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A Discrete Filled Function Method for the Design of
FIR Filters With Signed-Powers-of-Two Coefficients

Zhi Guo Feng and Kok Lay Teo, Senior Member, IEEE

Abstract—In this paper, we consider the optimal design of finite-
impulse response (FIR) filters with coefficients expressed as sums
of signed powers-of-two (SPT) terms, where the normalized peak
ripple (NPR) is taken as the performance measure. This problem is
formulated as a mixed-integer programming problem. Based on a
transformation between two different integer spaces and the com-
putation of the optimal scaling factor for a given set of coefficients,
this mixed integer programming problem is transformed into an
equivalent integer programming problem. Then, an efficient algo-
rithm based on a discrete filled function is developed for solving this
equivalent problem. For illustration, some numerical examples are
solved.

Index Terms—Discrete filled function, finite-impulse response
(FIR) filter, signed powers-of-two (SPT).

I. INTRODUCTION

DIGITAL filters with coefficients expressed as sums of
signed powers-of-two (SPT) have been widely studied in

the literature due to their ease in implementation. The optimal
design of finite-impulse response (FIR) filters with SPT terms is
a mixed-integer optimization problem and can be transformed
into an integer programming problem. Several optimization
methods are now available in the literature to deal with this
class of problems. For example, mixed integer linear program-
ming (MILP) is used in [1]–[3], some stochastic methods,
such as simulated annealing (SA) and genetic algorithm (GA)
are applied in [4]–[6], respectively. In [7], a polynomial-time
algorithm is presented based on the relationship between the
coefficients and its frequency response. An improved version
of this algorithm is reported in [8]. Searching method, such
as those reported in [9] and [10], are based on trellis or enu-
meration search. Other methods or techniques are reported in
[11]–[15].

The concept of a filled function was first introduced in [16]
for global optimization with continuous variables. It searches
for a global minimizer among the local minimizers by means
of a function, which is called a filled function. A discrete filled
function method was developed in [17] for solving a discrete
global optimization problem. It searches for a local minimizer
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by a local search method. Then, a discrete filled function is con-
structed, from which a better local minimizer, if it exists, is ob-
tained. In this paper, we formulate the problem and transform it
into an equivalent integer programming problem. We then de-
velop an efficient algorithm, by incorporating a procedure for
choosing initial points, a discrete steepest descent method, and
a discrete filled function.

The rest of this paper is organized as follows. In Section II, we
present the problem formulation. In Section III, we transform
the original problem into an equivalent integer programming
problem. An algorithm is then developed to solve this problem
in Section IV. Several examples are solved in Section V and the
numerical results obtained are compared with those obtained by
other methods.

II. PROBLEM FORMULATION

Ignoring the linear phase term, the frequency response of a
linear phase FIR filter is given by

(2.1)

where and which depends on
whether the filter length is odd or even, is defined by

if is odd and if is even.
is an appropriate cosine function vector.

Suppose that the wordlength is -bit. Then, the coefficients
are expressed as

(2.2)

where . Let denote the total allowable
number of the SPT terms used. Then, we have the constraint

(2.3)

In some applications, the following constraints may also be re-
quired:

(2.4)

where denotes the allowable number of SPT terms for each
coefficient

The normalized peak ripple (NPR) is given by

(2.5)
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where is a real scaling factor, and
are, respectively, the passband and the stopband regions, and

is the frequency weighting function given by

(2.6)

while is a function on and is the target response
given by

.
(2.7)

is a compact subset.
The optimal filter design problem may now be formulated

formally as follows.
Problem 1: Find a pair where

and , such that the normalized
peak ripple (2.5) is minimized, subject to the constraint (2.3) or
the constraints (2.3) and (2.4).

III. PROBLEM TRANSFORMATION

Let us first construct a transformation between two integer
spaces, which is then used to convert Problem 1 to an equivalent
integer programming problem.

Ignoring the constraints (2.3) and (2.4), it is easy to see that
the set of all is for each

That is, for any there
exists a vector such that

(3.1)

Then, when the wordlength is taken as -bit, the number of
SPT terms for is defined as

(3.2)

We now introduce an integer vector
such that

(3.3)

Then, for each Let
denote the space of all such . Thus, when the wordlength is
taken as -bit, the number of SPT terms for can be defined
by .

