
Discovering Free-riders Before Trading: A Simple Approach

Raymond Lei Xia
UFIDA (Hong Kong) Co. Ltd.

Central, Hong Kong SAR, PRC
e-mail: raymondhahk@gmail.com

Jogesh K. Muppala
Dept. of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong SAR, PRC

e-mail: muppala@cse.ust.hk

Abstract—Free-riding is one of the most serious problems
encountered in Peer-to-peer (P2P) systems like BitTorrent.
Incentive mechanisms, including those based on reputation
have been proposed to deal with this problem, but are still not
effective in preventing free-riders from completing a
download. This is because they discover the free-riders’
behavior during or after the process of trading, giving free-
riders the opportunity to download from others. In this paper,
we propose PreDiscover, a novel approach to prevent free-
riding behavior in BitTorrent. In PreDiscover, regular peers
and free-riders can be recognized before trading. So free-
riders have little opportunity to download blocks from others.
Our simulation results indicate that this new mechanism is
very effective in discouraging free-riders and foster fairness.

Keywords-Free-riding; P2P; Reputation System

I. INTRODUCTION

Peer-to-Peer (P2P) file sharing systems have proved to be
effective for designing scalable and robust mechanisms for
delivering large files to several users. Peers in the system not
only download files from the server, but also share content
with each other, alleviating the server’s burden. BitTorrent
(BT), one of the most popular P2P applications, employs
incentive mechanism like tit-for-tat (TFT) to encourage
contribution and discourage free-riders. A free-rider is a peer
that downloads without a corresponding upload contribution.
The presence of free-riders has a significant impact on the
overall system performance. Some papers [2] [10] claimed
that BitTorrent’s incentive policy works well to dissuade
free-riding behavior. However, others [1] reported that TFT
is not as effective at discouraging free-riders. Reputation
[11] based approaches to discourage free-riders get peers’
reputation values after trading with them. So free-riders can
still get downloading opportunities during the trading.

In this paper, we propose the PreDiscover algorithm that
helps distinguish free-riders from benign peers even before
trading. The only opportunity that free-riders get to
download from other peers is when they newly join the
system. Therefore, a free-rider is always choked by regular
peers after becoming a non-newcomer. We show using
simulations that this effectively discourages free-riders.

This paper is structured as follows. We first give a brief
overview of the mechanisms in BitTorrent and how free-
riders can exploit the mechanisms to their benefit in Section
II. We then present the details of the PreDiscover algorithm
in Section III. We review our simulation settings in Section

IV. Thereafter we present several simulation results
illustrating the benefits of using PreDiscover, in Section V.
We show how an improved PreDiscover algorithm can deal
with malicious peers in Section VI. We give a brief
background of related work presented in the literature in
Section VIII. Finally we present the conclusions of the paper.

II. FREE-RIDING IN BITTORRENT

A. Mechanisms in BitTorrent
BitTorrent mechanisms mainly consist of peer and piece

selection strategies. A good peer selection strategy should
maximize the service capacity of the system, and an
efficient piece selection strategy should guarantee that each
peer can find interesting pieces from its neighbors. A
detailed description of these mechanisms can be found in
[6][12]. Here we briefly summarize these mechanisms for
completeness so that further discussions in the subsequent
sections can be placed in proper context.

The peer selection strategy uses four main mechanisms:
tit-for-tat (TFT), optimistic unchoking (OU), anti-snubbing,
and upload only. Summed up together, they form the basis
for the choking algorithm used by a peer. The major aim of
these mechanisms is to improve the downloading experience
of those peers that contribute to the file exchange, and
punish free-riders. When a peer wants to download pieces
from its neighbors, it adopts piece selection strategies that
include the following four mechanisms: Strict Priority,
Rarest First, Random First Piece, and Endgame Mode.

