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Abstract 

Market power is the ability of a market participant to alter the market price of a good or 

service without losing customers to competition.  The participant’s price is profitably maintained 

above a competitive level for a significant period of time.  In ideal competitive markets, one 

would need to lower prices to garner more market share.  In uncompetitive  markets, participants 

who know their product is absolutely needed or not substitutable, can profitably raise prices to 

high levels [i].  In electric energy markets, there are many contributing factors determining 

competitiveness including market share, market concentration, elasticity of demand, excess 

capacity, contractual arrangements, price establishment processes and ease of market entry [ii].     

The market participants in electric energy markets are the generators supplying 

electricity.  Here the suppliers possessing market power potential can increase revenue without 

affecting the revenue and electric dispatch of other generators.  When a centrally-dispatched 

electricity market is competitive, economic operation of the grid is transparent and efficient.  

However when a supplier possess an advantage over others, the benefits of a competitive 

electricity market may be jeopardized [ix].   

  Market power problems are complicated in electric markets due to specific properties of 

electricity and transmission grids [iii].  High concentrations of intensive power use can constrain 

transmission systems, and the ability of some loads to be served by generators located at remote 

distances would be limited.  The areas where insufficient transmission capacity cannot reliably 

supply 100% of the electric load, without relying on generation physically located nearby, are 

termed “load pockets”.  Substitutability for the commodity is not readily available in these load 

pockets.  Other sources of inefficiency are limited generation capacity of suppliers and a lack of 

sufficient energy storage.  Generators that can capitalize on transmission deficiencies can 



iii 
 

increase price while maintaining their amount of energy sold.  The constraints on the 

transmission grid allow one or more suppliers to exploit locational advantages to their benefit at 

the expense of the end user.   

There exist many tools widely used for identifying market power potential.  Most rely on 

direct application of concentration measures, such as Residual Supplier Indices and the 

Hirschmann-Herfindahl Index, which show a single supplier or small number of suppliers 

dominating the market.  These concentration measures are valuable but often fail to capture the 

true degree of competition [ix].  Concentration measures do not consider price-responsiveness or 

elasticity of demand, and a detailed representation of the electric grid may not be included.  In 

electric energy markets various network operating limits often present market participants an 

uncompetitive advantage in small segments of the network, referred to as “local market power.”  

Concentration measures may fail to identify these market participants exhibiting local 

geographic advantage when assessing the network as an aggregate [iv]. 

Distribution factors related to sensitivity of constrained lines and supplier dispatch are 

used in a PJM three pivotal supplier test that is said to be more accurate than concentration 

measures [v].  Here each constraint is examined individually to determine whether three 

suppliers are jointly pivotal in relieving the constraint.  A similar approach will be taken in the 

algorithm of this paper, but will differ in that the simultaneous combined effect of all line 

constraints will be considered instead of evaluating one at a time.  This new work is significant 

because the presence of multiple line constraints could further provoke market power potential, 

and these locational advantages may be less evident in the analysis of a lone constraint. 

The goal of this paper is to outline an algorithmic routine that exploits sensitivity 

analyses of coupled economic and physical models.  Load demand is assumed to be inelastic, 
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and only the effect of offer price on the market is studied.  Limits are placed on transmission 

lines known to be easily congested, and a linear programming optimal flow is run.  Matrices of 

dispatch/offer price and revenue/offer price sensitivities are then calculated for further evaluation 

which will highlight suppliers able to manipulate the market to their advantage.   

This analysis does not necessarily conclude certain generators are exercising market 

power or to what extent this potential may be exercised.  It serves as a screening tool so that 

dominant suppliers flagged can be investigated for the possibility of market power potential.  

The impact of this work will improve the efficiency and reliability of the electric power grid. 
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1.  Introduction 

 The goal of this paper is to use models capturing market and network behavior to 

establish an efficient and accurate algorithm for identifying small numbers of suppliers with 

the ability to change prices without affecting dispatch.  The algorithm should be robust and 

quick enough to be used in real-time market scenarios.  To begin, some market economics 

being dealt with will be examined.  An experiment involving market power exploitation of 

load pockets will also be presented. 

1.1  Market Economics 

In electric energy markets, increasing revenues may not imply increasing profits.  

Consider a basic example.  When offer prices  
$

𝑀𝑊
  are lowered, an increased market share 

 𝑀𝑊  should be witnessed as lower bids for energy are purchased first in market auctions.  

Lowering price to increase market share could increase revenue  $ , but the cost to generate 

more electricity 
$

𝑀𝑊
  will also increase.   

𝑝𝑟𝑜𝑓𝑖𝑡 $ = 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 $ − 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛  
𝑀𝑊

$
 ×  𝑑𝑖𝑠𝑝𝑎𝑡𝑐𝑕 $  

The difference between profit and revenue has been acknowledged, but for the remainder of 

this work revenue will be used as a proxy for profit.  Information of increased cost of 

generation and other expenses synonymous with increasing dispatch are not needed when 

studying market power.  Aside from knowledge of transmission grid topology, only data of 

offer prices resulting in zero change in dispatch is needed, hence the study of revenue and not 

profit is used.         
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1.2  Experiment Market Studies 

If a small set of suppliers can simultaneously raise prices and increase revenues, they 

have some amount of market power.  Consider a six supplier example extracted from a Real 

Time Market Power Monitoring PSERC presentation by Dr. Bernard Lesieutre [vi] [vii]: 

 
Figure 1:  Six Supplier Network 

The total system load is 165 MW and a capacity of 60 MW is placed on each generator.  The 

lines connecting the left and right network are each limited to a max flow of 10MVA and 

inhibit power flow.  The constraints produce a load pocket in the right network where 

generators 5 and 6 are.  The above can be simplified to the following diagram: 
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Figure 2:  Six Supplier Network Simplified 

 

The right load demands 49 MWs and can draw a maximum of 20 MWs from the left 

network.  Therefore the load on the right must purchase at least 29 MWs from generators 5 

and 6.  Generators 5 and 6 can offer market prices higher than offered by Generators 1-4 due 

to locational advantages, shown in the following Figure 3:  Example Base Case Offers.  The 

three blocks of energy represent each generator’s 60 MW capacity and would be sold in a 

uniform price auction.   

 
Figure 3:  Example Base Case Offers 

A base case solution for the full nonlinear AC optimal power flow is shown in Table 1. 

