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Abstract A technical challenge in successful deployment

and utilization of wireless multihop networks (WMN) are

to make effective use of the limited channel bandwidth.

One method to solve this challenge is broadcast scheduling

of channel usage by the way of time division multiple

access (TDMA). Three evolutionary algorithms, namely

genetic algorithm (GA), immune genetic algorithm (IGA)

and memetic algorithm (MA) are used in this study to solve

broadcast scheduling for TDMA in WMN. The aim is to

minimize the TDMA cycle length and maximize the node

transmissions with reduced computation time. In compar-

ison to GA and IGA, MA actively aim on improving the

solutions and is explicitly concerned in exploiting all

available knowledge about the problem. The simulation

results on numerous problem instances confirm that MA

significantly outperforms several heuristic and evolutionary

algorithms by solving well-known benchmark problem in

terms of solution quality, which also demonstrates the

effectiveness of MA in efficient use of channel bandwidth.

Keywords Wireless multihop networks � Broadcast

scheduling � Genetic algorithm � Immune genetic

algorithm � Memetic algorithm

1 Introduction

In wireless ad hoc network, single hop and multihop net-

works does not rely on a preexisting infrastructure, such as

routers in wired networks or access points in managed

wireless networks. Instead, each node participates in

routing by forwarding the data for other nodes, so the

determination of which node forwards the data is made

dynamically based on the network connectivity. In a single

hop network, each mobile station (MS) can communicate

directly with all other MSs. In wireless multihop networks,

one or more intermediate node along with the path receives

and forwards the packets via wireless links. Wireless

multihop network extends the coverage of a network,

improves the connectivity and transmission over multiple

short links, which require less transmission power and

energy than that required over long links. It also provides

robust communication, rapid deployment and responds

quickly in dynamic environments.

Figure 1 represents a simple wireless multihop network,

each node represents a mobile station and a line connecting

two nodes indicates that the two MSs are within the

communication range. The neighbors of A are those MSs

that can communicate directly with A (i.e., B and C). Node

mobility in WMN causes frequent changes in the network

topology. The main difficulty in designing WMN is that not

all MSs can communicate directly with each other.

TDMA consists of fixed length time slots where each node

transmits in at least one slot. A wireless multihop network

consists of many MSs, where each MS has a certain number of

neighboring MSs. Time is assumed to be divided into slots,

each of duration equal to one maximum-length packet trans-

mission time plus the maximum propagation time between

any two MSs. MSs are assumed to use omnidirectional

antennas. The wireless channels are assumed to be noise free

and an unsuccessful reception is due to collisions only. MSs

operate in half-duplex mode, i.e., a MS can transmit or

receive, but cannot do both at the same time. Two or more non-

conflicting MS can share the same slot.

Conflicts in multihop networks may occur in two ways:

primary conflicts and secondary conflicts. The primary
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conflict occurs when two connected nodes transmit

simultaneously. A secondary conflict occurs when two or

more packets arrive at a node in a single time slot. This will

occur when two nodes at a distance of two hops allowed

transmitting simultaneously. Then, the intermediate node

will receive two different packets from two directly con-

nected nodes at the same time slot. Two MSs can transmit

in the same time slot without mutual interference, if they

are located more than two hops apart. In addition to the

scheduler properties mentioned above, it is desirable for a

WMN scheduler to possess the feature Low connectivity

information requirement i.e., some algorithms need global

network connectivity information while others require only

local (e.g., one or two-hop) connectivity information. Since

communicating this information consumes bandwidth, it

should be to a minimum.

The fundamental computational and algorithmic issues

in the broadcast scheduling problem of wireless multihop

networks are discussed in chapter 16 of [1]. Most broadcast

scheduling algorithms operate by producing a finite length

nominal schedule in which each station has assigned at

least one slot for transmission and then indefinitely

repeating that nominal schedule. The problem was proven

NP-complete [2, 3]. Most WMN schedulers are either node

activation or link activation [4], one example of the node

activation algorithm is given in [2]. A node activation

scheduler selects the nodes for transmission in such a way

to ensure that all its neighbors will receive a packet from

any node correctly. A link activation scheduler chooses the

nodes for transmission to guarantee that the destination

node receives the packet successfully.

