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Abstract— This paper investigates how to blindly evaluate the
visual quality of an image by learning rules from linguistic
descriptions. Extensive psychological evidence shows that humans
prefer to conduct evaluations qualitatively rather than numer-
ically. The qualitative evaluations are then converted into the
numerical scores to fairly benchmark objective image quality
assessment (IQA) metrics. Recently, lots of learning-based IQA
models are proposed by analyzing the mapping from the images
to numerical ratings. However, the learnt mapping can hardly
be accurate enough because some information has been lost in
such an irreversible conversion from the linguistic descriptions to
numerical scores. In this paper, we propose a blind IQA model,
which learns qualitative evaluations directly and outputs numeri-
cal scores for general utilization and fair comparison. Images are
represented by natural scene statistics features. A discriminative
deep model is trained to classify the features into five grades,
corresponding to five explicit mental concepts, i.e., excellent,
good, fair, poor, and bad. A newly designed quality pooling
is then applied to convert the qualitative labels into scores.
The classification framework is not only much more natural
than the regression-based models, but also robust to the small
sample size problem. Thorough experiments are conducted on
popular databases to verify the model’s effectiveness, efficiency,
and robustness.

Index Terms— Deep learning, image quality assessment (IQA),
natural scene statistics (NSS), no reference.

I. INTRODUCTION

HE aim of image quality assessment (IQA) is to devise
an approach to assess the quality of perceived visual
stimuli. In recent years, this topic has attracted increased
attention because of its significance from both theoretical and
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practical perspectives. On one hand, before being presented to
human consumers, images suffer from a great deal of handling
and processing, e.g., restoration [1], super-resolution [2], [3],
and so on, all of which introduce extra noise. As a result,
the distorted images are difficult for human observers to
understand or impair the performance of following processing
algorithms. On the other hand, IQA, more importantly, is an
attempt to solve the puzzle about how humans perceive images
and try to mimic the hominine ability.

The extreme receptor of images commonly is human beings.
Hence, the humans subjective judgment is always deemed
as the most accurate and reliable method to assess visual
quality of given images. However, the subjective judgment
is not always suitable for applications because its well-known
drawbacks are time- and labor-consuming. Consequently, it
is very important to design a proper computational model
that simulates human visual behaviors, to evaluate images
accurately and automatically.

Existing IQA metrics can be classified into three cate-
gories according to the accessibility of the reference/original
image: 1) full-reference IQA; 2) reduced-reference IQA; and
3) no-reference/blind IQA (BIQA). Of these approaches,
BIQA does not require any reference information, which
enhances its applicability remarkably and renders it signif-
icant in practice. In recent years, machine learning-based
models [4]-[12] have obtained promising performance for
IQA. Each of these models learns a particular mapping
function from image features to perceived quality scores.
To train these models, a huge training set that includes images
and their corresponding subjective scores must be obtained
by conducting subjective experiments. Subjects are asked to
label an image with a numerical score, but the numerical
scores evaluated by human observers are strongly affected by
individual experience and background. For example, scoring
an image with either 70 or 75 is difficult and irregular as
a result of individual subjectivity. This kind of evaluation is
clearly very noisy and thus unreliable.

Psychological evidence shows that humans prefer to con-
duct evaluations qualitatively, not quantitatively, using natural
language. Qualitative description is often said to be nat-
uralistic, that is, its goal is to understand behavior in a
natural setting [13]. Hence, people are not likely to describe
image quality with exact numbers in practice. Instead, qual-
itative adjectives are usually used, such as excellent, good,
and bad. Therefore, asking subjects to qualitatively evaluate
image quality is a much more natural and operable way to
conduct subjective experiments, and can dramatically reduce
the randomness of the scores and the burden placed on
subjects.
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Contemporary subjective experiment is always based on this
principle [14]. Two kinds of subjective evaluation are princi-
pally used to construct an IQA database. The absolute category
rating is recommended by the international telecommunication
union [14] for image/video quality assessment, and widely
used in most IQA databases, such as LIVE [15], IVC [16],
and MICT [17]. In addition, pairwise comparison is also a
very popular method of conducting subjective evaluation [18],
based on the fact that it is much easier for observers to rank
the images according to their qualities than it is to score each
of them in isolation. It shows strong robustness to build large-
scale databases for IQA. Then, the acquired evaluations are
converted into numerical ratings to provide a groundtruth for
fair comparison of objective IQA metrics.

Recently, lots of machine learning-based IQA models are
proposed by analyzing the mapping from the images to the
numerical ratings. But, the learnt mapping can hardly be
accurate enough because some information has been lost in
such an irreversible conversion from the linguistic descriptions
to numerical rating. Therefore, why cannot the model learn
from the qualitative evaluation directly?

The major challenge, therefore, is how to learn rules from
non-numerical descriptions by humans and output a numer-
ical score for follow-up processing algorithms. In specific,
this paper focuses on how to learn rules from qualitative
description rather than comparison order, because, in daily
life, it is important to evaluate the quality of an image without
using a comparison example, e.g., humans simply use personal
experience (which is amphibolous) to describe images.

To bridge the gap between the qualitatively labeled samples
and numerical outputs, a novel BIQA model via deep learning
is proposed in this paper. We recast the blind assessment
as a five-grade classification problem, corresponding to five
explicit mental concepts, i.e., excellent, good, fair, poor, and
bad, to facilitate learning the qualitative descriptions given
by humans. A simple yet efficient quality pooling is applied
to produce numerical outputs for general utilization. Notably,
input images are represented by natural scene statistics (NSS)
features [19], [20]. With this representation, the images are
first classified into five grades with probabilistic confidence
by a deep classifier, which is pre-trained with the deep belief
net (DBN) [21] and discriminatively fine-tuned by back-
propagation. The labels and their corresponding probabilistic
confidences are subsequently transformed to numerical scores
in the quality pooling phase, as shown in Fig. 1. A simple
subjective test is conducted to provide the parameter settings
of the proposed model.