B. Mechanism used by Free-riders
Free-riders exploit some mechanisms of BitTorrent for

their own benefit. In the original BT, free-riders can get
benefits from both seeds and regular peers. On the one hand,
seeds upload to requesters based on the requesters’
downloading rate instead of uploading rate because seeds do
not need to download any pieces. Thus free-riders can
exploit this mechanism to download from seed if the free-
riders have good download bandwidth. Similarly, free-riders
can obtain blocks from the regular peers because of the
optimistic unchoking policy [6]. Under this policy, peers
would upload blocks to a node for about 30 seconds even if
they receive nothing in return from that node. In the
following section, we describe how we attempt to plug these
loopholes by our new algorithm.

2010 16th International Conference on Parallel and Distributed Systems

1521-9097/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPADS.2010.86

806

Mo.Re
Highlight

III. PREDISCOVER ALGORITHM

Free-riders always choke other peers regardless of the
bandwidth. PreDiscover algorithm is based on a peer using
this characteristic to discover free-riders amongst all its
neighbors. A peer records the status of its neighbors, whether
they are well-behaved, or are exhibiting free-riding behavior.
Each neighbor then shares its collective view about its
neighbors with all its neighbors. Through the exchange of
this information (gossiping), peers are able to pinpoint and
isolate the free-riders by denying them opportunities to
download.

A. Neighbor Status in PreDiscover
 First, every peer maintains a status vector, recording its

current view of the neighbor’s free-riding behavior. Each
element of the status vector is a tuple (NC,FR), where NC
records whether the peer is a new comer; FR represents
whether the peer is a free-rider, each being either 1 or 0. The
three possible values that the tuple can take are: (0,0), (1,0)
and (1,1), status (0,0) means the peer is a newcomer and a
potential free-rider; (1,0) means the peer is a non-new comer
and a potential free-rider; (1,1) means the peer is not a
newcomer and is a regular peer. PreDiscover by default
assumes that every node is a free-rider (guilty until proven
innocent). It is up to each node to establish to its neighbors
that it is not a free-rider by exhibiting good neighborly
behavior by uploading to the neighbors in return for the
download that it obtains from them. Any node that does not
reciprocate others’ generosity will obviously continue to be
treated as a free-rider. When a peer joins the swarm for the
first time, it is considered to be in status (0, 0). In this state,
we allow the newcomer the benefit of doubt and let it
download opportunistically from others just so that it can
bootstrap itself into the swarm. Once a node uploads one or
more blocks to a newcomer, then the node will change the
status of the newcomer from (0,0) to (1,0) in its status vector
table. When a peer unchokes other peers, its status will be
considered as (1,1) by the peers it unchoked. The three status
transformations are shown in Fig. 1.

Figure 1. Status of Peer.

B. Information Propagation
When two peers meet, which means one is in the other’s

neighbor set, they exchange their status vectors, and compute
the “global” status vector. Let Si[j] =(NCi

j,FRi
j) represent the

status vector entry for node j in node i’s table. For the status
propagation, PreDiscover uses the following equation:

j
k

j
i

j
i

iNeighbor
kj NCNCNC ||

)(
 (1)

j
k

j
i

j
i

iNeighbor
kj FRFRFR ||

)(
 (2)

where “||” is the OR logical operator. Peer j is a peer in the
swarm, and peers i and k are neighbors of peer j. The
PreDiscover choking algorithm is described in Fig.2.

Choking Algorithm from the perspective of peer A
for each peer i in the neighbor set of peer A

Peer A and Peer i share the status vector
end for
for each peer B in the neighbor set of peer A

if A is a free-rider
do choking

else /* A is a regular peer */
if peer B in status (0, 0)

 use TFT or optimistic unchoking
 update the status of peer B to (1,0)

else if peer B is in status (1, 0)
 do choking

else if peer B is in status (1, 1)
 use TFT or optimistic unchoking

end if
end if

end for
Figure 2. PreDiscover Choking Algorithm.

C. PreDiscover Process
First of all, suppose peer A is a regular peer, then it

follows the following steps:
1. Peer A joins a swarm; it is in status (0,0) from the

perspective of all the other nodes. Peer B and C are
neighbors of peer A, and both peer B and C use TFT
and OU on peer A because SB[A] and SC[A] are (0,0),

2. Once A is unchoked by B by OU, A is in status (1,0) in
B’s view, which means SB[A] is (1,0) and SA[B] is
(1,1). Therefore, B will consider A as a potential free-
rider and choke A until SB[A] is (1,1). However, C may
still use TFT and OU on A since SC[A] is still (0,0).

