
measured disparity d. To express the 3d coordinates of the
object points we consider a depth coordinate system with its
origin at the perspective centre of the infrared camera. The Z
axis is orthogonal to the image plane towards the object, the X
axis perpendicular to the Z axis in the direction of the baseline »
between the infrared camera centre and the laser projector, and
the Y axis orthogonal to X and Z making a right handed
coordinate system.

Assume that an object is on the reference plane at a distance Z,
to the sensor, and a speckle on the object is captured on the
image plane of the infrared camera. If the object is shifted closer
to (or further away from) the sensor the location of the speckle
on the image plane will be displaced in the X direction. This is
measured in image space as disparity d corresponding to a point
k in the object space. From the similarity of triangles we have:
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where Z; denotes the distance (depth) of the point & in object
space, b is the base length, f'is the focal length of the infrared
camera, D is the displacement of the point k in object space, and
d is the observed disparity in image space. Substituting D from
(2) into (1) and expressing Z; in terms of the other variables
yields:
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Equation (3) is the basic mathematical model for the derivation
of depth from the observed disparity provided that the constant
parameters Z,, f, and b can be determined by calibration. The Z
coordinate of a point together with 1 defines the imaging scale
for that point. The planimetric object coordinates of each point
can then be calculated from its image coordinates and the scale:
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Figure 2. Schematic representation of depth-disparity relation.
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where x; and y; are the image coordinates of the point, x, and y,
are the coordinates of the principal point, and dx and Jy are
corrections for lens distortion, for which different models with
different coefficients exist; see for instance (Fraser, 1997). Note
that here we assume that the image coordinate system is parallel
with the base line and thus with the depth coordinate system.

2.2 Calibration

As mentioned above, the calibration parameters involved in the
mathematical model for the calculation of 3d coordinates from
the raw image measurements include:

- focal length (7);

- principal point offsets (x,, v,);

- lens distortion coefficients (in dox, dy);

- base length (b);

- distance of the reference pattern (Z,).

In addition, we may consider a misalignment angle between the
x-axis of the image coordinate system and the base line.
However, this does not affect the calculation of the object
coordinates if we define the depth coordinate system to be
parallel with the image coordinate system instead of the base
line. We may, therefore, ignore this misalignment angle.

From the calibration parameters listed above the first three can
be determined by a standard calibration of the infrared camera.
The determination of the base length and the reference distance
is however complicated for the following reason. In practice, it
is not possible to stream the actual measured disparities,
probably due to bandwidth limitation. Instead, the raw disparity
values are normalized between 0 and 2047, and streamed as 11
bit integers. Therefore, in Equation (3) 4 should be replaced
with md’+n with d’ the normalized disparity and m, n the
parameters of a (supposedly) linear normalization (in fact
denormalization). Including these in Equation (3) and inverting
it yields:

n

1

Equation (5) expresses a linear relation between the inverse
depth of a point and its corresponding normalized disparity. By
observing the normalized disparity for a number of object points
(or planes) at known distances to the sensor the coefficients of
this linear relation can be estimated in a least-squares fashion.
However, the inclusion of the normalization parameters does
not allow determining b and Z, separately.
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2.3 Integration of depth and colour

The integration of the depth and colour data requires the
orientation of the RGB camera relative to the depth coordinate
system. Since we defined the depth coordinate system at the
perspective centre of the infrared camera we can perform the
orientation by a stereo calibration of the two cameras. The
parameters to be estimated include three rotations between the
camera coordinate system of the RGB camera and that of the
infrared camera, and the 3d position of the perspective centre of



the RGB camera in the coordinate system of the infrared
camera. In addition, the interior orientation parameters of the
RGB camera, i.e. the focal length, principal point offsets and the
lens distortion parameters must be estimated. Once these
parameters are known we can project every 3d point from the
point cloud to the RGB image, interpolate the colour, and assign
it to the point.

3. DEPTH ACCURACY AND POINT DENSITY

Accuracy and point density are two important measures for
evaluating the quality of a point cloud. In the following sections
factors influencing the accuracy and density of Kinect data are
discussed, and a theoretical random error model is presented.

3.1 Error sources

Error and imperfection in the Kinect data may originate from
three main sources:

- the sensor;

- the measurement setup;

- the properties of object surface.

The sensor errors, for a properly functioning device, mainly
refer to inadequate calibration and inaccurate measurement of
disparities. Inadequate calibration and/or error in the estimation
of the calibration parameters lead to systematic error in the
object coordinates of individual points. Such systematic errors
can be eliminated by a proper calibration as described in the
previous section. Inaccurate measurement of disparities within
the correlation algorithm and round-off errors during
normalization result in errors, which are most likely of a
random nature.

