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a  b  s  t  r  a  c  t

Together  with  the  increase  in  electronic  circuit  complexity,  the  design  and  optimization  processes  have  to
be  automated  with  high  accuracy.  Predicting  and  improving  the  design  quality  in  terms  of  performance,
robustness  and  cost  is the  central  concern  of electronic  design  automation.  Generally,  optimization  is a
very  difficult  and  time  consuming  task  including  many  conflicting  criteria  and  a wide  range  of  design
parameters.  Particle  swarm  optimization  (PSO)  was  introduced  as  an efficient  method  for  exploring  the
search  space  and  handling  constrained  optimization  problems.  In  this  work,  PSO  has  been  utilized  for
accommodating  required  functionalities  and  performance  specifications  considering  optimal  sizing  of
analog  integrated  circuits  with  high  optimization  ability  in  short  computational  time.  PSO  based  design
results  are  verified  with  SPICE  simulations  and  compared  to  previous  studies.

© 2012 Elsevier GmbH. All rights reserved.

1. Introduction

Analog integrated circuit (IC) design is a challenging process
which involves the characterization of complex tradeoffs between
nonlinear objectives and also satisfying required constraints. Those
objectives are comprised of design parameters which are ideally
accepted as variables and optimum solution set is searched. How-
ever, as the circuit complexity increases the search space expands
such that obtaining the optimal combination of design parameters
by hand becomes a time consuming and unaffordable process.
Considering CMOS IC design process, there are several relations
that should hold between length, width and width/length ratios of
MOS  transistors to ensure that the search space is smooth and the
optimization process is reliable. Therefore, efficient optimization
methods are required for automation of optimal sizing of CMOS
analog IC design.

Classical optimization approaches are either deterministic
or statistical-based techniques. Deterministic methods, such as
Simplex [1],  Branch and Bound [2],  Goal Programming [3],  and
Dynamic Programming [4] are effective only for small size prob-
lems. These optimization techniques impose several limitations
for multi-criteria constrained problems due to their inherent
solution mechanisms and their tight dependence on the algorithm
parameters. Most of the optimization problems require different
types of variables, objective and constraint functions simultane-
ously in their formulation. Statistical methods generally start with
finding a “good” DC quiescent point, which is provided by the
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skilled analogue designer. Following, a simulation-based tuning
procedure takes place. However these statistic-based approaches
are time consuming and do not guarantee the convergence towards
the global optimum solution [5]. Therefore, classic optimization
procedures are generally not adequate for optimal sizing of analog
integrated circuits.

Heuristics are necessary to solve big size problems and/or with
many criteria [6].  They can be adapted to suit specific problem
requirements. Even though they do not guarantee to find in an
exact way  the optimal solution, they provide good approximation
of it within an acceptable computing time [7].  Some mathemati-
cal heuristics that were previously utilized were Local Search [8],
Simulated Annealing (SA) [9,10],  Tabu Search (TS) [11,12], Genetic
Algorithms (GA) [13,14], etc.

However, efficiency of these techniques is highly dependent
on the algorithm parameters, the dimension of the solution space
and the number of variables. Actually, most of the circuit design
optimization problems simultaneously require different types of
variables, objective and constraint functions in their formulation.
Hence, the abovementioned optimization procedures generally
require long computation time when complexity of the problem
increases. In order to overcome these drawbacks, a new set of
nature inspired heuristic optimization algorithms were proposed.
The thought process behind these algorithms is inspired from the
collective behavior of decentralized, self-organized systems. It is
known as Swarm Intelligence (SI) [15]. SI systems typically employ
a population of simple agents interacting locally with each other
and with their environment. These particles obey to very simple
rules, and although there is no centralized control structure dictat-
ing how each particle should behave. Local interactions between
them lead to the emergence of complex global behavior. Most
famous such SI techniques are Ant Colony Optimization (ACO) [16],
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Artificial Bee Colony (ABC) optimization [17] and Particle Swarm
Optimization (PSO) [18,19]. PSO has been in existence for almost
a decade, which is a relatively short period when compared to
some of the well known evolutionary computation paradigms and
has been shown to offer good performance in various application
domains [20].