 

 G1 G2 G3 G4 G5 G6 

Dispatch (MW) 31.7 36.0 34.0 36.0 17.6 12.0 

Price ($/MWh) 40.0 40.1 40.0 40.1 55.0 54.3 

Table 1: Base Case Dispatch and Nodal Prices  

The matrix of revenue/offer price sensitivities for this base case solution is shown in Table 2. 

Δ𝑟 = 𝑐𝑕𝑎𝑛𝑔𝑒 𝑖𝑛 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 
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Δ𝑦 = 𝑐𝑕𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑓𝑓𝑒𝑟 𝑝𝑟𝑖𝑐𝑒 

Δ𝑔 = 𝑐𝑕𝑎𝑛𝑔𝑒 𝑖𝑛 𝑑𝑖𝑠𝑝𝑎𝑡𝑐𝑕 

Δ𝜆 = 𝑛𝑜𝑑𝑎𝑙 𝑝𝑟𝑖𝑐𝑒 

Each entry of Table 2 is defined by 

𝑑𝑟𝑖
𝑑𝑦𝑗

= 𝜆𝑖
∗ 𝑑𝑔𝑖

𝑑𝑦𝑗
+ 𝑔𝑖

∗ 𝑑𝜆𝑖

𝑑𝑦𝑗
 

around the operating point (𝑔∗, 𝜆∗) representing the proportion in revenue change for the 𝑖𝑡𝑕  

generator (row 𝑖 in the matrix) due to a change in nodal price at the 𝑗𝑡𝑕  generator (column 𝑗 

of the matrix).   

 
 
 
 
 
 
 
Δ𝑟1

Δ𝑟2

Δ𝑟3

Δ𝑟4

Δ𝑟4 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
−3298 3231 31 65 52 −49

3219 −3695 244 263 315 −310

31 244 −544 308 −234 229

65 263 307 −597 −127 125

38 230 −170 −93 −160 173

−36 −229 169 92 175 −159 
 
 
 
 
 
 

 
 
 
 
 
 
 
Δ𝑦1

Δ𝑦2

Δ𝑦3

Δ𝑦4

Δ𝑦4 
 
 
 
 
 
 

 

Table 2:  Six Supplier Revenue/Price Matrix 

The negative entries on the diagonal indicate no generator acting alone can 

simultaneously increase offer price and revenue.  Also, the sum of each row is positive, 

revealing if all suppliers equally raise prices, all would experience increased revenue.  Closer 

examination reveals a load pocket for generators 5 and 6. 

 
 
 
 
 
 
 
Δ𝑟1

Δ𝑟2

Δ𝑟3

Δ𝑟4

Δ𝑟4 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
−3298 3231 31 65 52 −49

3219 −3695 244 263 315 −310

31 244 −544 308 −234 229

65 263 307 −597 −127 125

38 230 −170 −93 −160 173

−36 −229 169 92 175 −159 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Δ𝑦1

Δ𝑦2

Δ𝑦3

Δ𝑦4

Δ𝑦4 
 
 
 
 
 
 

 

Table 3:  Six Supplier Load Pocket Identified 
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 If generators 5 and 6 raise prices simultaneously their own revenues increase.  They 

are the only pair of generators with this ability.  Furthermore, if the two generators 

proportionally raise their prices near unity, revenue of the remaining four generators remains 

unchanged.  This suggests generators 5 and 6 share potential market power.    

An experiment was conducted at Cornell University with students acting as the six 

generators.  Each generator attempted to maximize revenue without communication or 

collusion between participants.  A seventy-five round uniform price auction was performed 

with each student specifying a price for each of the three fixed blocks of energy representing 

the capacity of their generator.  An $80/MWh price offer cap was imposed, and results 

suggest that had the experiment continued past seventy-five rounds, the load pocket would 

have approached the price offer cap. 

 G1 G2 G3 G4 G5 G6 

Dispatch (MW) 37.9 34.9 30.1 34.9 14.9 14.6 

Price ($/MWh) 48.5 48.7 48.5 48.6 72.0 70.0 

Table 4:  Experimental Dispatch and Nodal Prices Results 

 Generators 5 and 6 in the load pocket were able to exploit their joint market power to 

their mutual advantage.  It is typical in economic experiments for suppliers with joint market 

power potential to discover this ability without direct collusion.   

2.  Sensitivity Analysis 

Traditional concentration measures fail to account for some engineering constraints 

[ix], so the approach of this work relies on sophisticated procedures developing sensitivity 

data of economic and physical models.  Analysis is simplified by assuming quadratic offer 

function for the suppliers, and the change in dispatch to the change in the cost function’s 
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quadratic coefficient term is calculated.  Qualitatively the change in dispatch to changes in 

cost is preserved which allows simple DC power flow analysis with limits imposed.  If a 

supplier can successfully raise prices without changing dispatch, their profits will necessarily 

increase [viii].  This lack of competitiveness clearly indicates the potential for market power.  

Revenue, offer price and dispatch sensitivities will be observed in order to monitor locational 

advantages and market power.  

2.1  Dispatch/Offer Price Observations 

 A simple DC power flow analysis is employed to model injected active power in a 

lossless network, and a dispatch/offer price (Δ𝑔/Δ𝑦) sensitivity matrix is generated to gain 

insight into some network spectral properties.      

𝑚𝑖𝑗 =
𝜕𝑔𝑖

𝜕𝑦𝑗
 

Δ𝑔 = 𝑀Δ𝑦 

 If 𝑚 is the number of generators in the network, than 𝑀 is an 𝑚 × 𝑚 matrix, and Δ𝑔 

and Δ𝑦 are 𝑚 × 1 vectors.  The matrix 𝑀 reflects certain substitutability properties of the 

system.  Its diagonal entries are typically negative, so one supplier cannot unilaterally 

increase both supply and price as competitors can substitute supply [ix].  More importantly 

𝑀 is singular, meaning a price perturbation vector Δ𝑦 exists creating zero change in dispatch 

Δ𝑔 = 0. 

 0 = 𝑀Δ𝑦  (1)  

Here Δ𝑦 is in the null space of 𝑀, 𝑁𝑢𝑙(𝑀).  A price perturbation vector Δ𝑦 that will always 

create zero change in dispatch is a column of all ones representing equal incremental cost.  
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This signifies the ability of all suppliers equally and simultaneously raising prices and thus 

not affecting dispatch.  This vector of all equal elements arises when no line limits are active 

and losses are neglected as in a DC power flow representation.   