Various algorithms are proposed to solve the scheduling

problem [2, 3, 5–17]. These algorithms are classified as

graph theoretic [2, 18], graph coloring [19] and probabi-

listic approaches such as mean field annealing [3], tabu

search [10], genetic algorithms [7, 9, 12], neural networks

algorithms [11, 20] and mixed neural-genetic procedure

[8]. Most of these algorithms are based on either of two

points: one minimizes the frame length without considering

the slot usage and the other attempts to maximize the slot

utilization within the frame. Optimizing the two objectives

separately does not lead to a good solution. A better

approach is considering both of these criteria in an inte-

grated fashion to solve the broadcast scheduling problem.

The algorithm in [8] combines a Hopfield neural network

for the constraints satisfaction and a genetic algorithm for

achieving a maximal throughput. An approach based on a

modified GA, called genetic-fix is given in [9] that gen-

erates and manipulates individuals with fixed size to reduce

the search space substantially. A mixed tabu–greedy

algorithm is implemented in [10].

A TDMA frame with less number of time slots, maxi-

mum number of transmission with elite population method

and modified crossover operator in genetic algorithm is

proposed in [12]. Even though the optimal solution is

identified in less number of generations, the execution time

is not reduced. Based on the concepts from the field of

finite state machine synthesis is given in [14]. The stations

that can broadcast without collisions among themselves

grouped as maximal compatibles. A tight lower bound

derived from set of maximal incompatibles forms the basis

for deriving minimum frame length. The algorithm applies

set of rules on the maximal compatibles in order to maxi-

mize the utilization of slots. In [16] a simple and fast

randomized algorithm to find a pool of valid solutions of

the scheduling problem is proposed. Even though consid-

ering both the criteria by these algorithms the computation

time is not reduced. In [21] linear integer-programming

formulation is proposed to this problem, which performs in

reduced execution time but the maximum number of sta-

tions taken in their approach is 50 stations.

A brute force approach with dynamic programming is

used in [17] to improve the efficiency by eliminating the

repeated states and co-evolutionary genetic algorithm

approach is used to solve the collision free set for WiMAX

mesh network. The main drawback of this co-evolutionary

algorithm is that every member of test–case–population

had to be compared with every member of solution-popu-

lation. This requires many comparisons and calculations

hence might slow down the process when the population

sizes are huge.

Gradual noisy chaotic neural network (G-NCNN) to

solve the NP-complete broadcast scheduling problem in

packet radio networks is given in [22]. A two-phase opti-

mization approach is adopted to achieve the two objectives

with two different energy functions. In the first phase, a

G-NCNN which combines the noisy chaotic neural net-

work (NCNN) and the gradual expansion scheme to find a

minimal TDMA frame length. In the second phase, the

NCNN is used to find maximal node transmissions in the

TDMA frame obtained in the first phase.

Hysteretic noisy chaotic neural network (HNCNN) is

proposed in [15] by controlling noises of the equivalent

Fig. 1 A simple wireless multihop network
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model. They combine the HNCNN with the gradual

expansion scheme to find the minimal frame length in the

first phase, and to maximize the conflict-free transmission

in the second phase.

In [23], a shortest path based load balanced internet

protocol routing scheme with hose model (SLBIP) is pro-

posed. Networks with varying number of nodes, links and

average degree is taken for performance evaluation. The

computation time to solve the routing problems is analyzed

with other algorithms to illustrate the goodness of the

algorithm.

In [24], a chaotic neural network is used to compute the

delay-constrained multicast routing tree. Twelve different

networks with different node size, links, destination nodes

and delay bound is taken to evaluate the algorithm. The

results mainly focused on the computation time.

A simple distributed algorithm that is both stabilizing

and inherently stabilizing under a realistic model to route

messages over all shortest node disjoint paths from a pro-

cess to another in a n-dimensional hypercube network is

proposed in [25]. Sequence of lemmas is given to recognize

the time of the distributed algorithm.

