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ABSTRACT

Sybil attacks have been regarded as a serious security threat to Ad hoc Networks and Sensor Networks.
They may also impair the potential applications in Vehicular Ad hoc Networks (VANETS) by creating an
illusion of traffic congestion. In this paper, we make various attempts to explore the feasibility of detecting
Sybil attacks by analyzing signal strength distribution. First, we propose a cooperative method to verify
the positions of potential Sybil nodes. We use a Random Sample Consensus (RANSAC)-based algorithm
to make this cooperative method more robust against outlier data fabricated by Sybil nodes. However,
several inherent drawbacks of this cooperative method prompt us to explore additional approaches. We
introduce a statistical method and design a system which is able to verify where a vehicle comes from.
The system is termed the Presence Evidence System (PES). With PES, we are able to enhance the detection
accuracy using statistical analysis over an observation period. Finally, based on realistic US maps and
traffic models, we conducted simulations to evaluate the feasibility and efficiency of our methods. Our
scheme proves to be an economical approach to suppressing Sybil attacks without extra support from
specific positioning hardware.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Until recently, road vehicles were the realm of mechanical en-
gineers. However, with the plummeting costs of electronic com-
ponents and the permanent willingness of the manufacturers to
increase road safety and to differentiate themselves from their
competitors, vehicles are becoming “computers on wheels”, or
rather “computer networks on wheels” [22]. Vehicular Ad hoc Net-
works (VANETSs) have the potential to not only facilitate the deci-
sion making tasks of the drivers (e.g., trip planning based on traffic
congestion on the road), but also to improve highway safety (by
bringing information about catastrophic events and road condi-
tions to the driver’s attention). However, researchers [20,22] have
pointed out that VANETSs are facing a number of security threats,
which may impair the efficiency of VANETs and even life safety.
One of these threats is Sybil attacks, in which a malicious vehicle
claims multiple fabricated identities. Sybil attacks can be harmful
to a variety of VANET applications. For example, a greedy driver
can fabricate that a number of vehicles are traveling nearby, which
creates an illusion of traffic congestion. Then, other vehicles will
choose an alternate route and evacuate the road for the greedy
driver. Since the fabricated vehicles are actually under the control
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of one malicious node, the malicious node may have further control
of other network protocols. For example, the large amount of Sybil
nodes may deviate the results of voting-based protocols from the
truth; the Sybil nodes may also launch Denial of Service (DoS) at-
tacks to impair the normal operations of data dissemination proto-
cols, such as [27,29,13]. Sybil attacks may even cause serious safety
threats. For example, in the application of deceleration warning
systems [20], if a vehicle reduces its speed significantly, it will
broadcast a warning to the following vehicles. Recipients will relay
the message to vehicles further behind. However, this forwarding
process can be intervened by a large number of malicious Sybil ve-
hicles. In this way, the malicious adversary can create a massive
pileup on the highway, potentially causing great loss of life.
Traditionally in Ad hoc Networks and Sensor Networks, three
types of defense against Sybil attacks are introduced, including:
radio resource testing, identity registration, and position verifica-
tion [9]. Radio resource testing is based on the assumption that
a radio cannot send or receive simultaneously on more than one
channel. It does not apply to VANETSs since a greedy driver may
cheaply acquire multiple radios. Identity registration alone can-
not prevent Sybil attacks, because a malicious node may get mul-
tiple identities by non-technical means such as stealing. Further,
strict registration causes serious privacy concerns. In position ver-
ification, the network verifies the position of each node and en-
sures that each physical node is bound with only one identity. A
number of position (or distance) verification techniques [3,1,24,4]
have been proposed recently. However, they either are designed
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for indoor applications or rely on stationary base stations or spe-
cific hardware. None of them would be suitable for the highly mo-
bile context of vehicular networks.

The motivation behind this paper is that we can estimate a
node’s position by analyzing its signal strength distribution and
then verify whether its position claim is consistent with the esti-
mated position. In traditional sensor networks, we cannot rely on
signal-strength-based position verification for two reasons. First,
since sensor nodes are static, we can only obtain a static pattern
of signal strength distribution and the accuracy is limited. We can-
not distinguish two physical nodes which are close to each other
either. Second, it is difficult to ensure that the position estimation
process is not intervened by potential Sybil nodes. However, the
unique properties of VANETS present us more opportunities to ad-
dress the problem from a different perspective. For example, we
can take advantage of the highly mobile context of VANETS to ac-
cumulate more signal strength measurements.

In this paper, we study the feasibility of using signal strength
distribution analysis to detect Sybil attacks. First, we design a coop-
erative detection method, in which multiple neighboring nodes co-
operate to measure the signal strength distribution of a suspicious
node and verify the physical position of the suspicious node. We
use a Random Sample Consensus (RANSAC)-based algorithm to in-
crease the estimation robustness against outlier data fabricated by
Sybil nodes. However, our simulation results illustrate that given
the unstable nature of radio propagation, this basic cooperative
method can only afford quite limited accuracy. Moreover, it is still
vulnerable to fabricated measurements by Sybil nodes. To make
this cooperative method apply to VANETS, one essential step is to
ensure that all signal strength measurements originate from hon-
est physical nodes instead of fabricated Sybil nodes. To solve this
problem, we propose the concept of Presence Evidence System
(PES). With this system, we can ensure that nodes in the oppo-
site traffic are physical nodes and we can have them as the trusty
sources of signal strength measurements. This system takes full
advantage of the inherent properties of VANETs such as high mo-
bility, road topology, as well as indirect support from roadside in-
frastructure. From another aspect, we find that we can accumulate
more signal strength measurements by extending the observation
period, therefore improving the detection accuracy. Led by this in-
spiration, we present a statistical detection method. The statistical
method performs hypothesis tests on accumulated measurements,
and tries to judge whether the measurements match a normal dis-
tribution pattern. A Sybil node is reported if its distribution pattern
is inconsistent with its claimed physical position. We used simula-
tions to evaluate the performance of our final scheme. The simula-
tions are based on realistic US maps and traffic models. Our scheme
proves to be an economical and efficient way to suppress Sybil at-
tacks without the requirements of specific positioning hardware.

