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Abstract. Bees organize their foraging activities as a social and com-
municative effort, indicating both the direction, distance and quality of
food sources to their fellow foragers through a ”dance” inside the bee
hive (on the ”dance floor”). In this paper we present a novel routing
algorithm, BeeHive, which has been inspired by the communicative and
evaluative methods and procedures of honey bees. In this algorithm, bee
agents travel through network regions called foraging zones. On their
way their information on the network state is delivered for updating the
local routing tables. BeeHive is fault tolerant, scalable, and relies com-
pletely on local, or regional, information, respectively. We demonstrate
through extensive simulations that BeeHive achieves a similar or better
performance compared to state-of-the-art algorithms.

1 Introduction

Swarm Intelligence has been evolving as an active area of research over the past
years. The major emphasis is to design adaptive, decentralized, flexible and robust
artificial systems, capable of solving problems through solutions inspired by the
behavior of social insects [2]. Research in the field has largely been focused on
working principles of ant colonies and how to use them in the design of novel
algorithms for efficiently solving combinatorial optimization problems. A major
emphasis here is on ant colony optimization (ACO) techniques [2].

To our knowledge, little attention has been paid in utilizing the organizational
principles in other swarms such as honey bees to solve real world problems
although the study of honey bees has revealed a remarkable sophistication of
the communication capabilities as compared to ants. Nobel laureate Karl von
Frisch deciphered and structures these into a language, in his book The Dance
Language and Orientation of Bees [13]. Upon their return from a foraging trip,
bees communicate the distance, direction, and quality of a flower site to their
fellow foragers by making waggle dances on a dance floor inside the hive. By
dancing zealously for a good foraging site they recruit foragers for the site. In
this way a good flower site is exploited, and the number of foragers at this site are
reinforced. In our approach we model bee agents in packet switching networks,
for the purpose of finding suitable paths between sites, by extensively borrowing
from the principles behind the bee communication.
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Previous and Related Work. The focus of our research is on dynamic routing
algorithms therefore we now provide an overview of two such algorithms, AntNet
and Distributed Genetic Algorithm (DGA), that have been inspired through ants
swarm behavior. This will help in understanding not only the motivation for our
work, but also assist the reader in understanding the different direction of our
algorithm. However, we do use a classic static routing algorithm, OSPF (see [5]),
in our comparative simulation for comprehensiveness.

AntNet was proposed by Di Caro and Dorigo in [3]. In AntNet the network
state is monitored through two ant agents: Forward Ant and Backward Ant. A
Forward Ant agent is launched at regular intervals from a source to a certain
destination. The authors proposed a model in [4] that enables a Forward Ant
agent to estimate queuing delay without waiting inside data packet queues. For-
ward Ant agent is equipped with a stack memory on which the address and
entrance time of each node on its path are pushed. Once the Forward Ant agent
reaches its destination it creates a Backward Ant agent and transfers all infor-
mation to it. Backward Ant visits the same nodes as Forward Ant in reverse
order and modifies the entries in the routing tables based on the trip time from
the nodes to the destination. At each node the average trip time, the best trip
time, and the variance of the trip times for each destination are saved. The
trip time values are calculated by taking the difference of entrance times of two
subsequent nodes pushed onto the stack. Backward Ant agent uses the system
priority queues so that it quickly disseminates the information to the nodes. The
interested reader may find more details in [3][4]. Later on the authors of [1] made
significant improvements in the routing table initialization algorithm of AntNet,
bounded the number of Forward Ant agents during congestion, and proposed a
mechanism to handle routing table entries at the neighbors of crashed routers.

The authors of [8] showed that the information needed by AntNet for each
destination is difficult to obtain in real networks. Their idea of global information
is that there is an entry in the routing table for each destination.This shortcoming
motivated the authors to propose in [9] a Distributed Genetic Algorithm (DGA)
that eliminates the need for having an entry for each destination node in the
routing table. In this algorithm ants are asked to traverse a set of 6 nodes in a
particular order, known as a chromosome. Once an agent visits the 6th node then
it is converted into a backward agent that returns to its source node. In contrast
to AntNet the backward agents only modify the routing tables at the source
node. The source node also measures the fitness of this agent based on the trip
time value, and then it generates a new population using single point cross over.
New agents enter the network and evaluate the assigned paths. The routing table
stores the agents’ IDs, their fitness values and trip times to the visited nodes.
Routing of a data packet is done through the path that has the shortest trip
time to the destination. If no entry for a particular destination is found then a
data packet is routed with the help of an agent that has the maximum fitness
value. DGA was designed assuming that the routers could crash during network
operations. The interested reader will find more details in [9].