For the broadcast scheduling problem, the approaches

analyzed above where suffered from the trade-off between

solution quality and running time. Computation time is an

important factor to validate an algorithm. Therefore, an

algorithm is still needed for broadcast scheduling problem

that improves the solution quality in reduced computation

time even for a large network. The objective of this work is

to reduce the time slots and to maximize the total number

of transmissions, in an acceptable execution time.

The WMN scheduler considered here is node activation

in addition to the one-hop and two-hop with low connec-

tivity information requirement. The scheduler identifies a

schedule transmission so that the channel utilization is

maximized with guaranteeing the QoS for all MSs. A

scheduler with the three evolutionary algorithms are car-

ried out and a series of simulations is conducted to evaluate

the performance of the proposed MA in terms of solution

quality and running time, and to verify its superiority over

GA and IGA.

Genetic algorithms solve many search and optimization

problems, effectively. However, they may drop into local

optimal solutions or they may find the optimal solution by

low convergence speed and GA blindly wanders over the

search space. To overcome these problems, we used the

immune concept to enhance the GA. Immune genetic

algorithm gets the knowledge from hop matrix during

vaccination process. IGA increases the number of trans-

mission in a reduced time slot but not in a good compu-

tation time, MA reduces the processing time. Memetic

algorithm is a blooming dialect of evolutionary algo-

rithm (EA). In addition to Darwinism, MA adopts the

Lamarckian theory that offspring can inherit the knowledge

or characteristics that their parents acquire during their

lifetime. The MA implements this idea by integrating a

local enhancement, such as local search and repair opera-

tor, into the canonical EA, and making the enhancement

inheritable, this integration significantly improves the

exploitation ability of EA. In genetic algorithm, the

mutation creates new genes for the population and

the crossover operator orients seeking the best solution

from the genes in the population. In memetic algorithm,

this orientation is achieved by local search. Local search

reduces the search space and reaches to high quality

solution faster. MA actively aims on improving solution

and explicitly concerned with exploiting all available

knowledge about the problem.

The rest of this paper is organized as follows: Sect. 2 gives a

formal definition of the problem, along with the constraints. In

Sect. 3, we describe the three algorithm and its operators. The

details of simulation results, comparison of time slot, channel

utilization, average time delay and computation time by MA,

IGA with other competitive algorithms are in Sect. 4. Finally,

conclusions are drawn in Sect. 5.

2 Representation of WMN scheduler

The WMN scheduler determines a collision free schedule

with minimum TDMA frame length and maximum slot

utilization by the nodes, in an acceptable running time. The

scheduler assumes that each MS has network connectivity

information within a two-hop radius. Initially, each MS

allocated a time slot in a frame (e.g., MS i assigned in the

ith time slot). MSs more than two hops away from the MS

i also eligible to transmit during slot i. Some pre-estab-

lished rule used to select an eligible MS to transmit in slot

i. The selected MS sends a broadcast message to inform

other MSs that are using slot i. The algorithm progresses in

such a way that it allows as many MSs as possible to

transmit in each slot. A node may interfere with another

node, so these nodes should not transmit simultaneously.

However, it does not ensure fair slot allocations among all

MSs and is not topology transparent.

The WMN can be represented by undirected graph

G = (N, E) where N is the set of nodes and E is the links

(transmission) assumed bidirectional. |N| represents the

number of nodes in the given network i.e., |N| = {n1, n2,

…, nx} and |M| is number of time slots. In Fig. 1. N = {A,

B, C, D, E, F, G, H} and |N| = 8.

Connectivity matrix [CM] represents a direct link between

the nodes, hop matrix [HM] says about the one-hop and two-

hop connectivity information of each node, scheduler matrix

[SM] is the allotted time slots of the given network without

any interference.
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This connectivity matrix is identified for the network given

in Fig. 1. Column represents nodes of the network and row

represents the link existence between the nodes, i.e., the

row one says about the connectivity information of node A,

likewise for the remaining nodes. The matrix has the value

0 or 1, where 1 represents the existence of a link.

This hop matrix is recognized for the network given in

Fig. 1. Row value represents the one-hop and two-hop

information between the nodes. The matrix takes the value

0 or 1, where 1 says low connectivity information for the

node.

