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Abstract A technical challenge in successful deployment
and utilization of wireless multihop networks (WMN) are
to make effective use of the limited channel bandwidth.
One method to solve this challenge is broadcast scheduling
of channel usage by the way of time division multiple
access (TDMA). Three evolutionary algorithms, namely
genetic algorithm (GA), immune genetic algorithm (IGA)
and memetic algorithm (MA) are used in this study to solve
broadcast scheduling for TDMA in WMN. The aim is to
minimize the TDMA cycle length and maximize the node
transmissions with reduced computation time. In compar-
ison to GA and IGA, MA actively aim on improving the
solutions and is explicitly concerned in exploiting all
available knowledge about the problem. The simulation
results on numerous problem instances confirm that MA
significantly outperforms several heuristic and evolutionary
algorithms by solving well-known benchmark problem in
terms of solution quality, which also demonstrates the
effectiveness of MA in efficient use of channel bandwidth.

Keywords Wireless multihop networks - Broadcast
scheduling - Genetic algorithm - Immune genetic
algorithm - Memetic algorithm

1 Introduction

In wireless ad hoc network, single hop and multihop net-
works does not rely on a preexisting infrastructure, such as
routers in wired networks or access points in managed
wireless networks. Instead, each node participates in
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routing by forwarding the data for other nodes, so the
determination of which node forwards the data is made
dynamically based on the network connectivity. In a single
hop network, each mobile station (MS) can communicate
directly with all other MSs. In wireless multihop networks,
one or more intermediate node along with the path receives
and forwards the packets via wireless links. Wireless
multihop network extends the coverage of a network,
improves the connectivity and transmission over multiple
short links, which require less transmission power and
energy than that required over long links. It also provides
robust communication, rapid deployment and responds
quickly in dynamic environments.

Figure 1 represents a simple wireless multihop network,
each node represents a mobile station and a line connecting
two nodes indicates that the two MSs are within the
communication range. The neighbors of A are those MSs
that can communicate directly with A (i.e., B and C). Node
mobility in WMN causes frequent changes in the network
topology. The main difficulty in designing WMN is that not
all MSs can communicate directly with each other.

TDMA consists of fixed length time slots where each node
transmits in at least one slot. A wireless multihop network
consists of many MSs, where each MS has a certain number of
neighboring MSs. Time is assumed to be divided into slots,
each of duration equal to one maximum-length packet trans-
mission time plus the maximum propagation time between
any two MSs. MSs are assumed to use omnidirectional
antennas. The wireless channels are assumed to be noise free
and an unsuccessful reception is due to collisions only. MSs
operate in half-duplex mode, i.e., a MS can transmit or
receive, but cannot do both at the same time. Two or more non-
conflicting MS can share the same slot.

Conflicts in multihop networks may occur in two ways:
primary conflicts and secondary conflicts. The primary
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Fig. 1 A simple wireless multihop network

conflict occurs when two connected nodes transmit
simultaneously. A secondary conflict occurs when two or
more packets arrive at a node in a single time slot. This will
occur when two nodes at a distance of two hops allowed
transmitting simultaneously. Then, the intermediate node
will receive two different packets from two directly con-
nected nodes at the same time slot. Two MSs can transmit
in the same time slot without mutual interference, if they
are located more than two hops apart. In addition to the
scheduler properties mentioned above, it is desirable for a
WMN scheduler to possess the feature Low connectivity
information requirement i.e., some algorithms need global
network connectivity information while others require only
local (e.g., one or two-hop) connectivity information. Since
communicating this information consumes bandwidth, it
should be to a minimum.

The fundamental computational and algorithmic issues
in the broadcast scheduling problem of wireless multihop
networks are discussed in chapter 16 of [1]. Most broadcast
scheduling algorithms operate by producing a finite length
nominal schedule in which each station has assigned at
least one slot for transmission and then indefinitely
repeating that nominal schedule. The problem was proven
NP-complete [2, 3]. Most WMN schedulers are either node
activation or link activation [4], one example of the node
activation algorithm is given in [2]. A node activation
scheduler selects the nodes for transmission in such a way
to ensure that all its neighbors will receive a packet from
any node correctly. A link activation scheduler chooses the
nodes for transmission to guarantee that the destination
node receives the packet successfully.