The rest of this paper is organized as follows. We introduce the
related work in Section 2. In Section 3, we define the attack model
and system assumptions. Section 4 presents the cooperative de-
tection method based on analysis of signal strength distribution.
Section 5 introduces the concept of Presence Evidence System. Sec-
tion 6 proposes the statistical detection method to detect potential
Sybil nodes. Section 7 introduces the final integrated scheme. Sec-
tion 8 evaluates our scheme by simulations based on realistic US
maps and traffic models. Section 9 discusses several related prob-
lems and summarizes several unique features of our scheme. Fi-
nally, we conclude the paper in Section 10.

2. Related work

Considerable attention from academia has been attracted by
emerging Vehicular Networks. There have been a few proposals
pointing out the importance of security in Vehicular Networks

[2,20,22,12]. In [20,22,23], a common security threat of Sybil
attacks is introduced. In this attack, multiple identities are claimed
by a single malicious node with fabricated positions.

Sybil attacks are quite harmful for a variety of network appli-
cations. Basically, in VANETSs, Sybil attacks may easily create an il-
lusion of traffic congestion. What is more, Sybil attacks may have
a major impact on other existing VANET protocols, including MAC
layer, routing layer, as well as application layer. For example, in the
literature, the multi-hop broadcast protocol [13], the reliable MAC
protocol [27], the bandwidth sharing protocol [25], and the data
dissemination protocol [29] are all subject to Sybil attacks, because
they all rely on nodes’ cooperation to forward packets and a mali-
cious node may easily crack them by using its large number of fake
nodes.

Efforts have been made to detect Sybil nodes in Mobile Ad hoc
Networks and Sensor Networks. Newsome et al. [17] introduced
several techniques to detect Sybil attacks in ad hoc networks, in-
cluding radio resource testing, identity registration, and position
verification. Whereas radio resource testing replies on specific as-
sumptions on radio modules and identity registration alone is not
effective enough, position verification comes to be a more promis-
ing approach for vehicular networks. The use of received radio sig-
nal strength for positioning was proposed in [1]. It is designed
for indoor applications, relying on establishing a signal-strength-
distribution map in advance. Demirbas et al. [5] introduced an
RSSI-based scheme for detecting Sybil attacks for resource-poor
sensor networks. The scheme takes advantage of statistical RSSI
readings in a stationary sensor network. Brands et al. [3] proposed
a distance bounding protocol that can be used to verify the proxim-
ity of two devices connected by a wired link. Sastry et al. [24] pro-
posed a new distance bounding protocol, based on ultrasound and
radio wireless communication. The protocol can only make a rough
decision about whether or not a claimer is within a certain region.
Capkun et al. [4] presented a secure positioning scheme, which re-
lies on multiple base stations as reference points and supposes that
nodes are static. These schemes do not fit the highly mobile context
of VANETS.

Most recently, the detection of Sybil attacks has also been stud-
ied in the field of Vehicular Networks. Golle [9] presented a secu-
rity framework which enables nodes to verify the validity of the
received data based on neighborhood observations. The scheme
focused on the reasoning of conflicting observations, but simply
assumed the nodes’ capability of detecting the distances to other
nodes or the precise locations of other nodes, which is exactly the
issue we studied in this work. Leinmuller et al. [14] used a set of
thresholds to verify a single node’s position claims. It is an effective
method to limit the range of a single node’s bogus position claims,
whereas our study deals with multiple nodes’ (multiple Sybils’) bo-
gus position claims. Especially, the Mobility Grade Threshold intro-
duced in [14] may not be efficient in case of multiple Sybil nodes
where each Sybil node holds in a relatively constant position. Yan
etal. [28] introduced several useful methods to verify the locations
of neighboring vehicles with the help of on-board radars. The au-
thors alleviated the line-of-sight limitation of a radar by using a
collaborative method. A Sybil attack detection scheme based on
roadside unit support was proposed in [19]; in this scheme, a ve-
hicle collects certified time stamps from roadside units as it is run-
ning, and two nearby vehicles cannot have exactly the same series
of time stamps, otherwise they are Sybil nodes. The scheme relies
on a dense deployment of roadside units. Ghosh et al. [8] discussed
the misbehavior detection from the application layer. The authors
proposed a root-tree approach to achieve misbehavior detection
and identify the root cause. Above works use various methods from
different layers to detect attacks in VANET, but meanwhile all have
certain limitations. Sybil attacks remain to be an open issue in the
field of Vehicular Networks. The proposed scheme in this paper will
serve as a supplementary approach to suppressing Sybil attacks in
an economic way without the requirement for specific hardware.
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3. Attack model and assumptions

In this section, we define the attack model of Sybil attacks and
then present the system assumptions which our study is based on.

3.1. Attack model

Sybil attacks refer to a malicious node illegitimately taking on
multiple identities [17]. In wireless networks, mobile nodes usu-
ally discover new neighbors by periodically broadcasting beacon
packets, in which they claim their identities and positions. How-
ever, given the invisible nature of wireless communication, a ma-
licious node can easily claim multiple identities without being
detected. Identity authentication does not help prevent Sybil at-
tacks in VANETSs, since a malicious driver can still get additional
identity information by non-technical means such as stealing, or
simply borrowing from his friends. The goal of detecting Sybil at-
tacks is to ensure that each physical node is bound with only one
legal identity.

In this paper, we refer to a vehicle as a node in the context of
VANETs. We refer to a physical node claiming multiple identities
as a malicious node and, correspondingly, the malicious node’s
fabricated identities as Sybil nodes.

3.2. Assumptions

Our study on Sybil attacks are based on the following assump-
tions. First, we focus on the most basic Sybil-attack threat, which
is caused by individual greedy drivers (vehicles). We assume that
most other drivers (vehicles) can be trusted. We do not consider
cooperative Sybil attacks, in which multiple malicious vehicles co-
operate to launch Sybil attacks. Second, all the vehicles, including
greedy drivers’ vehicles, are equipped with the same radio mod-
ule. The radio module may be based on any Radio Frequency (RF)
communication technique providing Received Signal Strength In-
dicator (RSSI), such as DSRC [6]. Third, we assume that each vehicle
is equipped with GPS devices and digital maps. GPS positions are
supposed to be accurate. Finally, we assume that roadside base sta-
tions are sparsely deployed along roads, and the identity authenti-
cation infrastructure such as an Electronic License Plate (ELP) [12]
has been implemented for the whole network. Identity authentica-
tion prevents a malicious vehicle from unlimitedly fabricating false
identities. Of course, as we mentioned before, identity authentica-
tion alone cannot prevent Sybil attacks. Since roadside base sta-
tions are sparsely deployed and the majority of road sections are
not covered by roadside base stations, we do not rely on direct sup-
port from roadside stations.