Above mentioned optimization methods are incorporated into
analog computer-aided design (CAD) tools for optimal sizing of
complex ICs together with topology selection [21] and actual circuit
layout [22]. Historically, researchers developed two  mainstreams
of analog automation methodologies. One of the early approaches
uses optimization-based method which optimizes a set of per-
formance constraints characterized by complicated tradeoffs and
makes repetitive use of detailed circuit simulator embedded in
the inner loop of optimization engine. These techniques require
many iterations to adjust transistor sizes and optimization engine
needs to evaluate corresponding performance at each cycle. Sec-
ond approach is equation-based method which is based on inverse
process of circuit analysis technique. Since sizing of a circuit is
done mathematically, the automation is much faster while accu-
racy is not as good as the first approach due to the simplified
device equations and approximations [23,24]. Comparison of pre-
viously proposed analog CAD tools is given in Table 1 [22–31].
Among the CAD tools tabulated in Table 1, DELIGHT.SPICE, STAIC
and OPASYN utilize classical optimization techniques while IDAC,
MAELSTROM, ASTRX/OBLX, ASLIC, and OASYS are heuristic based
systems. Kruiskamp and Leenaerts [32] developed a GA based
CMOS operational amplifier synthesizer (DARWIN) for topology
selection and circuit sizing. In [33], sizing rules method is pro-
posed for CMOS and bipolar analog IC synthesis. Sripramong and
Toumazou [34] introduced an automated circuit design system
for the evolution and subsequent invention of CMOS amplifiers.
This system utilized genetic programming for evolving new circuit
topologies and current-flow analysis for screening and correct-
ing circuits. In [35], it was proved that CMOS op-amp design
can be approximated as convex optimization problem that can
be solved using geometric programming techniques. In [36], an
evolution-based methodology named memetic single-objective
evolutionary algorithm is developed for automated sizing of high-
performance analog IC circuits. Guerra-Gomez et al. [37] proposed
multi-objective evolutionary algorithm based on decomposition
(MOEA/D) for optimization of second generation current convey-
ors (CCII). Mentioned system uses HSPICE as circuit evaluator.
Considering optimal CCII design without any circuit evaluator; a
multi-objective heuristic [38,39] and PSO algorithm [40–42] are
utilized by formulating the requirements for the design of CCII
in terms of boundaries on performance functions. Tawdross and
König [43] investigated PSO as an alternative to GA for field pro-
grammable analog scalable device array reconfiguration. For this
purpose an operational amplifier with particular design constraints
was designed using PSO taking into different external influences
such as high temperature and fabrication faults. Having successful
results authors extended their PSO based dynamic hardware design

environment to functional block level [44]. A 3-bit ADC  structure
is developed using previously designed op-amps and resistors. In
[45], PSO algorithm is extended to a hierarchical scheme for auto-
matic sizing of low power analog circuits where simulation of
circuits is performed with Cadence Spectre. Tulunay and Balkir
[46] proposed an automatic synthesis tool of a cascade low noise
amplifier (LNA). In [42], PSO technique is utilized for optimal siz-
ing of CMOS LNA with inductive degeneration design. Choi and
Allstot [47] developed a SA based synthesis tool that includes an
adaptive tunneling mechanism and post-optimization sensitivity
analysis with respect to design, process and temperature variations.
A detailed investigation about the state of the art in applying EAs
for the synthesis and sizing of analog ICs is presented in [48].