A less obvious property of 𝑀 is that the dimension of its null space increases with the 

number of transmission constraints.  As line flow limits become active the null space grows 

in dimension.  In general the basis of 𝑁𝑢𝑙(𝑀) in an electric network with (𝑛 − 1) line 

constraints will have 𝑛 linearly independent vectors [x].  

𝑁𝑢𝑙 𝑀 = 𝐵 =  Δ𝑦1 Δ𝑦2 …Δ𝑦𝑛  

Any linear combination of Δ𝑦1, Δ𝑦2, … , Δ𝑦𝑛  will also satisfy (1), and hence there are an 

infinite number of price perturbation vectors in the null space of 𝑀 [xi]. 

2.2  Dispatch/Offer Price Utilization 

A nineteen generator bus example of the dispatch/offer price null space matrix 𝐵 is 

shown below in Table 5.  The rows represent generation buses, and each independent column 

represents a scenario of offer price perturbations about market clearing price that results in no 

change of electric dispatch.  In this example a DC optimal power flow, with assumed 

quadratic offer function for the suppliers, was run on an IEEE sample 118-bus system [xii].  

Once the binding constraints are known the 𝑚 𝑥 𝑛 matrix 𝐵 can be easily computed from a 

linear programming tableau.  Three line constraints were imposed in the example of Table 5.  

Hence there are four columns or four scenarios of price perturbation that do not change 

dispatch.  Three of the columns are from the three line constraints and the fourth for the 

scenario of all generators equally incrementing prices.    
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𝐵 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.9915 0.3210 0.3388 1.0000
0.0171 −0.4538 0.3332 1.0000
0.0171 0.0626 0.2686 1.0000
0.0171 0.0777 0.2916 1.0000
0.0171 0.0207 0.2862 1.0000
0.0171 0.0576 −0.1247 1.0000
0.0171 0.0586 −0.1587 1.0000
0.0171 0.0596 −0.1960 1.0000
0.0171 0.0604 −0.2280 1.0000
0.0171 0.0608 −0.2404 1.0000
0.0171 0.0615 −0.2666 1.0000
0.0171 0.0603 −0.2221 1.0000
0.0171 0.00592 −0.2009 1.0000
0.0171 0.0598 −0.2183 1.0000
0.0171 0.0596 −0.2140 1.0000
0.0171 0.0597 −0.2148 1.0000
0.0171 0.0597 −0.2160 1.0000
0.0171 0.0597 −0.2160 1.0000
0.0171 0.0597 −0.2160 1.0000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

            =  𝐵1 𝐵2 𝐵3 𝐵4      (19 𝑟𝑜𝑤𝑠 𝑥 4 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) 
Table 5:  Dispatch/Offer Price Sensitivity Matrix 

The goal is to find a linear combination of these four columns that will generate a 

new price perturbation vector.  Ideally for the purpose of identifying market power, a price 

perturbation vector having few large entries and many zero or near zero entries is desired.  

This ideal scenario would highlight a few market participants raising prices, with the other 

generator prices remaining unchanged and all dispatch levels maintained constant.  The few 

dominant generators highlighted would appear to have the potential ability to increase prices,  

maintain dispatch and print money with no negative feedback.   

 𝐵1 𝐵2 𝐵3 𝐵4 ∗  

𝑥1

𝑥2

𝑥3

𝑥4

  

= 𝐵1 ∗ 𝑥1 + 𝐵2 ∗ 𝑥2 + 𝐵3 ∗ 𝑥3 + 𝐵4 ∗ 𝑥4 
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= Δ𝑦 =  
𝑓𝑒𝑤 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑡𝑟𝑖𝑒𝑠

−
𝑚𝑎𝑛𝑦 𝑧𝑒𝑟𝑜 𝑒𝑛𝑡𝑟𝑖𝑒𝑠

    (19 𝑟𝑜𝑤𝑠 𝑥 1 𝑐𝑜𝑙𝑢𝑚𝑛) 

3.  Generating Price Perturbation Vectors 

The possible combination values of 𝑥 (𝑥1, 𝑥2, 𝑥3 and 𝑥4 for the 19 𝑥 4 example of 

Table 5) are infinite, thus infinite possible linear combinations of 𝐵 and infinite price 

perturbation vectors Δ𝑦.  Somewhere in these infinite combinations, a vector 𝑥 that generates 

a quality price perturbation vector Δ𝑦 is desired. 

3.1  Moore-Penrose Pseudo Inverse 

If Δ𝑦 is already known or can be approximated, then the Moore-Penrose pseudo-

inverse can be used to find the least squares 𝑥 values [xiii].   

𝐵𝑥 = Δ𝑦 

𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐵†Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

𝐵𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = Δ𝑦∗ 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠  Δ𝑦∗ − Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  2  

The vector 𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙  minimizes the Euclidean two-norm.  The problem here is 

Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  needs to be specified or approximated before solving.  Recall the basis B 

referred to in Table 5.  It appears that a linear combination of columns 1 and 4 could generate 

a new vector close to  1 0 0 … 0 𝑇.   

𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐵† 1 0 0 … 0 𝑇 =  

−0.9915
−0.0000
0.0000
0.0169
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=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.0000
−0.0000
−0.0000
−0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
−0.0000
−0.0000
0.0000
0.0000
0.0000
−0.0000
−0.0000
0.0000
0.0000
−0.0000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑩𝒙𝒐𝒑𝒕𝒊𝒎𝒂𝒍 = 𝚫𝒚∗    (max entry scaled to 1.0 for plot) 

 
Figure 4:  Moore-Penrose Success 

 

 Δ𝑦∗ − Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  2 = 3.4203 × 10−15 

The new price perturbation vector Δ𝑦∗ is basically equivalent to the initial condition unit 

vector Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  and is an ideal price perturbation vector desired to be identified. The 

above demonstrates the quickness and ease of successfully using the Moore-Penrose pseudo 

inverse.   

Now consider a less suitable example however.  Take the initial condition to be 

another unit vector with 1.0 placed at the 11
th
 row.           

𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐵† 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 𝑇 =  

−0.0720
−0.0892
−0.2344
0.0366
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=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.0000
−0.0240
−0.3584
−0.4513
−0.3628
0.6440
0.7290
0.8229
0.9031
0.9342
1.0000
0.8883
0.8356
0.8791
0.8685
0.8704
0.8734
0.8734
0.8734  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑩𝒙𝒐𝒑𝒕𝒊𝒎𝒂𝒍 = 𝚫𝒚∗    (max entry scaled to 1.0 for plot) 

 Figure 5:  Moore-Penrose Failure 

 

 Δ𝑦∗ − Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  2 = 0.9527 

This new price perturbation vector does not resemble Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  whatsoever as can be 

seen with a larger two-norm of 0.9527.  More importantly though, the vector can be refined.  