BeeHive: An Efficient Fault-Tolerant Routing Algorithm 85

In contrast to above-mentioned algorithms, we propose in this paper, an
agent model in which agents need not be equipped with a stack to perform their
duties. Moreover, our model requires only forward moving agents and they utilize
an estimation model to calculate the trip time from their source to a given node.
This model eliminates the need for global clock synchronization among routers,
and it is expected that for very large networks routing information could be
disseminated quickly with a small overhead as compared to AntNet. Our agent
model does not require to store the average trip time, the variance of trip times,
and the best trip time for each destination at a node to determine the goodness
of a neighbor for a particular destination. Last but not the least, our algorithm
works with a significantly smaller routing table as compared to AntNet.

Organization of the Paper. In section 2 we first develop the key ideas of the
bee agent model underlying the BeeHive algorithm. On this basis we will present
our BeeHive algorithm in section 2.1. Section 3 will describe the simulation and
the network environment that were used to compare the performance of BeeHive
with other state-of-the-art algorithms. In Section 4 we will discuss the results
obtained from the extensive simulations. Finally we conclude on our findings,
and provide an outlook to future research.

2 The Bee Agent Model

In this section, we will briefly describe the organizational principles of bee behav-
ior that inspired us to transform them into an agent model. Honey bees evaluate
the quality of each discovered food site and only perform waggle dance for it on
the dance floor if the quality is above a certain threshold. So not each discov-
ered site receives a reinforcement. As a result, quality flower sites are exploited
quite extensively. Hence we abstract a dance floor into a routing table where bee
agents, launched from the same source but arrived from different neighbors at
a given node, could exchange routing information to model the network state
at this node. The agent communication model of BeeHive could easily be real-
ized as a blackboard system [10]. In comparison AntNet utilizes the principle of
stigmergy [7] for communication among agents.

The majority of foragers exploit the food sources in the closer vicinity of
their hive while a minority among them visit food sites faraway from their hive.
We transformed this observation into an agent model that has two types of
agents: short distance bee agents and long distance bee agents. Short distance bee
agents collect and disseminate routing information in the neighborhood (upto a
specific number of hops) of their source node while long distance bee agents collect
and disseminate routing information to all nodes of a network. Informally, the
BeeHive algorithm and its main characteristics could be summarized as follows:

1. The network is organized into fixed partitions called foraging regions. A
partition results from particularities of the network topology. Each foraging
region has one representative node. Currently the lowest IP address node in
a foraging region is elected as the representative node. If this node crashes
then the next higher IP address node takes over the job.
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2. Each node also has a node specific foraging zone which consists of all nodes
from whom short distance bee agents can reach this node.

3. Each non-representative node periodically sends a short distance bee agent,
by broadcasting replicas of it to each neighbor site.

4. When a replica of a particular bee agent arrives at a site it updates routing
information there, and the replica will be flooded again, however, it will not
be sent to the neighbor from where it arrived. This process continues until
the life time of the agent has expired, or if a replica of this bee agent had
been received already at a site, the new replica will be killed there.

5. Representative nodes only launch long distance bee agents that would be
received by the neighbors and propagated as in 4. However, their life time
(number of hops) is limited by the long distance limit.

6. The idea is that each agent while traveling, collects and carries path infor-
mation, and that it leaves, at each node visited, the trip time estimate for
reaching its source node from this node over the incoming link. Bee agents
use priority queues for quick dissemination of routing information.

7. Thus each node maintains current routing information for reaching nodes
within its foraging zone and for reaching the representative nodes of foraging
regions. This mechanism enables a node to route a data packet (whose desti-
nation is beyond the foraging zone of the given node) along a path toward the
representative node of the foraging region containing the destination node.

8. The next hop for a data packet is selected in a probabilistic manner according
to the quality measure of the neighbors, as a result, not all packets follow
the best paths. This will help in maximizing the system performance though
a data packet may not follow the best path, a concept directly borrowed from
a principle of bee behavior: A bee could only maximize her colony’s profit
if she refrains from broadly monitoring the dance floor to identify the single
most desirable food [11](In comparison OSPF always chooses a next hop on
the shortest path).