The main contribution of this paper is the new classification-
based framework for IQA. To the best of our knowledge,
this framework is original and conceptually different from the
existing regression-based approaches. Four significant advan-
tages are summarized as follows.

1) Reasonability: The proposed model adopts a classifi-
cation framework instead of a regression framework,
which has been widely used in the current IQA schemes.
Since human prefers to evaluate images with linguistic
labels, the proposed classification-based model is much
more natural than the regression-based models.
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Fig. 1. Overview of the proposed BIQA framework via deep learning. Deep
model is pre-trained by DBN and discriminatively fine-tuned by backpropa-
gation. Characters in the classification results represent excellent, good, fair,
poor, and bad, respectively.

2) Effectiveness and Efficiency: The proposed model is
universal blind. Experimental results show that its pred-
ication is highly correlated with the human evaluation.
In addition, after learning stage, the proposed model
has very low-time complexity.

3) Robustness: The model is robust to the small sample size
problem. With the aid of classification-based framework,
the new model only requires a relatively small size train-
ing set to achieve remarkable performance by comparing
with the state-of-the-art approaches.

4) Comprehensiveness: With the aid of new designed qual-
ity pooling, the model can provide three-level quality
descriptions, i.e., the qualitative labels, the quality dis-
tribution for a given population, and the numerical score,
which is more informative and comprehensive than the
regression-based IQA methods.

Thorough experiments are conducted on LIVE II [15],
TID2008 [18], CSIQ [22], IVC [16], and MICT [17] databases
to verify the effectiveness and efficiency of the new BIQA
framework, and to demonstrate its robustness to small training
data sets.

A. Related Work

Previous BIQA models relied on strong hypotheses. The
distortion type, in particular, was given or predefined in
advance, which is not applicable in real applications. For
example, Wang et al. [23] proposed a computational and
memory efficient quality assessment model for JPEG images
to deal with blocking artifacts. Sheikh et al. [5] explored
NSS by a learning-based model to measure the quality of
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a JPEG2000 image. They claimed that natural scenes contain
nonlinear dependencies that are disturbed by the compression
process, and this disturbance can be quantified and related
to human perception quality. Zhong et al. [24] presented a
semantic no-reference image sharpness metric, using image
tags from the Internet to explore human intention. Applying
top—down and bottom—up saliency map to reweight the image
quality, Varadarajan and Karam [25] proposed an improved
perception-based no-reference image sharpness metric. They
used iterative edge refinement to increase the correlation
between the perceived sharpness and the sharpness metric.
However, these methods perform well only when distortions
are known and precisely modeled.

Many universal machine learning-based methods have since
been proposed. BIQI [6] and LBIQ [7] first determine the
distortion type of a given image and then employ an associated
distortion-specific metric to predict its quality. Recently, tech-
niques have been developed to directly map image features
to subjective quality without distinguishing different types
of distortion. For example, Saad et al. [8] and [9] devised
BLIINDS and BLIINDS-II using NSS. Li ef al. [11] used
a general regression network to regress the image features to
quality scores. Mittal et al. [26] presented BRISQUE to predict
image quality in the spatial domain, Ye et al. [12] proposed
CORNIA to extract features using K-means clustering and
applied SVM to map the feature to quality. He et al. [10]
proposed integrated sparse representation with NSS features
in the frame of sparse coding. By weighting subjective scores,
the final visual quality values are obtained; it is a simple yet
effective algorithm.

These approaches nevertheless have certain drawbacks.
First, many models adopt machine learning algorithms to
find the correlation between images and scores, but conven-
tional machine learning methods have insufficient depth to
ascertain the highly structured representation in extremely
noisy samples [27]. Second, all of these methods exploit
the numerical labeled sample, which is an unnatural way to
describe image quality and is not informative. Third, most of
them need a large set of images associated with subjective
scores to achieve a relatively good performance, which is
expensive and time consuming. Recently, Mittal er al. [28]
introduced probabilistic latent semantic analysis, which is
totally free of subjective scores, to learn the latent quality
factors. However, its performance is not good enough to use
in practice. Considering the problems faced by the approaches
discussed above, we propose using qualitative labels to train
a deep learning network. The experimental results show that
the classification framework is highly correlated with human
perception.

II. BIQA VIA DEEP LEARNING

The diagram of the proposed BIQA model via deep learning
is shown in Fig. 1. After training a DBN, a test image is
input to the image representation phase and then forwarded
hierarchically to the discriminative deep model. The predicted
quality score is ultimately obtained from the quality pooling
phase.

A. Image Representation

In conventional applications of deep learning, e.g., recog-
nition [21], image patches are always directly imported into
the deep architecture without the extraction of statistical
features. A huge number of labeled samples and relatively
low-dimensional patches guarantee that the deep architecture
can be tuned properly. For IQA, however, we assess a whole
image instead of patches in the image, because visual quality is
a holistic concept of an image. If we use the high-dimensional
image data as the input of the deep architecture, an extremely
large labeled data set would be required to train a valid
model, which is tedious and impractical. Therefore, it is
necessary to devise a relatively low-dimensional representation
that can comprehensively encode image quality and facilitate
the training of the deep model with comparatively small data
sets.

Humans can easily perceive the distortions or artifacts in
natural images and there must therefore be particular struc-
tures that distinguish the unnatural from the natural. Such
structures are called NSS [19], [20]. Many researchers find
that the NSS in the wavelet domain can be grouped into
three levels of properties: 1) primary; 2) secondary; and
3) tertiary [29].