This main objective of this study is to explore Particle Swarm
Optimization algorithm on analog circuit design automation. PSO-
based method is applied to two  analog integrated circuit design
problems with particular technology parameters. The problem con-
sidered in this work is the optimal CMOS transistor sizing for
minimum area oriented optimization, which is only a part of a
complete analog circuit CAD tool. Other parts which are beyond
the scope of this work are the topology selection and actual
circuit layout. The optimal transistor sizing of the CAD process
remains between these two tasks. As reported in the literature,
simulation-based optimization technique requires very long exe-
cution time and equation-based methods are less accurate than
the former method. Therefore, optimization methods with high
accuracy and short computation time are necessary for analog cir-
cuit design automation. PSO as a global optimization method has
fewer primitive mathematical operators than in GA (e.g. reproduc-
tion, mutation and crossover) and those mathematical operations
require more fine-tuning of own  parameters which leads to longer
computation time as explained in Section 2. Section 3 describes
analog integrated circuit structures and states design specifications
used in optimal sizing task. PSO-based method for integrated circuit
design is investigated in Section 4. Following, Section 5 provides
simulation results of the proposed method, comparable to previ-
ous methods, which are validated with SPICE simulator. Finally,
Section 6 concludes with a discussion of PSO based design results
and suggests possible extensions.

2. Particle swarm optimization

Particle swarm optimization (PSO) is an evolutionary com-
putation method based on the social behavior, movement and
intelligence of swarms searching for an optimal location in a mul-
tidimensional search area [18]. The approach uses the concept of
population and a measure of performance similar to the fitness
value used with evolutionary algorithms. Population consists of
potential solutions called particles. Each particle is initialized with
a random position value. In each iteration of simulation, the fitness
function is evaluated by taking the current position of the parti-
cle in the solution space and two  best values (pbest, gbest). Personal
best value, pbest, is the location of the best fitness value obtained

Table 1
The error rate and synthesis time of various analog CAD tools [23,24].

Tool Synthesis method Error Synthesis time

IDAC [25] Equation-based 15% Few seconds
OASYS  [26] Equation-based 25% Few seconds
ISAID  [27] Equation-based + post optimization 14% Not reported
STAIC  [22] Equation-based 24% 3 min
DELIGHT.SPICE [28] Optimization-based (circuit simulator) 0% 18 h
MEALSTROM [29] Optimization-based (circuit simulator) 0% 3.6 h
ASTRX/OBLX [30] Optimization-based (AWE + equations) 30% 11.8 h
OPASYN  [31] Optimization-based (equations) 20% 1 min
ASLIC  [24] Equation-based 15–20% Few seconds
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For each  parti cle  

  Load its  initi al rando m vec tor;  

For eac h parti cle 

  Assign its  initi al vec tor  as its  pb est  vec tor;  

While maxi mum it eration  is  not  att ain ed  

{

  Assign  the first parti cle’s pb est to gb est;                             

For eac h parti cle exce pt the first on e {

 If its  pb est  satisfi es all  th e constr aints  {

If its pb est valu e fit s to cost fu nction  bett er th an th e gbest { 

              Assign its pbest  as gb est;                                                

} 

} 

} 

For eac h parti cle {

   Calculate parti cle velocit y acc ording  to (1); 

   Upd ate parti cle po sition  acc ording  to (2);    

 } 

For eac h parti cle {

 If th e parti cle’s curr ent  valu e and  its  pb est  valu e both  satisf y th e 

constr aints  {

If the parti cle’s curr ent  valu e fit s th e fun ction  bett er th an it s pb est valu e

{

               Assign its curr ent value as its pb est  value;                         

 } 

}

      Else if th e parti cle’s curr ent  valu e and  its  pb est  valu e both  don ’t satisf y 

the con straints {

If the parti cle’s  curr ent  valu e fits  th e fun ction  bett er than its pb est  value                    

{ 

             Assign  its  curr ent value as its pb est value;                         

} 

} 

Else if onl y the parti cle’s  curr ent value s ati sfies the con straints                                        

{

        Assign  its  curr ent value as its  pb est  value; 

} 

}  

  }                                                                

Fig. 1. Procedures of PSO algorithm.

so far by the particle. Global best value, gbest, is the location of the
best fitness value achieved so far considering all the particles in the
swarm [18,19].

