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Abstract—Continuous user authentication is an important
prevention-based approach to protect high security mobile ad-
hoc networks (MANETS). On the other hand, intrusion detection
systems (IDSs) are also important in MANETS to effectively iden-
tify malicious activities. Considering these two approaches jointly
is effective in optimal security design taking into account system
security requirements and resource constraints in MANETS.
To obtain the optimal scheme of combining continuous user
authentication and IDSs in a distributed manner, we formulate
the problem as a partially observable Markov decision process
(POMDP) multi-armed bandit problem. We present a structural
results method to solve the problem for a large network with a
variety of nodes. The policies derived from structural results are
easy to implement in practical MANETSs. Simulation results are
presented to show the effectiveness and the performance of the
proposed scheme.

Index Terms—Authentication, intrusion detection, mobile ad-
hoc networks, security.

I. INTRODUCTION

ITH recent advances in mobile computing and wireless

communications, mobile ad-hoc networks (MANETS)
are becoming more attractive for use in various applications
[1]. Security issue is an important issue for mobile ad hoc
networks, especially for those security-sensitive applications.
Two classes of approaches, prevention-based (such as user
authentication) and detection-based (such as intrusion detec-
tion), can be used to protect high security MANETs. User
authentication is critical in preventing non-authorized users
from accessing or modifying network resources in high se-
curity MANETSs. User authentication needs to be performed
continuously and frequently, since the chance of a device in
a hostile environment being captured is extremely high [2].
Biometrics technology, such as the recognition of fingerprints,
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irises, retinas, etc., provides some possible solutions to the
continuous user authentication problem in MANETS [3], since
it has direct connection with user identity. Intrusion detection
systems (IDSs) are also important in high security MANETS
to effectively identify malicious activities. In the MANETs,
host-based IDSs are suitable since no centralized gateway or
router exists in the networks [4].

Many efforts have been made to research on either con-
tinuous user authentications or host-based intrusion detection
systems. Authors of [2] presented the theory, architecture,
implementation, and performance of a multimodal biometrics
verification system, and also proposed new metrics against
which they benchmark their system. A biometric method for
continuous user authentication using a fuzzy controller was
presented in [5]. Authors of [6] proposed a data pre-processing
method to improve a hidden Markov model (HMM) training
for host-based anomaly intrusion detection. A mobile battery-
based intrusion detection (B-BID) method was presented in [7]
to correlate attack activities with device power consumption
patterns. Chari et al. [8] presented their experiences with build-
ing BlueBox, a policy-driven host-based intrusion detection
system.

Continuous authentication and intrusion detection can be
considered jointly to further improve the performance of high
security MANETSs. However, little research has been done in
combining these two classes of approaches in MANETSs. The
authors in [9] proposed a useful framework to combine user
authentication and intrusion detection. However, the proposed
scheme in [9] is a centralized scheme, in which the whole
network is formulated as a single partially observable Markov
decision process (POMDP). Solving the POMDP can be com-
putationally intractable since the state space of the POMDP
grows exponentially with the number of biometric sensors and
IDSs [10]. Therefore, new schemes have to be proposed for a
MANET with a large number of distributed nodes.

In this paper, we present a fully distributed scheme of
combining continuous authentication and intrusion detection
in high security MANETs. A user authentication (or IDS)
can be scheduled in a distributed manner considering both
the security situations and resources (e.g., node energy) in
MANETS. The distributed continuous user authentication and
intrusion detection scheduling problem is formulated as a
POMDP multi-armed bandit problem. We present a structural
results method for solving the scheduling problem in a large
network with a variety of nodes. We show that, under reason-
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able conditions on MANETS, structural results can be derived
for the combined continuous user authentication and intrusion
detection problem, which are trivial to implement and make
the solution practically useful. Simulation results are presented
to show the effectiveness and the performance of the proposed
scheme.

The rest of the paper is organized as follows. Section II
introduces the proposed scheme for user authentication and
intrusion detection in MANETS, and also formulates the sys-
tem. Section III shows the solution to the problem. Section IV
discusses the computational complexity and communication
overhead. Section V presents the simulation results. Finally,
we conclude this study in Section VI.

II. MULTIMODEL BIOMETRIC-BASED CONTINUOUS USER
AUTHENTICATION AND INTRUSION DETECTION

Most authentication systems do not need to re-authenticate
the users for continuous access to the protected resources.
However, in hostile environments where the chances of a
node being captured are high, user authentication is needed
not only for the initial login, but also to verify the presence
of the authentic user continuously, in order to reduce the
vulnerability of the system [9]. The frequency depends on the
situation severity and the resource constraints of the network.
Using biometrics technology, individuals can be automatically
and continuously identified or verified by their physiological
or behavioral characteristics without user interruption [3], [11].
Multimodel biometrics can further improve the security per-
formance of the MANETS by utilizing advantages of various
biometrics in different situations.