4. Cooperative detection method

Traditionally, the detection of Sybil attacks usually relies on
three categories of approaches, namely radio resource testing,
identity registration, and position verification [17,9]. Radio re-
source testing requires special radio modules such as multi-
channel radio and identity registration alone does not work very
well in VANETs. Therefore, position verification is regarded as a
more promising approach for VANETSs.

In this section, we propose a cooperative detection method for
verifying position claims by signal strength analysis. We design a
RANSAC (Random Sample Consensus)-based algorithm to improve
the robustness in estimating positions. We also explore the feasi-
bility of this cooperative method through simulations.

4.1. Cooperative method

The cooperative detection method detects potential Sybil nodes
by position verification, relying on monitoring the signal strength

— Direction of traffic flow
@ Malicious node Sybil node

O Normal node Signal range

Fig. 1. Anexample VANET under Sybil attacks.

of periodical beacons. For clarity of description, we define three
categories of nodes’ roles: claimer, witness, and verifier. Each node
would periodically play all these roles, that is, each node is a
claimer, a witness as well as a verifier but at various moments and
for various purposes.

1. Claimer. Each node periodically broadcasts a beacon message
at beacon intervals, t,, for the purpose of neighbor discovery. In
the beacon message, it claims its identity and position such as GPS
position. At this moment, we name the node as a claimer. The goal
of our method is to verify its claimed position.

2. Witness. All neighboring nodes, within the signal range of
the claimer, would receive the previous beacon message. They
measure the signal strength and save the corresponding neighbor
information in their memory. Next time they broadcast a beacon
message, they will attach their neighbor list, including the signal
strength measurements for each received beacon, to the beacon
message. We name these nodes performing measurements and
reporting measurements as witnesses.

3. Verifier. We call a node performing position verification a ver-
ifier. After receiving a beacon message, a node waits for a veri-
fying interval, t,, during which it collects enough signal strength
measurements concerning the previous beacon message from
neighboring witnesses. t, may be a little longer than the beacon in-
terval tp,, since after another interval of t;,, each neighboring witness
should have broadcasted a beacon containing the expected mea-
surements. With the collected measurements, the node (verifier)
can locally compute an estimated position of the claimer. Then,
the node compares the estimated position with the previously-
claimed position of the claimer. If the difference exceeds a prede-
fined threshold @, the claimer is regarded as a Sybil node.

We take Fig. 1 as an example. Node s1, a claimer (a Sybil node),
broadcasts a beacon, claiming its identity and position. Node ny, a
verifier, collects all signal strength measurements from neighbor-
ing witnesses which have received the beacon. Obviously, the final
estimated position of s; would be near the position of node m, in-
stead of the position s; claimed, as node s; and m are physically the
same vehicle.

The beacon message can be in the following format:

{NodelD, Beaconi, Position, NebList, Signature}
NeblList : {NodelD;, Beacon#;, RSS;},

where NodelD is the claimer’s identity, Beacon# is a beacon se-
quence number, Position is the sender-claimed position, NebList is
the sender’s most recent neighbor list containing signal strength
measurements, Signature is the digital signature for the whole
packet. In each item of NebList, RSS; is the Received Signal Strength
of beacon Beacon#; recently received from neighboring node
NodelD,;.

Therefore, the next step is to design a method to calculate the
estimated position based on collected measurements.
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4.2. Calculation of position estimation

In this subsection, we study the calculation of claimers’ esti-
mated positions. We first define the radio model and the corre-
sponding signal strength distribution model, and then propose two
methods to fit the model into collected measurements, which fi-
nally obtain the estimated position of a claimer.

Radio model. We apply a widely-used radio propagation model,
the shadowing model [21], which consists of two parts. The first
part is known as path loss model, which also predicts the mean
received power at distance d. The second part of the shadowing
model reflects the variation of the received power at a certain
distance. The overall shadowing model is represented by

P@7 _ a4
[Pr(do)]dg = —108log <d0> + X4, (1)

where d is a reference position, d is the position where the signal
strength is measured, 8 is called the path loss exponent, and Xyp is a
Gaussian random variable with zero mean and standard deviation
ogg. dp and B are constants specified by radio modules and physical
environments.

Measurements from a field test [16] suggest that signal attenu-
ation can be well modeled using the shadowing model with a stan-
dard deviation 0f 9.43 dB and a low path loss exponent of n = 1.03,
i.e. Xz = 9.43 and 8 = 1.03 in our radio model.

Signal strength distribution model. Based on above radio propa-
gation model, we define our signal-strength distribution model as
follows:

RSSL(d) = E (—10,3 log(ldd_ p') +de)

0

—10p log <|dd;p|> , (2)

0

where RSSI can be described as the expected (mean) signal strength
at position d given signal source position p. p is the only varying
parameter in this model, and we can fit the model into collected
measurements by varying p. In other words, if p is given, a model
is uniquely determined.

4.2.1. Basic MMSE-based calculation
To calculate the estimated position, one possible method is to
perform Minimum Mean-Square Error (MMSE) on the collected
signal strength readings and the signal strength distribution model.
To obtain the estimated position, we first calculate the mean
square error:

i(s(wi) — RSSI,(w;))?
MSE,(s) = =1

k ’ (3)

where p is a potential position of the claimer, k is the number of
witnesses, s is the set of signal strength readings (s(w;) indicates
the signal strength reading at witness w;), RSSI,(w;) is the sig-
nal strength at w; obtained from the signal strength distribution
model. By varying p, we can minimize MSE and finally get the op-
timal estimated position p. It is possible that the calculation may
be trapped in a local minimum. We can use random reset to restart
the calculation.