Various algorithms are proposed to solve the scheduling
problem [2, 3, 5-17]. These algorithms are classified as
graph theoretic [2, 18], graph coloring [19] and probabi-
listic approaches such as mean field annealing [3], tabu
search [10], genetic algorithms [7, 9, 12], neural networks
algorithms [11, 20] and mixed neural-genetic procedure
[8]. Most of these algorithms are based on either of two
points: one minimizes the frame length without considering
the slot usage and the other attempts to maximize the slot
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utilization within the frame. Optimizing the two objectives
separately does not lead to a good solution. A better
approach is considering both of these criteria in an inte-
grated fashion to solve the broadcast scheduling problem.
The algorithm in [8] combines a Hopfield neural network
for the constraints satisfaction and a genetic algorithm for
achieving a maximal throughput. An approach based on a
modified GA, called genetic-fix is given in [9] that gen-
erates and manipulates individuals with fixed size to reduce
the search space substantially. A mixed tabu—greedy
algorithm is implemented in [10].

A TDMA frame with less number of time slots, maxi-
mum number of transmission with elite population method
and modified crossover operator in genetic algorithm is
proposed in [12]. Even though the optimal solution is
identified in less number of generations, the execution time
is not reduced. Based on the concepts from the field of
finite state machine synthesis is given in [14]. The stations
that can broadcast without collisions among themselves
grouped as maximal compatibles. A tight lower bound
derived from set of maximal incompatibles forms the basis
for deriving minimum frame length. The algorithm applies
set of rules on the maximal compatibles in order to maxi-
mize the utilization of slots. In [16] a simple and fast
randomized algorithm to find a pool of valid solutions of
the scheduling problem is proposed. Even though consid-
ering both the criteria by these algorithms the computation
time is not reduced. In [21] linear integer-programming
formulation is proposed to this problem, which performs in
reduced execution time but the maximum number of sta-
tions taken in their approach is 50 stations.

A brute force approach with dynamic programming is
used in [17] to improve the efficiency by eliminating the
repeated states and co-evolutionary genetic algorithm
approach is used to solve the collision free set for WiMAX
mesh network. The main drawback of this co-evolutionary
algorithm is that every member of test—case—population
had to be compared with every member of solution-popu-
lation. This requires many comparisons and calculations
hence might slow down the process when the population
sizes are huge.

Gradual noisy chaotic neural network (G-NCNN) to
solve the NP-complete broadcast scheduling problem in
packet radio networks is given in [22]. A two-phase opti-
mization approach is adopted to achieve the two objectives
with two different energy functions. In the first phase, a
G-NCNN which combines the noisy chaotic neural net-
work (NCNN) and the gradual expansion scheme to find a
minimal TDMA frame length. In the second phase, the
NCNN is used to find maximal node transmissions in the
TDMA frame obtained in the first phase.

Hysteretic noisy chaotic neural network (HNCNN) is
proposed in [15] by controlling noises of the equivalent
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model. They combine the HNCNN with the gradual
expansion scheme to find the minimal frame length in the
first phase, and to maximize the conflict-free transmission
in the second phase.

In [23], a shortest path based load balanced internet
protocol routing scheme with hose model (SLBIP) is pro-
posed. Networks with varying number of nodes, links and
average degree is taken for performance evaluation. The
computation time to solve the routing problems is analyzed
with other algorithms to illustrate the goodness of the
algorithm.

In [24], a chaotic neural network is used to compute the
delay-constrained multicast routing tree. Twelve different
networks with different node size, links, destination nodes
and delay bound is taken to evaluate the algorithm. The
results mainly focused on the computation time.

A simple distributed algorithm that is both stabilizing
and inherently stabilizing under a realistic model to route
messages over all shortest node disjoint paths from a pro-
cess to another in a n-dimensional hypercube network is
proposed in [25]. Sequence of lemmas is given to recognize
the time of the distributed algorithm.

For the broadcast scheduling problem, the approaches
analyzed above where suffered from the trade-off between
solution quality and running time. Computation time is an
important factor to validate an algorithm. Therefore, an
algorithm is still needed for broadcast scheduling problem
that improves the solution quality in reduced computation
time even for a large network. The objective of this work is
to reduce the time slots and to maximize the total number
of transmissions, in an acceptable execution time.