How the following refined vector was generated is not important for now, just the fact that its 

achievable is what’s of interest.  
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=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−0.0000
−0.0000
0.0433
−0.0000
0.0175
0.7470
0.8075
0.8742
0.9311
0.9352
1.0000
0.9207
0.8829
0.9139
0.9063
0.9077
0.9099
0.9099
0.9099  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑩𝒙𝒐𝒑𝒕𝒊𝒎𝒂𝒍 = 𝚫𝒚∗    (max entry scaled to 1.0 for plot) 

 
Figure 6:  Refined Vector 

 

This price perturbation vector is better than that shown in Figure 5.  To generate this 

preferred vector for results, the perfect initial condition Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  would be needed.  

An infinite number of initial condition vectors Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  are available, making it 

difficult to find the right one.  The Moore-Penrose pseudo-inverse is a quick and easy 

refinement tool for exposing market power potential if a good initial guess at a price 

perturbation vector is known.  Typically there will be better available approaches however. 

3.2  Eigen-analysis 

Recall that market power is the ability of one or more market participants to raise the 

price of their service without losing customers to competition.  Of course all market 

participants could simultaneously raise prices, and customers would have no better option of 

provider than those of whom they original purchased from.  This scenario is unlikely 
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however as in practice there are far too many suppliers who would need to jointly act in overt 

coordination.  Therefore it is of primary concern to identify one or small groups of generators 

that can raise prices and profit while the many other generator prices remain unchanged or 

very slightly changed.  This can be shown to be an eigenvalue analysis problem. 

𝐵𝑥 =  
𝐵+

−
𝐵−

 𝑥 =  
𝐵+𝑥
−

𝐵−𝑥
 
⃪ 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑡𝑟𝑖𝑒𝑠, 𝑓𝑒𝑤 𝑟𝑜𝑤𝑠    

 
⃪ 𝑠𝑚𝑎𝑙𝑙 𝑒𝑛𝑡𝑟𝑖𝑒𝑠, 𝑚𝑎𝑛𝑦 𝑟𝑜𝑤𝑠

(𝑚 𝑟𝑜𝑤𝑠 𝑥 1 𝑐𝑜𝑙𝑢𝑚𝑛)

 

 𝜆𝑚𝑎𝑥 = max 𝑥𝑇 𝐵+
𝑇𝐵+ − 𝐵−

𝑇𝐵− 𝑥  (2)  

Preferably the number of generators in group 𝐵+ is few  #𝑟𝑜𝑤𝑠 𝐵+ ≪ #𝑟𝑜𝑤𝑠 𝐵−    

implying a small group of generators can exercise market power if the many generators 

making up group 𝐵− do not alter prices.  The proof of the above equation (2) is simple.  It is 

desired the absolute value entries of  𝐵+𝑥 ≫  𝐵−𝑥 .  Taking  𝐵+𝑥 
𝑇(𝐵+𝑥) yields the scalar 

sum of the squares of 𝐵+𝑥, and the same can be done for 𝐵−𝑥.  Therefore the eigenvector 𝑥 

that maximizes the difference between  𝐵+𝑥 𝑇(𝐵+𝑥) and  𝐵−𝑥 
𝑇(𝐵−𝑥) is needed in the 

search for price perturbation vectors having few large entries and many small entries.   

max  𝐵+𝑥 𝑇 𝐵+𝑥 −  𝐵−𝑥 
𝑇 𝐵−𝑥   

= max 𝑥𝑇𝐵+
𝑇𝐵+𝑥 − 𝑥𝑇𝐵−

𝑇𝐵−𝑥  

= max 𝑥𝑇 𝐵+
𝑇𝐵+ − 𝐵−

𝑇𝐵− 𝑥  

= 𝑥𝑚𝑎𝑥
𝑇  𝐵+

𝑇𝐵+ − 𝐵−
𝑇𝐵− 𝑥𝑚𝑎𝑥  

Equation (2) equals the maximum eigenvalue of the square matrix 𝐵+
𝑇𝐵+ − 𝐵−

𝑇𝐵−.  Consider 

the standard eigenvalue equation. 

𝐴𝑥 = 𝜆𝑥 

→ 𝑥𝑇𝐴𝑥 = 𝜆 
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In this case 𝐴 equals 𝐵+
𝑇𝐵+ − 𝐵−

𝑇𝐵− and choosing its maximum eigenvalue and 

corresponding eigenvector maximally optimizes the separation between the large entries in 

𝐵+𝑥 and small entries in 𝐵−𝑥.  Once the optimal eigenvector is identified, a price 

perturbation vector in the column space of 𝐵 can be generated.  

𝐵𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = Δ𝑦𝑛𝑒𝑤  

The last refinement made to this new vector Δ𝑦𝑛𝑒𝑤  is that it is scaled so its maximum 

absolute value row equals one. 

3.3  Orthonormality 

 It is best if the given basis 𝐵 =  
𝐵+

−
𝐵−

  is orthonormal for eigen-analysis.  An 

orthornormal basis can be thought of as a rotation or a unitary transformation to a new 

coordinate system.  The basis 𝐵 dealt with has dimensions 𝑚 × 𝑛 with 𝑚 > 𝑛.  Thus the 

orthonormal basis 𝐵 has orthornormal columns, but not rows.  The two-norm
 
of each column 

in 𝐵 must equal 1.0, and 𝐵𝑇𝐵 = 𝐼 the identity matrix.  An orthonormal basis provides the 

best rigid-body transformation to a simpler coordinate system.  It can be computed using 

singular value decomposition (SVD).  Here the matrix 𝐵 can be expressed as 𝐵 = 𝑈Σ𝑉∗ with 

Σ being a square matrix having 𝐵′𝑠 singular values on its diagonal.  If r is the rank of 𝐵, the 

first r left singular vectors or columns of 𝑈{𝑢1, … , 𝑢𝑟} generate an orthonormal basis of 𝐵 

[xi].   
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Consider performing one computation of eigen-analysis on the non-orthonormal basis 𝐵 of 

Table 5:  Dispatch/Offer Price Sensitivity Matrix.   