Primary properties give the wavelet coefficients of natural
images significant statistical structure, such as locality and
multiresolution. Secondary properties, which consist of non-
Gaussianity and persistency, give rise to joint wavelet statistics.
The literature shows that these properties alter when the image
is noised or distorted. As a result of the tendency to change,
many BIQA algorithms have been devised [5], [8]. However,
these properties change irregularly with different kinds of
visual content or distortion. The corresponding methods might
perform well on distortion-specific tasks, but they fail to
assess universal image degeneration. Fortunately, the tertiary
properties show the self-similar property of scenes, of which
the exponential decay across scales is the most significant
property. It reflects that the magnitudes of the wavelet coeffi-
cients of real-world images decay exponentially across scale.
Furthermore, the exponential decay is less dependent on par-
ticular image content and is therefore suitable for constructing
a universal BIQA method. Following previous works [10],
the exponential decay property is used in this paper as the
image representation.

An image is initially decomposed into three scales using
wavelet transform. Nine sub-bands are obtained (there are
three sub-bands per scale). Because the low-high (LH) sub-
band has a very similar statistical property to the high—low
(HL) sub-band, we do not distinguish between LH and HL
sub-bands in the same scale. Therefore, six sub-bands are used
in total to calculate features. In each sub-band, the magnitude
my, and the entropy e are calculated according to

1 Ny My
my = ———— log,|Ck (i, ) (H
s 2 2
N Mg
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where N; and M are the length and width of the kth sub-
band, respectively, Cy (i, j) stands for the (i, j) coefficient of
the kth sub-band, and p[-] is the probability density function
of the sub-band.

The image representation is obtained by combing six
sub-bands into a single vector

T
X =[my,ma,...mg,e1,ez,...6e] 3)

where the magnitude mj encodes the sub-band energy and the
entropy ey represents the information content.

B. Discriminative Deep Model

Deep learning models have thrived over the years [30],
not only in the field of computer vision, but also in many
others, such as audio [31], natural language processing [32],
and so on [21], [33]-[35]. It has long been proved that
deep networks are much more representative and efficient
than shallow ones [27], [36]. However, traditional learning
algorithms have failed to train such a deep network because
they always return poor local solutions due to the extreme
nonlinearity. Hinton et al. [21] made a breakthrough when
they employed a pre-training strategy to regulate the weight
space of deep networks followed by a supervised fine tuning.
Since then, deep learning has been a great success.

Generally speaking, the deep network facilitates the pro-
posed method in two ways. On one hand, deep network is
an efficient way to represent highly varying functions. It can
mine the inherent structure of data without labels, which is
inspired by the fact that humans heavily use unsupervised
learning. Therefore, it would be an excellent model for
learning the highly varied mapping between visual stimuli
and quality, because the human perception of quality has
an extremely strong nonlinearity, and researchers still have
inadequate insight into its mechanism. On the other hand,
the deep network has a stronger power of generalization
than shallow methods, especially when training samples are
limited [31]. In this case, depth and pre-training act as a smart
regularization choice to help the model prevent overfitting.
When the training set is small, even shallow machine learning
methods can fit the training set perfectly, but they generalize
poorly.

Deep learning has been widely used for image classification
over the years [21], [34]. In the proposed framework, a
four-layer discriminative deep model is used to assign image
representation to five grades corresponding to the five adjective
labels in the LIVE II database [15], i.e., excellent, good,
fair, poor, and bad. The discriminative deep model is pre-
trained by DBN [21] and fine-tuned by backpropagation. As
shown in Fig. 1, the first layer is filled by NSS feature X.
The second and third layers form the simply and complexly
mixed feature, respectively. The L layer is the classification
results with corresponding probabilistic confidence P(L|X).
Specially, there are 12 and 5 nodes in the input and output
layer, respectively, and 50 nodes in each hidden layer. The
joint distribution between image representation X and the three
hidden layers is as follows:

P(X,h',h%, L) = P(X|KYP( 1h*)P(h%, L). @)
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The training algorithm learns the relationship between the
image representation and labels in two phases.

1) Phase 1: Pre-training parameters for the two adjacent
layers using restricted Boltzmann machine (RBM).

2) Phase 2: Fine-tuning all the parameters by back
propagation.

During this first phase, the DBN is pre-trained in an unsu-
pervised greedy layer-wise manner. Each layer is initialized
as an RBM, which is restricted to a single visible layer and a
single hidden layer. Taking the first two layers as an example,
the RBM defines a probability distribution as

P(X,hYy ccexp(XTWh! +cTh! + b7 X) (5)

where X forms the visible layer and 4! forms the hidden layer.
There are symmetric connections W between the visible layer
and the hidden layer, but no connection for variables within
the same layer. ¢ and b are the bias of two layers, respectively.

This particular configuration makes it easy to compute the
conditional probability distributions P(X|k') and P(h'|X).
The contrastive divergence is used for fast learning of the
parameters. In particular, the input X is presented to the visible
layer and values are forwarded to the h! layer. In reverse,
the feature layer is stochastically reconstructed by the h! layer.
Performed iteratively, the difference in the correlation of the
h' layer and the feature forms the basis for a weight update,
which is a process known as Gibbs sampling. The detailed
RBM training process can be found in [21].

In Phase 2, we use a discriminative version of DBN
to model P(L|X). We fine-tune the network by maximiz-
ing the conditional distribution P(L|X) instead of the joint
distribution P (L, X), because there is no need to estimate the
feature-given-label conditional distribution P(X|L). Notably,
the parameters trained by the RBM are reconfigured as a back-
propagation network. All the feature-label pairs are repeatedly
presented to the network, and through backpropagation
fine-tuning, a classifier is obtained.