Clearly, the total number of SPT terms for all coefficients and
the number of SPT terms for each coefficient are bounded by

(3.4)

(3.5)

The frequency response (2.1) is equivalent to

(3.6)

and the normalized peak ripple (NPR) (2.5) is equivalent to

(3.7)
For any we can find an optimal real scaling factor,
which is denoted by that is

(3.8)

To deal with the constraints, we use the penalty function
method. Let and denote two sufficiently large positive
real numbers, the constraints (3.4) and (3.5) are replaced with

(3.9)

and

(3.10)
Then, the objective function becomes

(3.11)

where the error function is in scale.
Thus, Problem 1 can be stated equivalently as follows.
Problem 2: Find an such that which is defined

by (3.11), is minimized.
Remark 1: There are several methods available in the liter-

ature for computing and converting an integer into
signed digit code. The method we apply here is a recursive func-
tion method, which is given in Appendix A.

Remark 2: To compute we suppose that

(3.12)

Then, is given by

(3.13)

where

(3.14)

(3.15)

The proof of this result is similar to that given in [12] or [18].
Remark 3: If condition (3.12) is not satisfied, then the NPR

value is larger and hence cannot, in general, be an optimal
solution. For this case, it is not necessary to compute and
we set to a sufficiently large value.

IV. COMPUTATIONAL ALGORITHM

To solve Problem 2, we develop a two-step algorithm. The
first step is a local search, while the second step is a global
search.

A. Local Search

The steepest descent algorithm that we are proposing starts
from a point in Then, by searching over its neighborhood,
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we select the point which produces the largest reduction in the
value of the objective function (3.11). Note that is an
-dimensional integer variable, its neighborhood is defined in the
following.

Definition 1: For any the neighborhood of is
defined by

where is the th unit vector (the -dimensional vector
with the th component equal to one and all other components
equal to zero).

If we have found a point which minimizes the objective func-
tion (3.11) over its neighborhood, then the local search stops
and the point obtained is called a local minimizer. The precise
definition of local minimizers is given as follows.

Definition 2: A point is called a local minimizer of
over if

Based on the previous two definitions given, we present a dis-
crete steepest descent algorithm to search for a local minimizer
as follows as an algorithm.

Algorithm 1

1) Start from an initial point Compute the
objective function value Set

2) For each point where
compute the

corresponding objective function value
Suppose is such that is the minimum. If

then is a local minimizer of
and stop, else goto Step 3.

3) Set and Goto Step 2.

B. Global Search

With Algorithm 1, we can find a local minimizer from any
initial point. But for this problem, there exist many local mini-
mizers and not all of them are useful in practice. Thus, we shall
derive a discrete filled function method to search for a global
solution.

We introduce the following function based on the one con-
structed in [17]:

if (4.1)

where denotes the usual Euclidean norm. When
( is a sufficiently large real number), (4.1) is

called a discrete filled function.
It is not necessary to define the function when

For in this case, if the discrete steepest descent method
is used directly with as the initial point, we will obtain a
local minimizer, which is better than with reference to the
objective function (3.11).

The search according to this discrete filled function (4.1)
takes place as follows. With the starting point the

term favors a solution with lower objective
function value while the term favors a solution
far away from Combining the effects, the discrete filled

function favors a solution whose objective function value is not
too much greater than that of and at a considerable distance
away from The idea behind the search strategy is to direct
its search towards the direction with the least increase in the
objective function value. This idea is somewhat similar to that
proposed in [12].

To address the situation when we fail to find a point such
that using the discrete filled function (4.1)
as the objective function, we choose a positive integer number

When the number of searching steps is greater than
we stop and return the optimal solution. This is because for the
problem considered in this paper, we can obtain the optimal in-
finite precision solution (continuous solution) by the Remez ex-
change algorithm [19]. Since the optimal solution should be in
the neighborhood of the continuous solution, it means that the
optimal solution, if it exists, is “far” away from the continuous
solution when the number of searching steps is greater than
This situation is unlikely to occur.

C. Initial Points

Now, we can devise an efficient computational method,
by combining the discrete steepest descent method and the
discrete filled function method, to search for the optimal
solution. But first, let us find some “good” initial points.
Suppose that the infinite precision solution of Problem 1 is

corresponding to Let
be the rounded values of

the infinite precision coefficients scaled by Define

if
if
if

(4.2)

where denotes the largest integer less than or equal to .
Then, the initial point nearest to is given by

(4.3)

The scaling factor takes its value from the interval
where and are given lower and upper bounds for
Then, for each the corresponding infinite preci-
sion solution is and the nearest point to in can be
found by using (4.3), which is then used as the initial point

In fact, although there is an infinite number of between
and not all the values of will produce distinct sets of
coefficients by using (4.3). Each distinct set of coefficients cor-
responds to an interval of values of When crosses the end
points of these intervals, the set of coefficients changes abruptly
from one to another. Let all these end points be arranged in the
ascending order and let them be denoted as

(4.4)

Then, for each
takes the same value for any Thus, all the
initial points can be computed when we choose one of in

for each
The computation of is given in Appendix B.
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D. Algorithm

We present the following algorithm to solve Problem 2.