The optimal TDMA scheduler matrix generated for the

network in Fig. 1. Row represents the number of time slots.

It takes the value 0 or 1, where 1 represents the node

allowed for transmitting in that time slot. In first time slot,

nodes A and E allowed to send their packets without

interference.

3 Evolutionary algorithms

The GA is a heuristic search technique that simulates the

processes of natural selection and evolution [26]. John

Holland first proposed Genetic Algorithms (GAs) in the

1960s. GAs are effective, robust search procedure for

NP-complete problems [27]. The selection, crossover,

mutation, fitness function and termination condition dis-

cussed below is common for all three algorithms.

The TDMA scheduler matrix is a M 9 N matrix where

M is the number of time slots and N is the total number of

nodes in the network. The scheduler matrix is represented

as bit string chromosome containing 0s and 1s. Each row

and column of the scheduler matrix represents to time slot

and node transmission. The value 1 in the position (i, j) in

the matrix indicates that jth node is allowed for transmis-

sion in the ith time slot. The initial TDMA frames are

constructed using the Elite population method of Chakr-

aborty [12]. GA, IGA and MA manipulate a set of

chromosomes to search for an optimal solution.

The selection operators for parent selection and survivor

selection follow the Darwinian principle of survival of the

fittest. First, parent selection is for the reproduction pro-

cess, ordinarily based on an alternative explanation of

natural selection i.e., fitter individuals should have a higher

probability of reproducing. This study performs k-tourna-

ment selection for parent selection, chooses the winner

among k individuals that drawn randomly from the popu-

lation. The number k controls selection pressure, a higher

k gives higher selection pressure. Second, the survivor

selection applies the principle of survivor of the fittest.

Only the fittest individuals selected as parents for the next-

generation. Idea of elitism is to retain some of the best

individuals in each generation. In this study, a small per-

centage of best fitness individuals retained to the next

generation. It increases the performance of algorithm, by

preventing the loss of best found solution. From each

generation 10 % of best solution retained to the next

iteration.

The selected chromosomes for reproduction are gath-

ered in the mating pool. The single-point crossover oper-

ator is done on the rows of the population. Once a

crossover point is identified, a random row from the first

parent PR1 is crossed over with a random row from the

second parent PR2. The resultant chromosome CH1 is

replaced with PR1 and CH2 is replaced with PR2. After

replacing, if the solution violates the constraints then it is

penalized. The mutation operator behaves in a different

manner depending on the fitness of the selected gene. The

mutation operator changes one bit in the selected chro-

mosome depending on the individual fitness.

The fitness function evaluates the quality (fitness) of

candidate solutions. The fitness function for the scheduling

problem is based on the variables channel utilization and

tight lower bound. The termination point determines

whether the best feasible solution is identified in that

generation or not. The best feasible solution is the one,

which satisfies both the criteria. When the generation of

evolution reaches this termination point, the algorithm

stops and outputs the optimal solution for the given

network.

3.1 Genetic algorithm

After initializing the population, the selection operator

picks two chromosomes from the population to serve

as parent. The crossover operator then exchanges the

790 Wireless Netw (2012) 18:787–798

123



information between these two parents to produce their

offspring. A predetermined crossover rate defines the

probability of performing crossover. Mutation is performed

with a probability, called mutation rate, to alter slightly

some genes in the offspring. Algorithm 1 presents the

framework of genetic algorithm.

The generated populations are evaluated with the fitness

conditions. If the optimal solution is identified in the

generation then the algorithm is terminated with the solu-

tion, else elitism method done on the populations and

proceeds to the next generation. At the end of iteration, the

populations produced in the generation are taken for

duplicate row elimination i.e., time slot which is repeated is

removed from the population in order to produce optimized

TDMA frame.