A. MANETs Equipped with Biosensors and IDSs

Assume that a MANET has a biometric-based continuous
authentication system with N — D biosensors and D IDSs,
which have the ability to detect intrusions. The IDSs are also
modeled as sensors bringing the total number of sensors to
N. In the rest of this paper, we use sensor to refer to an
authentication device or an intrusion detection device. Without
loss of generality, we assume that some nodes have one or
more biosensors, and some do not have any biosensor due to
the heterogeneity of network nodes in the MANET. Similarly,
some nodes are equipped with the IDS, and some are not
equipped with the IDS. The total number of network nodes in
the MANET is not directly related to the number of sensors.
An example framework for the MANET with biosensors is
illustrated in Fig. 1.

The system can perform two kinds of operations: intrusion
detection and user authentication. The IDSs can operate at
all time instants to monitor the system. Authentication may
be executed at every time instant as well. However, intrusion
detection and authentication may consume a large amount
of energy, which is a concern for energy-constrained devices
in MANETS. Biometric information transmitted between bio-
metric sensors and their remote storage entity with biometric
templates [12] may be detected by adversaries, who can break
into the biometric systems by performing various attacks (e.g.,
a replay attack) [13]. Therefore, performing authentication and
intrusion detection may lead to security information leakage
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Fig. 1. An example framework for a MANET with multimodal biometrics.

to an adversary monitoring communications and network
behavior. It is critical for the system to optimally schedule the
intrusion detection and continuous authentication activities for
each time slot in a distributed manner, taking system security
and resource (e.g., node energy) into account.

In biometric authentication and IDS processes, false accep-
tance (FA) and false negative (FN) errors can result in security
breaches, since unauthorized persons are admitted to access
the system/network or intrusions are not detected and therefore
no alert is raised. The security state of the system may not be
observed perfectly due to these errors. Therefore, we formulate
the distributed user authentication and intrusion detection
scheduling problem as a stochastic partially observed Markov
decision process (POMDP) multi-armed bandit problem [10],
[14], which is a powerful framework to solve the distributed
optimization problem.

B. System Model

We consider that the time axis is divided into equal time
slots, which correspond to the time intervals between two
continuous user authentications or intrusion detection. Let
the state of a sensor (biometric sensor or IDS) n,n €
{1,2,....N}, be 2{™) = (s;”),e,(f)) at time slot k, which

includes the sensor security state sén) and energy state e,(cn).

The security condition of each sensor can be divided into L
discrete levels, such as {secure,attacked, compromised}.
The security state space S includes all the security
states {s1,...,s.}. The residual battery energy of each
sensor can be divided into () discrete levels, such as
{low_energy, middle_energy, high_energy}. The residual
energy state space & includes all the energy states
{e1,...,eq}. The states s and e!™ evolve based on L-state
and Q-state Markov chains with state transition probability
matrix U™ and W™, respectively, if sensor n is used at
time k, which are described as follows:

U = (sgm)id_es , where 31(‘?) =P (51(:21 = j|s,(€") = z) .

J

wm = (65»;)) , where el(;l) =P (eg_?l = j\eén) = z) .

i,j€E

If sensor n is idle at time &, the state of this idle sensor, x,(cn)

(s,(cn), eén)) is unchanged, i.e., 35:31 = 5" and 6;:21 = e,
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Let X(™ with X,, states be sensor n’s state space. The state
transition probability matrix 7'"™) can be computed based on
U™ and W,

In practical MANETS, the state of the chosen sensor n may
not be observed directly. The observation of its state, y,i") =

(yink), yé"k) ), includes the observation of its security state yi"k)

and the observation of its energy state yé"k) at time slot k. Let
V™) with Y,, states be the observation state space. If sensor n
is picked at time slot k£ and the security state s,(fn) equals to ¢,
the probability of obtaining security observation m is denoted
as:

b; (ak = n,yizg = m) =P (yglk) = m\s;n) =id,a = n) ,
ey
where ¢ € S, and m € M, and M is the state space
of observations of the security state. Define the observation
matrix of selected sensor n’s security state as:

B (47} = m) = diagles(n,m), ....by(n.m)]. (@)

The observation matrix of selected sensor n’s energy state
Bén) can be also defined using the above method. Matrix B (n)
denotes the probability of the observation y,i") when sensor
n is picked at time slot k£, which can be computed based on
matrix B{™ and matrix B{™.

