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ABSTRACT

The curse of dimensionality is a well-known problem in pattern recognition in which the number of
patterns is smaller than the number of features in the datasets. Often, many of the features are irrelevant
and redundant for the classification tasks. Therefore, the feature selection becomes an essential
technique to reduce the dimensionality of the datasets. In this paper, unsupervised and multivariate
filter-based feature selection methods are proposed by analyzing the relevance and redundancy of
features. In the methods, the search space is represented as a graph and then the ant colony optimization
is used to rank the features. Furthermore, a novel heuristic information measure is proposed to improve
the accuracy of the methods by considering the similarity between subsets of features. The performance
of the proposed methods was compared to the well-known univariate and multivariate methods using
different classifiers. The results indicated that the proposed methods outperform the existing methods.

Filter model
Ant colony optimization

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Pattern recognition is a branch of artificial intelligence whose
aim is to seek to learn a model with the purpose of automatic
classification of new patterns into a number of predefined classes
[1]. The rapid development of information technologies in the past
several decades has lead to production of datasets with large
numbers of features and relatively few patterns. This presents a
well-known challenge, called the curse of dimensionality, to pattern
recognition methods and increases the computational time com-
plexity of building the model. On the other hand, many of the
features in the datasets are irrelevant and redundant for the model
and may have a negative effect on the prediction accuracy [2-4].

A common way to deal with such problems is the feature
selection technique. Feature selection is an important step in data
preprocessing for designing many pattern recognition systems,
especially in high-dimensional datasets. The goal of the feature
selection technique is to seek the relevant features with the most
predictive information from the original feature set. This techni-
que reduces the dimensionality of datasets by eliminating many
irrelevant and redundant features which improves the perfor-
mance of the learnt model and avoids overfitting. On the other
hand, this reduction helps to speed up the learning process and
leads to a simple and understandable predictor model [2,5,6].
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Feature selection has been established as an important technique
in many practical applications of pattern recognition such as text
processing [7,8], face recognition [9,10], bioinformatics [11,12],
speaker verification [13], medical diagnosis [14,15], and financial
domains [16,17].

The feature selection procedure needs a search strategy to
explore the search space and find the optimal subset of features.
This strategy requires a measure to evaluate the quality of the
feature subsets. Finding the optimal subset requires exhaustive
search over all possible combinations of features, meaning that its
size is 2", where n denotes the number of features. In practical
applications, the computational complexity of this approach is
impractical even on moderate datasets. Therefore, it has been
shown that finding the optimal feature subset is a NP-hard
problem [4,18,19]. One approach for dealing with this problem is
applying classical search methods such as branch and bound [20]
and best first search [21] that avoid exhaustive enumeration of all
subsets of features. These methods find the optimal subset, but
they rely on the assumption of monotonicity and perform poorly
in real-world datasets.

Thus, the other approach is proposed for finding a near-optimal
feature subset with less computational effort. This approach seeks
to identify and remove irrelevant and redundant features in high-
dimensional datasets instead of the exhaustive search over the
feature subsets. The feature selection methods in this approach
can be classified into four categories including filter, wrapper,
embedded, and hybrid models [2,4,6,12,22]. Some of the filter
based methods use a specific criterion to evaluate the relevance of
features. These kinds of methods which are called the univariate
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filter model can effectively identify and remove the irrelevant
features independently of any learning algorithms, but they are
unable of removing redundant features. Since the possible depen-
dency between features is disregarded, these methods lead to a
weak learning model. On the other hand, some of the filter based
methods, called the multivariate filter model, can handle both
irrelevant and redundant features which improve the accuracy of
the learning model compared to that of the univariate filter based
feature selection methods. The search strategy of the multivariate
filter model involves only a single iteration and can easily be
trapped into local optimum.

The wrapper based feature selection methods apply a learning
algorithm to evaluate the quality of feature subsets in the search
space iteratively. These methods can effectively identify and remove
irrelevant and redundant features. Due to the frequent use of the
learning algorithm in the search process, this model requires high
computational time, especially for high-dimensional datasets. In the
embedded model the feature selection procedure is considered as a
part of the process of building the model. Although this model can
handle both irrelevant and redundant features, training the learning
algorithms with a large number of features will be time-consuming.
On the other hand, the goal of the hybrid based methods is to use the
computational efficiency of the filter model and the proper perfor-
mance of the wrapper model. However, the hybrid model may suffer
in terms of accuracy because the filter and wrapper models are
considered as two separate steps.

Recently, swarm intelligence based methods have attracted a lot of
attention due to their good performance in solving feature selection
problems. Among the swarm intelligence based methods, ant colony
optimization (ACO) has been successfully used in the feature selection
area of research [6,23-25]. ACO is a multi-agent system and it has
some advantages such as positive feedback, the use of a distributed
long-term memory, nature implementation in a parallel way, similar
function to reinforcement learning schema, and a good global and
local search capability due to stochastic and greedy components in
the algorithm [6,26-30]. Most swarm intelligence-based methods
use a learning algorithm in their search strategies to evaluate a
feature subset, and they are classified as a type of the wrapper model.
Therefore, they suffer the problem of high computational time and
inefficiency on the datasets with large number of features.

Since the presentation of a method to handle both irrelevant and
redundant features in an acceptable time is an important issue, a
major purpose of the current study is to attempt to select a high-
quality feature subset within a reasonable time. In this paper, we
present novel unsupervised filter based feature selection methods
using ACO. They bring together the computational efficiency of the
filter model and the acceptable performance of the ACO algorithm.
Moreover, the methods use criteria to analyze the relevance and
redundancy of the features which are used as prior knowledge in the
ACO algorithm to guide the search process. In the proposed methods,
each feature is ranked in the iterative improvement process of the
ACO algorithm without using any learning algorithms and class labels.
Also, we have proposed a new heuristic information measure which
considers the similarity between subsets of features to enhance the
redundancy reduction process in the proposed methods.

The rest of the paper is organized as follows. Section 2 gives a brief
review of previous work. Section 3 presents the proposed feature
selection methods based on the ACO. Section 4 reports the experi-
mental results on well-known datasets using different classifiers.
Finally, Section 5 presents the conclusion and future work.

2. Review of feature selection algorithms

Feature selection is a fundamental research topic in pattern
recognition with a long history since the 1970s, and there have

been a number of attempts to review the feature selection met-
hods [2,12,18,31]. In this section, we briefly review various feature
selection methods that can be classified into four categories incl-
uding filter, wrapper, embedded, and hybrid models.

In the filter model, each feature is ranked without considering any
learning algorithms based on its discriminating power between diff-
erent classes. Then a subset of features with the highest ranks is sele-
cted [5]. The filter model can broadly be classified into univariate and
multivariate approaches [6,12,32]. The univariate filter model uses a
specific statistical criterion to evaluate the relevance of each feature
individually. To this end, a number of criteria have been proposed in
the literature including information gain [33,34], Gini index [33,35],
gain ratio [36,37], symmetrical uncertainty [34,38], chi-square test [8],
Fisher score [6,39], Laplacian score [40], Relief [41], and term variance
[1,6]. The univariate filter model is computationally very efficient due
to independence from any learning algorithms. Although this model
removes the relevant features, it does not consider the relation
between features and cannot identify the redundant features. More-
over, both theoretical and empirical studies show that redundant
features also affect the accuracy and computational time of the
predictor model and should be removed as well [42].