3. SC[A] will be updated to (1,0) when C exchanges its
status vector with B. Then, SB[A] = SB[A] || SC[A] from
the view of B, and SC[A] = SB[A] || SC[A] from the
view of C. According to equations (1) and (2), both
SB[A] and SC[A] will become (1,0). Therefore, both B
and C consider A as a potential free-rider and choke A.

4. When A unchokes B, A’s status is updated SB[A] = (1,1)
by B. Then, B will know that A is not a free-rider, and
will use TFT and OU on A. However, C still considers
A as a potential free-rider as SC[A] is still (1,0).

5. When B and C exchange again, SC[A] will be updated
to (1,1). Therefore, both B and C consider A as a regular
peer and use TFT and OU on A.

(0,0)
Newcomer &

potential free-rider

(1,0)
Non-newcomer &

potential free-rider

(1,1)
Non-newcomer &

non-free-rider

807

Mo.Re
Highlight

6. When A completes downloading all the blocks of the
file, it may either stay on as a seed or leave the swarm.

When we consider the case that A is a free-rider, the
first three steps are the same as that of the regular peer.
However the remaining steps are as follows:
4. After getting some blocks from B, A never unchokes

other nodes. Therefore, both SB[A] and SC[A] will
always be (1,0), and both B and C consider A as a
potential free-rider and choke A forever.

5. A cannot get any more blocks either from B or C, so it
will not be able to complete downloading the file.

First, the algorithm addresses the problem of free-riders
getting blocks from regular peers using OU, by completely
removing this avenue of exploit. On one hand, a regular
peer is considered as a good peer (status (1,1)) by some
neighbors, so they continue to trade with it using either TFT
or OU policy. On the other hand, a regular peer may still be
considered as a “potential free-rider” by other neighbors,
and may be temporarily choked by them. However, the
peer’s good status will ultimately be established among
many others after several rounds propagation. Since a free-
rider never unchokes other peers, so it is considered as
“potential free-rider” forever, which means it will always be
considered in status (1,0) by its neighbors, and will be
choked forever.

Seeds are a special case in BitTorrent since they do not
need to download from others. The only issue is whether the
seed capacity can be exploited by free-riders. In PreDiscover
we consider two possibilities: (1) Seeds in PreDiscover adopt
a policy similar to regular peers in dealing with free-riders,
i.e., a seed uploads to a peer only if it is status is (0,0) or (1,1)
from the seed’s view; or (2) Seeds adopt a free-rider agnostic
view whereby they upload to any peer without
discrimination. Obviously in the second case the free-riders
still have a chance of completing the download, albeit at a
slow pace. We demonstrate this through some experiments.

IV. EXPERIMENTAL EVALUATION

A. Experimental Settings
In this part we describe the settings used to conduct our

simulation experiments. We also provide details about the
performance metrics that we used to evaluate the various
mechanisms.

We use the BitTorrent simulator BTSim [1] to conduct
the simulation experiments. We modified the simulator to
implement the algorithms described earlier. We use a file size
of 100 MB. We simulate a heterogeneous environment and
set the download/upload bandwidth (kbps) of participate
peers as the following three groups: 1500/400, 784/0 (free-
riders), 784/128 and each of the groups contains one third of
the total number of peers. Unless specified otherwise, the
results in next section are corresponding to the setting in
Table 1.

TABLE I. EXPERIMENT SETTINGS

File Size 100MB

Block Size 256KB

Leecher Unchoking 5

Seed Unchoking 5

Percentage of free-riders 1/3

B. Metrics
We evaluate the system’s performance using the

following metrics:
Fairness: An effective P2P system should foster fairness

in terms of the blocks downloaded and uploaded by peers,
implying no peer in the system should download more than it
uploads. We compute fairness as the maximum number of
blocks served over the total number of blocks received.
Obviously, when the fairness value is much larger than 1, it
indicates that some peers uploaded more than they
downloaded, so the system is unfair. So the closer to 1 the
fairness value is, the better the system performs.