𝐵+ =  −0.9915 0.3210 0.3388 1  𝐵− =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.0171 −0.4538 0.3332 1
0.0171 0.0626 0.2686 1
0.0171 0.0777 0.2916 1
0.0171 0.0207 0.2862 1
0.0171 0.0576 −0.1247 1
0.0171 0.0586 −0.1587 1
0.0171 0.0596 −0.1960 1
0.0171 0.0604 −0.2280 1
0.0171 0.0608 −0.2404 1
0.0171 0.0615 −0.2666 1
0.0171 0.0603 −0.2221 1
0.0171 0.00592 −0.2009 1
0.0171 0.0598 −0.2183 1
0.0171 0.0596 −0.2140 1
0.0171 0.0597 −0.2148 1
0.0171 0.0597 −0.2160 1
0.0171 0.0597 −0.2160 1
0.0171 0.0597 −0.2160 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑒𝑖𝑔 𝐵+
𝑇𝐵+ − 𝐵−

𝑇𝐵− → 𝑥max ⁡_𝑛𝑜𝑛 _𝑜𝑟𝑡𝑕𝑜𝑛𝑜𝑟𝑚𝑎𝑙  

Now take basis 𝐵 of Table 5:  Dispatch/Offer Price Sensitivity Matrix to be orthonormal, 

𝐵 = 𝑜𝑟𝑡𝑕(𝐵), and again perform eigen-analysis with 𝐵+ similarly being the first row and 𝐵− 

the remaining rows.   

𝑒𝑖𝑔 𝐵+
𝑇𝐵+ − 𝐵−

𝑇𝐵− → 𝑥max ⁡_𝑜𝑟𝑡 𝑕𝑜𝑛𝑜𝑟𝑚𝑎𝑙  

𝐵𝑛𝑜𝑛 _𝑜𝑟𝑡 𝑕𝑜𝑛𝑜𝑟𝑚𝑎𝑙 ∗ 𝑥max _𝑛𝑜𝑛 _𝑜𝑟𝑡 𝑕𝑜𝑛𝑜𝑟𝑚𝑎𝑙  

 

𝐵𝑜𝑟𝑡 𝑕𝑜𝑛𝑜𝑟𝑚𝑎𝑙 ∗ 𝑥max _𝑜𝑟𝑡 𝑕𝑜𝑛𝑜𝑟𝑚𝑎𝑙  

 
Figure 7: Non-Orthonormal vs. Orthonormal 
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It can be seen that the orthonormal basis produces a sharper, more unit-like vector.  Upon 

orthonormal rotation of a basis, unit vectors or least-squared vectors which are desired in 

market power analysis are successfully isolated.  

Consider the IEEE 118-bus case [xii], with nineteen generators considered online.  

Constraints were placed on the three lines shown in bold red in the below Figure 8. 

 
Figure 8:  118-Bus Test System w/ Line Congestion 
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The following is the orthonormal basis calculated from the DC optimal power flow: 

𝐵𝑜𝑟𝑡 𝑕 = 𝐵 =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.2438 0.1080 0.5039 −0.3428
0.2455 0.1195 −0.8490 −0.0640
0.2377 0.0599 0.0415 0.2302
0.2398 0.0764 0.0671 0.0907
0.2427 0.0903 −0.0804 −0.8494
0.2430 0.1033 0.0314 0.0732
0.2466 0.1345 0.0359 0.0899
0.2507 0.1696 0.0404 0.1067
0.2544 0.2013 0.0445 0.1220
0.2562 0.2166 0.0464 0.1293
0.2602 0.2517 0.0509 0.1462
0.2532 0.1908 0.0431 0.1169
0.1984 −0.2774 0.0068 0.0460
0.1925 −0.3284 0.0030 0.0144
0.1931 −0.3229 0.0035 0.0215
0.1930 −0.3240 0.0034 0.0201
0.1928 −0.3254 0.0033 0.0183
0.1928 −0.3254 0.0033 0.0183
0.1928 −0.3254 0.0033 0.0183  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 6:  Orthonormal Basis 

Table 6 will now be referred to as example basis 𝐵, for an orthonormal basis is needed when 

using eigen-analysis.   

3.4  Market Power Monitoring Tool Challenges 

 There are a few significant challenges encountered when developing a practical 

algorithm for identifying market power potential.   

The first challenge is ensuring a reasonable execution time of the algorithm.  For 

instance when using the Moore-Penrose pseudo inverse to generate price perturbation 

vectors, one must specify what initial condition vectors Δ𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  to try.  The number 

of potential vector candidates is infinite.  The more initial conditions tried, the more resulting 

price perturbation vectors generated and odds increase of finding a meaningful vector.  When 
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using eigen-analysis, one must first select which rows to be placed in 𝐵+ with the remaining 

rows in 𝐵−.  This approach at least has a limited amount of combinations.  If there are 𝑚 

rows in 𝐵 than there are 2𝑚  combinations of 𝐵+/𝐵−   0
𝑚
 +  1

𝑚
 +  2

𝑚
 + ⋯ +  𝑚

𝑚
 = 2𝑚 .  

Though this number of computations is limited, it doubles with each additional row or 

generator, and can become unreasonably large very quickly.  It will be shown later that 

clustering methods can be used for speed.  A negligible or slight accuracy sacrifice is made 

in exchange for vast improvements in execution time.     

 A second challenge encountered when developing the algorithm is avoiding 

redundant price perturbation results.  Typically the resulting vectors aren’t exactly identical 

but very slightly different as they are all linear combinations of one another.  Vectors that are 

a slight perturbation of another are considered redundant and should not be outputted.  Only a 

small core set of these vectors is desired, so a filtering mechanism must be established to 

weed out similar or redundant results.     

A third challenge encountered is determining what is considered to be a successful 

new price perturbation vector 𝐵𝑥 = Δ𝑦.  The use of vector norms is suggested as the best 

measure of quality and will be discussed further on. 

4.  Clustering 

As considered earlier, one challenge encountered when developing an efficient 

algorithm for determining market power is computational cost and execution time.  Eigen-

analysis will be used to calculate new vectors highlighting market power.  If the 

computational power and time was available, the eigenvalue equation (2) could be executed 

for every row combination of 𝐵+/𝐵− to calculate all generator collusions and observe all 
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resulting price perturbation vectors of interest.  Fundamentally this approach is 

combinatorial, and with the nineteen generator basis of Table 6, there would be 524,288 

computations  219 = 524,288 .  This number of computations usually takes more than an 

hour depending on the computer being used.  In practice there will be even more than 19 

generators to be considered, thus some method of generalization needs to be resorted to in 

order to avoid unreasonable computation time. 