The WMN scheduler considered here is node activation
in addition to the one-hop and two-hop with low connec-
tivity information requirement. The scheduler identifies a
schedule transmission so that the channel utilization is
maximized with guaranteeing the QoS for all MSs. A
scheduler with the three evolutionary algorithms are car-
ried out and a series of simulations is conducted to evaluate
the performance of the proposed MA in terms of solution
quality and running time, and to verify its superiority over
GA and IGA.

Genetic algorithms solve many search and optimization
problems, effectively. However, they may drop into local
optimal solutions or they may find the optimal solution by
low convergence speed and GA blindly wanders over the
search space. To overcome these problems, we used the
immune concept to enhance the GA. Immune genetic
algorithm gets the knowledge from hop matrix during
vaccination process. IGA increases the number of trans-
mission in a reduced time slot but not in a good compu-
tation time, MA reduces the processing time. Memetic
algorithm is a blooming dialect of evolutionary algo-
rithm (EA). In addition to Darwinism, MA adopts the

Lamarckian theory that offspring can inherit the knowledge
or characteristics that their parents acquire during their
lifetime. The MA implements this idea by integrating a
local enhancement, such as local search and repair opera-
tor, into the canonical EA, and making the enhancement
inheritable, this integration significantly improves the
exploitation ability of EA. In genetic algorithm, the
mutation creates new genes for the population and
the crossover operator orients seeking the best solution
from the genes in the population. In memetic algorithm,
this orientation is achieved by local search. Local search
reduces the search space and reaches to high quality
solution faster. MA actively aims on improving solution
and explicitly concerned with exploiting all available
knowledge about the problem.

The rest of this paper is organized as follows: Sect. 2 gives a
formal definition of the problem, along with the constraints. In
Sect. 3, we describe the three algorithm and its operators. The
details of simulation results, comparison of time slot, channel
utilization, average time delay and computation time by MA,
IGA with other competitive algorithms are in Sect. 4. Finally,
conclusions are drawn in Sect. 5.

2 Representation of WMN scheduler

The WMN scheduler determines a collision free schedule
with minimum TDMA frame length and maximum slot
utilization by the nodes, in an acceptable running time. The
scheduler assumes that each MS has network connectivity
information within a two-hop radius. Initially, each MS
allocated a time slot in a frame (e.g., MS i assigned in the
ith time slot). MSs more than two hops away from the MS
i also eligible to transmit during slot i. Some pre-estab-
lished rule used to select an eligible MS to transmit in slot
i. The selected MS sends a broadcast message to inform
other MSs that are using slot i. The algorithm progresses in
such a way that it allows as many MSs as possible to
transmit in each slot. A node may interfere with another
node, so these nodes should not transmit simultaneously.
However, it does not ensure fair slot allocations among all
MSs and is not topology transparent.

The WMN can be represented by undirected graph
G = (N, E) where N is the set of nodes and E is the links
(transmission) assumed bidirectional. INl represents the
number of nodes in the given network i.e., INl = {n, ny,

.., ny} and 1M1 is number of time slots. In Fig. 1. N = {A,
B, C, D, E F, G, H} and INI = 8.

Connectivity matrix [CM] represents a direct link between
the nodes, hop matrix [HM] says about the one-hop and two-
hop connectivity information of each node, scheduler matrix
[SM] is the allotted time slots of the given network without
any interference.
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[0 1 1. 0 0 0 0 O]
1 0 1 0 0 0 0 O
1 1.0 1 0 0 0 0
[cM]- 00 I 0 1 1 0 0
00 0 1 0 0 1 0
00 0 1 0 0 1 0
00 0 0 1 1 0 1
00 0 0 0 0 1 0

This connectivity matrix is identified for the network given
in Fig. 1. Column represents nodes of the network and row
represents the link existence between the nodes, i.e., the
row one says about the connectivity information of node A,
likewise for the remaining nodes. The matrix has the value
0 or 1, where 1 represents the existence of a link.

A B CDE F G H
o 1 1 1 0 O 0 O
1 0 1 1 0 0 0 0
r 1 0 1 1 1 0 0
[HM]: 11 1 o 1 1 1 0
o o 1 1 0 1 1 1
0 0 1 1 1 0 1 1
o o0 o 1 1 1 0 1
o o0 o0 o 1 1 1 0

This hop matrix is recognized for the network given in
Fig. 1. Row value represents the one-hop and two-hop
information between the nodes. The matrix takes the value
0 or 1, where 1 says low connectivity information for the
node.