Security-related and energy-related costs are considered in
our scheme, since transmitted biometric information may be
detected by adversaries, and energy is certainly consumed
when a sensor is used. Let a;, € {1,..., N} denote the chosen
sensor at time k. Its corresponding information leakage cost
at time k is defined as cg (s,&ak),ak), which is a function
of the security state of the chosen sensor and action at that
time. The corresponding energy cost at time k is defined as

Ce (e,(cak), ak), which is a function of the energy state of the
chosen sensor and action at that time. If sensor n is used

at time k, an instantaneous cost ﬁ’“c x,(cn),n is accrued,

which ¢ x,(fn),n = (1 — Nes (s;n),n) + Aee (e,(fn),n),
where A € (0,1) is the weight factor for these two kinds of
costs. 8 (0 < 8 < 1) denotes the discount factor, which can
model the fact that future cost is worth less than immediate
cost because the future is less certain. The weight factor can
be set differently in different applications. For example, in a
battlefield MANET, the weight factor A can be set to a value
close to 0, which reflects the fact that information leakage is
more important than energy loss in the battlefield network. By
contrast, in a civilian MANET, A can be set to a larger value,
which reflects the fact that energy loss is more important than
information leakage in the civilian network.

Denote the observation and action (sensor selection) his-
tory at time k as Y = (ygao),...,yliak’l)) and A, £
(ao, . .., ak—1), respectively. One sensor is chosen at time k+1
according to ag4+1 = p(Yi41, Ax), where the policy denoted
as u belongs to the class of stationary policy n . The total
expected discounted cost over an infinite-time horizon is given

by
VR SEY AR R
k=0
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The optimization objective is to find the optimal stationary
policy p* = argmin,e, J,, to minimize the cost in (3).

III. STRUCTURAL RESULTS METHOD FOR COMBINING
CONTINUOUS AUTHENTICATION AND INTRUSION
DETECTION

The decision about which sensor is chosen at each time
slot should depend on all the actions and observations history,
since the sensors’ states are only partially observable. To
this end, information state is developed to derive sufficient
statistical information for the past history. The information
state 71',(:) of sensor n at time slot k refers to a probability
distribution over the sensor’s states. Its entire probability
space (the set of all possible probability distributions) is
referred to as the information state space (™), which is totally
observable. If a sensor is chosen, its information state at that
time can be updated using the hidden Markov model state
filter with the new observation. Otherwise, their information
states remain unchanged at that time slot. Therefore, the above
POMDP multi-armed bandit problem can be re-expressed as
a fully observable multi-armed bandit problem in terms of
the information state, which means the optimal sensor can be
chosen based on the information state [15].

A. Gittins Index Policy

For our proposed scheme, the optimal policy has an index-
able rule, meaning that the optimal policy can be found ac-

cording to the Gittins indices of the sensors (™) (771(;)) (n=

1,...,N) [15]. The Gittins index of a sensor is a function of
that sensor’s characteristics (e.g., state transition probabilities)
and its information state. The optimal policy at time k is
that the sensor with the largest reward Gittins index at that
time should be selected when the reward is the optimization
objective, which significantly decreases the computational
complexity compared to using the POMDP methods [10].

One common method for computing the Gittins index of
each sensor is a value iteration algorithm [10]. However, the
value iteration-based solution for computing the Gittins index
only works for a MANET with a small number of nodes
and a small number of states and observation states. For a
large network with a variety of nodes, the value iteration-
based solution can become computationally intractable [10],
illustrated in Table I.

B. Monotone Gittins Index in the Structural Results Method

In this section, we show that, under reasonable conditions
on the cost vector C, state transition probability matrix 7" and
observation probability matrix B of each node in MANETs,
the Gittins index in our problem can be monotone increasing in
the information state (with respect to the monotone likelihood
ratio (MLR) ordering [10]). This means that if the information
states of these NN sensors at a given time instant are MLR
comparable, the optimal policy is to pick the authentication
sensor or the intrusion detection system with the smallest
information state with respect to the MLR ordering. Namely,
the sensor with the higher probability of being in the better
state has a higher possibility of being chosen at that time slot,
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if the information states are MLR comparable. The definition
of MLR ordering used in this paper is described as follows.
Definition 3.1: MLR Ordering.
Assume that each sensor includes the same number of
security and energy levels. Namely, Xi,..., Xy are equal
to X.