Figure 1 provides an exemplary working of the flooding algorithm. Short distance
bee agents can travel upto 3 hops in this example. Each replica of the shown bee
agent (launched by Node 10) is specified with a different trail to identify its
path unambiguously. The numbers on the paths show their costs. The flooding
algorithm is a variant of breadth first search algorithm. Nodes 2,3,4,5,6,7,8,9,11
constitute the foraging zone of node 10.

Now we will briefly discuss the estimation model that bee agents utilize to
approximate the trip time tis that a packet will take in reaching their source
node s from current node i (ignoring the protocol processing delays for a packet
at node i and s).

tis ≈ qlin
bin

+ txin + pdin + tns (1)

where qlin is the size of the queue (in bits) for neighbor n at node i, bin is
the bandwidth of the link between node i and neighbor n, txin and pdin are
transmission delay and propagation delay respectively of the link between node
i and neighbor n, and tns is trip time from n to s. Bandwidth and propagation
delays of all links of a node are approximated by transmitting hello packets.
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Fig. 1. Bee Agents Flooding Algorithm

Table 1. Intra foraging zone Routing Table

Ri D1(i) D2(i) . . . Dd(i)

N1(i) (p11, q11) (p12, q12) · · · (p1d, q1d)
...

...
...

. . .
...

Nn(i) (pn1, qn1) (pn2, qn2) · · · (pnd, qnd)

2.1 Algorithm Design of BeeHive

In BeeHive, each node i maintains three types of routing tables: Intra Forag-
ing Zone (IFZ), Inter Foraging Region (IFR) and Foraging Region Membership
(FRM). Intra Foraging Zone routing table Ri is organized as a vector of size
|D(i)| × (|N(i)|), where D(i) is the set of destinations in foraging zone of node i
and N(i) is the set of neighbors of i. Each entry Pjk is a pair of queuing delay and
propagation delay (qjk, pjk) that a packet will experience in reaching destination
k via neighbor j. Table 1 shows an example of Ri. In the Inter Foraging Region
routing table, the queuing delay and propagation delay values for reaching the
representative node of each foraging region through the neighbors of a node are
stored. The structure of the Inter Foraging Region routing table is similar to the
one shown in Table 1 where destination is replaced by a pair of (representative,
region). The Foraging Region Membership routing table provides the mapping
of known destinations to a foraging region. In this way we eliminate the need
to maintain O(N × D) (where D is total number of nodes in a network) entries
in a routing table as done by AntNet and save a considerable amount of router
memory needed to store this routing table.

Goodness of a Neighbor: The goodness of a neighbor j of node l (l has n
neighbors) for reaching a destination d is gjd and defined as follows
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gjd =
1

pjd
(e

− qjd
pjd ) + 1

qjd
(1 − e

− qjd
pjd )

∑n
k=1(

1
pkd

(e−
qkd
pkd ) + 1

qkd
(1 − e

qkd
pkd ))

(2)

The fundamental motivation behind Definition 2 is to approximate the behavior
of the real network. When the network is experiencing a heavy network traffic
load then the queuing delay plays the primary role in the delay of a link. In
this case it is trivial to say that qjd � pjd and we could see from equation

(2) that gjd ≈
1

qjd∑ n
k=1

1
qkd

. When the network is experiencing low network traffic

then the propagation delay plays an important role in defining the delay of a

link. As qjd � pjd, from equation (2) we get gjd ≈
1

pjd∑
n
k=1

1
pkd

. We use stochastic

sampling with replacement [6] for selecting a neighbor. This principle ensures that
a neighbor j with goodness gjd will be selected as the next hop with at least the
probability

gjd∑n
k=1 gkd

. Algorithm 1 provides the pseudo code of BeeHive.

Algorithm 1 (BeeHive)

t:= current time, tend:= time to end simulation
// Short Limit:= 7, Long Limit:= 40, Bee Generation Interval:= 1
// i=current node, d=destination node, s=source node
// n=successor node of i, p=predecessor node of i
// z=Representative node of the foraging region containing s
// w=Representative node of the foraging region containing d
// q is queuing delay estimate of a bee agent from node p to s
// p is propagation delay estimate of a bee agent from node p to s
∆t:= Bee Generation Interval, ∆h:= hello packet generation interval
bip:=estimated link band width to neighbor p
pip:=estimated propagation delay to neighbor p
hi:= hop limit for bees of i, lip:=size normal queue i to p (bits)
foreach Node // concurrent activity over the network

while (t ≤ tend)
if ( t mod ∆t = 0)

if(i is representative node of the foraging region)
set hi:= Long Limit, bi is long distance bee agent

else
set hi:= Short Limit, bi is short distance bee agent

endif
launch a bee bi to all neighbors of i

endif
foreach bee bs received at i from p

if(bs was launched by i or its hop limit reached)
kill bee bs

elseif(bs is inside foraging zone of node s)
q:= q + lip

bip
and p:= p + pip
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update IFZ routing table entries qps = q and pps = p
update q (q :=