On the other hand, the multivariate filter model has been
developed for solving the problem of ignoring the dependency
between features. Minimal-redundancy-maximal-relevance (mRMR)
[19] is a well-known multivariate filter-based method which uses an
incremental search process to select a subset of features with the
highest relevance to the target class based on the mutual information
criterion. Moreover, this criterion is used to determine the depen-
dency between pairs of features. Random subspace method (RSM)
[32] employed a multivariate search strategy on a randomly selected
subset of features to better handle the noise in high dimensional
datasets. Mitra et al. [43] presented a two-stage unsupervised feature
selection method based on a clustering technique. In the first stage,
the original feature set is divided into a number of clusters and then
in the second stage, a representative feature is selected from each
cluster. Haindl et al. [44] introduced a feature selection method based
on mutual correlation to identify the redundancy between features.
This method iteratively removes features with the largest average
mutual correlations. Fast correlation-based filter (FCBF) [34,45] is an
approximation filter-based method which uses the symmetric uncer-
tainty criterion to analyze the relevance and redundancy of the
features. In this method a subset of the relevance features is selected
and then the final subset is created by identifying and removing the
redundant features. Relevance-redundancy feature selection (RRFS)
[3] is another multivariate feature selection method based on rel-
evance and redundancy analyses. RRFS starts the selection process
with most relevant features based on a given criterion and iteratively
adds the next most relevant features to the selected feature subset in
a greedy way. Most of the mentioned methods are greedy sequential
feature selection ones based on a single iteration search process that
can easily be trapped into local optimum |[6].

Recently, Tabakhi et al. [6] proposed a multivariate filter method
based on the ant colony optimization, called UFSACO. The method is
an iterative improvement process where each feature has a chance of
being selected in all iterations. The UFSACO performs an explicit
redundancy analysis and implicit relevance analysis. However, one of
its main limitations is that it cannot determine the relevance of
features in datasets without redundancy between features and is
thus incapable of eliminating irrelevant features.

In the wrapper model, a given learning algorithm is used to select
a subset of features in the search space by maximizing the accuracy of
the learning algorithm. In other words, the wrapper model is an
iterative search process such that the results of the learning algorithm
at each iteration are used to guide the search process [5]. Generally,
wrapper-based methods can be classified into greedy and random
search approaches [4,12]. The greedy search approach is based on the
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hill-climbing algorithm in which a single feature is added or
removed iteratively in a greedy way. Sequential backward selec-
tion and sequential forward selection are two well-known greedy
search methods [1,4]. On the other hand, the random search
approach applies randomness into its search strategy to explore a
large portion of the solution space. Examples of random methods
include ant colony optimization (ACO) [24], particle swarm
optimization (PSO) [46], genetic algorithm (GA) [47,48], random
mutation hill-climbing [49,50], and simulated annealing (SA)
[51]. Wrapper-based methods include the interaction with the
learning algorithm and thus they outperform filter-based meth-
ods in term of prediction accuracy. However, these methods
continuously use the learning algorithm in the search process
and they are computationally more expensive, especially for
high-dimensional datasets.

In the embedded model, a given learning algorithm is trained
by an original feature set and the obtained results are used to
determine the relevance of each feature. In other words, the
feature selection process is embedded into the training of the
learning algorithm [12,52]. Sugumaran et al. [53] proposed an
embedded-based method which used a decision tree (DT) classi-
fier for fault diagnostics of roller bearing. Guyon et al. [15]
introduced the idea of using the support vector machine (SVM)
for feature ranking. In this approach the relevance of a feature is
determined by the weight that the SVM classifier assigns to the
feature. In another approach, the naive Bayes (NB) classifier is used
to define the relevance of each feature based on a probability
distribution [54]. ElAlami [55] presented an embedded-based
method using the artificial neural network (ANN) classifier. The
results of the trained ANN are used by GA to find the optimal
feature set. Although the embedded model has a lower computa-
tional time compared to the wrapper model, it suffers from a time-
consumption problem in high-dimensional datasets due to its
interaction with a given learning algorithm.

Moreover, the hybrid model was developed to hold the advan-
tages of both the filter and the wrapper models. In this model, the
feature selection process is composed of two steps. In the first
step, the filter model is applied to identify a relevant feature set
and in the second step the final feature subset is selected by
applying the wrapper model to the relevant feature set [5]. Leung
and Hung [11] presented a hybrid method for gene selection in
microarray datasets. In their method, different filter-based meth-
ods are used to select the initial subset and then the results of
multiple wrapper-based methods using different classifiers are
mixed in the final list of features. Unler et al. [5] integrated the
mutual information based filter model within the PSO based
wrapper model. Other examples of the hybrid model include
mutual information and ACO [56], mutual information and GA
[57], and information gain and sequential floating search [58]. The
computational complexity of the hybrid model is lower than that
of the wrapper model because it uses the reduced feature subset in
its second step. However, the main idea behind the hybrid model
is to use both the filter and the wrapper models in two separate
steps that will lead to poor performance [4,6].

3. Proposed methods

This section describes the proposed feature selection methods
based on the ant colony optimization (ACO). Section 3.1 describes
the relevance-redundancy feature selection methods. Section 3.2
presents a redundancy reduction approach based on the similarities
between subsets of features to enhance the accuracy of the
methods. Moreover, the computational complexities of the pro-
posed methods are analyzed in Section 3.3.

3.1. Relevance-redundancy feature selection based on ant colony
optimization

The proposed methods, called RRFSACO_1 (relevance-redundancy
feature selection based on ACO, version1) and RRFSACO_2, select a
subset of features using the search strategy of the ACO algorithm.
Therefore, in this section the graph representation of the search space,
a detailed description of the proposed methods, initial pheromone,
state transition and pheromone updating rules are described.

3.1.1. Graph representation

In general, to apply the ACO algorithm, the search space of the
feature selection problem should be represented by a fully con-
nected undirected weighted graph. This graph is defined as G=(F,
E), where F={F;, F,,..., F,} is a set of original features and indicates
the nodes in the graph and E={(F;, F): F;, F; € F} denotes the edges
of the graph. The weight of each edge (F; F;)€E is defined by a
similarity value between features F; and F; as follows:

Fi F;
[FillllF;ll

>k _ 1 FiFji ‘

= 1
‘\/Zi:1Fik2\/Zi:1ij 2‘

sim(Fi,Fj) = ‘l

where p is the number of patterns and F;, indicates the value of
feature i for pattern k. According to Eq. (1), when two features are
completely similar, their similarity value is equal to 1 and this
value for two non-similar features is equal to 0.

Desirability and heuristic information are two basic components of
any ACO algorithm in solving the feature selection problem. The
desirability, called pheromone, is associated with the graph nodes
(ie., the features) and shows the information collected by ants during
the search process. Moreover, the heuristic information represents the
prior knowledge about the problem. In this paper, we have used two
kinds of heuristic information in the proposed methods. The first
heuristic information is simply defined as the inverse of the similarity
value between features and the second heuristic information is defined
as the relevance of each feature which is associated with the features.
To evaluate the relevance of each feature, we have used the term
variance [1] as a simplest unsupervised measure. Fig. 1 shows the
representation of the search space in the feature selection problem.

3.1.2. Description of the proposed methods

The pseudo-code of the proposed ACO based feature selection
method is presented in Fig. 2. The proposed method consists of
three major steps including (i) initialization step, (ii) feature
probability computation step, and (iii) final feature subset
selection step.

In the first step (lines 2-5), the relevance of each feature is
evaluated by a given criterion. Then, the similarity values between
each pair of features are computed and associated to the graph
edges. Finally, the initial pheromone of each feature is calculated.
Section 3.1.3 describes the corresponding details.