A B CDEF GH
1 0001 00O
[SM]: 01 00O0T1TUO0O0
001 00O0T1FP0
0001 0001

The optimal TDMA scheduler matrix generated for the
network in Fig. 1. Row represents the number of time slots.
It takes the value O or 1, where 1 represents the node
allowed for transmitting in that time slot. In first time slot,
nodes A and E allowed to send their packets without
interference.

3 Evolutionary algorithms

The GA is a heuristic search technique that simulates the
processes of natural selection and evolution [26]. John
Holland first proposed Genetic Algorithms (GAs) in the
1960s. GAs are effective, robust search procedure for
NP-complete problems [27]. The selection, crossover,
mutation, fitness function and termination condition dis-
cussed below is common for all three algorithms.

The TDMA scheduler matrix is a M x N matrix where
M is the number of time slots and N is the total number of
nodes in the network. The scheduler matrix is represented
as bit string chromosome containing Os and 1s. Each row
and column of the scheduler matrix represents to time slot
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and node transmission. The value 1 in the position (i, j) in
the matrix indicates that jth node is allowed for transmis-
sion in the ith time slot. The initial TDMA frames are
constructed using the Elite population method of Chakr-
aborty [12]. GA, IGA and MA manipulate a set of
chromosomes to search for an optimal solution.

The selection operators for parent selection and survivor
selection follow the Darwinian principle of survival of the
fittest. First, parent selection is for the reproduction pro-
cess, ordinarily based on an alternative explanation of
natural selection i.e., fitter individuals should have a higher
probability of reproducing. This study performs k-tourna-
ment selection for parent selection, chooses the winner
among k individuals that drawn randomly from the popu-
lation. The number k controls selection pressure, a higher
k gives higher selection pressure. Second, the survivor
selection applies the principle of survivor of the fittest.
Only the fittest individuals selected as parents for the next-
generation. Idea of elitism is to retain some of the best
individuals in each generation. In this study, a small per-
centage of best fitness individuals retained to the next
generation. It increases the performance of algorithm, by
preventing the loss of best found solution. From each
generation 10 % of best solution retained to the next
iteration.

The selected chromosomes for reproduction are gath-
ered in the mating pool. The single-point crossover oper-
ator is done on the rows of the population. Once a
crossover point is identified, a random row from the first
parent PR1 is crossed over with a random row from the
second parent PR2. The resultant chromosome CHI is
replaced with PR1 and CH2 is replaced with PR2. After
replacing, if the solution violates the constraints then it is
penalized. The mutation operator behaves in a different
manner depending on the fitness of the selected gene. The
mutation operator changes one bit in the selected chro-
mosome depending on the individual fitness.

The fitness function evaluates the quality (fitness) of
candidate solutions. The fitness function for the scheduling
problem is based on the variables channel utilization and
tight lower bound. The termination point determines
whether the best feasible solution is identified in that
generation or not. The best feasible solution is the one,
which satisfies both the criteria. When the generation of
evolution reaches this termination point, the algorithm
stops and outputs the optimal solution for the given
network.

3.1 Genetic algorithm
After initializing the population, the selection operator

picks two chromosomes from the population to serve
as parent. The crossover operator then exchanges the
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Algorithm 1 Genetic algorithm

initialize population GAPop;
evaluate GAPop;
while (not terminated)

{

GAP, = Select (GAPop),;

GAP, = Crossover (GAP;);

GAP,, = Mutate (GAP,_);

GAP' = evaluate GAP,,;

GAPop = Survival (GAPop, GAP');
},.

information between these two parents to produce their
offspring. A predetermined crossover rate defines the
probability of performing crossover. Mutation is performed
with a probability, called mutation rate, to alter slightly
some genes in the offspring. Algorithm 1 presents the
framework of genetic algorithm.

The generated populations are evaluated with the fitness
conditions. If the optimal solution is identified in the
generation then the algorithm is terminated with the solu-
tion, else elitism method done on the populations and
proceeds to the next generation. At the end of iteration, the
populations produced in the generation are taken for
duplicate row elimination i.e., time slot which is repeated is
removed from the population in order to produce optimized
TDMA frame.