C. Quality Pooling

Following classification, the input image is assigned to five
grades with corresponding probabilistic confidence P(L|X).
Because the grades correspond to five adjectives containing
intrinsic semantic information, the classification results can
be directly used to qualitatively describe the image quality.
For example, if the P(L = Excellent|X) is higher than
others for a given image, the quality of this image can
be described as excellent. The adjective provides a natural
fashion of describing image quality that is analogous to human
evaluation; however, it cannot be used by other applications
and fails to compare favorably with existing IQA methods.

To solve this problem, the model needs to know how
to relate the labels to scores. In practice, as a result of
personal experience and background, different people may
have different opinions about the same image. Therefore, we
assume the following.

1) Each image has an intrinsic quality Q.

2) Each well-trained individual gives constant labels when

assessing images with the same intrinsic quality.
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@ ® ®
Fig. 2. Likelihood and prior distribution recorded by subjective test.
(a) P(L = Excellent|Q). (b) P(L = Good|Q). (¢) P(L = Fair|Q).

(d) P(L =Poor|Q). (e) P(L =Bad|Q). (f) P(Q).

Therefore, for a certain population, P(L|Q) is invariable.
Based on Bayes’ rule, the posterior probability P(Q|L) can
be expressed as

P(QIL) ~ P(LIQ)P(Q) (6)

where P(Q) indicates the prior probability distribution of
images with the intrinsic quality Q. Given the input image
representation X, the distribution of the intrinsic quality can
be obtained by marginal distribution

P(QIX) =/P(Q|L)P(L|X)dL. %

The quality distribution P(Q|X) represents the evaluations
by a population. By computing the mean of the quality
distribution, the numerical measurement of image quality is
given as follows:

Quality = E[P(Q|X)]. (®)

D. Parameter Setting

To compute the quality distribution, the likelihood P(L|Q)
and prior probability P(Q) must be obtained in advance.
However, the qualitative evaluation is absent in most published
databases. Instead, the mean opinion score (MOS) is provided.
To address this problem, we conducted a subjective evaluation
on the LIVE II database, asking nine naive subjects to classify
the images into five classes, i.e., excellent, good, fair, poor,
and bad. By assuming that the intrinsic quality Q is roughly
linear to the DMOS (provided in LIVE database), the likeli-
hood probability P(L|Q), and prior distribution P(Q) can be
deduced.

In the test, each subject was individually briefed about
the goal of the experiment and given a demonstration of the
experimental procedure. Most of the images in this database
are 768 x 512 pixels in size. The display monitors are 21.6-in
LCD monitors at a resolution of 1024 x 768 pixels. Subjects
viewed the monitors from a distance of approximately twice
screen height. The images were shown in random order and
the randomization was different for each subject. The subjects
reported their judgments of quality by clicking the buttons on
a graphical user interface.

The recorded categorical distribution is shown in
Fig. 2(a)-(e). The horizontal axis represents the intrinsic

80 100 20 40 60 80 100

] 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
Q

Q
@ (© ()

Fig. 3. Hypothetical likelihood and prior distribution. (a) P(L =
Excellent| Q). (b) P(L = Good|Q). (¢c) P(L = Fair|Q). (d) P(L = Poor|Q).
(e) P(L =Bad|Q). () P(Q).

quality Q approximated by DMOS and the vertical axis
represents the P(L|Q). For example, if P(L = Excellent|
Q = 40) = 0.1, it means that an image with an intrinsic
quality of 40 may have a 10% chance of being labeled
as excellent by the population. Fig. 2(f) shows the quality
distribution in the LIVE II database.

As shown by the test results, an image associated with
a lower DMOS would be more possible to be labeled as
excellent by a certain group of assessors and vice versa, which
is intuitively straightforward. It is reasonable to assume that
people share the similar assessment standard, and thus the
different P(L|Q) should share a similar trend that how to
relate the label to quality. For comparison with the subjective
results, we also produce hypothetical categorical distributions
that have the similar trend to the recorded distributions, as
shown in Fig. 3(a)-(e). We use triangular distribution and
uniform distribution to represent such an intuitive assumption.

Both the real and hypothetical likelihood and prior distri-
bution are tested Section III, and the results show the trend,
which indicates how the labels relate to the qualities, is much
more important than the distributions themselves.

III. EXPERIMENTS

In this section, five experiments are conducted to test
the performance of the proposed method. The consistency
experiment is used to validate how the objective assessment
corresponds to human evaluation. The extensibility experiment
is employed to prove whether the proposed method is
applicable for various images and distortions without
extra training. The rationality experiment justifies the
proposed method. The sensitivity experiment is conducted to
demonstrate the sensitivity of the proposed method. Last, but
not least, the complexity experiment tests the computational
efficiency of the proposed method.