The second step (lines 6-17) is used to compute the probability
of each feature in an iterative process. In this step, the feature
counter (FC) array is defined in order to count the number of times
that a given feature is selected by the ants. During each iteration,
at first, the initial values of FC are set to zero. Then A ants are
placed randomly on the different nodes in the graph. Thereafter,
each ant selects the next features according to a “state transition
rule” in an iterative way until a given number of features are
selected by the ant. The state transition rule is a function of the
desirability and heuristic information to guide the search process
of the ants (see Section 3.1.4 for details). Each time a feature F; is
selected by an ant, its corresponding feature counter (i.e., FC[i])
is increased. Finally, at the end of each iteration, the pheromone
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Fig. 1. The graph representation of the search space for the feature selection
problem. S;; is a similarity value between features F; and F; and r; denotes a
relevance value of feature F;.

values of the features are updated according to the “global
pheromone updating rule”. In this rule, a fraction of the pheromone
evaporates on all nodes and then the features which are frequently
selected by the ants and have obtained higher FC values, will
receive greater amounts of pheromone (see Section 3.1.5 for
details). The learning procedure is repeated until the maximum
number of cycles C is reached.

In the third step (lines 18 and 19), the features are sorted in
decreasing order of their pheromone values (i.e., probability values
of each feature) and then, the top m features are kept as the final
feature subset.

3.1.3. Initial pheromone

In the RRFSACO_1 and RRFSACO_2 methods, two different
strategies are used for initializing the intensity of pheromones.
In the RRFSACO_1 method, the normalized values of the relevance
values of the features are used as the initial intensity of pher-
omones (i.e.,zj(1) =normalize(r;),V i=1...n). Moreover, the soft-
max scaling function [1] is used to normalize the relevance
values of the features in the interval [0, 1]. The initialization based
on the relevance criterion guides the search process and thereby
reduces the search space.

On the other hand, in the RRFSACO_2 method, the initial
intensity of pheromone associated with each node is set to a
constant value (ie., 7j(1)=c, Vi=1...n).

Algorithm 1. Relevance-Redundancy Feature Selection based on Ant Colony Optimization (RRFSACO)

Input: D:p X n matrix, n dimensional training set with p patterns.
m (<n): the number of features to keep for final reduced feature set.

C: the maximum number of allowed iterations.
A: define the number of ants.

F: the number of selected features by each ant in each iteration.

Output: D: p X m matrix, reduced dimensional training set.

1: begin algorithm

2:  Compute the relevance r; of each feature, Vi = 1...n.

3:  Compute the similarity S; ; between features, V i,j = 1...n.

4:  Set the heuristic information : n, (F;) =13, nz(Fi,Fj) = i,v i,j=1..n

5:  Initialize the intensity of pheromone 7;(1) associated with the features, Vi = 1...n.
6: for t=1to C do

7: Set the initial features counter F'C[i] to zero, Vi = 1...n.

8: Place the ants randomly on the graph nodes.

9: for i=1 to F do

10: for k=1 to 4 do

11: Choose the next unvisited feature f'according to the state transition rule.
12: Move the k-th ant to the new selected feature f.

13: Increment feature counter associated with feature f°

14: end for

15: end for

16: Update pheromone according to the pheromone updating rule.

17: end for

18: Sort the features by decreasing order of their pheromones ;.

19: Build D from D by keeping the top m features with highest pheromone.

20: end algorithm

Fig. 2. pseudo-code of the proposed ACO based feature selection method.
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3.1.4. State transition rule

In the RRFSACO_1 and RRFSACO_2 methods, each ant traverses
the graph using both greedy and probabilistic state transition
rules. In the greedy way, the kth ant which is placed on feature F;
chooses the next feature F; by applying the following formula:
j= ar]gk max{[zy]ln (Fu)l*ln2(Fi, F)Y' } if ¢ < qq )

uej;
where jﬁ‘ is the unvisited set of features, 7, denotes the pheromone
intensity value associated with feature F,, 7,(F,) is the relevance
value of feature F,, n(F;, F,)=1/sim(F;, F,) indicates the inverse of
the similarity value between features F; and F,, parameters a and g
determine the importance of the pheromone versus two heuristic
information values »; and 3, g is a random number in the range [0,
1], and qq is a predefined constant parameter (0 <qo<1).

In the probabilistic way, the kth ant selects the next feature F;
with a probability P,(i, j) which is calculated as follows:

[l F) bra (Fi.Fp)Y
L. a © P
Pify= | ool N R
0 otherwise

if j e Jf

ifg>qo 3)

Egs. (2) and (3) are used by both methods. However, in the
RRFSACO_1 parameter « is set to O (i.e., =0) and the relevance of
the selected features is not considered in the search process of
the ants.

3.1.5. Global pheromone updating rule
After all ants finish their traverses, the pheromone values of the

features are updated using the following equation:
FCli]
7i(t+ 1) =1-p) 1i{() + —=— =

’ S Fa
where p is a pheromone decay parameter, z(t) and z;(t+1)
represent the amounts of pheromone on feature F; at times t and
t+1, respectively, n is the number of original feature sets, and F([i]
is the counter value of feature F;.

C))

3.2. Aredundancy reduction approach based on similarities between
subsets of features

The RRFSACO_1 and RRFSACO_2 methods select the next
feature based on its similarity value with that of the previously
selected one. This kind of selection strategy leads to poor predic-
tion accuracy in some datasets. For example, consider Fig. 3(a): An
ant is currently at feature F; in which it has to decide whether to
select two features among F,, F3, and F4. Suppose that all features
have the same initial pheromones, only the greedy rule (Eq. (2)) is
used to select the next feature, and parameter « is equal to O.
Therefore, the ant selects features F, and F; based on the state
transition rule (ie., Eq. (2)) and finally the ant terminates its
traverse. Thus, the selected feature subset is {F;, F,, F3}. It can be
seen from Fig. 3(a) that the similarity value between features F;
and F3 is equal to 1 (i.e., completely similar), but this similarity was
not considered in the feature selection process. However, these
two features are redundant and only one of them should be
selected.

Therefore, to overcome this problem, the next feature can be
selected based on the lowest average similarity with those of the
previously selected features. To understand this search strategy,
consider Fig. 3(b): At first, the ant is placed on feature F; randomly,
then feature F, is selected based on the greedy state transition rule
(ie., Eq. (2)). The ant can select features F; or F4, when it is
positioned at feature F,. The average similarities of F3 and F4 to the
previously selected features F; and F, are equal to 0.65 and 0.4,
respectively. Therefore, feature F4 has the lowest average similarity
value and therefore the final feature subset is {F;, F>, F4}. To define

the average similarity measure, suppose that the kth ant currently
selects FK_,, the subset of features with m-1 features. The task is
to assign the new heuristic information value to the unvisited
features as follows:

”Z(FJ)_(1/(m71))ZFZ€Fkqsim(Fj,Fz)’ FreX=Fn )

where X denotes the original feature set. Therefore, according to
this search strategy, the heuristic information (i.e., »,) is incremen-
tally updated along the search process in Egs. (2) and (3). Thus, the
IRRFSACO_1 and IRRFSACO_2 methods are the modified versions
of RRFSACO_1 and RRFSACO_2, respectively.

3.3. Time complexity analysis

Suppose that n is the number of the original features and p is the
number of patterns. In the first step of the RRFSACO_1 and
RRFSACO_2 methods (lines 2 and 3), the relevance values of the
features are evaluated using the term variance measure, thus the
time complexity is O(np). Moreover, the similarity values between
each pair of features are computed, so, the time complexity is O(n?p).
Therefore, the overall time complexity of this step is O(np+
np) = O(n?p). Furthermore, in the second step (lines 6-17), A ants
start to search the solution space from different points. The search
process will be repeated for a number of iterative cycles (ie., C).
Therefore, the time complexity of this part is O(CAFn), where F is the
number of the features selected by each ant in each iteration. The
time complexity of this part can be reduced to O(CFn), when the ants
run in a parallel way. In the third step (lines 18 and 19), all of the
features are sorted based on their pheromone values with the time
complexity of O(n log n) and then the m features with highest values
are selected as the final subset of features. Consequently, the time
complexity of the RRFSACO based methods (versions 1 and 2) is
O(n?p+CFn+nlog n) = O(n?p+CFn). Generally F<n and the time
complexity can be reduced to O(n?p).