In particle population matrix, containing N number of parti-
cles, ith particle with a feature number of D is denoted as xi = [xi1,
xi2,. . .,xiD]. For each iteration, the velocity and the position vector
of the ith particle in NxD dimension of the search space are updated
as follows [18]:

vk+1
id

= w.vk
id + c1.randk

1.(pbestk
id − xk

id) + c2.randk
2.(gbestk

d − xk
id) (1)

xk+1
id

= xk
id + vk+1

id
(2)

Here, the range of i, d and k indices are defined as {1. . .N},
{1. . .D} and {1. . .max  iteration number} respectively. The acceler-
ation factors c1 and c2 indicate the relative attraction toward pbest
and gbest respectively. Following rand1 and rand2 are random num-
bers uniformly distributed between zero and one. Inertia weight
parameter w controls the tradeoff between the global and the local
search capabilities of the swarm. Initially w should be chosen less
than one and should be decreased linearly in each iteration.

Generally PSO has the advantage of being very simple in concept,
easy to implement and computationally efficient algorithm. Since
updates in algorithm consist of simple adding and multiplication
operators and no derivation operation is included, computa-
tion time is dramatically decreased compared to other heuristic

algorithms [49,50]. In order to avoid premature convergence, PSO
utilizes a distinctive feature of controlling a balance between global
and local exploration of the search space which prevents from being
stacked to local minimum [18,19]. Procedures of PSO algorithm is
given in Fig. 1.

3. Analog integrated circuit structures

Analog IC design in general is perceived as less systematic and
more heuristic and knowledge-intensive in nature than digital IC
design. The variety of circuit schematics and the number of con-
flicting requirements and corresponding diversity of device sizes
are also much larger. In addition analog circuits are more sensitive
to nonidealities and all kinds of higher order effects and parasitic
disturbances [23].

The problem considered here is the optimal selection of tran-
sistor dimensions, which is only a part of a complete analog circuit
CAD tool. Actually, analog sizing is a constructive procedure that
aims at mapping the circuit specifications (objectives and con-
straints on performances) into the design parameter values [39].
In other words, the performance metrics of the circuit, such as
gain, power dissipation, occupied area, etc. have to be formulated
in terms of the design parameters [51]. Then, these design parame-
ters such as device sizes and bias currents should be adjusted under
multiple design objectives and constraints. The many degrees of
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Fig. 2. Differential amplifier with current mirror load [52].

Fig. 3. Two stage operational amplifier [52].

freedom in parameter space as well as the need for repeated circuit
performance evaluation made this a lengthy and tedious process
[31]. Here, particular specifications for specified topologies of a dif-
ferential amplifier and an operational amplifier (op-amp) are aimed
to be met  by adjusting design parameters such as device sizes and
bias currents with PSO algorithm, while minimizing the total MOS
transistor area. The configurations considered in this study are a
differential amplifier with a current mirror load (Fig. 2) and a two
stage CMOS op-amp (Fig. 3). Both can be characterized by a number
of specifications as given below. More detailed description can be
found in [24,35,50,52]:

• Common mode rejection ratio (CMRR)
• Input offset voltage (VOS)
• Slew rate (SR)
• Power dissipation (Pdiss)
• Small signal characteristics (Av, ω−3dB, ft, f−3dB)
• Phase margin
• Input common mode range (ICMR)
• Power supply rejection ratio (PSRR)

Small-signal differential voltage gain (Av), cut-off frequency
(f−3dB), unity gain bandwidth (ft), maximum and minimum input
common mode range voltages (VIC(max), VIC(min)), slew rate (SR) and
power dissipation (Pdiss) as design specifications and output capac-
itance (CL), compensation capacitance (Cc) and MOS  transistor

dimensions as design parameters are provided within limits. Equa-
tions defining each specification [35,50,52] are utilized for cost
function of PSO based analog IC design and are considered for
obtaining MOS  device sizes (as in Figs. 2 and 3) and moreover
minimizing the total MOS  transistor area.