Actually, this basic approach is based on curve fitting, which
finds a curve (a signal strength distribution model) which matches
a series of data points. That is also to say, we can derive a model
from a set of signal strength readings.

One obvious drawback may appear in this basic approach. Since
signal strength readings are collected from witnesses, if witnesses
are Sybil nodes, the readings from them cannot be trusted. The final

estimated position may be far deviated due to the untrustworthy
readings from Sybil witnesses. Therefore, it is important to remove
the outlier readings by the potential Sybil nodes.

In the next subsection, we investigate using an iterative method
to reduce the impact of outlier readings.

4.2.2. RANSAC-based calculation

In this subsection, we propose a Random Sample Consensus
(RANSAC)-based method to improve the robustness in estimating
the position of a vehicle. RANSAC is proposed by A. Fischler et al. [7]
and has been widely used in computer graphics, artificial intelli-
gence, etc., to improve system robustness. We adopt it in the de-
tection of potential Sybil vehicles.

Algorithm 1: RANSAC-based calculation

Input: n signal strength measurements and corresponding
positions
Output: Estimated position of the subject
1 S < J; |/Set of consensus sets
2 while i < f do

3 //f is number_of_trials

4 s < random(b); //initialize a random consensus set of
size b

5 while error(s) < y do

6 r < argmin,gferror(s + {r})};

7 s < s+ {r};

8 end

9 s<«s—{r};

10 S« S+ {s};

11 end

12 S < arg maxges{size(s)};
13 return get_model_position(s);

The RANSAC calculation algorithm is presented in Algorithm 1.
The algorithm has all the signal strength measurements and corre-
sponding positions as input and has the estimated position of the
subject as output. A consensus set consists of a number of signal
strength readings. Any consensus set uniquely fits a signal strength
distribution model within a given error range, y. S is a set of candi-
date consensus sets, which is initialized to be ¢ at step 1. Steps 2-10
consist of a loop, which is performed f times (number of trials). The
loop is intended to find f candidate consensus sets, each of which
represents a model. At the beginning of the loop (at step 3), a ran-
dom set, s, is initialized with as less data as possible, where, b <« n,
and n is the total number of signal strength readings. The set, s, is
enlarged at steps 4-7 with the constraint that the error, how s fits
amodel, is less than a predefined error, §. In this way, in each loop,
we start from a small random set and find the biggest consensus set
within error y . Finally, at step 11, we can find the biggest consensus
set in S. Then, we can derive a model from this biggest consensus
set by the basic MMSE-based calculation (defined in Section 4.2.1).

The function, random(b), randomly selects b readings and lets
them constitute a consensus set. The function, error(s), can be
defined as:

error (s) = min{MSE,(s)}.
P
In other words, error(s) represents the mean square error of

the model which best fits the consensus set, s. The function,
get_model_position(s), can be defined as:

get_model_position(s) = arg min{MSE,(s)}.
p

It represents the signal center of the model which best fits the con-
sensus set, s.
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We can determine the parameters in this algorithm, b, f, y, as
follows. b should be as small as possible, and should also be big
enough to determine the initial model. Empirically, we set b to
be 4. We suppose that there are n readings in total, m of which
come from Sybil nodes (we call these readings fabricated readings).
Therefore, the probability that the initial consensus set does not
contain fabricated readings is:

n—m
("y")
-
(5)
Then, the probability that there is at least one consensus set which
does not contain fabricated readings in f trails is:

("")
()
We hope that the initial consensus set is not affected by fabricated
readings, so this probability is expected to be 1. Then, we obtain

that:
()

("")
This is the number of trials (loops) we should perform in the al-
gorithm, and m can be regarded as a predefined system parameter,
which indicates the level of robustness of the algorithm. It is easy to
find that there is a necessary condition, m < n/2, for our RANSAC-
based algorithm. This is because if more than 50% readings are fab-
ricated by Sybil nodes, we must have a consensus set, consisting
of only fabricated readings, bigger than any other consensus set.
Therefore, 50% is the security resilience threshold for our RANSAC-
based approach. The parameter, y, is exactly the mean square error
of the random variable, X5 (defined in the radio model in Eq. (1)).
Compared to curve fitting (or smoothing), which uses as much
input data as possible, RANSAC uses as less data as possible to set
up an initial consensus set. Then, this consensus set is enlarged
at later iteration steps. Because the method starts from a small
consensus set and enlarges it gradually, most of the outlier data
will be kept outside of the consensus set. In this way, the algorithm
robustness can be improved.

Py =

P, =

f~1.

f=

4.3. Simulation

Scenario 1. In this scenario, we suppose that the signal range is
200 m, the physical position of a claimer is at the point of 200 m,

and all 10 witnesses distributed at random positions faithfully re-
port the measured signal strength from the claimer. In this sce-
nario, we adopt the basic MMSE-based calculation in estimating
the claimer’s position. Our simulation runs independently for 100
times with different random witness positions, and the distribu-
tion of estimated position is shown in Fig. 2(a). From the figure, we
can find that the estimated positions of most tests are within 10 m
of the real position of the claimer, thereby suggesting that a possi-
ble value of threshold 6 is 10 m. For example, if the distance differ-
ence is larger than 10 m, we believe that the claimer is a Sybil node.

Scenario II. The basic configurations of Scenario II is the same
as Scenario I. However, we assume that the claimer is a malicious
node, which claims that its position is at the point of 300 m instead
of its real position at 200 m. What is more, 30% of the witnesses are
Sybil vehicles. In this scenario, we still use the basic MMSE-based
calculation. In order to change the computed result to match the
fabricated position (at 300 m), these Sybil witnesses would report
fictitious measurements instead of the really measured ones. The
results in Fig. 2(b) show that many of the estimated positions have
deviated from the real position (at 200 m), moving closer to the
fabricated position (at 300 m).

Scenario III. Scenario III has the same configurations as Scenario
I except that we adopt the RANSAC-based calculation instead of
the basic MMSE-based. It is visible in Fig. 2(c) that most of the
estimations are close to the real position of the claimer, whereas
sporadic points are deviated far away. By analyzing the simulation
data, we find that because witnesses are distributed at random
positions, it is possible that fabricated readings together with
trusty readings may happen to constitute a consensus set, which
is the reason that fails the RANSAC-based estimation.