On the other hand, in the IRRFSACO based methods (versions
1 and 2), only the second step of the methods was changed. In
other words, in the second step of the IRRFSACO_1 and RRFSACO_2
methods, in each iteration of the ant, the similarity value of the
next feature to those of the selected ones should be computed, so,
the time complexity of this step is O(CAF’n). When the ants
simultaneously start to search the solution space (i.e., in a parallel
way), the time complexity of this step can be reduced to O(CF?n).
Consequently, the overall time complexity of the IRRFSACO_1 and
IRRFSACO_2 is O(n2p+CF*n+nlog n)=0m%p+CF?n). This indi-
cates that when the number of the selected features is much
smaller than the number of the original features (i.e.,F<n), espe-
cially on high dimensional datasets, the time complexity of
IRRFSACO based methods is O(n?p).

The proposed methods incorporate the iteration improvement
process, while filter-based methods use only a single iteration thr-
oughout their search processes. Therefore, the time complexity of
the proposed methods is a little bit more expensive than those of
filter-based methods. On the other hand, the search process of
the proposed methods is independent of the learning algorithm.
Hence, the time complexity of the proposed methods is much
faster than those of wrapper-based methods.

4. Experimental results

In this section, we present the empirical results to compare the
performance of the proposed methods with those of well-known
feature selection methods based on the filter model using several
frequently used datasets.
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{F1, Fa, Fy}

Fig. 3. An example of the redundancy between a subset of features.

4.1. Datasets

The experiments have been performed on several different datasets
including Glass, Wine, Hepatitis, Wisconsin Diagnostic Breast Cancer
(WDBC), Ionosphere, Dermatology, SpamBase, Sonar, and Arrhythmia
from UCI machine learning repository [59], Colon at the Bioinformatics
Research Group from Universidad Pablo de Olavide [60], and Madelon
and Arcene from NIPS2003 feature selection challenge [61]. These
datasets are well-known datasets used in the literature [3-5,22,42]
and consist of varying numbers of features and patterns in two-class
or multiclass classification tasks. Table 1 shows a brief description of
the datasets used in the experiments.

The Hepatitis, Dermatology, and Arrhythmia datasets have sev-
eral missing values in the features. The well-known technique for
dealing with missing values is completion of the values by means
of the available data of the respective feature [1].

The class labels for the Madelon and Arcene datasets are not
available for the test set. Accordingly, the patterns of the validation
set have been used to evaluate the performance of the methods.

4.2. Experimental setting

The performance of the proposed methods is compared with
those of 12 well-known and state-of-the-art univariate and multi-
variate feature selection methods based on the filter model. The
univariate methods include information gain (IG) [33], gain ratio (GR)
[36,37], symmetrical uncertainty (SU) [34,38], Gini index (GI) [33,35],
Fisher score (FS) [39], term variance (TV) [1], and Laplacian score (LS)
[40]. Moreover, the multivariate feature selection methods include
unsupervised feature selection based on ACO (UFSACO) [6], minimal-
redundancy-maximal-relevance (mRMR) [19], mutual correlation
(MC) [44], random subspace method (RSM) [32], and relevance-
redundancy feature selection (RRFS) [3].

In the proposed methods, there are different adjustable para-
meters that need to be set. The maximum number of iterations is
set to C=50, the pheromone decay rate is set to p=0.2, the constant
parameter o in the state transition rule (Egs. (2) and (3)) is set to
0.7, parameter f is set to 1, and finally the number of ants is equal to
the number of the original features in each dataset (A=#features).
But parameter A is set to 100 in the datasets with more than 100
features (A=100). Moreover, in the RRFSACO_2 and IRRFSACO_2
methods the initial intensity of the pheromone for each feature is
set to 0.2 (z{{1)=0.2) and parameter « is set to 1. Furthermore, in the
RRFSACO_1 and IRRFSACO_1 methods parameter « is set to O.

For the remaining methods, there are some parameters that
need to be set. The maximum allowed similarity between features
in the RRFS method is set to several values in the interval [0.5, 1) as
recommended in the original paper [3]. To make a fair comparison,

Table 1
Characteristics of the datasets used in the experiments.

Dataset Features Classes Patterns
Glass 9 6 214
Wine 13 3 178
Hepatitis 19 2 155
WDBC 30 2 569
lonosphere 34 2 351
Dermatology 34 6 366
SpamBase 57 2 4601
Sonar 60 2 208
Arrhythmia 279 16 452
Madelon 500 2 4400
Colon 2000 2 62
Arcene 10,000 2 900

the number of selections parameter in the RSM method is set to
50 times.

The search strategy of the proposed methods is independent of
any classifiers and thus we expect that the proposed methods attain
acceptable performance on the different classifiers. To this end,
three widely used classifiers including support vector machine
(SVM) [15], decision tree (DT) [37], and naive Bayes (NB) [1] were
selected to evaluate the feature selection methods. The SMO, ]48,
and Naive Bayes are used as the SVM, DT, and NB classifiers,
respectively, implemented in the WEKA data mining software
package[62]. The SVM classifier uses a polykernel as its kernel
and applies the one-against-rest technique in multiclass problems.
The DT classifier adopts the post-pruning algorithm in the pruning
phase and the confidence factor for pruning is set to 0.25.

The average classification error rate over 5 different runs with
random train/test partition of the datasets was used as a perfor-
mance measure in the experiments. In each run, a given dataset
was randomly divided into a training set (2 of the dataset) and a
test set. All the experiments were carried out on an Intel Core-i3
CPU with 4 GB RAM, using the Java implementation.

4.3. Results and discussion

In this section, we present the comprehensive study to evaluate
the performance of the proposed methods. In the first set of exp-
eriments, the RRFSACO_1 and RRFSACO_2 methods are compared
with the mentioned feature selection methods in terms of execu-
tion time and classification error rate. In the second set of experi-
ments, we explore the effect of using the redundancy reduction
approach in the IRRFSACO_1 and IRRFSACO_2 methods.
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4.3.1. Comparison between RRFSACO based methods and other
feature selection methods

Tables 2-4 report the average classification error rates (over
5 independent runs) of the proposed methods (i.e., RRFSACO_1
and RRFSACO_2) compared to those of the unsupervised feature
selection methods including UFSACO, RSM, MC, RRFS, TV, and LS
by applying SVM, DT, and NB classifiers, respectively. The number

Table 2
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of selected features are chosen based on the best performance
obtained by the proposed methods.

From Table 2 it can be observed that the proposed methods get
the lowest classification error rates on most of the datasets, all
except the SpamBase dataset. For example, for the Dermatology
dataset, RRFSACO_1 and RRFSACO_2 got 22.96% and 26.00%
classification error rates, respectively, while for the UFSACO,

Average classification error rates (in %) over 5 runs of SVM classifier using the unsupervised feature selection methods considered on different datasets. The best result for
each dataset is indicated in bold face and underlined and the second best is in bold face.