Five public IQA databases are used in our experi-
ments, including LIVE II [15], TID2008 [18], CSIQ [22],
IVC [16], and MICT [17]. The LIVE II database contains
29 high-resolution 24 bits/pixel RGB color images and
175 corresponding JPEG and 169 JPEG2000 compressed
images, as well as 145 white noisy, 145 Gaussian blurred,
and 145 fast-fading (FF) Rayleigh channel noisy images at
a range of quality levels. The TID2008 database contains
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25 reference images and 17 types of distortion are generated
for each reference image. The CSIQ consists of 30 original
images and each is distorted using six different types of
distortion at four to five different levels of distortion. The dis-
tortion includes JPEG, JPEG2000, global contrast decrements,
Gaussian blurring, additive Gaussian white noise, and additive
Gaussian pink noise. In the IVC database, 10 reference images
are used, and 235 distorted images are generated from four
different processes: 1) JPEG2000; 2) JPEG; 3) blurring; and
4) LAR coding. In the MICT database, distorted images
are generated by JPEG and JPEG2000 compression from
14 reference images. Of the comparison criteria recommended
by the video quality experts group (VQEG) [37], the Pearson
linear correlation coefficient (LCC) and Spearman rank-order
correlation coefficient (SROCC) are the most significant for
testing the performance of an IQA method. The LCC provides
an evaluation of prediction accuracy and SROCC measures
the prediction monotonicity. Due to the nonlinearity raised
by the subjective rating process, VQEG suggests applying
variance-weighted regression analysis to provide a nonlinear
mapping between the objective and subjective MOS to facil-
itate fair comparison. In this case, the LCC and SROCC are
computed between the objective and subjective scores after
nonlinear regression. We also compute the root mean square
error (RMSE) and mean absolute error (MAE) of the fitting
procedure after nonlinear mapping as auxiliary comparison
criteria.

A. Consistency Experiment

In this section, a thorough experiment on the LIVE II
database is conducted to validate how the objective assess-
ment corresponds to human evaluation. Since the machine
learning-based models need samples for training, we group the
reference images and their corresponding distorted versions,
and randomly select several groups for training, retaining the
remainder for testing. To remove the influence of the selection
of the training set, the proposed method is run 100 times in
this way. The performance metrics of LCC, SROCC, RMSE,
and MAE are obtained by averaging 100 results. The other
learning-based BIQA methods are all achieved the same way.

Four traditional full-reference IQA methods, PSNR,
SSIM [38], IFC [39], and VIF [40], are used as the benchmark.
In addition, eight BIQA methods are employed to compare:
1) NSS [5]; 2) BIQI [6]; 3) BLIINDS [8]; 4) BLIINDS-II [9];
5) DIIVINE [41]; 6) SRNSS [10]; 7) BRISQUE [26]; and
8) CORNIA [42]. All of these methods are based on machine
learning. The proposed method is abbreviated to DLIQA-R
and DLIQA-I, representing the model based on real subjective
evaluation and hypothetical data, respectively.

Tables I-IV show the experimental results of all the com-
parison methods on the LIVE II database with different
comparison criteria. The subscript of the name of the method
indicates how many groups it uses for training. Larger training
sets always enhance method performance as a result of having
more information.

Of all the comparison methods, VIF has the best
performance as a full-reference IQA method, but it needs the
reference images to conduct assessment. Of the blind methods
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TABLE I
LCC OF DIFFERENT METHODS ON LIVE Il DATABASE

Method JP2K JPEG WN GBlur FF  ALL
PSNR 0.896 0.860 0.986 0.783 0.890 0.824
SSIM 0.937 0928 0970 0.874 0.943 0.863

IFC 0.903 0.905 0.958 0.961 0961 0911
VIF 0962 0943 0984 0.974 0.962 0.950
NSSo23 0.929 0.427 0.835 0.597 0.895 0.504
BIQI23 0942 0922 0945 0.941 0.856 0.902
BLIINDS-II23 | 0.963 0.979 0.985 0.948 0.944 0.923
DIIVINE23 0.922 0921 0.988 0.923 0.888 0.917
SRNSS23 0936 0.939 0940 0.936 0.947 0.932
BRISQUE>3 0.936 0.937 0958 0.935 0.898 0.917
CORNIA23 0915 0902 0952 0.940 0913 0.903
DLIQA-I23 0951 0.941 0959 0.949 0.889 0.933
DLIQA-R23 0.953 0.948 0961 0.950 0.892 0.934
NSS15 0921 0.366 0.822 0.701 0.722 0.495
BIQI15 0.809 0.901 0.954 0.829 0.733 0.821
BLIINDS 5 * * * * * *
BLIINDS-II15 | 0.934 0915 0.950 0.926 0.852 0.908
DIIVINE 5 0.869 0.876 0951 0.911 0.846 0.864
SRNSS15 0.886 0.890 0.880 0.865 0.873 0.886
BRISQUE 5 0.939 0916 0.941 0.938 0.869 0.909
CORNIA 5 0.891 0.893 0936 0.917 0.881 0.881
DLIQA-I15 0.942 0935 0.940 0.939 0.887 0.927
DLIQA-R15 0.947 0.940 0.955 0.944 0.890 0.930
TABLE II

SROCC OF DIFFERENT METHODS ON LIVE Il DATABASE

Method JP2K  JPEG  WN  GBlur FF ALL
PSNR 0.890 0.841 0.985 0.782 0.890 0.820
SSIM 0932 0903 0963 0.894 0.941 0.851

IFC 0.892 0.866 0.938 0.959 0.963 0.913
VIF 0953 0913 0986 0.973 0.965 0.953

NSS23 0.882 0.247 0.852 0.644 0.859 0.339

BIQI23 0.940 0915 0971 0.947 0.831 0.903
BLIINDS-II23 | 0.951 0.942 0.978 0.944 0.927 0.920
DIIVINE23 0913 0910 0.984 0.921 0.863 0.916
SRNSS23 0.928 0.931 0.938 0.933 0.941 0.930
BRISQUE23 0910 0919 00955 0.941 0.874 0.920
CORNIA23 0.903 0.889 0.958 0.946 0915 0.906
DLIQA-I23 0.929 0910 0.959 0.941 0.849 0.923
DLIQA-R23 0933 0914 0968 0.947 0.857 0.929