3.2 Immune genetic algorithm

In GA two main genetic operators crossover and muta-
tion, not only give each individual’s the evolutionary
chance to obtain global optimum but also cause the
degeneracy to some extent because of the random and
unsupervised searching during the entire process. On the
other hand, GA is lack of capability of making use of
some basic and obvious characteristic or knowledge in
pending problem. Based on the considerations above,

Algorithm 2 Immune genetic algorithm

initialize population IGAPop;
evaluate IGAPop;
while (not terminated)
{
IGAP = Select (IGAPop);
IGAP, = Crossover (IGAP;),
IGAP,, = Mutate (IGAP,.);
Immunization (IGAP,,)
{
IGAP,,; = ImmuneSelection (IGAP,,);
IGAP, = Vaccination (IGAP ),

ki
IGAP' = evaluate IGAP,;
IGAPop = Survival (IGAPop, IGAP');

Immune Genetic Algorithm proposed. Algorithm 2 shows
the structure of immune genetic algorithm. The solution
after the reproduction stage is taken for immune opera-
tions. IGA is an intelligent optimization algorithm, which
mainly constructs an immune operator accomplished by
two steps: Immune selection and Vaccination. The
knowledge added IGA algorithm performed in the fol-
lowing way.

3.2.1 Immune selection

The newly created population after reproduction, which
satisfies the primary and secondary constraints, is selected
for duplicate row elimination. The resulting populations are
arranged according to the channel utilization variable and
stored in the vaccine pool.

3.2.2 Vaccination

Vaccination is used for improving the fitness by modifying
the genes of an individual population with the prior
knowledge to gain higher fitness with greater probability. A
chromosome from vaccine pool is taken for vaccination.
The IGA identifies the node transmits first in the popula-
tion. During the same time slot, some other node, which
does not create interference with the transmitting node, can
be allowed to transmit in the same time slot. To perform
this, a node is selected randomly and checked with the hop
matrix whether it creates an interference with the currently
transmitting node, if not the node value is mutated to one,
allowing the selected node to transmit in the same time
slot. The genes of the selected chromosome are modified
based on the knowledge obtained from the hop matrix of
the given network hence the vaccination process increases
the number of transmissions.

3.3 Memetic algorithm

Memetic algorithms (MA) are extensions of evolutionary
algorithms (EA) that apply local search processes in the
agents and trying to improve their fitness [28-31]. Com-
pared with other approaches, Memetic algorithms are
superior, because of wide applicability. Despite the good
results obtained by some MA, the process of designing
efficient MA often depends on the problem-specific details.
The construction of Memetic algorithm is given in
Algorithm 3.

The initial population is constructed using the Elite
population method and the parent selection for reproduc-
tion is done using k-tournament selection. On the selected
chromosomes, a single point crossover operator is per-
formed and the mutation operator is carried out based on
the given mutation probability. After crossover and
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Algorithm 3 Memetic algorithm

initialize population MPop;
evaluate MPop;
while (not terminated)
{ MPs = Select (MPop);
MP. = Crossover (MPy);
MP,, = Mutate (MP,);
MemeticAlg (MP,,)
{
MP,, = Optimizer (MP,,);
MP; = Improver (MP,,);
};
MP' = evaluate MP,;
MPop = Survival (MPop, MP');

mutation, the following optimizer and improver is applied
on the chromosomes in MA.

3.3.1 Optimizer

The optimizer phase of MA reduces the number of time
slots by determining the channel utilization for each node.
Py 1s the performance of node x in the current population,
i.e., the total number of transmissions carried out by the
node x in the given time slot is identified using Eq. (2). The
optimizer phase obtains each node transmissions, then it
identifies whether the same node is transmitting in some
other time slot j. In the jth time slot, if the nodes that are
transmitted contains p, > 1 then the row is removed from
that population. In [12] the rows that are subset of a row
generated after crossover are eliminated. In this paper,
duplicate row elimination in GA and IGA performs
reduction of time slots, if a time slot is repeated in that
population, while in MA the optimizer performs reduction
based on the value of p,. This phase generates population
with minimum number of time slots with the constraint that
every node has transmitted at least once in that TDMA
frame.