Scalability: We evaluate the system’s scalability by
evaluating the percentage of nodes that finish downloading
as a function of time with the increase of the percentage of
free-riders in the system.

Downloading time: we evaluate the time for completing
the download for regular peers in both original BT and
PreDiscover. The downloading time indicates the
effectiveness of the system at encouraging contribution and
effectively discouraging the free-riders.

V. EXPERIMENTAL RESULTS

In this section, we show the experimental results for
fairness, downloading time and scalability to evaluate the
system’s performance. In addition, we compared
PreDiscover with other reputation based systems like One-
hop Reputation [11].

Figure 3. Fairness.

A. Fairness
As we can see from the Fig. 3, some peers upload more

than three times the total number of blocks that they

808

Mo.Re
Highlight

download in original BitTorrent. The unfairness is caused by
the Optimistic Unchoking and the TFT protocol, which give
opportunities for free-riders to exploit the regular peers.

 Both PreDiscover and one-hop reputation yield a
fairness value much closer to 1. However, the fairness value
is a little more than 1 because free-riders still manage to
download some blocks when they are newcomers. Even with
One hop Reputation peers choose neighbor with high
reputation value, so free-riders are discouraged, but are not
totally prevented from finishing their download.

B. Downloading Time of Regular Peers
We evaluated the effect of the algorithm on the

downloading time of regular peers. We considered a system
of 8000 peers with one third peers as free-riders. Similar
trends were observed for different number of peers.

As we can see from Fig. 4, regular peers’ downloading
time in One hop Reputation has only improved a little
compared with those in Original BT, but regular peers in
PreDiscover perform much better than those in both Original
BT and One hop Reputation. In addition, the downloading
time is much shorter in PreDiscover. The reason is that free-
riders are better identified and shunned in PreDiscover.

Figure 4. Behavior of Regular Peers.

Figure 5. Behavior of Free-riders.

C. Downloading Time of Free-riders
Next, we compare the free-riders’ behavior in

PreDiscover, One hop Reputation and Original BT. Since
free-riders in PreDiscover cannot finish their downloading,

so we use the percentage of blocks finished instead of nodes
finished vary with the time. As we can see from Fig. 5, free-
riders in One-hop Reputation perform similar to those in
Original BT, and finish their downloading finally, which
means One hop Reputation cannot prevent free-riders
completing the download. However, in PreDisocver, free-
riders download less than 1% of total blocks and never finish
downloading. This is because free-riders are choked after
they download a few blocks, and thus effectively prevented
from downloading.

D. Robustness and Scalability
Next, in order to see the robustness and the scalability

of PreDiscover, we set the percentage of free-riders to 5%,
10% and 33% for both PreDiscover and One hop Reputation,
and get the following results. As we can see from Fig. 6,
with the increase of the percentage of free-riders, One-hop
Reputation performs worse on node downloading times.
However, in PreDiscover, the results of the three settings are
similar. This is because the free-riders are discovered and
effectively shunned. Thus, PreDiscover is robust and
scalable even with increasing number of free-riders.

Figure 6. Scalability and Robustness of PreDiscover.

Figure 7. Regular Peers’ Behavior for Seeds Not Using PreDiscover for
8000 nodes

E. Seeds Not Using PreDiscover
In this section, we consider the case where seeds do not

use PreDiscover, and a seed uploads to peers based on the
peer’s download rate. We use the same setting as the

809

previous experiments, and we set the total number of nodes
to 8,000. Fig. 7 shows that regular peers’ behavior is very
similar to the results earlier. The reason is that regular peers’
download time mainly depends on the collaboration between
regular peers rather than the seed, so a seed has a little
influence on the regular peers’ download time. However, this
has a big influence on free-riders. As we see from Fig. 8,
free-riders can complete the download, but the download
time has been delayed significantly compared with the case
in Original BT and One-hop reputation algorithm.