Errors caused by the measurement setup are mainly related to
the lighting condition and the imaging geometry. The lighting
condition influences the correlation and measurement of
disparities. In strong light the laser speckles appear in low
contrast in the infrared image, which can lead to outliers or gap
in the resulting point cloud. The imaging geometry includes the
distance to the object and the orientation of the object surface
relative to the sensor. The operating range of the sensor is
between 0.5 m to 5.0 m according to the specifications, and, as
we will see in the following section, the random error of depth
measurement increases with increasing distance to the sensor.
Also, depending on the imaging geometry, parts of the scene
may be occluded or shadowed. In Figure 1, the right side of the
box is occluded as it cannot be seen by the infrared camera
though it may have been illuminated by the laser pattern. The
left side of the box is shadowed because it is not illuminated by
the laser but is captured in the infrared image. Both the
occluded areas and shadows appear as gaps in the point cloud.

The properties of the object surface also impact the
measurement of points. As it can be seen in Figure 1 smooth
and shiny surfaces that appear overexposed in the infrared
image (the lower part of the box) impede the measurement of
disparities, and result in a gap in the point cloud.

3.2 Theoretical random error model

Assuming that in Equation (5) the calibration parameters are
determined accurately and that 4’ is a random variable with a
normal distribution we can propagate the variance of the
disparity measurement to obtain the variance of the depth
measurement as follows:
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After simplification this yields the following expression for the
standard deviation of depth:
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with ¢, and o, respectively the standard deviation of the

measured normalized disparity and the standard deviation of the
calculated depth. Equation 7 basically expresses that the random
error of depth measurement is proportional to the square
distance from the sensor to the object. Since depth is involved in
the calculation of the planimetric coordinates, see Equation 4,
we may expect the error in X and Y to be also a second order
function of depth.

3.3 Point density

The resolution of the infrared camera, i.e. the pixel size,
determines the point spacing of the depth data on the XY plane
(perpendicular to camera axis). Since each depth image contains
a constant 640x480 pixels the point density will decrease with
increasing distance of the object surface from the sensor.
Considering the point density as the number of points per unit
area, while the number of points remains constant the area is
proportional to the square distance from the sensor. Therefore,
the point density is inversely proportional to the square distance
from the sensor, that is:
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The depth resolution is determined by the number of bits per
pixel used to store the disparity measurements. The Kinect
disparity measurements are stored as 11-bit integers, where 1 bit
is reserved to mark the pixels for which no disparity is
measured, so-called no data. Therefore, a disparity image
contains 1024 levels of disparity. Since depth is inversely
proportional to disparity the resolution of depth is also inversely
related to the levels of disparity. That is, the depth resolution is
not constant and decreases with increasing distance to the
sensor. For instance, at a range of 2 meters one level of disparity
corresponds to 1 cm depth resolution, whereas at 5 meters one
disparity level corresponds to about 7 cm depth resolution.

4. EXPERIMENTS AND RESULTS

Experiments were carried out to first determine the calibration
parameters of the sensor and then investigate the systematic and
random errors in the depth data. The following sections describe
the tests and discuss the results.

4.1 Calibration results

A standard camera calibration was performed to determine the
interior parameters of the infrared camera using the
Photomodeler® software. A total of 8 images were taken of a
target pattern from different angles. To avoid the disturbance of
the laser speckles in the images the aperture of the laser emitter
was covered by a piece of opaque tape. Figure 3 shows one of
the images used in the calibration. Table 1 summarizes the
calibration results. The overall calibration accuracy in image
space was 0.395 pixels as the RMS of point marking residuals



after the bundle adjustment. Figure 3 also shows the calibration
residuals plotted on one of the images.

To determine the parameters involved in the disparity-depth
relation (Equation 5) depth values were measured for a planar
surface at eight different distances to the sensor using a
measuring tape. The inverse of the measured distances were
then plotted against the corresponding normalized disparities
observed by the sensor, see Figure 4. As it can be seen the
relation is linear as we expected from the mathematical model
given in Equation (5). A simple least-squares linear regression
provides the parameters of this linear relation, which are then
used to calculate depth from the observed normalized disparity.
The slope and intercept of the best-fit line was found to be
respectively -2.85e-5 (cm™) and 0.03 (cm™).