Algorithm 2

1) Initialize the parameters
2) Calculate the infinite precision solution

corresponding to by using Remez exchange
algorithm [19]. Compute Then, for
each the infinite precision solution
corresponding to is Compute all the initial
points nearest to

Set
3) Select as the initial point. Let

denote the optimal value when is used as the initial
point. Set to a sufficiently large value.

4) Apply Algorithm 1 to obtain a local minimizer of the
objective function with the initial point Let the
local minimizer be denoted as Modify the optimal
value as

5) Set as the initial point, that is, and apply
Algorithm 1 to search for a point better than the current
local minimizer with the discrete filled function
used as the objective function.

6) Let be the number of searching steps in Step 5. If a
point is found such that when
during Step 5, then stop searching. Set the initial point as

and goto Step 4. Else, stop searching and return
the optimal value Hence, when the initial point is

the optimal value is found. Set
7) If each point in has been used as initial point, then

goto Step 8, else select as the initial point
and goto Step 4.

8) Compare the optimal value for every initial point
and select the best. Stop.

V. SIMULATION RESULTS

The proposed method has been used to solve many examples.
The results obtained are consistently favorable when compared
with results obtained by other methods. In this section, we only
present the results obtained for three examples. The computa-
tion was performed in Compaq Visual Fortran double precision.
The coefficients are set to be

Example 1: The filter length is 71 with the normalized pass-
band and stopband edge frequencies of 0.11 and 0.137. The
ripple weighting factor is and the wordlength is 8.

We set The solution obtained is

TABLE I
RESULTS FOR EXAMPLE 1

Fig. 1. Frequency response of the filter considered in Example 1.

TABLE II
RESULTS FOR EXAMPLE 2

PBR: passband ripple; SBA: stopband attenuation.

Our results and those obtained by other methods are given in
Table I and Fig. 1.

Example 2: The filter length is 28 with the normalized pass-
band and stopband edge frequencies of 0.128 and 0.2048. In
order to compare our results with other known results, the ob-
jective function (2.5) is replaced by

when

when

where is a given value for the limitation of the passband
ripple. Results obtained and those obtained by other methods
are presented in Table II.
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TABLE III
RESULTS FOR EXAMPLE 3

Fig. 2. Frequency response of the filter considered in Example 3 with filter
length 34.

Example 3: The normalized passband and stopband edge fre-
quencies are 0.15 and 0.25 and the ripple weighting factor is

The coefficient wordlength is 12. We consider the filter
length in three cases: 28, 34, and 38, and the maximum allowed
number of SPT terms per coefficient is taken as 3 or 4. The
respective results and those obtained by other methods are given
in Table III and Fig. 2.

VI. CONCLUSION

In this paper, we developed a computational method based
on a discrete filled function, a discrete steepest descent method
and a procedure for choosing initial points for the design
of FIR filters with coefficients expressed as sums of signed
powers-of-two terms. From our numerical studies, we observe
that the proposed method is highly effective and efficient.

APPENDIX A

A. Computation of

Function

1) If then Stop and return

2) If then Stop and return

3) If and is odd, then call the functions
and respectively. Then, let

Stop
and return

4) If is even, then call the function Then,
Stop and return

B. Converting an Integer Into Signed Digit Code

Let denote the minimal number of signed powers
of two terms of when the wordlength is taken as -bit.
Generally, is not unique (see [20]).

Function

1) If then Stop.
2) If then If then

Stop and return
3) If and is odd, then call the functions

and
If

then let
else if then let

Stop and return
4) If is even, then call the function

Suppose that then
let Stop and return

APPENDIX B
PROCEDURE FOR CHOOSING INITIAL POINTS

From (4.2), we see that for each if
and belong to a same interval in

then their corresponding take the same values. On the
other hand, if and belong to different intervals
in then their corresponding take different values.

If , then for any and we
obtain

If then
Hence, for any such that in the same interval
in takes the same value. Then,
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the critical values of are the end points of all the
intervals in that is

where

Thus, the critical values of are , where

Similarly, if the critical values of are obtained
as

Then, for each we mix all these critical values
of up in the ascending order. Thus, we obtain (4.4).
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