Figure 8. Free-Riders’ Behavior for Seeds Not Using PreDiscover for
8000 nodes

VI. IMPROVED PREDISCOVER FOR MALICIOUS PEERS

A. Malicious Peers
So far we assumed that peers are either regular peers or

free-riders. We notice that the earlier algorithm classifies
peer as belonging to one of the two classes. Once a peer is
classified as a regular peer, it enjoys all the benefits of
receiving upload from others. In this section we deal with the
case of a Malicious Peer. Specifically we consider the case
where the peer could fool others to consider it to be a regular
peer by just uploading a few blocks in the beginning until it
gets classified as a regular peer at least by a few other peers,
and then stops uploading. In PreDiscover, status (1,1) is the
final status. Once a malicious peer uploads just a few blocks
to others, it is considered to be in status (1,1) and remains
there forever. Therefore, the malicious peer can download
freely from others after a small contribution. The presence of
the malicious peers has a bad influence of the system’s
performance, as expected. We extend our PreDiscover
algorithm to deal with this problem. We do not explicitly
deal with colluding attacks, as it requires significantly more
effort to identify and defeat.

B. Improved PreDiscover
In our Improved PreDiscover algorithm, peers are still

assigned one of three statuses: (0,0), (1,0) and (1,1). The
difference is that state (1,1) is no longer the final state. When
a peer A is considered to be in state (1,1) by peer B, then B
uses the TFT and OU on A for 10 seconds (this is
configurable in the system settings), then change A’s status
back to (1,0) in B’s state vector table. If A just upload to B a

few blocks and does not upload any more, A can only get
served for 10 seconds and will be considered to be in status
(1,0) thereafter and will be choked forever by B. Thus a peer
needs to periodically re-establish its good-neibhorliness by
uploading to its neighbors. Fig. 9 shows the state transition
diagram. The algorithm is shown in Fig. 10.

Figure 9. Status of Peers in Improved PreDiscover

Choking Algorithm from the perspective of peer A
for each peer i in the neighbor set of peer A

Peer A and Peer i share the status vector
end for
for each peer B in the neighbor set of peer A

if A is a malicious peer
upload a few blocks and do choking

else /* A is a regular peer */
if peer B in status (0, 0)

 use TFT or optimistic unchoking
 update the status of peer B to (1,0)

else if peer B is in status (1, 0)
 do choking

else if peer B is in status (1, 1)
 use TFT or optimistic unchoking for a few seconds
 change peer B bacl to status (1,0) in state vector

end if
end if

end for

Figure 10. Improved PreDiscover Algorithm

Figure 11. Malicious Node performance in PreDiscover and Improved
Prediscover.

(0,0)
Newcomer &

potential free-rider

(1,0)
Non-newcomer &

potential free-rider

(1,1)
Non-newcomer &

non-free-rider

810

C. Experimental Results
We use similar settings as the previous experiments, and

we set the number of nodes to be 1,000, with one third of
them being malicious nodes. We trace the malicious nodes’
behavior for both PreDiscover and the Improved
PreDiscover and obtained the results shown in Fig. 11.

 The blue line in Fig. 11 shows that the malicious nodes
can finish their download in PreDiscover based system.
However, as the red line shows, the malicious peers can only
get a few blocks and cannot complete their download in the
Improved PreDiscover based system. This is because the
malicious peers are identified in Improved Discover and are
choked by their neighbors. Thus they cannot get any benefits
from their neighbors except when they are newcomers and
when they upload just a few blocks.