Conclusion. Based on the above simulation results, we can reach
two conclusions. (1) The signal-strength-based verification accu-
racy is acceptable, given that all witnesses report the real mea-
sured signal strength. (2) However, when some witnesses are not
trustable, likely selected from Sybil vehicles, the estimated position
is not trustable either. The cooperative detection method becomes
non-cooperative and cannot detect a Sybil node from its claim. Our
RANSAC-based calculation can effectively improve the robustness
in estimating the claimer’s position. However, it still cannot guar-
antee an accurate result and also suffers from the 50% security re-
silience threshold.

Challenges. Two challenges still exist. (1) To make the cooper-
ative method effective, we must guarantee that there is no Sybil
witness during the detection process. Otherwise, the estimated po-
sition may be easily deviated, even we may use the RANSAC-based
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Fig. 3. A scenario with roadside base stations.

calculation to reduce the impact of Sybil witnesses. (2) Thresh-
old (a maximal allowable distance to the claimed position) is not
a good rule to judge the Sybil attack. A high threshold may de-
crease the detection rate (the rate that a Sybil node is detected),
but a low threshold may increase the false positive rate (the rate
that a normal node is innocently regarded as a Sybil node), which
is also not desired. Due to the unstable nature of signal strength
measurement, it is difficult to choose an optimal threshold value to
meet both the expectations of a high detection rate and a low false
positive rate. The following two sections are targeted in these two
challenges.

5. Presence evidence system

The challenges seem to be a paradox problem. The correctness
of our cooperative detection method relies on trusty witnesses.
This requires us to know in advance which nodes can be trusted
(not Sybil nodes), which is exactly the goal of our method.

Our solution is inspired by the fact that most roads have two-
way traffic. We can divide nodes into two groups, each consisting of
nodes (vehicles) in the same direction. Then, the previous problem
can be changed into: instead of knowing which exact node can be
trusted, we only need to know which group of nodes can be trusted.
In this way, we can use one trusty group to test the individual nodes
in the other group.

In this section, we propose a Presence Evidence System for
the purpose of removing Sybil witness candidates. This system is
designed to prove when and where a node (vehicle) comes from,
and we use this system as a tool to filter witness candidates in a
manner that only physical vehicles can remain as witnesses.

As we assumed in Section 3.2, roadside base stations, manip-
ulated by governments, are sparsely distributed along the roads.
Then, based on this assumption, we establish the following two
rules:

Rule 1. A roadside base station would issue a position certification
for each vehicle passing by. The position certification contains a time
stamp, the passing vehicle’s identity, and the location of the base
station. Later, it can prove the presence of the vehicle near the base
station at a certain time.

Rule 2. All witnesses for a claimer should consist of vehicles in the
opposite traffic flow to the claimer.

With Rule 1, we can ensure where a certain vehicle comes from.
We take Fig. 3 as an example. When node a passes by BS,, it gets
a position certificate from base station BS,, and node b also gets
one from BS;. When a and b meet each other, it is easy for them to
prove that they come from the opposite directions by exchanging
certificates. When node a or b broadcasts its position certificates,
it signs the broadcasting with a GPS time stamp using its private
key. In this way, certificates cannot be rebroadcast by an adversary
vehicle.

With Rule 2, we can ensure that each witness in the opposite
traffic flow is a physical vehicle instead of a Sybil one. The example
in Fig. 1 can illustrate how this rule works. Malicious node m
fabricates 7 Sybil nodes, in which, s7 is traveling in the opposite
direction and the rest the same. When trying to verify the positions

of s1, ..., ss, we only choose witnesses in the opposite (right-to-
left) traffic flow such as node n, ..., ns. However, with Rule 2, we
would ignore node s7, because it cannot prove that it comes from
the upstream of the road, and actually it does not. In this way, we
can ensure that each witness is a physical vehicle coming from the
opposite direction.

With Rules 1 and 2 together, we achieve the goal that the mem-
bership of witnesses consists of only physical vehicles, excluding
any Sybil vehicle. A verifier would not select witness nodes from
the same traffic flow, because it is difficult to judge which wit-
nesses in the same traffic flow are Sybil witnesses. With the help of
roadside base stations, the impact of dishonest Sybil nodes on posi-
tion verification can be effectively removed. Thus, the cooperative
method can be applied to detect the Sybil attack accurately.

The Presence Evidence System has the capability to answer and
prove questions, such as, where and when have you been? It has
a wide variety of potential applications. For example, police can
find witnesses for a traffic accident; a car rental company may
limit its rental cars in a certain range. We believe more efforts are
expected to make this system effective and reliable. In this paper,
we take advantage of Presence Evidence System to ensure only
physical vehicles are selected as witnesses, but our main focus will
be still on exploring the feasibility of using signal strength analysis
to detect Sybil nodes.

6. Statistical detection method

In this section, we propose a statistical detection method to
detect whether a node honestly claims its position. Our method
extends observation time to collect more signal strength readings
and then perform statistical analysis based on these collected data.

The motivation of our method is inspired by the radio propa-
gation model. From Eq. (1), we can find that the varying of signal
strength readings is mainly determined by the noise, X;5, which is
supposed to be a Gaussian random variable. In this way, we think
we can collect signal strength readings for a period of time and
have a test about whether the noise in the readings follows a Gaus-
sian distribution. In other words, if a malicious node fabricates its
position, the signal strength measurements cannot match the ra-
dio propagation model. We can also extend the observation time
to accumulate more measurements.