3.2 Immune genetic algorithm

In GA two main genetic operators crossover and muta-

tion, not only give each individual’s the evolutionary

chance to obtain global optimum but also cause the

degeneracy to some extent because of the random and

unsupervised searching during the entire process. On the

other hand, GA is lack of capability of making use of

some basic and obvious characteristic or knowledge in

pending problem. Based on the considerations above,

Immune Genetic Algorithm proposed. Algorithm 2 shows

the structure of immune genetic algorithm. The solution

after the reproduction stage is taken for immune opera-

tions. IGA is an intelligent optimization algorithm, which

mainly constructs an immune operator accomplished by

two steps: Immune selection and Vaccination. The

knowledge added IGA algorithm performed in the fol-

lowing way.

3.2.1 Immune selection

The newly created population after reproduction, which

satisfies the primary and secondary constraints, is selected

for duplicate row elimination. The resulting populations are

arranged according to the channel utilization variable and

stored in the vaccine pool.

3.2.2 Vaccination

Vaccination is used for improving the fitness by modifying

the genes of an individual population with the prior

knowledge to gain higher fitness with greater probability. A

chromosome from vaccine pool is taken for vaccination.

The IGA identifies the node transmits first in the popula-

tion. During the same time slot, some other node, which

does not create interference with the transmitting node, can

be allowed to transmit in the same time slot. To perform

this, a node is selected randomly and checked with the hop

matrix whether it creates an interference with the currently

transmitting node, if not the node value is mutated to one,

allowing the selected node to transmit in the same time

slot. The genes of the selected chromosome are modified

based on the knowledge obtained from the hop matrix of

the given network hence the vaccination process increases

the number of transmissions.

3.3 Memetic algorithm

Memetic algorithms (MA) are extensions of evolutionary

algorithms (EA) that apply local search processes in the

agents and trying to improve their fitness [28–31]. Com-

pared with other approaches, Memetic algorithms are

superior, because of wide applicability. Despite the good

results obtained by some MA, the process of designing

efficient MA often depends on the problem-specific details.

The construction of Memetic algorithm is given in

Algorithm 3.

The initial population is constructed using the Elite

population method and the parent selection for reproduc-

tion is done using k-tournament selection. On the selected

chromosomes, a single point crossover operator is per-

formed and the mutation operator is carried out based on

the given mutation probability. After crossover and

Algorithm 1 Genetic algorithm

initialize population GAPop;
evaluate GAPop;
while (not terminated)
{

GAPs = Select (GAPop);
GAPc = Crossover (GAPs);
GAPm = Mutate (GAPc);
GAP' = evaluate GAPm;
GAPop = Survival (GAPop, GAP');

};

Algorithm 2 Immune genetic algorithm

initialize population IGAPop;
evaluate IGAPop;
while (not terminated)
{

IGAPs = Select (IGAPop);
IGAPc = Crossover (IGAPs);
IGAPm = Mutate (IGAPc);
Immunization (IGAPm)
{

IGAPsel = ImmuneSelection (IGAPm);
IGAPv = Vaccination (IGAPsel);

};
IGAP' = evaluate IGAPv;
IGAPop = Survival (IGAPop, IGAP');

};
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mutation, the following optimizer and improver is applied

on the chromosomes in MA.

3.3.1 Optimizer

The optimizer phase of MA reduces the number of time

slots by determining the channel utilization for each node.

qx is the performance of node x in the current population,

i.e., the total number of transmissions carried out by the

node x in the given time slot is identified using Eq. (2). The

optimizer phase obtains each node transmissions, then it

identifies whether the same node is transmitting in some

other time slot j. In the jth time slot, if the nodes that are

transmitted contains qx [ 1 then the row is removed from

that population. In [12] the rows that are subset of a row

generated after crossover are eliminated. In this paper,

duplicate row elimination in GA and IGA performs

reduction of time slots, if a time slot is repeated in that

population, while in MA the optimizer performs reduction

based on the value of qx. This phase generates population

with minimum number of time slots with the constraint that

every node has transmitted at least once in that TDMA

frame.

3.3.2 Improver

Improver is a greedy way of improving solution and it

reduces the solution diversity. The populations from opti-

mizer are taken to the improver phase where the total

number of transmissions is increased in the reduced time

slots. Obtaining knowledge from hop matrix, improver

phase increases the number of transmissions after reduction

of time slots. Since memetic algorithm operations are

carried out in each iteration, the optimal solution is iden-

tified in less number of generations. Hence, running time of

the algorithm is also reduced compared to other recently

proposed competitive algorithms.