It is typical in power systems for generator dispatch/offer price sensitivities to 

respond similarly to neighboring generators due to grid infrastructure and distance to line 

congestions.  Therefore generators exhibiting similar behavior can be clustered together 

allowing for fewer computations of eigen-analysis.  Combinatorial brute force will be used to 

check many combinations of 𝐵+/𝐵−, but instead of switching one row at a time in and out of 

𝐵+/𝐵−, an entire cluster of similar generators can be switched.  For example, the nineteen 

row basis 𝐵 of Table 6 will be clustered into 5 clusters.  After clustering, the eigenvalue 

equation (2) will be executed 25 times for all combinations of the five clusters.  Here 

25 = 32 ≪ 219 = 524,288.  This lower number of computations is now reasonable, and by 

clustering similar generators no significant results highlighting market power are lost.  

4.1  Quality Threshold Clustering 

 The Quality Threshold (QT) algorithm is a clustering method where the number of 

resulting clusters is not specified, but the maximum diameter of entries in a cluster is 

specified a priori.  The algorithm ensures a quality guarantee in that all entries of a particular 

cluster do not exceed the maximum diameter threshold.  Any measure of distance can be 

used for measurement, but only the Euclidean distance will be evaluated for now.   
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The QT algorithm generates candidate clusters by encapsulating all points within the 

specified maximum diameter.  The candidate cluster encapsulating the most points is selected 

as the first permanent cluster.  All points from that cluster are removed from availability in 

the next iteration, and the process repeats itself until all points belong to a cluster [xiv].  The 

QT algorithm gives the same results for a given basis every time it is performed.   

4.2  K-Means Clustering 

The K-means clustering algorithm requires less computational power than the Quality 

Threshold algorithm.  It requires a desired number of clusters 𝑘 to be specified a priori, as 

opposed to a specified distance threshold being specified.   

The 𝑘 random points are selected heuristically and become the initial cluster 

centroids.  Each point in the basis is then assigned to its closest centroid.  Next the centroids 

are reformulated by taking the mean location of the points in the centroid.  Each point in the 

basis is again assigned to the nearest new centroid, and the centroid means are recalculated.  

This process continues until the points stop changing clusters, and the total sum of distance to 

centroid mean is minimized.   

An issue to be mindful of with the K-means clustering algorithm is that the random 

initial centroids affect the outcome of the final centroids.  Stated another way, different final 

clusters can be expected in multiple runs of the K-means algorithm as local minimums rather 

than global minimums are converged to.  To get around this issue the sum of the distances of 

each point to the mean of their centroid is taken.  The K-means algorithm is replicated 

multiple times, and the run with the least sum of the distances is taken to be the best 

represented set of clusters [xv].   
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It is less than desirable to require the user of this market power algorithm to have to 

specify any input parameters such as number of clusters.  It is possible a type of measure 

could be developed that identifies the best number of clusters 𝑘 to eliminate the need for user 

input.  The K-means algorithm will be chosen as the primary clustering tool for the 

algorithm.  Like the QT algorithm, any measure of distance can be used, but for now only the 

Euclidean distance will be chosen for use.  Applying the K-means clustering algorithm to the 

nineteen row orthonormal basis 𝐵 of Table 6 specifying five clusters gives the following 

results: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠
2
5
4
4
1
4
4
4
4
4
4
4
3
3
3
3
3
3
3  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.2438 0.1080 0.5039 −0.3428
0.2455 0.1195 −0.8490 −0.0640
0.2377 0.0599 0.0415 0.2302
0.2398 0.0764 0.0671 0.0907
0.2427 0.0903 −0.0804 −0.8494
0.2430 0.1033 0.0314 0.0732
0.2466 0.1345 0.0359 0.0899
0.2507 0.1696 0.0404 0.1067
0.2544 0.2013 0.0445 0.1220
0.2562 0.2166 0.0464 0.1293
0.2602 0.2517 0.0509 0.1462
0.2532 0.1908 0.0431 0.1169
0.1984 −0.2774 0.0068 0.0460
0.1925 −0.3284 0.0030 0.0144
0.1931 −0.3229 0.0035 0.0215
0.1930 −0.3240 0.0034 0.0201
0.1928 −0.3254 0.0033 0.0183
0.1928 −0.3254 0.0033 0.0183
0.1928 −0.3254 0.0033 0.0183  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 7:  Orthonormal Basis Clustered 

5.  Filtering Redundant Results 

The second challenge mentioned for developing the market power algorithm, was that 

an approach was needed for filtering numerous result vectors down to a smaller easily 
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observable selection.  If considering the nineteen row basis 𝐵 of Table 6 with five clusters, 

25 = 32 new price perturbation vectors will be generated.  Of these 32 vectors, only four 

would be needed to span the column space of basis 𝐵 having rank four.  At the bare 

minimum no fewer than the rank number of linear independent price perturbation vectors 

will be computed for output, however more vectors are usually preferred when examining for 

market power.   

Clustering the price perturbation vectors is an effective way to eliminate redundant 

results.  This second round of clustering is not to be confused with the first round of 

clustering described in Section 4.  Clustering.  Row clustering was done then to prevent from 

executing the eigenvalue equation (2) too many times thus saving time.  This second round of 

clustering is performed on the resulting columns or price perturbation vectors to remove 

redundancy.  There are many options available for performing the  column clustering which 

will be further explored. 