NSS15 0.908 0.180 0.877 0.737 0.738 0.333

BIQIy5 0.800 0.891 0.951 0.846 0.707 0.820

BLIINDS 5 0.922 0.839 0974 0.957 0.750 0.800
BLIINDS-II15 | 0.926 0.883 0.956 0.935 0.859 0.911
DIIVINE 5 0.862 0.850 0.961 0.938 0.846 0.874
SRNSS15 0.863 0.871 0.861 0.860 0.865 0.876
BRISQUE 5 0.908 0.889 0941 0.945 0.852 0911
CORNIA15 0.899 0.870 0.938 0.924 0.901 0.890
DLIQA-I15 0.924 0909 0959 0.941 0.853 0.919
DLIQA-R15 0.928 0912 0968 0.946 0.861 0.927

with 23-group training, it is noted that DLIQA-R has the high-
est LCC on the entire database followed by DLIQA-I, although
neither is superior for every distortion. The performance
of SRNSS on an entire database is second to the proposed
model. The BLIINDS-II and DIIVINE perform better for some
individual distortions. They extract 24 and 88 features, respec-
tively, many more than are extracted by the proposed model,
but the experimental results show that the features extracted by
our model are more applicable for describing image quality,
while avoiding the influence of distortion type. In addition,
the proposed model outperforms SRNSS for each distortion
type except FF, which suggests that the framework more
effectively simulates the quality perception of human beings.
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TABLE III
RMSE OF DIFFERENT METHODS ON LIVE Il DATABASE

Method JP2K  JPEG  WN  GBlur FF ALL
PSNR 7.187 8.170 2.680 9.772 7.516 9.124
SSIM 5.671 5947 3916 7.639 5.485 8.126
IFC 6.972 6.813 4.574 4360 4.528 6.656
VIF 4449 5321 2851 3.533 4502 5.024
NSS23 8911 21.25 1213 17.22 9.821 19.69
BIQI23 8.213 9.233 7.005 6.566 11.38 9.849

BLIINDS-II23 | 7.257 9.103 6.825 7.894 9.709 8.800
DIIVINE23 9.660 12.25 5310 7.070 12.93 10.90
SRNSS23 7.892 7.948 7971 7.591 7.157 7.618
BRISQUE23 8.150 9.230 7.273 7.516 9.536 9.538
CORNIA23 9.666 10.32 6.541 7.689 8917 9.935
DLIQA-I23 7.540 7.640 5942 6.875 9.641 8.254

DLIQA-R23 7.250 7.596 5.881 6.570 9.540 8.149
NSS15 9.506 22.53 12.53 15.52 1528 20.09
BIQI15 14.84 13.76 8.409 10.23 19.29 15.62

BLIINDS5 * * * * * *

BLIINDS-II15 | 8596 9.593 6.915 8281 11.36 9.633
DIIVINE 5 11.72 11.58 6.982 7.176 11.69 11.55
SRNSS15 10.88 1091 10.27 10.86 10.33 10.73
BRISQUE 5 8262 9411 7.294 7354 10.55 9.609
CORNIA 15 11.07 11.89 8.445 9.576 10.00 11.78
DLIQA-Iy5 7.787 8.874 6912 7.715 10.12 8.854
DLIQA-R15 7.720 8.184 6.432 7.136 9.952 8.445

TABLE IV

MAE OF DIFFERENT METHODS ON LIVE Il DATABASE
Method JP2K JPEG WN  GBlur FF ALL
PSNR 5.528 6.380 2.164 7.743 5.800 7.325
SSIM 5.461 4.792 3.257 5.760 4.297 6.275
IFC 3.445 3.807 3.816 3.410 3.620 5.182
VIF 3.445 3.807 2304 2.818 3.547 3.887
NSS23 7.620 17.44 10.14 11.72 7.739 15.45
BIQI23 6.881 7.456 5.418 5.128 9.417 7.987

BLIINDS-II>3 | 5.860 7.136 5.377 6.553 7.162 6.930
DIIVINE23 8.380 8.172 4.489 7.771 8.653 8.123
SRNSS23 6.015 5.968 6.106 6.086 5.268 5.873
BRISQUE23 6.300 7.016 5335 5.954 7.093 7.327
CORNIA23 7.865 8.389 5.102 5.806 6.837 8.072
DLIQA-I23 5.845 5991 4.752 5412 7.105 6.348
DLIQA-R23 5.658 5.803 4.406 5.119 6.888 6.076

NSS15 8.331 18.84 10.49 10.88 10.79 15.85
BIQIy5 9.950 8.429 5826 5.898 10.774 9.661
BLIINDS{5 * * * * * *

BLIINDS-II15 | 6.776 7.954 5.418 6.729 7.675 7.573
DIIVINE 5 9.698 9.441 5476 5.638 8.761 9.221
SRNSS15 7.965 7.865 8.015 8312 7.625 8.106
BRISQUE 5 6.544 7460 5356 5.782 7.749 7.385
CORNIA {5 9.280 9.783 6.963 8.783 8.954 10.88
DLIQA-I15 6.051 6.415 4981 5.715 7.451 6.716
DLIQA-R15 5932 6.112 4.831 5.406 7.201 6.325

Of the methods with 15-group training, both DLIQA-R and
DLIQA-I outperform all the comparison methods for each dis-
tortion. It is remarkable that the performance of the proposed
method does not drop sharply along with the reduction of
the training set. The experimental results demonstrate that the
framework via deep learning is robust against the small sample
problem.