4 Simulation results

A series of simulations are carried to evaluate the perfor-

mance of the proposed MA to solve the broadcast sched-

uling problem, in comparison with mean field annealing

[3], GA [12] and competent permutation genetic algorithm

[13]. The following sections discuss the simulation results

regarding the number of nodes |N|, the number of timeslots

|M| and the degree of networks. The fitness function factors

are defined as,

1. Channel utilization variable

For the entire network:

r ¼ 1

Mj j � Nj j
XMj j

i¼1

XNj j

j¼1

½SMij�
 !

ð1Þ

For each node:

qx ¼
XMj j

i¼1

½SMix� ð2Þ

rx ¼
qx

Mj j ð3Þ

2. Tight lower bound

ND ¼ max
n2N

DðnÞj j ð4Þ

Let D(n) be the degree set of n nodes, ND represents the

maximum degree of the network, based on this value the

tight lower bound is generated as,

D ¼ Mj j � ND� 1 ð5Þ

If D = 1 then the solution is optimal. The terminal

conditions for the three algorithms discussed in this study

are D = 1 or the maximum number of generations, which

is taken as 500 in all our experiments.

Various randomly generated networks with different

degree and nodes test the three algorithms where each

represents a multihop topology. For a particular setting of

parameters, the algorithm is carried out for 150 times, the

average value of the results is given in the following

simulation results. The simulation results is based on the

following parameters population size 50, maximum num-

ber of generations 500, crossover rate 0.30, mutation

probability 0.001, and on these three measures,

1. Tight lower bound D value is one.

2. Channel Utilization variable to find the improvement

in the number of transmission.

Algorithm 3 Memetic algorithm

initialize population MPop;
evaluate MPop;
while (not terminated)
{ MPs = Select (MPop);

MPc = Crossover (MPs);
MPm = Mutate (MPc);
MemeticAlg (MPm)
{

MPop = Optimizer (MPm);
MPI = Improver (MPop);

};
MP' = evaluate MPI;
MPop = Survival (MPop, MP');

};
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3. Running time is measured on a simulation platform

that uses Matlab code on Windows XP/Intel Core 2

Duo T6600 2.2 GHz machine.

4.1 Simulation result of GA

The purpose of first simulation was to investigate the

performance of genetic algorithm for different networks

shown in Table 1. The number of nodes taken for simu-

lation ranges from five to hundred. Smaller node networks

executed with more number of transmission in an

Table 2 Simulation results of immune genetic algorithm

No. of

nodes

No. of

links

Average

degree

Avg.

ND

Maximum

ND

Minimum TDMA

frame length

Avg. r Avg. no. of

generations

Computation

time

15 25 3.3 4 6 7 0.289 18.6 0.5 s

30 60 4 4 8 9 0.199 21.0 12 s

40 80 4 6 8 9 0.187 35.2 3.8 s

50 100 4 6 8 9 0.180 49.7 10.23 s

70 140 4 7 8 9 0.172 64.9 2.49 min

80 160 4 7 8 9 0.167 89.0 4.0 min

100 200 4 7 9 10 0.141 92.3 12.61 min

100 250 5 8 9 10 0.117 98.0 27.37 min

Table 1 Simulation results of genetic algorithm

No. of

nodes

No. of

links

Average

degree

Avg.

ND

Maximum

ND

Minimum TDMA

frame length

Avg. r Avg. no. of

generations

Computation

time

15 25 3.3 4 6 7 0.219 30.6 0.80 s

30 49 3.3 4.8 8 9 0.156 27.2 01.10 min

80 156 3.9 5.8 8 9 0.154 238 16.08 min

100 200 4 7.5 9 10 0.104 422 32.00 min

Table 3 Simulation results of memetic algorithm

No. of

nodes

No. of

links

Average

degree

Avg.