6.1. Basicidea

The basic idea of this method can be described as follows. We
let p denote the physical position of a node, and p’ the claimed
position. Given a position, we can determine the signal strength
distribution model (according to Eq. (2)). Here, we let m represent
the signal strength model centered at position p, and m’ the model
centered at claimed (potentially-fabricated) position p’. What is
more, T¢; indicates the signal strength measurement at time ¢t
measured by neighboring vehicle i. In this way,

e;; = Tei — RSSIy (i)

represents the measurement noise at position i based on model m’,
and

er’l’ = Tty,' —_ RSSIP(I)

represents the measurement noise at position i based on model m.
According to our radio model, sample e; ; should follow Gaussian
distribution Xyp, and e; ; should also follow Gaussian distribution
Xgp if claimed position p’ matches physical position p. In this way,
we can obtain a sample set after a period of observation, {e; ;|t €
T,i € V}, where T is the set of observation times, and V is the set
of neighboring vehicles at time t.
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Fig. 4 is a good example to explain our method. In this example,
the fabricated position, p’, is deviated from the physical position,
p. We can find that all the measurements closely follow model m,
which is bound with physical position p. However, if we use devi-
ated model m’ to calculate the noise €, we will get a big error, that
is, e, > e,. This error makes noise samples not follow a Gaussian
distribution. Further, this error will become more obvious if we use
statistical analysis after accumulating enough samples.

Since the samples used for statistical analysis are determined
only by the distance between the physical position and the mea-
surement position, our method can handle signal strength readings
from various positions, such as readings from vehicles on a curved
road.

The next step is to test whether sample set {e;’ilt eT,i €V}
follows Gaussian distribution Xgg.

6.2. Sample distribution test

In this subsection, we use hypothesis tests to test whether
sample set {e;!i} follows Gaussian distribution Xgg.

Noise sample e’m- is supposed to follow the Gaussian distribution
Xgp with mean p« = 0 and variance o, where ogg is the standard
deviation of the channel model. Thus the problem is to perform the
following two hypothesis tests for the samples, {e;‘i}:

Hy:pg #0

/L2 2 r. 2 2
Hy:0°<op Hy:0° >0

Ho:uug=0

The first test, Hy/Hj, is to test whether the samples have mean
w1 = 0, and the second test, H}/H, is to test whether the samples
have variance o 2,.

When both Hy and H], are true, the method returns that the
node honestly claims its position. Since the mean and variance are
supposed to be 0 and %23 respectively, the test statistic is

e—0

oas/N/1|’

where ¢’ is the mean of sample set {eé’i}. If|z| > z4/2, Hp is rejected;
otherwise, Hy is accepted. z,/, is the critical value of normal
distribution N (0, 1), given significance «. « is the significance level,
a predefined parameter, denoting:

lz| =

P{Reject Hy|Hp is true} < c.

Actually, « also indicates the confidence level of the test result.
Then we use x-test to test the variance 2. The test statistic is

, (—1s?
on

where s is the variance of sample set {e; ;}. If x*> < x2(n — 1), Hy

is accepted; otherwise, H; is rejected. th (n—1) is the critical value

of x?2 distribution, given significance « and freedom (n — 1).

In the above test, we are interested in whether there is a sig-
nificant difference between real physical radio model m and devi-
ated radio model m'. Actually, the samples {e; ;} imply the physical
model m. However, if we use these samples to match the deviated
model m’, it must cause great errors.

One thing, which remains undefined, is the variance, o4, of
Gaussian distribution Xgg. ogp indicates the fluctuating range of
normal noises. Physically, it means the noise level of the current
environment, also implying the realtime channel conditions. It has

® @

Signal Strength

\4

vehicle position

O Physical position V:—\) Fabricated position =~ @ measurements

Signal strength distribution

/\ Signal strength distribution |
model at fabricated position

model at physical position °

Fig. 4. Noise and distribution model.

a major impact on the hypothesis test results. In the next section,
we will discuss how to determine oy3.

6.3. Noise estimation algorithm

A naive method is to set a empirical constant value to o43. We
can conduct a field experiment, calculate the variance from the sig-
nal strength measurements, and use this variance in other envi-
ronments. The drawback of this naive method is also obvious that
a constant variance cannot represent the varying realtime channel
conditions.

In this subsection, we use time series forecasting to estimate
the current noise level according to the recent noise level history.
It works as follows. By the cooperative detection method (in
Section 4.1), each node (claimer) periodically broadcasts a beacon.
After the beacon interval, the node can accumulate signal strength
measurements concerning its previous beacon from its neighbors
(witnesses). In this way, the node can obtain a set of noise samples:

{erileqi =1 — RSSIp(i)a ieV}

where t represents the time of the previous beacon, p represents
the physical GPS position of the current node, and V represents the
set of the neighbors (witnesses). The node, then, can calculate a
variance, o2, based on this noise sample set. As time elapses, the
node can accumulate a time series of variances:

2 2 2
{of,0(4,0{,, ...}

Next, we use exponential smoothing to estimate the noise
variance at time t + 1. We set different weights to variance in the
history, the more recent with a bigger weight. Then, the estimated
variance is:

o0

A2 2

Ot41 = Z WiO_j, (4)
i=0

where ) w; = 1. Typically, the weight can be defined as:
wi = (1= B,

where § is the learning rate, which determines the impact of the
most recent variance on the estimated value. Then, Eq. (4) can be
written in an iterative way:

6t2+1 = IBUrz +Q0- 13)&[2_1.

The initial value of variance 62, at the very beginning, can be
set to an empirical value. However, the node will shortly learn a
proper value from the environment.

In this way, each node on roads can periodically update it
estimation of the noise variance. This estimation, then, can be used
as variance ‘7423 in the hypothesis test (in Section 6.2).
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Table 1 Table 2

Simulation configurations. Default parameter values.
System parameter Value Parameter Value
Road length 10 km Sybil deviation 10 m
Vehicle number 150 Observation time 10s
Communication range 250 m Vehicle density 20/km
MAC layer 802.11 Xap 8dB
Mobility model Street Speed Model [10] Significant level 0.05
Trip model Dijkstra Trip Model [10]

7. Overview of the integrated scheme

In this section, we integrate the approaches introduced in
previous sections to see how they work together as an integrated
detection scheme.

First, each vehicle periodically performs the noise estimation al-
gorithm (in Section 6.3) in order to get an updated noise level of
the current channel. With our Presence Evidence System (in Sec-
tion 5), each vehicle gets a certificate from the roadside base sta-
tion it is passing by. After that, the vehicle periodically broadcasts
this certificate, proving (to vehicles in the other direction) where
it comes from. Meanwhile, the cooperative detection method (in
Section 4.1) is also working. Each vehicle periodically broadcasts
a beacon (as a claimer) and also accumulates the signal strength
measurements from vehicles in the coming traffic. When enough
measurements for a certain node are accumulated, the vehicle can
perform statistical analysis (in Section 6) (as a verifier) and then de-
cide whether the node is a Sybil node. Every vehicle can perform
the detection, playing the role of both a claimer and a verifier.