3.3.2 Improver

Improver is a greedy way of improving solution and it
reduces the solution diversity. The populations from opti-
mizer are taken to the improver phase where the total
number of transmissions is increased in the reduced time
slots. Obtaining knowledge from hop matrix, improver
phase increases the number of transmissions after reduction
of time slots. Since memetic algorithm operations are
carried out in each iteration, the optimal solution is iden-
tified in less number of generations. Hence, running time of
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the algorithm is also reduced compared to other recently
proposed competitive algorithms.

4 Simulation results

A series of simulations are carried to evaluate the perfor-
mance of the proposed MA to solve the broadcast sched-
uling problem, in comparison with mean field annealing
[3], GA [12] and competent permutation genetic algorithm
[13]. The following sections discuss the simulation results
regarding the number of nodes IV, the number of timeslots
IM| and the degree of networks. The fitness function factors
are defined as,

1. Channel utilization variable
For the entire network:

AT
T M N (ZZ [SM,,-]) (1)

i=1 j=1
For each node:

|M|
p= [SMy] 2)

i=1

Px
"I o

2. Tight lower bound
ND = max|D(n)| (4)

Let D(n) be the degree set of n nodes, ND represents the
maximum degree of the network, based on this value the
tight lower bound is generated as,

A=|M|-ND>1 (5)

If A=1 then the solution is optimal. The terminal
conditions for the three algorithms discussed in this study
are A = 1 or the maximum number of generations, which
is taken as 500 in all our experiments.

Various randomly generated networks with different
degree and nodes test the three algorithms where each
represents a multihop topology. For a particular setting of
parameters, the algorithm is carried out for 150 times, the
average value of the results is given in the following
simulation results. The simulation results is based on the
following parameters population size 50, maximum num-
ber of generations 500, crossover rate (.30, mutation
probability 0.001, and on these three measures,

1. Tight lower bound A value is one.
2. Channel Utilization variable to find the improvement
in the number of transmission.
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Table 1 Simulation results of genetic algorithm

No. of No. of Average Avg. Maximum Minimum TDMA Avg. ¢ Avg. no. of Computation
nodes links degree ND ND frame length generations time

15 25 33 4 6 0.219 30.6 0.80 s

30 49 33 4.8 8 0.156 272 01.10 min
80 156 39 5.8 8 0.154 238 16.08 min
100 200 4 7.5 9 10 0.104 422 32.00 min
Table 2 Simulation results of immune genetic algorithm

No. of No. of Average Avg. Maximum Minimum TDMA Avg. o Avg. no. of Computation
nodes links degree ND ND frame length generations time

15 25 33 4 6 7 0.289 18.6 0.5s

30 60 4 4 8 9 0.199 21.0 12 s

40 80 4 6 8 9 0.187 352 38s

50 100 4 6 8 9 0.180 49.7 10.23 s

70 140 4 7 8 9 0.172 64.9 2.49 min

80 160 4 7 8 9 0.167 89.0 4.0 min

100 200 4 7 9 10 0.141 92.3 12.61 min
100 250 5 8 9 10 0.117 98.0 27.37 min
Table 3 Simulation results of memetic algorithm

No. of No. of Average Avg. Maximum Minimum TDMA Avg. ¢ Avg. no. of Computation
nodes links degree ND ND frame length generations time

50 85 34 4 6 7 0.203 5.12 7s

80 152 3.8 7 10 0.175 7.48 11s

100 150 3 6.9 10 0.170 9.03 1.7 min

100 200 4 7.5 10 11 0.162 16.58 2.0 min

100 250 5 7 10 11 0.147 17.0 2.0 min

100 300 6 7 8 9 0.121 19.76 2.3 min

200 400 4 8 10 11 0.150 29.76 12.2 min
200 500 5 8 9 10 0.139 38.02 20.8 min
300 600 4 7 10 11 0.176 55.54 30.5 min
400 800 4 12 16 17 0.159 60.58 65.3 min
500 1,000 4 9 14 15 0.128 89.04 72.11 min

3. Running time is measured on a simulation platform
that uses Matlab code on Windows XP/Intel Core 2
Duo T6600 2.2 GHz machine.