ND

Maximum

ND

Minimum TDMA

frame length

Avg. r Avg. no. of

generations

Computation

time

50 85 3.4 4 6 7 0.203 5.12 7 s

80 152 3.8 7 9 10 0.175 7.48 11 s

100 150 3 6.9 9 10 0.170 9.03 1.7 min

100 200 4 7.5 10 11 0.162 16.58 2.0 min

100 250 5 7 10 11 0.147 17.0 2.0 min

100 300 6 7 8 9 0.121 19.76 2.3 min

200 400 4 8 10 11 0.150 29.76 12.2 min

200 500 5 8 9 10 0.139 38.02 20.8 min

300 600 4 7 10 11 0.176 55.54 30.5 min

400 800 4 12 16 17 0.159 60.58 65.3 min

500 1,000 4 9 14 15 0.128 89.04 72.11 min

Table 4 Comparison of MA with other familiar algorithms in terms

of number of transmissions

No. of

nodes

Time slots

|M|

HNN-GA

[8]

TS-GR

[10]

BSP

[21]

MA

15 8 20 20 20 28

30 10 35 37 37 48

30 11 40 43 – 51

30 12 47 48 – 54

40 8 67 68 69 76

40 9 77 77 – 84
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acceptable generation. However, for a 100 node network

with 200 edges with degree of nine identifies the optimal

solution TDMA frame after 489 generations. The average

number of generations for 100-node network is 422. This

has to be reduced in order to reduce the execution time.

4.2 Simulation result of IGA

Table 2 represents the output produced by immune genetic

algorithm for varying number of nodes and edges. Com-

pared to genetic algorithm, knowledge added IGA could

improve the searching ability and adaptability, greatly

increase the converging speed [32–34]. During vaccination

process, the selected antigen is improved with more num-

ber of transmissions so that the channel utilization is

increased. Comparing the simulation results of IGA in

Table 2 with GA in Table 1, the number of generations is

reduced, and the average number of transmission of each

network is improved. For network with 80 nodes and 100

nodes, the solution is identified with acceptable generation.

For a 100-node network with average degree of four and

five, the optimal solution is identified in 16 min and

25 min. However, first two measures are satisfied by IGA,

but third one, i.e., running time for a large network is not

reduced.

Fig. 2 Transmission

comparison graph of existing

algorithm with MA

Fig. 3 Comparison of computation time taken by MA and GA [12]

Fig. 4 a Comparison of average time delay, b comparison of channel utilization
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4.3 Simulation result of MA

The methods discussed so far mainly focused on the conver-

gence of the algorithms in terms of tight lower bound and

increase in number of transmissions. Therefore, the question

arises: what is the relation of these methods compared to each

other in terms of time? This has been set as the main question

of Memetic algorithm. The simulation result of MA aims to

find the efficiency i.e., the speed of convergence.

It is clear from the Tables 1 and 2, IGA has improved

the channel utilization in reduced number of generations

also in less computation time while compared to GA. The

average channel utilization, average number of generations

and the computation time of various networks using MA

for network with different degree is analyzed in Table 3.

The time taken for 100-node network in MA is 2.0 min, is

more efficient than the time taken by IGA for the same

network is 12.61 min. For network with more than 100

nodes, computation time is not much efficient in IGA and

other recently proposed efficient methods when we com-

pare with MA. This is the main advantage of MA.

Total number of transmissions generated by MA for dif-

ferent node networks with different time slots is compared

with HNN-GA [8], TS-GR [10] and BSP [21] is shown in

Table 4. Transmission comparison graph of MA with these

algorithms is also shown in Fig. 2. The starting point of ver-

tical line in the graph represents lowest transmission value for

given network, the ending point of the line represents highest

transmission value and a small horizontal line represents

number of transmissions generated by each algorithm. The

Table and Figure proves that MA produces higher number of

transmissions for varying networks compared to existing

algorithms and produces with difference of 6–11 in total

number of transmissions. The computation time and number

of generations to identify optimal solutions are reduced where

as channel utilization is increased in MA compared to GA

[12]. The comparison of average time taken by MA and

modified genetic algorithm [12] is given in Fig. 3.