A. Constraints and objectives for differential amplifier
• Determination of the range of Id5 (Iss) to satisfy both SR and

Pdiss.
• Design of W1/L1 (W2/L2) to satisfy Av
• Design of W3/L3 (W4/L4) to satisfy the upper ICMR
• Design of W5/L5 (W6/L6) to satisfy the lower ICMR

B. Constraints and objectives for operational amplifier
• Selection of minimum value for Cc.
• Determination of Id5 (Iss) to satisfy SR
• Design of W1/L1 (W2/L2) using the transconductance of the

differential input stage
• Design of W3/L3 (W4/L4) to satisfy the upper ICMR
• Design of W5/L5 (W8/L8) to satisfy the lower ICMR
• Design of W6/L6 assuming balanced conditions

W6

L6
= W4

L4

gm6

gm4
(3)

where

gm6 ≥ 10gm1 (4)

and

gm1 = 2� ftCc (5)

assuming zero z1 is placed beyond ten times ft [52]

gm4 =
√

2K ′
4

(
W4

L4

)
Id4 (6)

• Calculation of Id6 which will most likely determine the major-
ity of the power dissipation.

Id6 = g2
m6

2K ′
6(W6/L6)

(7)

• Design of W7/L7 to achieve the desired current ratios between
Id5 and Id6

W7

L7
=

(
W5

L5

)
I6
I5

(8)

4. PSO based analog integrated circuit design

In order to investigate the usage of PSO in analog IC
design, optimal design of two basic analog circuit structures
are carried out. The aim of both cases is to minimize total
MOS  transistor area while satisfying design specifications and
design parameter constraints. In each case study, by establishing
design parameters and specifications to PSO, the optimal cir-
cuit structure is aimed to be designed by the algorithm. Design
problem has been introduced to PSO by composing an equa-
tion consists of input variables and design parameters as a cost
function (CF).

In the beginning of the algorithm, a certain range is determined
for both design specifications and design parameters by human
designer. Input variables are also determined by the designer
and dependent to preferential technology parameters. PSO should
minimize CF and obtain design criteria and design parameter
values for the given range which provides minimum CF value
(Fig. 4).
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Fig. 4. Flowchart of PSO based IC design methodology.

The starting point of design consists of two types of information.
First type of information such as the technology and the power sup-
ply is set by the designer. The other type of information is the design
criteria. The range of each criteria and design parameter, power
supply values and technology information are set as inputs to PSO
based design scheme (Table 2) and PSO algorithm should obtain the
solution set that consists the exact values of design parameters (CL,
Cc and (W/L)k where k = 1.6 for differential amplifier and k = 1.8 for
operational amplifier) and design specifications (VIC(max), VIC(min),
SR, Pdiss, Av, f−3dB, ft) for given ranges.

The design scheme is implemented with the relationships that
describe design specifications to solve for DC currents and W/L val-
ues of all MOS  transistors. Simulations are carried out using TSMC
0.35 �m model parameters.

PSO algorithm is constructed using MATLAB R2008a. Initial pop-
ulation matrix size was 10 × 7 where row number of 10 indicates
the number of particles in the population and column number of
7 is the dimension of particle vector. Particle vector structure for
each analog circuit structure is expressed in (9) and (10).

Xdifamp = [SR, CL, Av, f−3dB, VIC min, VIC max, Pdiss] (9)

Xopamp = [SR, CL, Av, ft, VIC min, VIC max, Pdiss] (10)

where SR is the slew rate (V/�m),  CL is the output capacitance (pF),
Av is the gain (V/V), f−3dB is the cut-off frequency (KHz), ft is the
unity gain bandwidth (MHz), Pdiss is the power dissipation (�W),

Table 2
Inputs and outputs for PSO based design scheme.

Components in CF Information Input/output for PSO

VDD, VSS • Set by human designer
• Fabrication technology dependent

Input
VTN, VTP

�nCox, �pCox

CL, Cc • Exact results for the given ranges Output
(W/L)k

f−3dB, ft
VIC(max), VIC(min)

SR
Pdiss

Av

Table 3
Design parameters obtained with Darwin and PSO.

Differential amplifier with current
mirror load design parameters

Darwin [32] PSO

Ibias (�A) 2 125
W1/L1, W2/L2 (�m/�m)  240/13.2 29.4/3.5
W3/L3, W4/L4 (�m/�m)  7.3/7.7 11.3/3.5
W5/L5 (�m/�m)  4.6/2.4 4.2/1.4
W6/L6 (�m/�m)  2.4/2.4 4.2/1.4
CL (pF) 2 5

VIC(min) (V) and VIC(max) (V) are the lower and upper limits of ICMR,
respectively.