5.1  K-Means Revisited 

One method of clustering the price perturbation vectors could be done by revisiting 

the K-means algorithm.  Each of the 𝑘 clusters specified would correspond to a possible price 

increment scenario by the market participants.  As usual with the K-means clustering 

algorithm the number of desired clusters 𝑘 must be specified a priori, and as suggested 

earlier a type of measure could be developed to identify the best number of output clusters 𝑘 

to avoid a second user input. 
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5.2  K-Means Column Clustering Example 

Using five row clusters yields 32 resulting price perturbation vectors from the 

orthonormal basis of Table 6.  It can be observed that many of the vectors are similar to each 

other, and there are more results than cared to be analyzed.  The vectors hence needed to be 

clustered.  In one particular run of the K-means algorithm, specifying six clusters for output 

yielded the following results.  The plots are of the absolute valued vectors.  Eventually in 

Section 6.4  Output Price Perturbation Vectors, the best price perturbation vector from each 

of these six clusters is chosen.  Below each of the following figures is the linked figures of 

price perturbation vectors eventually chosen for output and vice versa. 
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Cluster 1 

0.0497 -0.0134 0.0907 0 0.0391 
0.0338 0.1852 0.0029 0 0.0274 
0.2258 0.2285 0.2262 0.154 0.2303 

0.1707 0.1716 0.1771 0.1061 0.1714 
-0.0061 0.0305 0.0236 0 -0.0326 

0.111 0.1186 0.1166 0.0449 0.1109 
0.0488 0.0564 0.0545 -0.0231 0.049 
-0.0215 -0.0137 -0.0156 -0.0997 -0.0209 
-0.0851 -0.0773 -0.0791 -0.1691 -0.0842 
-0.1158 -0.1079 -0.1097 -0.2025 -0.1147 

-0.1861 -0.1781 -0.1798 -0.2791 -0.1847 
-0.064 -0.0562 -0.058 -0.146 -0.0632 
0.8988 0.8993 0.8987 0.8892 0.8995 

1 1 1 1 1 
0.9897 0.9897 0.9896 0.9884 0.9899 
0.9918 0.9918 0.9917 0.9907 0.9919 
0.9944 0.9944 0.9943 0.9937 0.9945 

0.9944 0.9944 0.9943 0.9937 0.9945 
0.9944 0.9944 0.9943 0.9937 0.9945 

Table 8:  K-means Cluster 1 

Figure 9:  K-means Cluster 1 

 
 (See Output Selected Figure 20) 
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Cluster 2 

-0.0173 0 -0.0129 0 0.4206 
1 1 1 1 0.5762 

-0.1199 0.0006 -0.0626 -0.028 0.0519 

-0.0121 0.0784 0.029 0.0577 0.1684 
0.9888 0.8386 0.9655 0.8849 1 
0.0447 0.1335 0.0708 0.1119 0.2054 
0.0336 0.1326 0.0451 0.1068 0.2045 
0.0234 0.1334 0.0184 0.1029 0.2053 
0.0141 0.1341 -0.0058 0.0994 0.2059 
0.0097 0.1344 -0.0174 0.0977 0.2062 

-0.0005 0.1352 -0.0441 0.0938 0.207 
0.0172 0.1338 0.0023 0.1006 0.2057 
-0.0096 0.0003 0.2052 0.0179 0.0608 
0.0092 0.0015 0.2476 0.0264 0.0649 
0.0037 -0.0012 0.2398 0.0227 0.0613 
0.0048 -0.0006 0.2414 0.0234 0.062 
0.0062 0 0.2433 0.0243 0.0629 

0.0062 0 0.2433 0.0243 0.0629 
0.0062 0 0.2433 0.0243 0.0629 

Table 9:  K-means Cluster 2 

Figure 10:  K-means Cluster 2 

 
(See Output Selected Figure 21) 
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Cluster 3 

0.0001 0 
0.0003 0 
-0.6958 -0.7368 

-0.5022 -0.5306 
1 1 

-0.4886 -0.5008 
-0.5457 -0.5399 
-0.6066 -0.5806 
-0.6618 -0.6175 
-0.6884 -0.6352 

-0.7494 -0.6759 
-0.6435 -0.6052 
-0.0778 -0.3132 
0.0211 -0.2435 
0.0047 -0.2569 
0.008 -0.2542 

0.0121 -0.2508 

0.0121 -0.2508 
0.0121 -0.2508 

Table 10:  K-means Cluster 3 

Figure 11:  K-means Cluster 3 
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Cluster 4 

0.4609 -0.0014 0.7887 0 0.9167 0.1761 
0.2762 1 -0.0008 1 0 1 
0.7879 0.5815 0.7509 0.6378 0.9661 0.8168 

0.685 0.4975 0.7039 0.5367 0.8826 0.7017 
-0.2691 0.0021 0.0021 0 0 0 
0.6961 0.5412 0.7081 0.5591 0.8513 0.7207 
0.7614 0.5879 0.7706 0.5824 0.8839 0.7532 
0.8328 0.6396 0.8392 0.6077 0.9186 0.7885 
0.8975 0.6864 0.9014 0.6307 0.9501 0.8205 
0.9286 0.7089 0.9313 0.6417 0.9653 0.8359 

1 0.7606 1 0.667 1 0.8711 
0.876 0.6708 0.8807 0.6231 0.9397 0.8099 

0.0826 0.0652 0.0824 0.3744 0.6214 0.4556 
-0.0273 -0.0162 -0.0201 0.3311 0.5674 0.3972 
-0.0119 -0.0051 -0.0067 0.3382 0.5762 0.4065 
-0.0149 -0.0073 -0.0093 0.3368 0.5745 0.4046 
-0.0189 -0.0101 -0.0128 0.335 0.5722 0.4023 

-0.0189 -0.0101 -0.0128 0.335 0.5722 0.4023 
-0.0189 -0.0101 -0.0128 0.335 0.5722 0.4023 

Table 11:  K-means Cluster 4 

Figure 12:  K-means Cluster 4 

 
(See Output Selected Figure 23) 
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Cluster 5 

1 0.4019 0.5904 0.7467 0.6112 0.5405 
-0.7528 0.2428 -0.0037 0 -0.0008 0 
0.0146 -0.1707 -0.1341 0.0167 -0.0674 -0.1818 

0.1569 -0.0218 0.024 0.1653 0.0752 -0.0202 
0.7222 1 1 1 1 1 
0.1382 0.0045 0.0404 0.1829 0.0738 -0.0031 

0.14 -0.0091 0.0298 0.1852 0.0451 -0.0165 
0.1428 -0.0223 0.0199 0.1893 0.0146 -0.0295 
0.1454 -0.0343 0.0109 0.1931 -0.0129 -0.0412 
0.1467 -0.0401 0.0066 0.1949 -0.0262 -0.0469 

0.1496 -0.0533 -0.0034 0.1991 -0.0567 -0.0599 
0.1446 -0.0303 0.0139 0.1918 -0.0038 -0.0373 
0.0137 -0.0208 -0.0132 0.0004 0.2501 -0.0309 
0.0183 0.0058 0.0095 0.002 0.3024 -0.0036 
0.0149 -0.001 0.0031 -0.0016 0.293 -0.0107 
0.0156 0.0003 0.0044 -0.0009 0.2948 -0.0093 
0.0164 0.0021 0.006 0 0.2972 -0.0075 