1) Let w1 and 75 be two information state vectors. Then,
my is less than me with respect to the MLR ordering —
denoted as m <, mo if Wl(i)ﬂg(j) > Wz(i)ﬁl(j),i <
Jyi,5 € {1,...,X}. For example, m; = [0.3 0.2 0.5]
and mo = [0.1 0.2 0.7], then 7 <, 7.

2) A function f(-) is MLR increasing if for all 7,7 € U,
T <, mp implies f (m1) < f (72).

3) Let 7). 72 .. 7(V) denote the information states of
N sensors. Then they are said to be MLR comparable
if for any n,n € {1,..., N}, either 7(") <, (™) or
x> g

4) Given MLR comparable information states of these
N sensors, denote the smallest information state (with
respect to MLR ordering) as min{z() ... 7(")} with
index argmin{7( .. . 7"}

In the following, we present the conditions on the parame-
ters C, T and B of an arbitrary sensor, where its Gittins index
~(7) is monotone in information state w with respect to the
MLR ordering.

Theorem 1: Consider the following assumptions for each
Sensor:

Assumption 1: Costs satisfy C(i) < C(i + 1).

Assumption 2: State transition probability matrix 7" is to-
tally positive of order 2 (TP2), i.e., all its second order minors
are non-negative. That is, determinants

tile

i o
’ i > 0 for ig > i1,j2 > J1.

i2]1 i2J2

Assumption 3: Symbol probabilities satisfy (b; m)menm <r
(bi+1,m.)m€M for i = 17 .. .,X —1.

Then the Gittins index ~y(w) of each sensor is MLR
increasing. Therefore, if the information states of the N
sensors are MLR comparable, then the optimal policy p* is
to pick the sensor with the smallest information state with
respect to MLR ordering at each time slot, namely, a; =

w (W,(Cl), . ,T](CN)) = argmin (ﬂ'lin) ,ned{l,...,N}
The above theorem says that if the information states of
the sensors are MLR comparable, then the optimal policy is
a greedy policy. We give the following examples to explain
the optimal policies in different scenarios. In a battlefield
MANET, assume that information leakage is far more impor-
tant than energy loss. In this case, we can consider two states,
{secure, compromised}, for each sensor, and all information
states are MLR comparable. The optimal policy in this case is
to choose the sensor with a higher probability of being in the
secure state at each time slot. Similarly, in a civilian MANET,
where energy loss is more important than information leakage,
we can consider two states, {high-energy, low-energy}, for
each sensor, and all information states are MLR comparable.
The optimal policy in this case is to choose the sensor with a
higher probability of being the high-energy state at each time
slot. In Section VII, Simulation Results and Discussions, we
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have added some simulation results in Figs. 6 and 9 about
battlefield MANETS and civilian MANETS.

In the following, we show that, under reasonable conditions
on the matrices of each node in MANETS, the distributed
continuous user authentication and intrusion detection system
meets the above three assumptions. Assumption 1 shows that
for an arbitrary sensor, the cost in state ¢ is less than or
equal to that in state ¢ 4 1. In the distributed continuous user
authentication and intrusion detection scheduling problem, the
cost vector of each sensor always meets this assumption, since
there is more information leakage when a chosen node is
in a more dangerous state than when it is in a safer state.
Therefore, the cost of selecting a node in the more secure
and higher energy state is lower than that of selecting a more
compromised and lower energy node.

Assumption 2 holds in the following situation. Due to
continuity arguments, if the state of a sensor is x;,1 < < X
at time k, then at time k + 1, it is reasonable to assume
that it is either still in state x;, or, with a lower probability,
in the neighboring states z;.; or x;_;. Therefore, in our
proposed scheme, each sensor can be modeled as a X -state
Markov chain with diagonally dominant tridiagonal transition
probability matrix 7', where ¢;; = 0 for j > ¢+2and j < i—-2.
The following matrix is an example of a diagonally dominant
tridiagonal matrix.

09 01 O 0
0.1 08 01 O
0 01 08 0.1
0 0 01 09

According to [16], a necessary and sufficient condition
for tridiagonal matrix 7" to meet Assumption 2 is that
tigtiv1i41 2 Ciir1tiat,i-
Several common observation probability models
MANETs that satisfy Assumption 3 are listed as follows:
1) Each sensor measures the target in quantized Gaussian
noise.
2) Observation probabilities die geometrically fast with the
error between the reported observation y and the real
state x.
3) The value the sensor reports is never more than one

discrete value away from the true value. Therefore, B
matrix is the following X x X tridiagonal matrix:

for

P1 1-— P1 0 0

1;?2 po 1;?2 0
0 1;:!)3 p3 1;?3
0 0

1—ps  pa

In the following, we assume that, in our proposed scheme,
vector C, matrix 7', and matrix B of each sensor meet all of
the three assumptions in Theorem 1. The Gittins index ~y(r)
is monotone increasing. Therefore, if the information states of
the N sensors are MLR comparable, the optimal policy is to
pick the authentication or intrusion detection sensor with the
smallest information state with respect to MLR ordering.