Two benchmark problems discussed in [3] are solved

using MA and the results are compared with other algo-

rithms such as, gradual hysteretic noisy chaotic neural

network G-HNCNN [15], gradual noisy chaotic neural

network G-NCNN [22], co-evolutionary genetic algorithm

for collision free set GACFS [17], the finite state machine

based algorithm FSMA [14], the competent permutation

genetic algorithm CPGA [13] and mean field annealing

algorithm MFA [3] is shown in Table 5. 30 nodes with 70

edges is analyzed in instance #1 and 40 nodes with 66

edges is analyzed in instance #2 by considering the number

of time slots, channel utilization and time delay. The time

delay is calculated using

Time delay ¼ Mj j
Nj j
XNj j

i¼1

1

PMj j

j¼1

SMij

�� ��

0
BBB@

1
CCCA

As seen in Table 5, MA increases the channel utilization

with the smallest time delay this indicates that MA

Fig. 5 a Comparison of total transmissions, b comparison of generations

Fig. 6 Comparison of average time delay
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performs efficiently when compared to the other recently

proposed algorithms. Figure 4 compares the time delay and

channel utilization of various algorithms with MA.

Table 6 compares the computation time of MA with

algorithms HNN-GA [8] and BSP [21] and shows that

computation time is greatly reduced.

Fig. 7 a Network with 50

nodes, 85 edges and the average

degree of 3.4, b optimal solution

found by MA for the same

network

Table 5 Comparison of MA with other competitive algorithms in terms of time slot |M|, channel utilization r and time delay

Instance Parameter MA G-HNCNN G-NCNN GACFS FSMA CPGA MFA

#1 |M| 10 10 10 10 10 10 12

r 0.24 0.1233 – 0.093 0.1167 0.1233 0.1056

Time delay 6.1529 8.83 9.0 – 9.2 – 10.5

#2 |M| 8 8 8 8 8 8 9

r 0.2844 0.2125 – 0.203 0.200 0.200 0.197

Time delay 5.0433 5.7056 5.8 – 6 – 6.9
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Figure 5(a) compares number of transmissions gener-

ated by GA, IGA and MA with total number of nodes.

Figure 5(b) compares number of generations taken by GA,

IGA and MA with number of nodes of various networks.

These results illustrate that memetic algorithm performs

efficiently in terms of tight lower bound and increases the

channel utilization in an acceptable computation time.

The average time delay taken by HNN-GA [8], G-NCNN

[22] and MA for various networks ranging from 15 to 250 is

compared in Fig. 6. If there is more number of transmissions

then there is a decrease in the time delay, from Fig. 6 also

identified the total number of transmission produced by MA

is high when compare to other two algorithms.

A sample 50-node network with 85 edges with average

degree of 3.4 and its corresponding optimal TDMA frame

identified using MA is shown in Fig. 7(a, b). Since maxi-

mum degree of the network is six MA produces optimal

schedule in seven time slots with 61 transmissions. Chan-

nel utilization for this network is 0.174 and average time

delay is 6.27.

In Table 7, the computation time of MA for varying

number of nodes and links is compared with SLBIP [23].

From all the Tables and Figures it is identified that MA

performs better compared not only to GA and IGA but also

with the recently proposed algorithms as discussed earlier.

5 Conclusion

The basic genetic algorithm, knowledge added immune

genetic algorithm and a domain specific memetic algorithm

are discussed to solve wireless multihop network broadcast

scheduling. Compared to GA and IGA, MA actively aims on

improving solutions, while GA blindly wanders over the

search space. MA exploits all available knowledge about the

problem, while immune genetic algorithm gets knowledge

from hop matrix during vaccination process. IGA increases

the number of transmissions in a reduced time slot but not in a

good computation time, MA overcomes it. In previous papers,

the main drawback quoted by authors was computation time

for a large network, which is greatly reduced in this paper. The

simulation results confirm the advantages of MA in terms of

channel utilization, number of generations, and running time.

MA achieves the tight lower bound in shorter running time

compared with other algorithms. The outcome validates the

effectiveness and efficiency of MA for the broadcast sched-

uling problem. Further enhancement can be done to reduce

computation time even for large networks with more than 500

nodes.
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