∑

k∈N(i)

(qks × gks)) and p (p :=
∑

k∈N(i)

(pks × gks))

else

q:= q + lip

bip
and p:= p + pip

update IFR routing table entries qpz = q and ppz = p
update q (q :=

∑

k∈N(i)

(qkz × gkz)) and p (p :=
∑

k∈N(i)

(pkz × gkz))

endif
if( bs already visited node i)

kill bee bs

else
use priority queues to forward bs to all neighbors of i except p

endif
endfor
foreach data packet dsd received at i from p

if ( node d is within foraging zone of node i)
consult IFZ routing table of node i to find delays to node d
calculate goodness of all neighbors for reaching d using equation 2

else
consult FRM routing table of node i to find node w
consult IFR routing table of node i to find delays to node w
calculate goodness of all neighbors for reaching w using equation 2

endif
probabilistically select a neighbor n (n �= p) as per goodness
enqueue data packet dsd in normal queue for neighbor n

endfor
if ( t mod ∆h = 0)

send a hello packet to all neighbors
if (time out before a response from neighbor) (4th time)

neighbor is down
update the routing table and launch bees to inform other nodes

endif
endif

endwhile
endfor

3 Simulation Environment for BeeHive

In order to evaluate our algorithm BeeHive in comparison with AntNet, DGA
and OSPF, we implemented all of them in the OMNeT++ simulator [12]. For
OSFP we implemented a static link state routing that implements the determin-
istic Dijkstra Algorithm [5] which selects the next hop according to the shortest
path from a source to a destination. For AntNet and DGA we used the same
parameters that were reported by the authors in [3] and [9], respectively. The
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network instance that we used in our simulation framework is the Japanese Inter-
net Backbone (NTTNET)(see Figure 2). It is a 57 node, 162 bidirectional links
network. The link bandwidth is 6 Mbits/sec and propagation delay is from 2 to
5 milliseconds. Traffic is defined in terms of open sessions between two different
nodes. Each session is characterized completely by sessionSize (2 Mbits), inter-
arrival time between two sessions, source, destination, and packet inter-arrival
time during a session. The size of data packet is 512 bytes, the size of a bee agent
is 48 bytes. The queue size is limited to 500 Kbytes in all experiments. To inject
dynamically changing data traffic patterns we have defined two states: uniform
and weighted. Each state lasts 10 seconds and then a state transition to another
state occurs. In Uniform state (U) a destination is selected from a uniform dis-
tribution. While in Weighted state (W), a destination selected in Uniform state
is favored over other destinations. This approach provides a more challenging
experimental environment than the one in which AntNet was evaluated.
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Fig. 2. Japanese Backbone NTTNet

4 Experimental Findings

Now we will report our results obtained from the extensive simulations. MSIA
is the mean of session inter-arrival times and MPIA is the mean of packet inter-
arrival times during a session. The session inter-arrival and packet inter-arrival
times are taken from negative exponential distributions with mean MSIA and
MPIA, respectively. All reported values are an average of the values obtained
from ten independent runs. % Packets Delivered (on top of bars) report the
percentage of deliverable packets that were actually delivered. By deliverable
packet we mean a packet whose destination router is up.

Saturating Loads. The purpose of the experiments was to study the behavior
of the algorithms by gradually increasing the traffic load, through decreasing
MSIA from 4.7 to 1.7 seconds. MPIA is 0.005 seconds during these experiments.
Figure 3 shows the average throughput and 90th percentile of the packet delay
distribution. It is obvious from Figure 3 that BeeHive delivered approximately
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Fig. 3. Behavior under saturating traffic loads
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Fig. 4. Effect of foraging zones sizes

the same number of data packets as that of AntNet but with lesser packet de-
lay. Both OSFP and DGA are unable to cope with a saturated load yet the
performance of DGA is the poorest.