Datasets #Selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRFS vV LS

Glass 5 50.41 48.21 51.78 54.52 51.50 54.79 54.24 52.60
Wine 3 11.47 12.46 12.78 27.87 12.57 16.72 39.34 15.85
Hepatitis 8 17.54 19.24 20.56 22.07 23.02 19.62 21.89 19.62
WDBC 5 9.41 9.28 9.28 16.18 11.03 9.64 10.10 10.20
lonosphere 30 11.66 14.83 11.39 12.16 14.67 18.89 13.61 17.50
Dermatology 5 22.96 26.00 39.44 48.72 50.08 35.60 32.56 51.20
SpamBase 50 11.91 11.34 11.94 11.48 10.43 10.19 10.07 10.01
Sonar 20 31.54 28.16 31.83 27.04 30.70 29.29 37.74 43.94
Arrhythmia 40 35.71 3493 40.78 46.36 45.71 42.20 36.49 42.99
Madelon 40 39.33 39.55 39.55 4717 48.67 - 39.33 39.83
Colon 20 12.72 1545 21.81 24.54 38.18 24.54 21.81 33.63
Arcene 60 37.00 34.50 36.00 45.00 43.00 27.00 44.00 45.00
Average 24.31 24.50 27.26 31.93 31.63 — 30.10 31.86

Table 3

Average classification error rates (in %) over 5 runs of DT classifier using the unsupervised feature selection methods considered on different datasets. The best result for each

dataset is indicated in bold face and underlined and the second best is in bold face.

Datasets #Selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRFS TV LS

Glass 5 36.43 34.24 42.46 35.61 41.09 34.79 38.08 35.88
Wine 3 15.08 13.11 16.39 30.60 13.66 13.66 32.24 14.08
Hepatitis 8 21.32 20.94 23.01 20.97 1943 22.07 23.58 20.95
WDBC 5 8.76 8.24 8.09 13.66 8.92 9.02 7.94 8.14
lonosphere 30 9.67 11.16 11.39 11.66 11.50 13.61 11.41 13.22
Dermatology 5 28.08 27.76 40.64 49.52 52.00 34.80 31.76 50.24
SpamBase 50 7.51 8.34 7.86 8.20 8.24 8.04 7.58 8.09
Sonar 20 34.36 30.70 33.52 35.77 31.26 34.36 36.05 38.59
Arrhythmia 40 37.01 36.75 43.24 46.62 45.71 47.40 45.97 43.25
Madelon 40 22.75 2117 20.67 51.33 49.00 — 2217 20.00
Colon 20 23.63 27.27 24.54 28.18 33.63 34.54 31.81 39.09
Arcene 60 24.50 29.50 30.80 47.80 44.00 39.00 32.00 44.00
Average 22.42 2243 25.22 31.66 29.87 — 26.72 27.96

Table 4

Average classification error rates (in %) over 5 runs of NB classifier using the unsupervised feature selection methods considered on different datasets. The best result for each

dataset is indicated in bold face and underlined and the second best is in bold face.

Datasets #selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRES TV LS

Glass 5 47.94 51.50 54.24 59.72 53.42 54.24 60.54 52.87
Wine 3 15.70 16.03 16.39 22.41 10.93 10.49 25.68 10.49
Hepatitis 8 21.51 20.00 20.37 17.73 19.81 18.36 23.77 19.43
WDBC 5 8.71 9.28 7.58 13.35 9.07 9.95 9.69 9.48
lonosphere 30 19.33 18.50 19.44 16.16 16.00 22.22 20.83 23.33
Dermatology 5 28.64 26.48 32.56 46.48 46.72 32.56 30.64 48.40
SpamBase 50 20.74 20.97 20.13 20.98 21.00 2115 21.51 20.76
Sonar 20 35.49 35.49 36.33 35.77 30.14 36.05 41.40 39.15
Arrhythmia 40 67.91 56.75 56.62 48.70 46.75 50.23 51.30 50.39
Madelon 40 39.75 39.17 40.50 48.50 48.67 — 40.50 40.83
Colon 20 18.18 15.45 28.18 26.36 31.81 32.72 41.81 47.27
Arcene 60 37.00 37.00 33.60 48.40 44.00 39.00 37.00 53.00
Average 30.08 28.89 30.50 33.71 31.53 — 33.72 34.62
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RSM, MC, RRFS, TV, and LS methods this value was recorded
39.44%, 48.72%, 50.08%, 35.60%, 32.56%, and 51.20%, accordingly.
Moreover, the average values over all of the datasets, reported in
the last row of Table 2 show that the proposed methods outper-
form all the other methods in terms of classification accuracy.
The results of Table 3 show that the RRFSACO_1 method is
superior to all other feature selection methods in terms of class-
ification error rate over the lonosphere, SpamBase, Colon, and
Arcene datasets. Moreover, the performance of the RRFSACO_2 is
better than those of the other methods on the Glass, Wine,
Dermatology, Sonar, and Arrhythmia datasets, and it acquires the
second lowest error rate on the Hepatitis, lonosphere, and Arcene
datasets. The last row of Table 3 shows that the RRFSACO_1 is the
best method in terms of average classification error rate improve-
ment over all of the datasets using the DT classifier. In other words,
the RRFSACO_1 outperforms UFSACO by 2.8%, RSM by 9.24%, MC
by 7.45%, TV by 4.3%, and LS by 5.54%. Furthermore, the
RRFSACO_2 method attains the second lowest average value over
all the datasets compared to those of the unsupervised methods.
Table 4 reports the average classification error rate of the NB
classifier over 5 independent runs. It can be seen from Table 4 that

Table 5
Execution times (in seconds) for the unsupervised feature selection methods.
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the RRFSACO_1 acquires the second lowest error rate on WDBC,
Dermatology, SpamBase, Sonar, Madelon, Colon, and Arcene datasets
and it is superior to the RSM, MC, RRFS, TV, and LS methods. On
the other hand, RRFSACO_2 is superior to the unsupervised feature
selection methods when Dermatology, Madelon, and Colon datasets
are used. Furthermore, the average values of the RRFSACO_1 and
RRFSACO_2 methods over all the datasets were 30.08% and 28.89%,
respectively, and they acquire the second and the first lowest
average classification error rates, correspondingly.

Furthermore, the runtimes of the feature selection methods are
evaluated over all of the datasets reported in Table 1. Table 5 rec-
ords the average execution times (in seconds) taken to the feature
selection process by the RRFSACO_1, RRFSACO_2, and the unsu-
pervised feature selection methods. From the results it can be
observed that the proposed methods performed faster compared
to the LS method. Also, the execution time of the proposed met-
hods is comparable to that of the UFSACO method. On the other
hand, the RRFS methods get the lowest execution times over all
the datasets.

From Tables 2-5, it can be concluded that although the
runtimes of the proposed methods were not faster than those of

Datasets #selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRFS TV LS

Glass 5 0.0030 0.0070 0.0040 0.0050 0.0020 0.0010 0.0010 0.0130
Wine 3 0.0082 0.0050 0.0410 0.0072 0.0032 0.0004 0.0001 0.0244
Hepatitis 8 0.0158 0.0178 0.0250 0.0138 0.0038 0.0008 0.0004 0.0222
WDBC 5 0.0220 0.0196 0.0256 0.0094 0.0018 0.0008 0.0006 0.3570
lonosphere 30 0.0578 0.0602 0.0784 0.0062 0.0010 0.0012 0.0004 0.1308
Dermatology 5 0.0332 0.0190 0.0280 0.0168 0.0014 0.0016 0.0014 0.1358
SpamBase 50 0.3553 0.3707 0.3493 0.0827 0.0530 0.0120 0.0100 90.8950
Sonar 20 0.1232 0.1234 0.1006 0.0096 0.0020 0.0012 0.0004 0.0844
Arrhythmia 40 1.6557 1.7183 1.6023 0.1280 0.0953 0.0083 0.0047 1.3210
Madelon 40 12.3150 14.0860 11.3510 6.0220 4.4293 0.0733 0.0760 271.54
Colon 20 8.1367 8.6420 6.484 0.6756 0.6320 0.0050 0.0090 0.1826
Arcene 60 246.8900 249.8800 229.9500 56.2150 67.7100 0.0800 0.1185 5.0625
Average 22.4680 229120 20.8360 5.2659 6.0779 0.0154 0.0185 30.8140

Table 6

Average classification error rates (in %) over 5 runs of the unsupervised feature selection methods on different number of selected features of the Arrhythmia dataset using
SVM classifier. Std. is the standard deviation of the classification error rates. The best result for each number of features is indicated in bold face and underlined and the

second best is in bold face.

#selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRFS TV LS

10 34.80 39.22 43.90 45.06 43.51 50.52 46.75 50.13
20 40.12 39.99 40.78 43.89 45.46 42.47 41.43 46.49
30 40.25 35.84 43.43 43.33 49.22 43.89 40.00 41.95
40 35.71 34.93 40.78 46.36 45.71 42.20 36.49 42.99
50 40.25 36.23 4312 45.45 49.22 37.79 35.97 42.21
Average 38.23 37.24 42.40 44.82 46.62 43.37 40.13 4475
Std. 2.73 222 1.51 1.22 2.52 4.6 4.36 3.51

Table 7

Average classification error rates (in %) over 5 runs of the unsupervised feature selection methods on different number of selected features of the Arrhythmia dataset using
DT classifier. Std. is the standard deviation of the classification error rates. The best result for each number of features is indicated in bold face and underlined and the second

best is in bold face.

#selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRFS TV LS

10 37.66 42.98 43.77 44.93 43.51 52.47 53.77 50.13
20 40.51 39.35 40.91 44.29 45.44 53.38 51.43 47.01
30 38.18 40.51 42.85 43.37 49.22 51.95 50.26 43.12
40 37.01 36.75 43.24 46.62 45.71 47.40 45.97 43.25
50 3948 37.14 47.01 45.71 49.87 45.45 46.62 42.59
Average 38.57 39.35 43.56 44.98 46.75 50.13 49.61 45.22
Std. 141 2.56 221 1.25 2.7 3.49 3.29 3.26
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the unsupervised methods, their performances in terms of classi-
fication error rate were superior to those of the unsupervised
feature selection methods over different classifiers. Therefore, the
proposed methods perform the trade-off between classification
accuracy and execution time.

Additionally, Tables 6-11 show the results of the comparison
between the performance of the proposed methods and those of

Table 8
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unsupervised feature selection methods over different numbers of
selected features using the Arrhythmia, Colon, and Arcene datasets.

Table 6 compares the classification error rates of the proposed
methods with those of the unsupervised feature selection meth-
ods when the SVM classifier was used on the Arrhythmia dataset. It
can be seen from the results that when the number of selected
features is 20, 30, and 40, the RRFSACO_2 outperforms the other

Average classification error rates (in %) over 5 runs of the unsupervised feature selection methods on different number of selected features of the Colon dataset using SVM
classifier. Std. is the standard deviation of the classification error rates. The best result for each number of features is indicated in bold face and underlined and the second

best is in bold face.

#selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRFS TV LS

20 12.72 1545 21.81 24.54 38.18 24.54 21.81 33.63
40 13.63 13.64 15.45 18.18 29.09 18.18 26.36 40.00
60 14.54 10.91 22.72 24.54 19.09 18.18 20.00 35.45
80 23.63 15.45 9.09 19.09 19.09 18.18 17.27 30.91
100 16.36 14.54 18.18 16.36 19.09 24.54 17.27 30.90
Average 16.18 14.00 17.45 20.54 2491 20.72 20.54 34.18
Std. 4.38 1.88 5.50 3.78 8.59 348 3.78 3.78

Table 9

Average classification error rates (in %) over 5 runs of the unsupervised feature selection methods on different number of selected features of the Colon dataset using NB
classifier. Std. is the standard deviation of the classification error rates. The best result for each number of features is indicated in bold face and underlined and the second

best is in bold face.

#selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRFS TV LS

20 18.18 15.45 28.18 26.36 31.81 32.72 41.81 47.27
40 19.09 17.27 26.36 22.72 22.72 30.90 38.18 39.09
60 16.36 13.63 12.72 29.99 39.08 2545 35.45 50.00
80 17.27 23.63 19.09 30.90 25.45 19.09 29.08 38.18
100 20.90 27.27 26.36 30.90 18.18 27.27 24.54 50.90
Average 18.36 19.45 22.54 28.17 27.45 27.09 33.81 45.09
Std. 1.75 5.77 6.51 3.58 8.16 531 6.97 6.05

Table 10

Average classification error rates (in %) over 5 runs of the unsupervised feature selection methods on different number of selected features of the Arcene dataset using DT
classifier. Std. is the standard deviation of the classification error rates. The best result for each number of features is indicated in bold face and underlined and the second

best is in bold face.

#selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRFS TV LS

20 44.50 44.00 32.60 46.60 44.00 38.00 29.00 44.00
40 36.50 28.99 33.00 48.00 44.00 35.00 44.00 44.00
60 24.50 29.50 30.80 47.80 44.00 39.00 32.00 44.00
80 31.00 29.50 38.00 45.80 44.00 31.00 32.00 44.00
100 31.00 31.50 35.00 48.80 44.00 32.00 32.00 44.00
Average 33.50 32.70 33.88 47.40 44.00 35.00 33.80 44.00
Std. 747 6.39 2.74 119 0.00 3.54 5.85 0.00

Table 11

Average classification error rates (in %) over 5 runs of the unsupervised feature selection methods on different number of selected features of the Arcene dataset using NB
classifier. Std. is the standard deviation of the classification error rates. The best result for each number of features is indicated in bold face and underlined and the second

best is in bold face.

#selected features RRFSACO_1 RRFSACO_2 UFSACO RSM MC RRFS TV LS

20 43.00 44.00 41.20 44.40 44.00 44.00 43.00 54.00
40 43.00 41.00 32.40 46.00 44.00 37.00 43.00 52.00
60 37.00 37.00 33.60 48.40 44.00 39.00 37.00 53.00
80 34.00 33.00 34.80 48.40 44.00 28.00 34.00 52.00
100 36.00 37.00 32.60 47.60 46.00 28.00 34.00 48.00
Average 38.60 38.40 34.92 46.96 44.40 35.20 38.20 51.80
Std. 4.16 4.22 3.64 1.73 0.89 7.05 4.55 2.28
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feature selection methods in terms of classification error rate
and gets the second lowest error rate for the other cases. Also,
in most cases, the RRFSACO_1 has better performance compared
to the unsupervised feature selection methods, except for the
RRFSACO_2 method. Furthermore, the obtained average values of
the RRFSACO_1 and RRFSACO_2 methods over different numbers
of selected features were 38.23% and 37.24% which indicates that
the overall performance of the proposed methods is much better
than those of the unsupervised feature selection methods.

Furthermore, Table 7 shows similar results when the methods
are applied on the Arrhythmia dataset using the DT classifier. It can
be seen from the results that the proposed methods attained
significantly lower classification error rates than the other feature
selection methods. Moreover, the worst classification error rates of
the RRFSACO_1 and RRFSACO_2 were 40.51% and 42.98%, corre-
spondingly, while for the UFSACO, RSM, MC, RRFS, TV, and LS
methods the worst classification error rates were reported 47.01%,
46.62%, 49.87%, 53.38%, 53.77%, and 50.13%, respectively. On the
other hand, the average classification error rates over different
numbers of selected features show that the RRFSACO_1 outper-
forms UFSACO by 4.99%, RSM by 6.41%, MC by 8.18%, RRES by
11.56%, TV by 11.04%, and LS by 6.65%. Additionally, the RRFSACO_2
method acquires the second lowest error rate and is only inferior
to the RRFSACO_1 method.