VII. RELATED WORK

Several studies about the incentive mechanisms of P2P
systems [12] have been published in the literature. Jun et al.
[8] analyzed the original incentive mechanism of BitTorrent
using PlanetLab [9]. They found that the free-riders are not
punished properly, and the peers who contribute to others are
not rewarded appropriately. To address this problem, they
proposed a new mechanism with a deficit factor that
accounts for how much a peer uploads without expecting a
reciprocal download. The factor determines the amount that
a peer is willing to risk for a chance to establish cooperation.
Peers upload evenly to all links as much as they can under
this condition. Garbacki et al. [7] proposed a novel
mechanism, in which the resource, upon which incentives
are built, is bandwidth rather than content. Bandwidth is
unrelated to the interests of peers, so it is more suitable to be
a trading unit. In the bandwidth-exchange incentive
mechanism, any peers can help others to download with their
idle bandwidth, regardless of their content. Chow et al. [4]
presented a novel approach from the perspective of use the
seed capacity appropriately with the goal of reducing the
free-riders. As illustrated in some measurements and
simulation results, the leechers’ downloading rate is slower
at the beginning when they have few chunks to exchange
with others; also, it can be slower at the end due to it is hard
to find peers with the few missing chunks. So the authors
proposed a simple method to prioritize the use of seeding
capacity to certain portions of a file downloading process.
They used two ways to choose neighbors to unchoke: (1)
Sort-based: a seed sorts its neighbors according to the
number of chunks each has, then it unchokes N of them
based on the sorting order; (2) Threshold-based: a seed
unchokes N neighbors with [0..K/2]% or [(100-K/2)..100%]
of the chunks. Their experimental results show that the
approach of better utilization the seed capacity not only
discourages free-riders’ behavior, but also improves the
performance of contributing leechers.

Some researchers proposed reputation-based systems in
building fairness into P2P downloading. Piatek et al. [11]
present a method called One-hop Reputation, in which peers

maintain a persistent history of interactions to foster
persistent contribution incentives. The main idea is that it
restricts the number of amount of indirections between
sending and receiving peer to at most one level of
intermediaries. The One hop Reputation limits the
propagation of information and allows for local reasoning
about the trustworthiness of intermediaries, therefore it
fosters scalability and robustness.

VIII. CONCLUSIONS

In this paper, we proposed a novel incentive method
named PreDiscover. The main difference between
PreDiscover and the other reputation methods is that peers in
PreDiscover System know that whether their neighbors are
free-riders or regular peers before trading with them, and it is
helpful to make correct decision on selecting neighbors to
trade with. Therefore, this new approach gives few
opportunities to violate peers to download from others
without any contribution. We implemented PreDiscover in
BitTorrent simulator and the results shows that PreDiscover
can prevent free-riders effectively.

REFERENCES

[1] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu,
“Influences on cooperation in BitTorrent communities,” Proceeding
of the 2005 ACM SIGCOMM workshop on Economics of peer-to-
peer systems, 2005, pp. 111-115

[2] A. Bellissimo, P. Shenoy, and B. N. Levine, “Exploring the use of
BitTorrent as the basis for a large trace repository,” Technical report,
University of Massachusetts Amherst, Dept. of Computer Science,
June 2004

[3] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and
Improving a BitTorrent Network’s Performance Mechanisms,” IEEE
INFOCOM, April 23-29, 2006, Barcelona, Catalunya, Spain, pp. 1-
12.

[4] A. L. H. Chow, L. Golubchik, and V. Misra, "Improving BitTorrent:
A Simple Approach," The 7th International Workshop on Peer-to-
peer Systems (IPTPS'08).

[5] B. Cohen, http://www.bittorrent.com/.
[6] B. Cohen, “Incentives Build Robustness in BitTorrent,” In Proc. First

Workshop on Economics of Peer-to-peer Systems, Berkeley, USA,
June 2003

[7] P. Garbacki, D. H. J. Epema, and M. van Steen, “An amortized tit-
for-tat protocol for exchanging bandwidth instead of content in P2P
networks,” First International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), July. 2007, pp. 119-128

[8] S. Jun and M. Ahamad, “Incentives in BitTorrent Induce Free
Riding,” Proceeding of the 2005 ACM SIGCOMM workshop on
Economics of peer-to-peer systems, Philadelphia, Pennsylvania,
USA, August. 2005, pp. 116-121.

[9] http://www.planet-lab.org/
[10] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. Al Hamra,

and L. Garc´es-Erice, “Dissecting BitTorrent: Five Months in a
Torrent’s Lifetime,” Passive and Active Measurements (PAM), vol.
3014, Apr. 2004, pp. 1-11

[11] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and T. Anderson,
“One hop reputations for peer-to-peer file sharing workloads” In
NSDI, 2008.

[12] L. Xia and J. Muppala, “A Survey of BitTorrent performance”, IEEE
Communications Surveys and Tutorials, Vol. 12, No. 2, Second
Quarter 2010, pp. 140 - 158.

811