Velocity update parameters c1, c2 and w were selected as 1.7,
1.7 and 0.99, respectively. The algorithm runs for upper limit of
100 iterations. CF is defined as the total area that MOS  transistors
occupy and given in (11).

CF =
T∑

k=1

(W(k) × L(k)) (11)

where T is the total number of MOS  transistors of the designed
circuit. The target value of CF is aimed to be smaller than 300 �m2

for both design cases.

5. Simulation results

This section provides the simulation results of PSO based IC
design methodology with respect to previous methods.

5.1. Simulation results for differential amplifier

PSO is utilized for a differential amplifier with current
mirror load having design specifications of SR ≥ 10 V/�s,
Av > 100 V/V, f−3dB ≥ 100 kHz, −1.5 V ≤ ICMR ≤ 2 V, Pdiss ≤ 1 mW
with inputs of VDD = −VSS = 2.5 V, VTN = 0.4761 V, VTP = −0.6513 V,
K ′

n = 181.2 �A/V2, K ′
p = 65.8 �A/V2. Constraints for design

parameters are set as CL > = 5 pF, 100 ≥ (W/L)k ≥ 3. In order
to minimize the channel modulation effect, MOSFET length
values are chosen as L1 = L2 = L3 = L4 = 3.5 �m and L5 = L6 =
1.4 �m.

Target value of CF is aimed to be smaller than 300 �m2. A total
MOS  transistor area of 296 �m2 with each MOSFET width (Wn, Wp),
Ibias and CL is obtained within 582 epochs in 25.02 s with Intel Core2
CPU T5500 @1.66 GHz.

Differential amplifier with current mirror load is redesigned
using the resulting design parameters in SPICE simulator to vali-
date that PSO based design is satisfying desired specifications. SPICE
simulations (Figs. 5–8)  demonstrate that PSO based design not only
satisfies all specifications and design constraints but also minimizes
total MOS  area with respect to DARWIN synthesizer [32] as given
in Tables 3 and 4.

5.2. Simulation results for operational amplifier

Considering two  stage operational amplifier, PSO is utilized
for design specifications of SR ≥ 10 V/�s, ft ≥ 3 MHz, Av > 1000 V/V,
−1.5 V ≤ ICMR ≤ 2 V, Pdiss ≤ 2.5 mW with PSO inputs as same with
previous design scheme. Constraints for design parameters are set
as CL > = 10 pF, 100 ≥ (W/L)k ≥ 2. In order to minimize the channel
modulation effect, all MOSFET length values are chosen as 2 �m
[53].

Target value of CF is aimed to be smaller than 300 �m2. PSO
based design method resulted in a total MOS  transistor area of
265.8373 �m2 along with exact values of design specification
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Fig. 5. Slew rate of PSO based differential amplifier with current mirror load.

Fig. 6. Gain and phase margin of PSO based differential amplifier with current mirror load.

Fig. 7. PSRR of PSO based differential amplifier with current mirror load.

Fig. 8. ICMR of PSO based differential amplifier with current mirror load.
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Table 4
Comparison of Darwin and PSO by means of design specifications.

Differential amplifier with current
mirror load – design criteria

Specifications Darwin [32] PSO (SPICE simulator)

Output capacitance (pF) ≥5 2 5
Slew  rate (V/�s) ≥10 3.2 22.4
Power  dissipation (�W) ≤2000 31 1260
Phase  margin (o) >45 72 83.8
Cut-off frequency (kHz) ≥100 – 100
Gain  (dB) >40 60 42
VIC(min) (V) ≥−1.5 −1.3 −0.8
VIC(max) (V) ≤2 1.9 1.4
CMRR  (dB) >40 – 84.2
PSRR+ (dB) >40 – 40.1
PSRR− (dB) >40 – 68
Vos (mV) <50 – 45.91
Total  area (m2) <3 × 10−10 65 × 10−10 2.96 × 10−10

Fig. 9. Slew rate of PSO based two-stage operational amplifier.