Table 8 shows the classification error rates of the proposed
methods and unsupervised feature selection methods for SVM
classifier on the Colon dataset. It can be observed from Table 8 that
RRFSACO_1 acquired the lowest classification error rates when 20
and 40 features were selected and it obtained the second lowest
error rates when the number of selected features was 60 and 100.
On the other hand, RRFSACO_2 got the best result when the
number of selected features was 60 and 100, and for the other
cases, the second best result is attained. Consequently, the average
values reported in Table 8 show that RRFSACO_1 and RRFSACO_2
with classification error rates 16.18% and 14%, respectively, out-
performs the other feature selection methods.

Moreover, Table 9 presents similar results when the methods are
applied on the Colon dataset using the NB classifier. The reported
results show that the classification error rate of RRFSACO_1 is lower
than those of the other methods when 80 features were selected and
it got the second lowest error rates when the number of selected
features was 20, 40, and 100. Additionally, the results show that the
performance of the RRFSACO_2 method is superior to the other
methods when 20 and 40 features were selected. For example, when
20 features are selected, RRFSACO_2 outperforms UFSACO by 12.73%,
RSM by 10.91%, MC by 16.36%, RRFS by 17.27%, TV by 26.36%, and LS
by 31.82%. Finally, the RRFSACO_1 and RRFSACO_2 methods achieved

Table 12
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the average classification error rates 18.36% and 19.45%, correspond-
ingly, over different numbers of features and laid on the first and
second places among the mentioned feature selection methods.

Table 10 demonstrates the comparison results when the DT
classifier was used on the Arcene dataset. The results show that the
RRFSACO_1 method was superior to all the other methods when the
number of selected features was 60 and 100. Also, the RRFSACO_2
achieved the lowest error rate when the number of selected features
was 40 and 80, and it got the second lowest error rate when the
number of selected features was 60 and 100. For example, when 60
features were selected, RRFSACO_1 performed better than UFSACO
by 6.3%, RSM by 23.3%, MC by 19.5%, RRFS by 14.5%, TV by 7.5%, and
LS by 19.5%. Finally, it can be concluded that the RRFSACO_2 and
RRFSACO_1 lay on the first and second places, respectively, among
the unsupervised feature selection methods in terms of average clas-
sification error rate.

Furthermore, Table 11 shows similar results when the NB classifier
is used on the Arcene dataset. The results show that when the number
of selected features was 20 and 60, the RRFSACO_1 achieved the
lowest error rates, expected than the UFSACO method. Furthermore,
the RRFSACO_2 attained the lowest error rates when the number of
selected features was 60 and 80, expected than the UFSACO and the
RRFS methods. It is clear that the overall performance of the proposed
methods is better than those of the RSM, MC, and LS methods and
their performances are comparable with that of the TV method.

Moreover, the proposed methods have been compared to the
supervised multivariate feature selection methods. Table 12 illus-
trates the average classification error rates of the RRFSACO_1,
RRFSACO_2, mRMR, and RRFS methods by applying SVM, DT, and
NB classifiers. From the results it is clear that RRFSACO_1 is
superior to all other methods when SVM classifier has been app-
lied on Hepatitis, Dermatology, Madelon, and Colon datasets. Also,
RRFSACO_2 acquired the lowest error rates on Glass, Wine, WDBC,
SpamBase, Sonar, and Arrhythmia datasets when SVM classifier was
used. Additionally, it can be seen that the classification error rates
of RRFSACO_1 are better than those of the other methods when DT
classifier was used on lonosphere, Sonar, and Arcene datasets. On
the other hand, RRFSACO_2 acquired the lowest error rates for DT
classifier on Wine, WDBC, Arrhythmia, and Colon datasets. More-
over, Table 12 shows that similar results have been reported when
NB classifier is used. For example, when RRFSACO_1 is applied
on Glass, Wine, WDBC, and Madelon datasets, the lowest classifica-
tion error rates on NB classifier is obtained. Therefore, it can be
concluded that the overall performance of the proposed meth-
ods is superior to those of the supervised multivariate methods
over different datasets, especially when SVM and DT classifiers
are used.

Classification error rate (average over 5 runs, in %), with respect to the number of selected features by proposed methods and supervised multivariate methods for different
datasets, using SVM, DT, and NB classifiers. The best result for each dataset is indicated in bold face.

Datasets #selected features SVM Classifier DT Classifier NB Classifier

RRFSACO_1 RRFSACO_2 mRMR RRFS RRFSACO_1 RRFSACO_2 mRMR RRFS RRFSACO_1 RRFSACO_2 mRMR RRFS
Glass 5 50.41 48.21 55.89 52.87 3643 34.24 31.77 3534 47.94 51.50 5534 5150
Wine 10 4.59 3.28 5.90 328 918 7.87 9.83 10.82 1.97 3.93 3.28 4.59
Hepatitis 8 17.54 19.24 2113 19.24 2132 20.94 21.69 2019 21.51 20.00 20.75 1792
WDBC 25 335 2.37 242 — 6.34 6.08 716 — 5.05 7.42 5.88 —
lonosphere 30 11.66 14.83 11.50 1316 9.67 11.16 1117 14.00 19.33 18.50 20.16 18.16
Dermatology 5 22.96 26.00 2440 2992 28.08 27.76 23.28 26.08 28.64 26.48 22.00 2896
SpamBase 50 11.91 11.34 12.20 11.35 751 8.34 716 733 20.74 20.97 19.68 20.21
Sonar 25 30.42 27.04 32.11 29.57 3042 36.62 3492 3211 383 38.02 3859 34.36
Arrhythmia 20 40.12 39.99 40.52 44.67 40.51 39.35 43.64 40.77 65.71 70.51 5143 51.55
Madelon 10 38.50 38.92 43.17 39.17 2375 22.66 46.67 19.33 37.83 38.75 4450  39.00
Colon 40 13.63 13.64 2545 17.27 24.54 21.81 2999 2363 19.09 17.27 49.09 13.63
Arcene 60 37.00 34.50 — 22.00 2450 29.50 — 26.00 37.00 37.00 — 29.00
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Table 13
Average classification error rates (in %) over 5 runs, with respect to different number of selected features by proposed methods and supervised feature selection methods
over Madelon datasets, using SVM, DT, and NB classifiers. The best result for each number of features is indicated in bold face and underlined and the second best is in
bold face.

Classifiers SVM Classifier DT Classifier NB Classifier
#Selected features 10 40 150 10 40 150 10 40 150
RRFSACO_1 38.50 39.33 41.67 23.75 22.75 23.92 37.83 39.75 40.08
RRFSACO_2 38.92 39.55 42.92 22.66 2117 23.08 38.75 39.17 38.58
IG 38.67 39.17 42.22 2417 23.67 24.83 38.33 39.83 38.66
GR 38.67 38.94 41.50 2417 23.83 21.83 38.33 39.50 39.67
GI 38.67 39.17 42.72 2417 23.67 25.00 38.33 39.83 39.33
FS 38.61 40.67 42.22 24.67 2517 28.17 39.67 40.00 41.33
SU 38.67 38.94 4211 2417 23.83 21.67 38.33 39.50 40.00
LS 38.67 39.33 4317 23.50 19.67 23.17 44.50 51.33 43.50
mRMR 43.17 54.00 43.00 46.67 50.67 4417 38.50 51.33 40.33
RRFS 39.17 — — 19.33 — — 39.00 — —
a , b , C ,
- Dermatology with SVM _ Dermatology with DT . Dermatology with NB
L 24 S X
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Fig. 4. Classification error rates (average over 5 different runs) of the IRRFSACO_1 and RRFSACO_1 methods using: (a) SVM classifier on Dermatology, (b) DT classifier on
Dermatology, (c) NB classifier on Dermatology, (d) SVM classifier on WDBC, (e) DT classifier on WDBC, and (f) NB classifier on WDBC.