Figs. 4 and 5 show the scatter plots of MOS versus the qual-
ity predicted by NSS, BIQI, BLIINDS-II, DIIVINE, SRNSS,
and DLIQA-R. In Fig. 4, the methods are trained on 23 groups
and in Fig. 5, 15 groups are selected for training. The scatter
plots give a visual expression of their performance. Each plus
sign represents a test image. The closer these plus signs are
to the fitting curve, the better performance the model has.
It can be shown that the scatter plot of the proposed method
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Fig. 4. Scatter plots of MOS versus prediction of the test methods with
23-group training. (a) NSS. (b) BIQIL (c) BLIINDS-II. (d) DIVINE.
(e) SRNSS. (f) BRISQUE. (g) CORNIA. (h) DLIQA-R.

is clearly more compact than others in Fig. 5, i.e., those with
15-group training, which proves that the proposed method is
robust against the small sample problem.

Fig. 6 shows the relationship between the number of groups
for training and the performance of DLIQA-R. LIVE II
database contains 29 group images. We train our method using
one to 28 groups and DLIQA-R is tested on each of the other
images 100 times. The average LCC, SROCC, RMSE, and
MAE, along with their 95% confidence interval, are obtained.
As the figure shows, the curve decreases slowly with the reduc-
tion of the training set. With only nine groups for training,
the LCC is still bigger than 0.9. The RMSE and MAE curve
shows the same trend, which demonstrates that the proposed
method performs better when the training images are fewer.

B. Extensibility Experiment

To verify the extensibility and generalization of the blind
methods, we train them on the LIVE II database and test them
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Fig. 5. Scatter plots of MOS versus prediction of the test methods with
15-group training. (a) NSS. (b) BIQIL (c) BLIINDS-II. (d) DIVINE.
(e) SRNSS. (f) BRISQUE. (g) CORNIA. (h) DLIQA-R.

on other publicly available databases, including TID, CSIQ,
IVC, and MICT. The machine learning-based methods are
highly affected by the training data. In the experiment, the test
methods are trained using the LIVE database and tested on
others. Many distortion types in test datasets do not appear in
the training dataset. Therefore, for better illustration, the test
images are separated into two groups according to whether
their distortion types appear in the training dataset. Group 1
includes the distortion appearing in the LIVE II database and
group 2includes the rest.

Figs. 7 and 8 show the LCC metrics of NSS, BIQI,
BLIINDS-II, DIIVINE, SRNSS, BRISQUE, CORNIA, and the
proposed model in the two groups. In group 1, all the distortion
types appear in the training data set. It is observed that
most of the test methods show relatively good performance
across databases (Fig. 7). Among the methods, the proposed
DLIQA-R outperforms the others for most distortion types.
For 6 of 13 distortion types, the LCC metric of DLIQA-R
reaches over 0.9, and for 11 of 13 distortion types, it reaches
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over 0.8. The results demonstrate that the proposed framework
is robust against different image databases. The extensibility
of the proposed method is verified.

In group 2, the test methods try their best to predict
the images with unknown distortion types. In most cases,
the majority fails. This is because the training data set does not
contain these kinds of distortion. However, in some cases, such
as high-frequency noise in the TID database, the test methods
perform well. This might be because these kinds of distortion
have similar visual appearance to the distortions in the training
set. For example, high-frequency noise looks very similar to
the white noise, which obtains the highest performance in
group 2. By contrast, the local block-wise distortion in TID
has a distinct visual appearance with the learnt distortion types,
which results in the failure of the method.

To further illustrate the influence of the training data set,
we train the proposed method on part of the TID database and
use the rest of the database for testing. The TID database is
divided into 25 groups according to the reference images. The
20 groups are randomly selected for training and the rest for
testing. After 100 runs, the average LCC metric is shown along
with the performance trained on LIVE II database in Fig. 9.
It is observed that using part of the TID database for training
remarkably enhances the LCC metrics for almost all distortion
types. However, the performance is not improved for impulse
noise and JPEG compression. We use 20 out of 25 groups for
training, i.e., 80 images of each distortion, and 17 distortion
types are mixed. We believe that the training samples are
insufficient compared to the distortion types, which results in
the deterioration. Thus, the TID database is more challenging
than the LIVE II database.

C. Rationality Experiment

A rationality experiment [10], [43] is conducted in this
section to demonstrate that the proposed framework pro-
duces rational evaluations according to different degrees of
distortion. Four types of distortion, JPEG2000 compression,
JPEG compression, Gaussian blurring, and Gaussian white
noise, are adopted in this section. When the images are
compressed by JPEG2000, the quantification processing sets
many small wavelet coefficients at zero, which results in
ringing and blurring distortion. Blurring loses high-frequency
information and ringing introduces many artifacts. For the
JPEG compression, the images are degenerated with blocking
artifacts and blurring within blocks. We use the original
image Monarch from the LIVE II database and gener-
ate its six distorted versions for each distortion type. The
prediction trends of the proposed BIQA framework are shown
in Fig. 10. In these figures, the vertical axis indicates the
predicted quality by the proposed method and the horizontal
axis represents JPEG2000/JPEG compression rate R. Gaussian
blurring window size is W and Gaussian noise variance is
V. For ease of viewing, only part of the images is shown
in the figures. As the figures show, the proposed method
produces rational quality prediction, which is consistent with
the variations of the degree of distortion. When the degree
of distortion increases, the predicted quality scores rises. It is
noted that the proposed method is tuned to produce a DMOS-
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Fig. 6. Performance of the proposed method versus groups of training images. Results are averaged on 100 times run. (a) LCC metric. (b) SROCC metric.
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like score, which has a higher score value with lower visual
quality.

Fig. 10(d) also illustrates that the quality trend does not
increase monotonously. When the variance of Gaussian white
noise is large, the numerical scores are slightly inconsistent
with the deviation in variance. Regarding the experiments,
results are tolerable because of the disagreement in the eval-
uations scores of low-quality images provided by subjects.