4.1 Simulation result of GA

The purpose of first simulation was to investigate the
performance of genetic algorithm for different networks
shown in Table 1. The number of nodes taken for simu-
lation ranges from five to hundred. Smaller node networks
executed with more number of transmission in an

Table 4 Comparison of MA with other familiar algorithms in terms
of number of transmissions

No. of Time slots HNN-GA TS-GR BSP MA
nodes 1M [8] [10] [21]

15 8 20 20 20 28
30 10 35 37 37 48
30 11 40 43 - 51
30 12 47 48 - 54
40 8 67 68 69 76
40 77 77 - 84
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Fig. 2 Transmission 100
comparison graph of existing
algorithm with MA
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acceptable generation. However, for a 100 node network
with 200 edges with degree of nine identifies the optimal
solution TDMA frame after 489 generations. The average
number of generations for 100-node network is 422. This
has to be reduced in order to reduce the execution time.
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Fig. 3 Comparison of computation time taken by MA and GA [12]
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MA HNN-GA TSGR MA HNN-GA TSGR BSP

4.2 Simulation result of IGA

Table 2 represents the output produced by immune genetic
algorithm for varying number of nodes and edges. Com-
pared to genetic algorithm, knowledge added IGA could
improve the searching ability and adaptability, greatly
increase the converging speed [32—34]. During vaccination
process, the selected antigen is improved with more num-
ber of transmissions so that the channel utilization is
increased. Comparing the simulation results of IGA in
Table 2 with GA in Table 1, the number of generations is
reduced, and the average number of transmission of each
network is improved. For network with 80 nodes and 100
nodes, the solution is identified with acceptable generation.
For a 100-node network with average degree of four and
five, the optimal solution is identified in 16 min and
25 min. However, first two measures are satisfied by IGA,
but third one, i.e., running time for a large network is not
reduced.

—_—
=3
—
=
W

025

02

0.15

0.1

Channel Utilization

0.05

No. of Nodes

Fig. 4 a Comparison of average time delay, b comparison of channel utilization
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4.3 Simulation result of MA

The methods discussed so far mainly focused on the conver-
gence of the algorithms in terms of tight lower bound and
increase in number of transmissions. Therefore, the question
arises: what is the relation of these methods compared to each
other in terms of time? This has been set as the main question
of Memetic algorithm. The simulation result of MA aims to
find the efficiency i.e., the speed of convergence.

It is clear from the Tables 1 and 2, IGA has improved
the channel utilization in reduced number of generations
also in less computation time while compared to GA. The
average channel utilization, average number of generations
and the computation time of various networks using MA
for network with different degree is analyzed in Table 3.
The time taken for 100-node network in MA is 2.0 min, is
more efficient than the time taken by IGA for the same
network is 12.61 min. For network with more than 100
nodes, computation time is not much efficient in IGA and
other recently proposed efficient methods when we com-
pare with MA. This is the main advantage of MA.

Total number of transmissions generated by MA for dif-
ferent node networks with different time slots is compared
with HNN-GA [8], TS-GR [10] and BSP [21] is shown in
Table 4. Transmission comparison graph of MA with these
algorithms is also shown in Fig. 2. The starting point of ver-
tical line in the graph represents lowest transmission value for
given network, the ending point of the line represents highest
transmission value and a small horizontal line represents
number of transmissions generated by each algorithm. The
Table and Figure proves that MA produces higher number of
transmissions for varying networks compared to existing
algorithms and produces with difference of 6-11 in total
number of transmissions. The computation time and number
of generations to identify optimal solutions are reduced where
as channel utilization is increased in MA compared to GA
[12]. The comparison of average time taken by MA and
modified genetic algorithm [12] is given in Fig. 3.

Two benchmark problems discussed in [3] are solved
using MA and the results are compared with other algo-
rithms such as, gradual hysteretic noisy chaotic neural
network G-HNCNN [15], gradual noisy chaotic neural
network G-NCNN [22], co-evolutionary genetic algorithm
for collision free set GACFS [17], the finite state machine
based algorithm FSMA [14], the competent permutation
genetic algorithm CPGA [13] and mean field annealing
algorithm MFA [3] is shown in Table 5. 30 nodes with 70
edges is analyzed in instance #1 and 40 nodes with 66
edges is analyzed in instance #2 by considering the number
of time slots, channel utilization and time delay. The time
delay is calculated using