C. Approximations to the Gittins Index

When there are only 2 states for the N sensors, namely
{(secure, high_energy), (compromised, low_energy)}, their in-
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formation states are always MLR comparable, and the optimal
policy will be the same as above. For more states than 2,
when the information states are MLR comparable, the optimal
policy can be used directly. However, since for > 3, MLR
is a partial ordering, the N information states 7(1), ... 7(N)
are not necessarily MLR comparable at each time instant.
When the trajectories of the information states are not MLR
comparable, the following approximations can be used, by
projecting the non-MLR comparable information state onto
the nearest MLR comparable state.

In the proposed scheme, each sensor starts from the (se-
cure, high_energy) state, which means that the information
state equal to (1, O, ..., 0), where all elements equal to
zero, except the first. Therefore, the information states of
all N sensors are identical. Assume at time instant k, the
information states of all NV sensors are MLR comparable.
Let o(1),...,0(N) denote the permutation of (1,...,N),
so that 7, <, w7 <y eee <, WZ(N). From the above
theorem, the optimal action is ax = o(1). But at the time
k + 1, the updated information state WZ&) may not be MLR
comparable with the other N — 1 information states. When
the updated information state is not MLR comparable with
the other information states, it can be projected to the nearest
information state, denoted 7, in the simplex ¥ that is MLR
comparable with the other NV —1 information states. That is, at
time k£ + 1, we solve the following N optimization problems:

G(ﬁ(l)) =
G(ﬁ(n)) —

G (ﬁ(N))

Here, ||.|| denotes some norm, and the 2-norm is used in our
simulation. In the equations, G and 7,, denote the minimum
value and minimum solution for each equation, respectively.
Finally, set WZ&) = arg minz, G(7,). The above N problems
are straightforwardly shown to be convex optimization prob-
lems and can be solved efficiently in real time. Thus, all the
information states at time k£ + 1 are now MLR comparable,
and the optimal action ajy; is choosing the node with the

smallest information state with respect to MLR ordering.

A 1) . _ )
min |7 — 717 || subject to 7 <, 7y,

. — ol .
min || — 7,1 || subject to

Wg(n) <, <, Wg(n+1),n:2,...,N—1

min ||7 — ﬂgill)H subject to wZ(N)gr 7. (4)
rew

IV. COMPUTATIONAL COMPLEXITY AND
COMMUNICATION OVERHEAD

In the centralized scheme [9], the whole network is for-
mulated as a single POMDP, and a centralized controller is
needed to schedule authentication and intrusion detection in
the whole network. Since the state space of the POMDP in
the centralized scheme in [9] grows exponentially with the
number of scheduled sensors, solving the POMDP can be
computationally intractable [10]. By contrast, in the proposed
scheme, the optimal policy can be found by a Gittins index
rule, which means that the scheduling problem only needs to
solve the individual POMDPs for each sensor. Therefore, the
computational complexity of the proposed distributed scheme
is dramatically decreased. The computational complexity can
be further reduced in the structural results. The corresponding
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simulation results about computational complexity will be
presented in Subsection V-A.

In the proposed scheme, communication overhead is mainly
due to multicasting the following two types of messages in the
real-time scheduling process:

o INTIAL-SENSOR-INDICES (ISIND), 8 bytes, which is
sent at the beginning of the authentication and intrusion
detection process, so that each sensor knows the others’
Gittins indices.

« SENSOR-INDICES (SIND), 8 bytes, which is sent at
the beginning of each time slot by the node active in the
previous time slot.

Any network layer multicast algorithm for ad-hoc networks
can be used in the scheme.

In the centralized scheme, the centralized controller needs
to notify the N sensors from which sensor has been chosen
at the beginning of the authentication and intrusion detection
process. At each time slot, the active node needs to transmit
its observation value to the centralized controller. After that,
the controller also needs to notify the nodes of which sensor
it has chosen at this time slot. The centralized scheme’s total
communication overhead is approximately proportional to 4N
bytes, plus 8 +4.N bytes per time slot. The proposed scheme’s
total communication overhead is proportional to 8N x (N —1)
bytes, plus 8 x (N — 1) bytes per time slot. Therefore, the
proposed scheme’s communication overhead is greater than
that of the centralized scheme.