After a Sybil node is detected, the vehicle can make some
responses. For example, the vehicle can just ignore the Sybil node
so that the Sybil node will be separated from the network and the
Sybil node will not contribute to an illusion of traffic congestion.
The vehicle can also save the evidence and later report to a roadside
base station. Based on accumulated evidence, the government
agency can take more actions against the greedy driver by law. Of
course, the after-detection actions are not our focus.

8. Simulation evaluation

In this section, we evaluate our detection scheme by NS2 and
GrooveNet based simulations.

8.1. Simulation design

Our simulation is based on NS2 [18] and GrooveNet [10,15].
GrooveNet is a VANET simulator, which provides a variety of
useful models for VANET simulations, such as mobility models,
trip models, etc. On the other hand, NS2 presents a lot of well-
developed low-layer protocols with easy programming interfaces.
We think a combination of these tools would be a good choice. We
first used GrooveNet to generate mobility trace files, and then we
used NS2 to load these trace files and run our aggregation protocol.
Our protocol is implemented on NS2.

In our simulation, we configured the radio module to simulate
a realistic 802.11 wireless adaptor together with 7 dBi external
antenna. Actually, this type of adaptor is already used in VANET
field tests [11]. (The wireless adaptor’s model is 5004 MP Atheros
4 G/CM9: 802.11a/b/g miniPCI Card, and the external antenna is 7
dBi Pacific Wireless MA24-7N external omnidirectional antenna.)

The simulation is based on a realistic map in Detroit. In this
simulation, 100 vehicles are rushing on Michigan Ave. in both
directions. We suppose one of them is a malicious node, which
fabricates its position. The default simulation configurations are
shown in Table 1.

In our simulation, we are interested in the impact of system pa-
rameters on our detection performance. The system parameters in-
clude Sybil deviation, observation time, vehicle density, Xyg standard
deviation, significant level. Sybil deviation is the difference in dis-
tance between a claimed position and the real physical position.
Observation time is the time period for observation, after which a
detection decision is made. If the collected signal strength readings
are less than the specified observation time, no detection is per-
formed by the vehicle. In other words, the vehicle would not make
ajudgment. Standard deviation Xgp is the standard deviation of our
radio model, suggesting the unstable level of the channel. In this
work, we use the standard deviation of RSSI readings to estimate
the channel noise (i.e. channel stability). Since the accuracy of this
scheme solely relies on the RSSI readings, the standard deviation of
RSSIreadings is a straightforward metric to estimate the noise and
evaluate the detection performance. Significant level is the system
parameter, ¢, in our hypothesis test. Except when these parame-
ters are explicitly specified, their default values are listed in Table 2.

We use two metrics to evaluate the performance of our scheme:
detection rate and false positive rate. Detection rate is referred to as
the percentage of vehicles that successfully detect the Sybil node.
These vehicles must accumulate enough signal strength readings of
a given observation period before they can perform the statistical
detection. False positive rate is referred to as the percent of vehicles
that mistakenly report a Sybil node when actually there is no Sybil
attack. To evaluate the detection rate, we suppose one node is a
target malicious node which fabricates its real position. We record
the detection results from all vehicles which pass the target node.
To evaluate the false positive rate, we just suppose one node is the
target node. However, this target node is an honest node, which
always reports its real position. Then, we record the detection
results from all passing vehicle in terms of this target node.

In our simulations, we compare the detection scheme proposed
in this paper to the scheme proposed in [26]. In the following
subsections, the former is referred to as the IMPROVED scheme;
the later is referred to as the PREVIOUS scheme.

8.2. Detection rate

In this subsection, we investigate the impact of system param-
eters on detection rate.

Fig. 5(a) and (b) shows the detection rate as we vary Sybil
deviation distance and observation time. We can find that the
detection rate increases as Sybil deviation or observation period
increases. Its easy to understand that a claimed position far from
the physical position makes it more evident to detect, and both
schemes effectively compensate for the inaccuracy of individual
estimations at the cost of increased observation time. When Sybil
deviation is larger than or equal to 10 m and observation time
larger than or equal to 10 s, the detection rate of the IMPROVED
scheme is larger than 99%.

These two figures also show that when Sybil deviation is short
or observation time is short, our IMPROVED scheme is far superior
to the PREVIOUS scheme. Both the PREVIOUS scheme and the IM-
PROVED scheme are based on statistical analysis. However, since
we change the test statistic in our IMPROVED scheme, the IM-
PROVED scheme has more samples for hypothesis tests even when
the observation time is short. That is the reason why it outperforms
the PREVIOUS scheme.
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Fig. 5. Detection rate.

In Fig. 5(c), we fix the observation time and the Sybil deviation
to their default values, and then we vary vehicle density and record
the changes in detection rate. We find that the vehicle density has
a major impact on the detection rate. When the vehicle density is
large than 20 vehicles per km, both schemes have high detection
rates. However, the detection rate of the PREVIOUS scheme drops
faster, as the density decreases.

Fig. 5(d) shows the relation between detection rate and Xgp
standard deviation. The standard deviation is a parameter which
decides the channel stability. In our simulation, we apply the Log-
Distance Path Loss Model. Measurements from field tests [16]
suggest that signal attenuation can be well modeled using the Log-
Distance Loss Model with standard deviation of 9.43 dB in their test
environments. The authors suggest that the usual standard devia-
tion in outdoor environment varies from 7 to 9 dB. In our simula-
tion, we vary the standard deviation from 7 to 10 dB. The results
show that generally the detection rate decreases with an increase
in standard deviation. However, given 10 s of observation time, the
IMPROVED scheme can always keep a pretty high detection rate.
Fig. 5(e) indicates that the detection rate can also be increased by
increasing the significance level. An increase in significance level
can increase the critical values of z,,, and x(f(n — 1) and accord-
ingly increase the probability that Hy and H are rejected. How-
ever, an increased significant level may also incur an increase in
false positive rate. Therefore, a proper value of significant level is a
tradeoff between detection rate and false positive rate.