V|

. |M| 1
Time delay = — _
' T ; ]

> [SMy|

j=1

As seen in Table 5, MA increases the channel utilization

with the smallest time delay this indicates that MA
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Fig. 7 a Network with 50
nodes, 85 edges and the average
degree of 3.4, b optimal solution
found by MA for the same
network
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Table 5 Comparison of MA with other competitive algorithms in terms of time slot IMI|, channel utilization ¢ and time delay

Instance Parameter MA G-HNCNN G-NCNN GACFS FSMA CPGA MFA
#1 M| 10 10 10 10 10 10 12
a 0.24 0.1233 - 0.093 0.1167 0.1233 0.1056
Time delay 6.1529 8.83 9.0 - 9.2 - 10.5
#2 Ml 8 8 8 8 8 9
o 0.2844 0.2125 - 0.203 0.200 0.200 0.197
Time delay 5.0433 5.7056 5.8 - 6 - 6.9

performs efficiently when compared to the other recently
proposed algorithms. Figure 4 compares the time delay and

channel utilization of various algorithms with MA.

@ Springer

Table 6 compares the computation time of MA with
algorithms HNN-GA [8] and BSP [21] and shows that

computation time is greatly reduced.
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Table 6 Comparison of MA with other competitive algorithms in
terms of computation time

No. of Average HNN-GA BSP MA (s)
nodes degree [8] (s) [21] ()

10 3 5.1 0.01 0.01
20 3 12.97 0.06 0.01
30 3 85.4 0.07 0.02
40 3 165.12 0.3 0.14
50 3 194.4 0.64 0.27
10 4 5.24 0.01 0.01
20 4 20.04 0.33 0.01
30 4 152.06 1.45 2.04
40 4 280.37 4.74 3.41
50 4 320.06 14.2 7.00

Table 7 Comparison of MA with SLBIP [23] in terms of computa-
tion time

No. of nodes No. of links SLBIP [23] (s) MA (s)
6 24 0.031 0.011
12 36 1.015 0.073
12 48 3.119 1.492
15 56 16.558 8.961
20 68 6.289 2.133
35 100 1.613 0.918

Figure 5(a) compares number of transmissions gener-
ated by GA, IGA and MA with total number of nodes.
Figure 5(b) compares number of generations taken by GA,
IGA and MA with number of nodes of various networks.
These results illustrate that memetic algorithm performs
efficiently in terms of tight lower bound and increases the
channel utilization in an acceptable computation time.

The average time delay taken by HNN-GA [8], G-NCNN
[22] and MA for various networks ranging from 15 to 250 is
compared in Fig. 6. If there is more number of transmissions
then there is a decrease in the time delay, from Fig. 6 also
identified the total number of transmission produced by MA
is high when compare to other two algorithms.

A sample 50-node network with 85 edges with average
degree of 3.4 and its corresponding optimal TDMA frame
identified using MA is shown in Fig. 7(a, b). Since maxi-
mum degree of the network is six MA produces optimal
schedule in seven time slots with 61 transmissions. Chan-
nel utilization for this network is 0.174 and average time
delay is 6.27.

In Table 7, the computation time of MA for varying
number of nodes and links is compared with SLBIP [23].
From all the Tables and Figures it is identified that MA
performs better compared not only to GA and IGA but also
with the recently proposed algorithms as discussed earlier.

5 Conclusion

The basic genetic algorithm, knowledge added immune
genetic algorithm and a domain specific memetic algorithm
are discussed to solve wireless multihop network broadcast
scheduling. Compared to GA and IGA, MA actively aims on
improving solutions, while GA blindly wanders over the
search space. MA exploits all available knowledge about the
problem, while immune genetic algorithm gets knowledge
from hop matrix during vaccination process. IGA increases
the number of transmissions in a reduced time slot but not in a
good computation time, MA overcomes it. In previous papers,
the main drawback quoted by authors was computation time
for a large network, which is greatly reduced in this paper. The
simulation results confirm the advantages of MA in terms of
channel utilization, number of generations, and running time.
MA achieves the tight lower bound in shorter running time
compared with other algorithms. The outcome validates the
effectiveness and efficiency of MA for the broadcast sched-
uling problem. Further enhancement can be done to reduce
computation time even for large networks with more than 500
nodes.
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