There are some other tradeoffs within the proposed scheme.
For example, in the real-time sensor selection process (men-
tioned in Section V), each sensor can broadcast the new Gittins
index to the other sensors only in certain time slots in order to
further decrease the communication overhead. However, the
cost becomes higher since the other sensors have to make
decision based on out-of-date Gittins indices. In the extreme
case, if sensors do not broadcast their Gittins indices to the
other sensors at all, sensors have to be chosen randomly at
each time slot. The results in Fig. 3 show that the average
cost of this random scheme is higher than that in the proposed
scheme.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we use computer simulations to compare
the performance of the centralized scheme and the proposed
distributed scheme, and the performance of the two methods
used in the proposed scheme. We consider the following
simulation scenario. There are two types of biosensors for
continuous authentication, iris sensor and fingerprint sensor,
and IDSs for intrusion detection. Each sensor has four states:
{(secure, high-energy), (secure, low-energy), (compromised,
high-energy), (compromised, low-energy)}. The iris sensor is
the most expensive one in terms of energy cost, and also
provides the most accurate authentication. The fingerprint
sensor provides intermediate accurate authentication, and has
intermediate energy cost. IDS uses the least energy, and has the
least accuracy in detecting the security state. The following de-
fined matrices are based on the above assumptions. Examples
of the state transition probability matrices of the iris sensor,
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fingerprint sensor and IDS, when they are active, are defined
as follows:

TM =((0.912,0.088,0.0,0.0), (0.025,0.950, 0.025, 0.0),
(0.0,0.044,0.912,0.044), (0.0,0.0, 0.05, 0.95)),

T =((0.784,0.216, 0.0, 0.0), (0.1, 0.8,0.1, 0.0),
(0.0,0.059, 0.882,0.059), (0.0,0.0, 0.1,0.9)),

T3 =((0.9702,0.0298,0.0,0.0), (0.01,0.98,0.01, 0.0),
(0.0,0.0149, 0.9702, 0.0149), (0.0,0.0, 0.02, 0.98)).

The observation probability matrix of each node is identical
to its state transition probability matrix. The cost vectors
are defined as: C(V) = (3,8,20,40), C® = (2,7,22,45),
C®) = (1,4,25,50). These specific values are used in all
simulations. In the simulations presented in Table I, these
matricies were modified to create a variety of similar node
types. Since there is more potential for information leakage
when a node is in the compromised state than in the secure
state, the information leakage cost of selecting a secure node is
lower than that of selecting a compromised node'. The above
matrices vary in different applications. For example, the cost
value of a sensor in a more compromised state needs to be set
much higher than that in a more secure state especially in a
battlefield network, so a more secure sensor can be chosen at
each time slot. However, in a civilian network, especially for
a energy-concerned network, the cost value of a sensor in a
lower energy state needs to be set much higher than that in a
higher energy state, so a higher energy sensor can be chosen
at each time slot.

It is a non-trivial task to setup sensors’ state transition
probability matrices, observation probability matrices, and cost
matrices for the proposed scheme. We assume that most
nodes’ properties can be made known when constructing these
matrices, which should be realistic particularly for tactical
MANETSs where initial device management and planning is
an a priori requirement. By “node properties” we mean the
information and states that are used as inputs to the state tran-
sition probability matrices, observation probability matrices,
and cost matrices. However, in a dynamic environment, where
heterogeneous nodes may join the network, it may not be as
realistic to assume knowledge of all the sensors’ properties.
In these circumstances, we should be able to predict and learn
the sensors’ properties from the history of observations and
actions.

We used ‘pomdp-solve’, a program in C++ from [17], to
compute the set of vectors Ag. In pomdp-solve, we chose
the incremental pruning algorithm developed in the artificial
intelligence community by Cassandra et al. [18], since it is
one of the fastest algorithms for solving POMDPs [10]. We
implemented the computation of the Gittins indices in Matlab.
All simulations are run on a computer equipped with Window
7, Intel Core 2 Duo P8400 CPU (2.26Ghz), 4GB memory. In
the simulations, the initial state for each node is (secure, high-
energy). We adopt the hybrid Manhattan and random waypoint
(RWP) mobility model [19] to simulate the node movements.

!For example, a compromised node could intentionally introduce collisions
in a cryptographic protocol.
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Fig. 2. An example policy derived from the structural results method (1:

Iris; 2: Fingerprint; 3: IDS).