Size of Foraging Zones. Next we analyzed the effect of the size of a foraging
zone in which a bee agent updates the routing table. We report the results for
sizes of 7, 10, 15 and 20 hops in Figure 4. Figure 4 shows that increasing the
size of foraging zone after 10 does not bring significant performance gains. This
shows the power of BeeHive that it converges to an optimum solution with a size
of just 7 hops.

Size of the Routing Table. The fundamental motivation of the foraging zone
concept was not only to eliminate the requirement for global knowledge but also
to reduce memory needed to store a routing table. BeeHive requires 88, 94 and
104 entries, on the average, in the routing tables for foraging zone sizes of 7, 10
and 20 hops respectively. OSFP needs just 57 entries while AntNet needs 162
entries on the average. Hence BeeHive achieves similar performance as that of
AntNet but size of the routing table is of the order of OSPF.
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Hot Spot. The purpose of this experiment is to study the effect of transient
overloads in a network. We selected node 4 (see Figure 2) as hot spot. The hot
spot was active from 500 seconds to 1000 seconds and all nodes sent data to
node 4 with MPIA=0.05 seconds. This transient overload was superimposed on
a normal load of MSIA=2.7 seconds and MPIA=0.3 seconds. Figure 5 shows that
both BeeHive and AntNet are able to cope with the transient overload, however
the average packet delay for BeeHive is less than 100 milliseconds as compared
to 500 milliseconds for AntNet. Again DGA shows the poorest performance.

(a) Average Throughput (b) Average Packet Delay

Fig. 5. Node 4 acted as hot spot from 500 to 1000 seconds

Router Crash. The purpose of this experiment was to analyze the fault tolerant
behavior of BeeHive so we took MSIA = 4.7 seconds and MPIA = 0.005 seconds
to ensure that no packets are dropped because of the congestion. We simulated
a scenario in which Router 21 crashed at 300 seconds, and Router 40 crashed
at 500 seconds and then both were repaired at 800 seconds. Figure 6 shows the
results. BeeHive is able to deliver 97% of deliverable packets as compared to
89% by AntNet. Please observe that from 300 to 500 seconds (just Router 21
is down), BeeHive has a superior throughput and lesser packet delay but once
Router 40 crashes, the packet delay of BeeHive increases because of higher load
at Router 43. From Figure 2 it is obvious that the only path to the upper part
of the network is via Router 43 once Router 40 crashed. Since BeeHive is able
to deliver more packets the queue length at Router 43 increased and this led
to relatively poorer packet delay as compared to AntNet. Please also observe
that Router 21 is critical but in case of its crash still multiple paths exist to the
middle and upper part of the topology via 15,18,19,20,24.

Overhead of BeeHive. Routing overhead is defined as the ratio between the
bandwidth occupied by the routing packets and the total available network band-
width [3]. The overhead of BeeHive is 0.00633 as compared to 0.00285 of AntNet
[3]. BeeHive has a bit more overhead as compared to AntNet, but this overhead
remains constant for a given topology.
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(a) Average Throughput (b) Average Packet Delay

Fig. 6. Router 21 is down at 300 and Router 40 at 500 and both repaired at 800

5 Conclusion and Future Work

Swarm intelligence is evolving as a new discipline that is transforming the tradi-
tional algorithmic design paradigm of the developers by enabling them to con-
template the working principles of systems in Nature and then use them in design
and development of the algorithms. In this paper we introduced a fault-tolerant,
adaptive and robust routing protocol inspired from dance language and foraging
behavior of honey bees. The algorithm does not need any global information such
as the structure of the topology and cost of links among routers, rather it works
with the local information that a short distance bee agent collects in a foraging
zone. It works without the need of global clock synchronization which not only
simplifies its installation on real routers but also enhances fault tolerance. In
contrast to AntNet our algorithm utilizes only forward moving bee agents that
help in disseminating the state of the network to the routers in real-time. The
bee agents take less than 1% of the available bandwidth but provide significant
enhancements in throughput and packet delay.

We implemented two state-of-the-art adaptive algorithms (AntNet and DGA)
for the OMNeT++ simulator and then compared our BeeHive algorithm with
them. Through extensive simulations representing dynamically changing operat-
ing network environments we have demonstrated that BeeHive achieves a better
or similar performance as compared to AntNet. However, this enhancement in
performance is achieved with a routing table whose size is of the order of OSPF.
In the near future we will have implemented BeeHive inside the network stack of
the Linux kernel in order to then test the algorithm on real network topologies.
Our work during this phase will be subject of forthcoming publications.
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