Fig. 10. Gain and phase margin of PSO based two-stage operational amplifier.

and design parameters (Wn, Wp, Ibias, Cc, CL). Design process
concluded after 100 epochs with a total execution time of
8.6 s with Intel Core2 CPU, T5500 @1.66 GHz [53]. Two-stage
operational amplifier is redesigned using the resulting design
parameters in SPICE simulator in order to validate PSO based design
is satisfying the specifications. SPICE simulations (Figs. 9–12)
demonstrate that PSO based design not only satisfies all spec-
ifications and design constraints but also minimizes total MOS
area with respect to convex optimization method [35] as given in
Tables 5 and 6.

Table 5
Design parameters obtained with Convex opt. and PSO.

Two-stage op-amp design parameters Convex opt. [35] PSO [53]

Ibias (�A) 10 40.39
W1/L1, W2/L2 (�m/�m)  232.8/0.8 4.9/2
W3/L3, W4/L4 (�m/�m)  143.6/0.8 5.9/2
W5/L5 (�m/�m)  64.6/0.8 2.1/2
W6/L6 (�m/�m)  588.8/0.8 90.9/2
W7/L7 (�m/�m)  132.6/0.8 16.3/2
W8/L8 (�m/�m)  2/0.8 2.1/2
CL (pF) 3 10
Cc (pF) 3.5 3
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Fig. 11. PSRR of PSO based two-stage operational amplifier.

Fig. 12. ICMR of PSO based two-stage operational amplifier.

Table  6
Comparison of convex optimization and PSO by means of design specifications.

Two-stage operational amplifier design criteria Specifications Convex optimization [35] PSO (SPICE simulator) [53]

Output capacitance (pF) ≥10 3 10
Slew rate (V/�s) ≥10 88 11.13
Power dissipation (�W) ≤2500 5000 2370
Phase  margin (o) >45 60 66.55
Unity gain bandwidth (MHz) ≥3 86 5.32
Gain (dB) >60 89.2 63.8
VIC(min) (V) ≥−1.5 – −0.8
VIC(max) (V) ≤2 – 1.75
CMRR (dB) >60 92.5 83.74
PSRR+ (dB) >70 116 78.27
PSRR− (dB) >70 98.4 93.56
Total area (m2) <3 × 10−10 82 × 10−10 2.65 × 10−10

6. Conclusion

Analog IC design mainly consists of topology choice, sizing task
and the generation of layout. The problem considered here is the
optimal selection of transistor dimensions, which is only a part of
a complete analog circuit CAD tool. Actually, analog sizing is a con-
structive procedure that aims at mapping the circuit specifications
where the performance metrics of the circuit, such as gain, power
dissipation, occupied area, etc. have to be formulated in terms of
the design parameters. Following, these design parameters such as
device sizes and bias currents should be adjusted under multiple
design objectives and constraints. The many degrees of freedom
in parameter space as well as the need for repeated circuit perfor-
mance evaluation made this a lengthy and tedious process. Here,
particular specifications for specified topologies of a differential
amplifier with current mirror load and a two-stage operational

amplifier are aimed to be met  by adjusting design parameters such
as device sizes and bias currents with PSO algorithm.

Design equations of each analog circuit are utilized for cost
function of PSO algorithm, since numerous design specs are of con-
cern. Considering differential amplifier with current mirror load,
PSO-based design method is utilized for TSMC 0.35 �m technol-
ogy parameters and design process is concluded in 25 s. PSO-based
design for two-stage amplifier is concluded in 8.6 s after 100 iter-
ations. Resulting design parameters for each analog circuit are
utilized for redesign in SPICE simulator in order to validate the exact
values of design specifications obtained with PSO. Consequently,
PSO based design scheme satisfied all the design specifications and
minimized total design area with respect to former methods. Con-
sidering both design cases, PSO proved its efficiency on analog IC
design with high optimization ability in short computation time.
As a further work, performance of other EA techniques could be
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investigated by means of accuracy and computational time by uti-
lizing EKV modeling in analog IC sizing issues.
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