Block Rayleigh flat-fading wireless channel model [20] is used
in this paper.

A. Computational Efficiency Comparison

Simulations are performed to compare the computational
efficiency in the centralized scheme [9] and the proposed
distributed scheme. Table I shows the computation time spent
in the centralized scheme and the proposed distributed scheme
in the off-line and on-line parts, as the total number of node
types in the MANET varies from 2 to 50. For the value
iteration algorithm, the on-line computation time is of the
same level as that of the structural results method. The table
also shows that the off-line time is the dominant part for the
value iteration algorithm. The computation time dramatically
increase when the number of node types changes from 2 to
4: from 0.03 seconds to more than 8 hours. In the structural
results method, a quicksort algorithm with MLR ordering is
used to sort the sensors by current information states. Each
value is the averaged result of 1000 simulations. The off-
line computation time for the structural results method is
always equal to O, since the method is only used for on-
line sensor scheduling. The computation time of the structural
results method slightly increase with the increasing type of the
nodes in the network. This shows that the structural results are
practically useful in real MANETS.

B. Policies Derived from the Structural Results

Fig. 2 shows an example of the policy for optimal schedul-
ing in the proposed scheme using the structural results method.
In this example, there are three sensors, one iris, one finger-
print, and one IDS. From Fig. 2, we can see that authentication
and IDS are scheduled dynamically as the simulation runs to
minimize the information leakage and maximize the network
lifetime in the MANET.

We also investigate how the initial states of the sensors
affect the MLR non-comparable percentage between the cho-
sen sensor and the idle sensors using the structural results
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TABLE I
THE COMPUTATION TIME IN THE CENTRALIZED SCHEME AND THE PROPOSED DISTRIBUTED SCHEME.

Scheme Method 2 node types | 4 node types | 20 node types | 50 node types

Centralized Incremental pruning algorithm 2h32m10s unfeasible unfeasible unfeasible

scheme

Proposed Structural results (off-l.ine) 0 0 0 0

distributed Str.uctufal resultg (on—hne)' 0.0427s 0.0576s 0',233.78 0.§9§OS

scheme Value iteration algoqthm (off-l.me) 0.03s 8h1m22s unfeasible unfeasible
Value iteration algorithm (on-line) 0.0379s 0.0531s - -

method, which affects whether or not the structural results
method can be directly used in that time slot. Each value is
the averaged result of 1000 simulations. Table II shows the
percentage of sensor choices in the first 100 steps where the
updated information state of the chosen sensor is not MLR
comparable, for different choices of initial sensor state. The
table shows that the percentage of choices leading to non-
MLR-comparable states is near to 0 when the sensors start in
the fourth state, since the sensors have a high probability of
remaining in the fourth state.

C. Performance Comparison

We perform simulations to compare the performance of
the centralized scheme, the random choice scheme and the
proposed distributed scheme, and the performance of the two
methods used in the proposed scheme. Fig. 3 illustrates the
average cost for the first 100 steps of the simulation. Each
cost value is the averaged result of 1000 simulations. The
figure shows that the average cost of this random scheme is
the highest among the three schemes. The figure also shows
that the average cost from the proposed distributed scheme
is higher than that from the centralized scheme, since the
nodes in the centralized scheme can make better decisions
as they have complete information. Since the nodes all start
from (secure, high-energy), the average costs using of different
schemes all begin at a low level, and diverge as over time as
the network changes states. The results show that the average
cost from the value iteration algorithm and that from the
structural results method are very close to each other. Fig.
4 illustrates the relative information leakage, which is defined
as the information leakage of the selected node divided by
the information leakage when the node is in the worst state.
The same observation is true with the information leakage in
Fig. 4. This shows the effectiveness of these two methods,
both of which can provide optimal policies that minimize the
information leakage and maximize the network lifetime. The
reasons why the result from the value iteration algorithm is
not exactly the same as that from the structural results method
are as follows:

1) For the value iteration algorithm, the finite-horizon Git-
tins index approximation can be made arbitrarily accu-
rate by choosing a sufficiently large horizon H, which is
a tradeoff between performance and computation time.
For the structural results method, the updated infor-
mation state of the chosen sensor has to project to
the nearest MLR comparable information state when
the updated information state is not MLR comparable
to those of the other sensors, therefore some errors
are generated. Nevertheless, the errors are small, which
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Fig. 3.  Average cost comparison of the centralized scheme, the random

choice scheme, and the proposed distributed scheme.

make the results from the structural results method are
very close to those from the value iteration algorithm.