Table 13 compares the performance of the RRFSACO_1 and
RRFSACO_2 methods with those of the supervised feature selec-
tion methods including IG, GR, GI, FS, SU, LS, mRMR, and RRFS on
the Madelon dataset using the SVM, DT, and NB classifiers. Note
that in this table, the notation ‘—’ means that the feature selection
method was not able to select the predefined number of features
due to high similarity between features. It can be seen from the
results that the RRFSACO_1 outperforms the other methods using
the SVM classifier when 10 features are selected and gets the
lowest classification error rate, expect than GR, when the number
of selected features is 150. Moreover, the classification error rates
of the RRFSACO_2 over SVM are slightly greater than those of the
best methods. The proposed methods are superior to the IG, GI, FS,
and mRMR methods using the DT classifier. Also, the proposed
methods got the lowest classification error rates compared to the
other methods, except than the LS and RRFS, when the number of
selected features was 10 and 40. Furthermore, it can be seen from

the results that the classification error rate of the RRFSACO_1
using the NB classifier is superior to those based on the other
methods when the number of selected features is 10. Moreover,
the results show that in this case, RRFSACO_2 outperforms the
other feature selection methods when 40 and 150 features are
selected. Therefore, it can be concluded that the overall perfor-
mance of the proposed methods using the different classifiers (i.e.,
SVM, DT, and NB) is comparable to those of the supervised feature
selection methods, especially when the NB and SVM classifiers
are used.

4.3.2. Comparison between IRRFSACO and RRFSACO

In this section, the results of the comparison between the
RRFSACO_1, RRFSACO_2, IRRFSACO_1, and IRRFSACO_2 methods
are presented. Figs. 4 and 5 demonstrate the classification error
rates of the SVM, DT, and NB classifiers on the Dermatology and
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Fig. 5. Classification error rates (average over 5 different runs) of the IRRFSACO_2 and RRFSACO_2 methods using: (a) SVM classifier on Dermatology, (b) DT classifier on
Dermatology, (c) NB classifier on Dermatology, (d) SVM classifier on WDBC, (e) DT classifier on WDBC, and (f) NB classifier on WDBC.

WDBC datasets. In these figures, the x-axis shows the number of
selected features, whereas the y-axis denotes the average classi-
fication error rate.

Fig. 4 shows the comparison results between IRRFSACO_1 and
RRFSACO_1. As seen in Fig. 4(a), IRRFSACO_1 achieved significantly
lower error rates compared to the RRFSACO_1 for almost all the
numbers of selected features using the SVM classifier. For example,
when the number of selected features was 20, the classification
error rate of IRRFSACO_1 was around 4%, while this value for the
RRFSACO_1 was around 11%. Moreover, Fig. 4(b) illustrates that
IRRFSACO_1 attained lower classification error rates compared to
RRFSACO_1 for different numbers of features, except when the
number of selected features was 20. From Fig. 4(c) it can be
observed that the overall performance of the IRRFSACO_1 is
superior to that of the RRFSACO_1 method for different numbers
of selected features when the NB classifier is used on Dermatology
dataset. For example, when 5 features were selected, the classifi-
cation error rate of IRRFSACO_1 was around 19%, while this value
for the RRFSACO_1 was around 29%. Moreover, Fig. 4(d) shows that
when the number of selected features is larger than 20, the
performance of IRRFSACO_1 method is better than RRFSACO_1
method. Additionally, Fig. 4(e) indicates that the classification
error rate curve of IRRFSACO_1 on WDBC dataset is lower than
RRFSACO_1 when the number of selected features is larger than
10. As illustrated in Fig. 4(f) IRRFSACO_1 got lower classification
error rates when the number of features is relatively small, within
the range between 10 and 20.

Furthermore, Fig. 5 shows the comparison results between IRRF-
SACO_2 and RRFSACO_2. Fig. 5(a) shows that the classification error
rate curve of the IRRFSACO_2 was superior to that of the RRFSACO_2
when the number of selected features was 10, 15, and 25, and it
attained a little greater error rate than the RRFSACO_2 (ie., less than
1%) in the other cases. Moreover, Fig. 5(b) indicates that the perfor-
mance of IRRFSACO_2 is much better than that of the RRFSACO_2 for
all the cases on the Dermatology dataset. In other words, when the
number of selected features was 5, 10, 15, 20, and 25, IRRFSACO_2 got
22.96%, 13.76%, 11.44%, 7.36%, and 5.84% classification error rates,

respectively, while in this case the classification error rates of the
RRFSACO_2 were 27.76%, 22%, 15.92%, 11.12%, and 9.44%, respectively. It
is clear from the results that when the number of features is increased,
the classification error rate of the proposed methods is decreased
uniformly. Moreover, the results of Fig. 5(c) show that the IRRFSACO_2
outperformed the RRFSACO_2 by 4.56%, 5.6%, 7.76%, 2.96%, and 2.48%
when the number of selected features were 5, 10, 15, 20, and 25,
correspondingly. Fig. 5(d) demonstrates that IRRFSACO_2 is superior to
the RRFSACO_2 when 10, 15, and 20 features were selected. In
addition, Fig. 5(e) shows that the performance of the IRRFSACO_2 is
better than the RRFSACO_2 over different subsets of features. As
illustrated in Fig. 5(f) IRRFSACO_2 gets lower classification error rates
when the numbers of features were 10, 15, and 25.

It can be concluded from Figs. 4 and 5 that the proposed redu-
ndancy reduction approach used in the IRRFSACO_1 and IRRF-
SACO_2 methods leads to enhance the efficiency and improve the
performance of the RRFSACO based methods (i.e., RRFSACO_1 and
RRFSACO_2) in terms of the classification error rate using the diff-
erent classifiers (i.e., SVM, DT, and NB) on some of the datasets.

5. Conclusion

In this paper, novel unsupervised feature selection methods
were proposed based on the ACO algorithm by analyzing the
relevance and redundancy of features. The proposed methods
combined the efficiency of the filter model with the advantages
of the ACO algorithm. Moreover, a heuristic information measure
was proposed to consider the dependencies between subsets of
features which enhanced the quality of the found solution.

The performances of the proposed methods were compared to
those of the well-known and state-of-the-art univariate feature
selection methods including information gain, gain ratio, symmetrical
uncertainty, Gini index, Fisher score, term variance, and Laplacian
score and multivariate feature selection methods including UFSACO,
mRMR, MC, RSM, and RRFS in terms of execution time and classifica-
tion error rate of the support vector machine, decision tree, and naive
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Bayes classifier. The experimental results performed on the low and
high dimensional datasets indicated that the proposed RRFSACO
based methods effectively removed the irrelevant and redundant
features. The joint use of the filter model and ACO algorithm in the
proposed methods lead to classification results superior to those of
the unsupervised feature selection methods and comparable with
those of the supervised feature selection methods. Moreover, the
results over the Dermatology and WDBC datasets show that the
heuristic information which is applied in the search process of the
IRRFSACO based methods can be able to improve the classification
accuracy of the RRFSACO based methods in some cases. Future work
will address the development of new heuristic information measures
to improve the efficiencies of the proposed methods. Also, we will
develop a new state transition rule to control the randomness in the
ACO algorithm.

Appendix A. Supplementary Information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.patcog.2015.03.020.
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