Table 1. Calibration parameters of the infrared camera

Calibration parameter Value Std
Focal length f 4.73 (mm) 30 (um)
o . x, | -0.12 (mm) 8 (um)
Principal point offset ) 0.00 (mm) -
. . w 5.01 (mm) 2 (um)
Frame dimension 7 3.75 (mm) -
. . 7.80 (um) -
Pixel size Px
p, | 7.80 (um) -
K1 5.67e-3 6.4e-4
Radial lens distortion K2 -3.43e-4 9.6e-5
K3 0.0 -
. . . Pl 0.0 -
Decentring lens distortion 2 0.0 -

Figure 3. Infrared image of the calibration pattern and the
residual vectors of calibration. The vectors are enlarged for
better visibility.
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Figure 4. Linear relation of normalized disparity with inverse
depth.

4.2 Comparison with a high-end laser scanner point cloud

To investigate the systematic errors in Kinect data a comparison
was made with a point cloud obtained by a high-end laser
scanner. The Kinect point cloud was obtained from the disparity
image using Equations (4) and (5) and the calibration
parameters from the previous step. The laser scanner point
cloud was obtained of the same scene by a calibrated FARO LS
880 laser scanner. The nominal range accuracy of the laser
scanner is 0.7 mm for highly reflective objects at a distance of
10 m to the scanner (Faro, 2007). The average point spacing of
the laser scanner point cloud on a surface perpendicular to the
range direction (and also the optical axis of the infrared camera
of Kinect) was 5 mm. It was therefore assumed that the laser
scanner point cloud is sufficiently accurate and dense to serve as
reference for the accuracy evaluation of the Kinect point cloud.
In the absence of any systematic errors the mean of
discrepancies between the two point clouds is expected to be
close to zero.

To enable this analysis, first, an accurate registration of the two
point clouds is necessary. The registration accuracy is important
because any registration error may be misinterpreted as error in
the Kinect point cloud. To achieve the best accuracy two
registration methods were tested. The first method consisted of
a manual rough alignment followed by a fine registration using
the iterative closest point (ICP) algorithm (Besl and McKay,
1992). To make ICP more efficient a variant suggested by Pulli
(1999) was followed in which 200 randomly selected
correspondences (closest points) with a rejection rate of 40%
were used. In the second method the two roughly-aligned point
clouds were segmented into planar surfaces and 20
corresponding segments were manually selected. Then, a robust
plane fitting using RANSAC (Fischler and Bolles, 1981; Sande
et al., 2010) was applied to obtain plane parameters and the
inlying points. The registration was then performed by
minimizing the distances from the points in one point cloud to
their corresponding planes in the other point cloud.

In both registrations the estimated transformation parameters
consisted of a 3d rotation and a 3d translation. To reveal a
possible scale difference between the point clouds a third
registration was performed using the plane-based method
augmented with a scale parameter.

Table 2 summarizes the registration residuals pertaining to the
three methods. Figure 5 shows a box plot of the registration
residuals of the three methods. As it can be seen the plane-based
methods perform similarly both yielding smaller residuals as
compared to the ICP method with random correspondences.
Furthermore, the scale parameter obtained from the third
registration was found to be 1.002. The largest effect of such
scale on the furthest point of the point cloud is 1 cm, which is
negligible as compared to the random error and depth resolution
of the data. We may therefore conclude that the Kinect point
cloud has the same scale as the laser scanner point cloud.

For the comparison the result of the plane-based registration
without the scale parameters was used. A total of 1000 points
were randomly selected from the Kinect point cloud and for
each point the nearest neighbour was found in the laser scanner
point cloud. These closest point pairs were the basis for
evaluating the accuracy of the Kinect point cloud. It was
however considered that the point pairs may contain incorrect
correspondences because the two sensors had slightly different
viewing angles and therefore areas that could not be seen by one



sensor might be captured by the other and vice versa. Figure 6
shows the two point clouds and the closest point pairs.

Table 2. Registration residuals of the three methods.

Min | Mean [Median| Std Max

(cm) | (cm) | (cm) | (cm) | (cm)

point-point 02 | 29 | 19 | 26 | 117
distances (icp)
point-plane

distances with scale 0.0 18 L7 12 73
point-plane

0.0 18 1.7 12 6.8

distances w/o scale

Figure 7. Histograms of discrepancies between the point pairs in
X, Y and Z direction.

Table 3. Statistics of discrepancies between point pairs.
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Figure 5. Box plot of registration results of the three methods.
The boxes show the 25" and 75" percentiles of residuals, red
lines are medians, whiskers are minimum and maximum, and
black dots are large residuals identified as outliers.