D. Sensitivity Experiment

A sensitivity experiment is conducted to test whether a
blind method produces reasonable assessment. It is well
known that, although PSNR is widely used, it has a fatal
drawback: it cannot perceive image content and only com-

1.0 i » = Training o LIVE
0.9 & —®=Training on part of TID
0.8 e\ - Y A g on p 3
07 N )4 \_// \ I
06 ~ / V/ \ L / /
05 N/ \ N/ N7
04 \ Av4 —
03 \ . /
02 Y S~
.. v
0.1 4+ : : : . .
. &
& & FFF&S & 5 S & é@'@ & & S &\&S‘ >
S TS T F T T T ¢ &S
&F LT F &S e & E S & S
&S T T T YESESTSS @
SR & QQ \{{Q < N

Fig. 9. LCC metrics on TID database of the proposed method.

putes the mathematical difference between two images.
Therefore, the images of obviously different visual quality
might have the same PSNR scores. We use the original image
Monarch from the LIVE II database and generate its three
distorted versions: 1) the mean shift image; 2) the contrast-
stretching image; and 3) the JPEG compressed image. The
three distorted images have very similar PSNR scores (shown
in Fig. 11). Table V reports the quality of their PSNR,
VIF, NSS, BIQI, BLIINDS-II, DIIVINE, SRNSS, BRISQUE,
CORNIA, and DLIQA-R scores. Since the contrast-stretching
is, indeed, an image enhancement, the contrast-stretching
images should have higher quality. However, the LIVE II
database does not contain that distortion. The reference image
is regarded as perfect and therefore has the highest quality.
All the comparison methods are trained on LIVE II database.
Except NSS, they all produce reasonable results, in which the
reference get the highest quality and the JPEG compressed
image get the lowest quality. In addition, we train the proposed
model on TID database as well (denoted by DLIQA/TID).
The results show that the contrast-stretching image get lower
score (higher quality) than mean-shift and JPEG compressed
one, but still slightly higher than reference. It might be
because the training data set contain no reference images.
On some level, all test methods are consistent with human
visual perception except PSNR and NSS. The sensitivity of
the proposed framework can be verified.

E. Complexity Experiment

We also conduct an experiment to demonstrate the time
complexity of the proposed method. Because DLIQA-R and
DLIQA-I only use different likelihood and prior distribu-
tion, their time and space complexity are exactly the same.
In this section, only DLIQA-R has been tested. In addition,
NSS, BIQI, BLIINDS-II, DIIVINE, SRNSS, BRISQUE, and
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Fig. 11.

Images with similar PSNR, but different visual appearances.
(a) Original image. (b) Mean shift, PSNR = 30.0692. (c) Contrast stretching,
PSNR = 30.6863. (d) JPEG compression, PSNR = 30.2582.

TABLE V
QUALITY OF DIFFERENT METHODS FOR IMAGE IN FIG. 11

Method Original Mean Contrast JPEG
shift stretching
PSNR * 30.07 30.69 30.26
SSIM * 0.91 0.65 0.41
IFC * 0.88 0.71 0.45
VIF * 0.83 0.75 0.39
NSS 79.01 79.99 79.97 79.89
BIQI 18.20 22.34 28.59 34.03
BLIINDS-II 19.50 33.00 31.00 61.50
DIIVINE 12.01 16.87 17.08 23.63
SRNSS 35.51 38.36 38.47 60.79
BRISQUE 3.137 17.13 17.66 44.14
CORNIA 20.72 35.17 31.28 48.39
DLIQA/LIVE 2591 37.88 37.90 53.72
DLIQA/TID 42.99 45.42 43.21 56.84

CORNIA are tested in the experiment. The MATLAB codes
all come from their official websites or authors. The run-
time environment is MATLAB R2010b on 64 bit Windows7.
For each method, the same image is evaluated 10 times and
total time consumed is recorded by the MATLAB functions
tic and toc. Divided by 10, the CPU time is obtained. The
results are shown in Table VI. We do not run optimization
for our MATLAB code. As shown in Table IV, the pro-
posed DLIQA-R has the lowest time complexity of all the
comparison methods. In addition, our method extracts only
12 features to express image quality, making it one of the
methods using the fewest features.

o 65

0 0.01 0.02 0.03 0.04 0.05

(d)

Quality trend predicted by the proposed method for different distortion types. (a) JPEG. (b) JPEG2000. (c¢) Gaussian blurring. (d) Gaussian white

TABLE VI
TiME COMPLEXITIES OF BIQA METHODS

Method CPU time/s
NSS 1.0098
BIQI 1.2968

BLIINDS-II 151.9483

DIIVINE 42.6760
SRNSS 0.5057
BRISQUE 0.3035
CORNIA 0.8642
DLIQA-R 0.1942

IV. CONCLUSION

This paper proposes a novel classification-based framework
for universal BIQA via deep learning. Aiming to learn from the
linguistic description of image quality and output numerical
scores for general utilization, the proposed model recasts the
BIQA as a classification problem associated with a newly
designed quality pooling. A deep learning network is designed
to classify (actually score) an image into five grades and then
convert the labels to numerical scores. Thorough experimental
results verify its effectiveness, efficiency, and robustness to
small training sets, demonstrating that the proposed model
corresponds well to human evaluation. It has the potential to
perform even better. The NSS feature is strong in representing
image quality, but it is hand-crafted, which requires time-
consuming hand-tuning. The extensibility experiment shows
that the features fail to express certain eccentric distortions.
Using deep learning to learn more powerful image representa-
tion for describing image quality remains a great challenge that
has yet to be resolved. Developing semisupervised or unsu-
pervised convolutional neural networks could obtain effective
solutions in the future work.
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