8.3. False positive rate

In this subsection, we investigate the impact of system param-
eters on false positive rate. False positive rate is also an important
metric, which represents the possibility that our scheme makes
false alarms when there is no Sybil node.

Fig. 6(a) shows the changes in false positive rate as we increase
the observation time. Increased observation time allows us to ac-
cumulate more signal strength readings and leads to a decrease in
false positive rate. Because our IMPROVED scheme has more signal

strength samples for hypothesis tests, it shows better performance
in false positive rate than the PREVIOUS scheme. Fig. 6(b) shows the
relation between vehicle density and false positive rate. When the
vehicle density is low, for the PREVIOUS scheme, it is inaccurate to
calculate the estimated position of a target vehicle. Therefore, this
inaccuracy may incur a higher false positive rate. Fig. 6(c) shows
the impact of channel conditions on false positive rate. From the
figure, we can find that even when the standard deviation varies
from 7 to 10 dB, our IMPROVED scheme with 10 s observation time
can keep the false positive rate at a pretty low level. Fig. 6(d) shows
the impact of significance level on false positive rate. If we relate
Figs. 6(d) to 5(e), we can find that an increase in significance level
may lead to an increase in detection rate, and it also may lead to
an increase in false positive rate. Therefore, it is important to find
a proper value of significance level to meet the expectation of de-
tection rate and false positive rate. In our simulation, we find that
0.05 would be a proper value of significance level.

9. Discussion

In this section, we first present the attack analysis, then discuss
several problems related to base stations and opposite traffic, and
finally summarize several features of our scheme.

9.1. Attack analysis

In this subsection, we are interested in the potential strategies
the adversary may apply to crack our detection methods. Since our
detection scheme is based on independent and distributed signal
strength measurements, in order to make the fabricated Sybil node
seem to be close to the claimed position, the malicious node has
to deliberately affect the measurement of signal strength. There
are two possible ways to impact the signal strength measurements
: spoof transmission power and witness penetration. The former
attempts to impact the final estimated position from the signal
source aspect, while the latter from the witness aspect. We will
show that both of these attempts are in vain.
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Fig. 6. False positive rate.

In spoof transmission power, Sybil nodes may deliberately de-
crease or increase the transmission power for broadcasting a bea-
con message in order to impact the signal strength measurements.
However, this attempt is destined to fail, because the change of
transmission power will only further deviate the measurements
from the supposed signal strength distribution model.

In witness penetration, Sybil nodes, which play the role of wit-
nesses, would cover up for each other and report fabricated signal
strength readings. However, we may disable this attempt by using
the technique proposed in Section 5. With this technique, all wit-
nesses are selected from the opposite traffic flow, and further they
can prove to have come from the upstream of the road, whereas
Sybil nodes cannot.

9.2. Base stations and opposite traffic flow

In this subsection, we would like to discuss several problems
about base stations and opposite traffic flow, which are two
important elements for our detection scheme.

In our scheme, roadside base stations do not directly partici-
pate in the detection. First, the main responsibility of base stations
is to serve as an authority which can prove where a given vehicle
comes from. Base stations do not make a judgment about whether
anode is a Sybil node or not. Second, base stations are sparsely de-
ployed along roads, and part of road sections might not be covered
in the signal range of base stations. Therefore, evidently, base sta-
tions cannot detect potential Sybil nodes on those road sections.
However, if a road section happens to be covered by a base station,
of course, the base station can also serve as a trusted witness for
measuring signal strength.

In our methods, we rely on opposite traffic flow to detect Sybil
nodes in the current traffic flow. That is because we can identify
real physical vehicles in the opposite traffic flow by the technique
proposed in Section 5, whereas it is difficult to directly identify real
physical vehicles in the current traffic flow (that is our final goal).
These physical vehicles in the opposite traffic flow serve as reliable

witnesses for measuring signal strength. However, in case of one-
way roads (or two-way but no traffic in the opposite direction), our
methods will be incapable of detecting Sybil nodes. We will try to
solve this issue in our future work.

9.3. Features of our methods

Our detection methods present three unique features. First,
our detection scheme can effectively suppress Sybil attacks. Due
to the limited accuracy of signal strength-based measurement,
we still cannot identify a Sybil node if the claimed position of
the Sybil node is very close to the physical position. However,
because each vehicle is supposed to occupy a considerable amount
of physical space, the greedy vehicle can only fabricated a quite
limited amount of vehicles without being detected. Therefore, the
Sybil threats can be effectively suppressed. Second, our detection
scheme does not rely on specific positioning hardware. Also, even
when a malicious node is equipped with multiple radio modules,
we still can detect potential attacks, which cannot be achieved by
radio resource testing [17]. Finally, our detection scheme is robust
and reliable in the sense that it is impossible to change the signal
strength distribution pattern from any kind of radio module. As
long as reliable signal strength measurements can be guaranteed,
the scheme can detect most Sybil attacks.

10. Conclusion

In this paper, we make various attempts to explore the feasi-
bility of using signal strength analysis to detect Sybil attacks. First,
we propose a cooperative method to estimate the physical posi-
tion of a suspicious node. We analyze the constraints of this basic
method and further propose two solutions against existing chal-
lenges, that is, the Presence Evidence System and the statistical
detection method. These approaches can effectively suppress the
attacks launched by greedy drivers. Simulations based on real US
maps and traffic models prove the performance of our scheme. Al-
though our scheme still cannot guarantee 100% detection, it could
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be an economical way to detect Sybil attacks without specific po-
sitioning hardware support.

Extensive work is still required in the future. First, our detection
scheme requires the support from several sub-systems, such as,
the Presence Evidence System and the channel noise estimation.
We only introduced the basic ideas of these sub-system and more
efforts are expected. Second, since signal strength readings are not
accurate in nature, if Sybil nodes are claimed to be very close to
the physical vehicle, it is hard to distinguish the Sybil nodes. We
may resort to a geometric model to define the minimal distance
between two vehicles.
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