Figs. 3 and 4 also show that the results from the two methods
are quite different in the early steps. The reason is that
the sensors all start in the first state, which means their
information states are (1, 0, 0, 0). Therefore, they are identical,
and one of the sensors is chosen randomly in the structural
results method. However, for the value iteration algorithm, the
sensor that can minimize the total expected discounted cost is
chosen at each time slot. After about 10 steps, the results are
very close in these two methods.

Different numbers of nodes are also used in the simulations
to verify the scalability of the proposed scheme using each
method in the battlefield network and civilian network. Fig. 5
and Fig. 6 show the average cost and the average information
leakage within the first 100 steps of the simulation of networks
of different sizes. In these simulations, we use the same
three types of nodes mentioned earlier. The figures show that
the average information leakage in the battlefield network
is much smaller than that in the civilian network, since the
more secure sensors in the battlefield network are the optimal
choices rather than the higher-energy ones in the civilian
network. The figures show that the average cost and the
average information leakage results for the value iteration
algorithm and the structural results method in the battlefield
network are similar. The results also show that the average
cost and the average information leakage decrease when the
number of available nodes in the network increases from 3 to
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TABLE II
PERCENTAGE OF STATES NOT MLR COMPARABLE IN THE FIRST 100 STEPS.

wén) el es es eq 7r(()n>(i) =1/4
Percentage of states not MLR comparable | 36.36 | 99.50 | 49.01 | 1.4000e-004 63.25
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numbers of nodes.

18. The reason is that there are more nodes that can be selected
for authentication and intrusion detection, so compromised and
low-energy nodes can be avoided.

Various state transition probabilities are also used in the
simulations to evaluate the dynamic stability of the proposed
scheme using each method. Fig. 7 shows the average cost
using these two methods as the first component in the state
transition probability matrix varies from 0.7 to 1.0, where
high state transition probability means that the system is more
secure. The results show that the average costs using these
two methods are similar. From Fig. 7, we can observe that the
cost decreases when the system becomes more secure. This is

and battlefield network with different numbers of nodes.

because the information leakage is smaller when the system
becomes more secure, therefore the cost is smaller. When the
state transition probability reaches 1, the average cost of the
two methods is quite different. The reason is that when the
state transition probability reaches one, the information states
do not change, and therefore a sensor is randomly chosen at
each time slot. Fig. 8 shows the average information leakage
within the first 100 steps when the first component in the
state transition probability matrix of the IDS varies from
0.7 to 1.0 and all other probability values remain constant.
The average information leakage using these two methods are
still close. The results show that information leakage remains
stable for the first four probabilities, and decreases when the
system becomes more secure. The reason for this is that the
proposed schemes avoid choosing the compromised nodes.
When the state transition probability further increases, the
average information leakage decreases.

D. Network Lifetime Comparison

Network lifetime performance has been evaluated for the
proposed scheme using each method, which is illustrated in
Fig. 9. In these simulations, the network lifetime is defined as
the time until the chosen node is in the low-energy state. The
results show that the network lifetime increases with the total
number of nodes. The average network lifetime is much higher
in the civilian network compared to that of the battlefield
network, since the higher-energy sensor is chosen at each time
slot, with the tradeoff being greater information leakage. In
the battlefield network, the results using the value iteration
algorithm and the structural results method are very close.
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VI. CONCLUSIONS AND FUTURE WORK

Combining continuous user authentication and intrusion
detection can be an effective approach to improve the security
performance in high security MANETSs. In this paper, we pre-
sented a distributed scheme of combining user authentication
and intrusion detection. In the proposed scheme, the most
suitable biosensor (for biometric-based authentication) or IDS
is dynamically selected based on the current security posture
and energy states in different applications. The problem was
formulated as a stochastic multi-armed bandit problem, and
its optimal policy can be chosen using Gittins indices. We
presented a structural results method for calculating the Gittins
indices of the sensors in a large network with a variety of
distributed nodes. Simulation results are presented to compare
the results using the centralized scheme and the proposed
distributed scheme, and the results using the structural results
method and value-iteration algorithm. The system perfor-
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Fig. 9. Network average lifetime comparison between civilian network and
battlefield network with different numbers of network nodes.

mance from the structural results method is very similar
to that from the value iteration algorithm, but with much
lower computational complexity. Future work is in progress
to consider more nodes’ states, such as mobility and wireless
channels, in making the scheduling decisions in MANETs. We
also plan to implement the proposed scheme in a testbed at
Defence R&D Canada - Ottawa.
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