Figure 6. Comparison of Kinect point cloud (cyan) with the
point cloud obtained by the FARO LS880 laser scanner (white).
The larger points are samples randomly selected from the
Kinect data (blue) and their closest point in the laser scanner
data (red).

Figure 7 shows the histograms of discrepancies between the
point pairs in X, Y and Z. Table 3 lists the statistics related to
these discrepancies. The mean and median discrepancies are
close to zero in Y and Z, but slightly larger in X.

Figure 8 shows the distribution of the discrepancies in the X-Z
plane. The colours represent the Euclidean distance between the
point pairs in centimetres. Note that in general the discrepancies
between the point pairs are smaller at closer distance to the
sensor (smaller Z) and larger further away. This is what we
expect from the theoretical random error model. Also, note the
larger discrepancies on the side of a box close to the sensor.
These are caused by the lower accuracy of the points due the
orientation of the surface towards the sensors. The
measurements from both the laser scanner and Kinect are less
accurate at large incidence angles of the laser beams to the
target surface. In general, the comparison of the two point
clouds shows that more than 80% of the point pairs are less than
3 cm apart.

dx dy dz
Mean (cm) -0.4 -0.1 0.0
Median (cm) -0.2 0.0 -0.1
Standard deviation (cm) 15 13 1.9
Interquartile range (cm) 1.0 0.7 18
Percentage in [-0.5cm, 0.5¢cm] 52.8 61.4 29.0
Percentage in [-1.0 cm, 1.0 cm] 71.8 79.8 52.9
Percentage in [-2.0 cm, 2.0 cm] 88.4 91.3 79.5
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Figure 8. Distribution of point pair distances in the X-Z plane.

4.3 Plane fitting test

To verify the relation between the random error and the distance
to the sensor a plane fitting test was carried out. The planar
surface of a door was measured at various distances from 0.5 m
to 5.0 m (the operation range of the sensor) with 0.5 m intervals.

In each resulting point cloud a same part of the door was
selected and a plane was fitted to the selected points. The
RANSAC plane fitting method was used to avoid the influence
of outliers. Figure 9 shows the measurement setup.

Since in all measurements the selected planar surface was
approximately perpendicular to the optical axis of the sensor the
residuals of the plane fitting procedure indicated the random
errors in the depth component of the points. To evaluate these
random errors an equal number of samples (4500 samples) were
randomly selected from each plane, and the standard deviation
of the residuals was calculated over the selected samples. Figure
10 shows the calculated standard deviations plotted against the
distance from the plane to the sensor. It can be seen that the
errors increase quadratically from a few millimetres at 0.5 m
distance to about 4 cm at the maximum range of the sensor. The
curve in red colour is the best fit quadratic curve. This verifies
our theoretical random error model (7) showing that the random
error of depth measurements increases with the square distance
from the sensor.

Figure 11 (a) shows the distribution of the fitting residuals on
the plane at 4 m distance. The colours represent point to plane



distances in centimetres. Interestingly, the distribution of the
residuals is not completely random, though a clear systematic
pattern is also not evident. In Figure 11 (b) a side view of the
same plane is shown. As it can be seen, the depth measurement
on the plane is not only influenced by the random errors but also
by the low resolution of depth measurements. At 4 meters
distance the depth resolution is about 5 cm. The combination of
random errors and low resolution of the depth measurement
results in a representation of the surface in several slices as
shown in Figure 11 (b).
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Figure 10. Standard deviation of plane fitting residuals at
different distances of the plane to the sensor. The best fit
quadratic curve is plotted in red.
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Figure 11. Plane fitting residuals: (a) distribution of residuals on
the plane at 4 meters distance to the sensor; (b) a side view of
the points showing the effect of low depth resolution. Colours

represent distance to the best-fit plane in centimetres.

5. CONCLUDING REMARKS

The paper presented a theoretical and experimental accuracy
analysis of depth data acquired by the Kinect sensor. From the
results the following general conclusions can be drawn:

- The point cloud of a properly calibrated Kinect sensor does
not contain large systematic errors when compared with a
laser scanning data;

- The random error of depth measurements increases
quadratically with increasing distance from the sensor and
reaches 4 cm at the maximum range;

- The density of points also decreases with increasing
distance to the sensor. An influencing factor is the depth
resolution, which is very low at large distance (7 cm at the
maximum range of 5 m).

In general, for mapping applications the data should be acquired
within 1~3 m distance to the sensor. At larger distances, the
quality of the data is degraded by the noise and low resolution
of the depth measurements.
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