0.0164 0.0021 0.006 0 0.2972 -0.0075 
0.0164 0.0021 0.006 0 0.2972 -0.0075 

Table 12:  K-means Cluster 5 

Figure 13:  K-means Cluster 5 

 
(See Output Selected Figure 24) 
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Cluster 6 

-0.7615 -0.4167 -0.5987 -0.6261 -0.55 -0.5962 -0.5365 -0.5148 
1 1 1 1 1 1 1 1 

-0.0325 0.0194 0.0117 -0.0134 0.0005 0.0179 -0.0114 0.0042 

-0.1022 0.0065 -0.0364 -0.0601 -0.0345 -0.0315 -0.0403 -0.0248 
-0.134 0.2414 0.0017 0 0.0846 0.0023 0.12 0.1382 

-0.0712 0.0508 0.004 -0.0198 0.0073 0.0072 0.0021 0.0149 
-0.0845 0.0505 0.0033 -0.0226 0.0057 0.0048 -0.0004 0.0098 
-0.0992 0.0509 0.0028 -0.0253 0.0044 0.0024 -0.0026 0.0047 
-0.1125 0.0512 0.0024 -0.0277 0.0032 0.0003 -0.0046 0 
-0.119 0.0514 0.0022 -0.0289 0.0027 -0.0007 -0.0056 -0.0022 

-0.1337 0.0518 0.0017 -0.0316 0.0014 -0.0031 -0.0078 -0.0074 
-0.1081 0.0511 0.0026 -0.0269 0.0036 0.001 -0.004 0.0016 
0.0934 0.0086 0.0032 0 0.0021 0.0277 0 0.0441 
0.1097 0.0057 -0.0003 -0.0002 0.0005 0.0269 0 0.0484 
0.1087 0.0056 0.0006 0.0002 0.0008 0.0275 0 0.0479 
0.1089 0.0056 0.0004 0.0001 0.0007 0.0274 0 0.048 
0.1091 0.0056 0.0002 0 0.0007 0.0272 0 0.0482 

0.1091 0.0056 0.0002 0 0.0007 0.0272 0 0.0482 
0.1091 0.0056 0.0002 0 0.0007 0.0272 0 0.0482 

Table 13:  K-means Cluster 6 

Figure 14:  K-means Cluster 6 

 
(See Output Selected Figure 25) 
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5.3  K-Means Clustering Issues 

Now the 32 price perturbation vectors have been clustered into six clusters.  There is 

an issue that arises when using the K-means algorithm for clustering.  As mentioned before 

the algorithm uses random initial centroid placements, and thus final cluster combinations 

could differ from one run to the next.  In the first round of clustering this issue was solved by 

replicating the K-means algorithm numerous times and likely evaluating the optimal 

minimum sum of points to centroid mean during one of the runs.   

Consider the 19 × 4 basis 𝐵 of Table 6 as an example.  First its rows were clustered 

using the K-means algorithm.  The centroids were 4-dimensional with a dimension for each 

column.  From there 32 new price perturbation vectors were developed and the 19 × 32 

result set was to be clustered.  These centroids are now 19-dimensional with a dimension for 

each row.  Taking random initial centroids and getting the same clusters from one run to the 

next is less likely when the centroids are higher dimensional.   

The K-means algorithm will converge to many local minimum, and occasionally the 

actual global minimum when centroids are in higher dimensions.  In real markets, there will 

be much more than nineteen generators in consideration and the search for the optimum K-

means clusters becomes even more improbable.  The consequence of this is not dire however.  

What could be witnessed is when the market power algorithm is run, it will produce a certain 

selection of clustered price perturbation vectors.  When it is ran a second time, one or a few 

of the price perturbation vectors could have switched to a new cluster.   
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5.4  K-means Clustering Options 

 There are multiple distance measuring methods available to use in Matlab’s K-means 

algorithm.  Distances between two coordinates  𝑥1, 𝑦1  and (𝑥2 , 𝑦2) can be measured using 

“sqEuclidean”    𝑥1 − 𝑥2 2 +  𝑦1 − 𝑦2 2  or “cityblock”   𝑥1 − 𝑥2 +  𝑦1 − 𝑦2  .  Angles 

between vectors 𝑢 and 𝑣 can be measured with “cosine” 𝑐𝑜𝑠𝜃 =
𝑢∗𝑣𝑇

 𝑢𝑇𝑢 𝑣𝑇𝑣
 or similarly 

“correlation” 
(𝑢−𝑢 )∗ 𝑣−𝑣   𝑇

 (𝑢−𝑢 )𝑇(𝑢−𝑢 )  𝑣−𝑣   𝑇 𝑣−𝑣   
 [xv].   

The cosine angle between vectors could be a useful distance measurement when 

clustering price perturbation columns for output, however it is not appropriate for use when 

clustering rows of the orthonormal basis 𝐵.   This will be demonstrated with the following 

simple seven row orthonormal basis. 

 
 
 
 
 
 
 

0.499 −0.5061
0.501 −0.4938
0.499 0.506
0.501 0.4938
0.005 0.0051
0.005 −0.0051
−0.005 −0.0051 

 
 
 
 
 
 

= 

 

 
 
 
 
 
 
 

0.7107∠ − 45.4061°
0.7035∠ − 44.5875°

0.7107∠45.4061°
0.7035∠44.5855°
0.0071∠45.4061°

0.0071∠ − 45.4061°
0.0071∠ − 134.5959° 

 
 
 
 
 
 

 

Table 14:  Clustering 
Demonstration 

 
Figure 15:  Clustering Demonstration 

 

It is clear there are three clusters, and there are three points with small magnitudes clustered 

around the origin.  The following is the cluster results gotten when clustering using 

0

0
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Euclidean distance versus using cosine angles between vectors. 

 

Point  Euclidean Clusters Cosine Clusters 

1 0.7107∠ − 45.4061° 1 1 

2 0.7035∠ − 44.5875° 1 1 

3 0.7107∠45.4061° 2 2 

4 0.7035∠44.5855° 2 2 

5 0.0071∠45.4061° 3 2 

6 0.0071∠ − 45.4061° 3 1 

7 0.0071∠ − 134.5959° 3 3 

Table 15:  Euclidean and Cosine Clusters 

With the cosine clustering, the very last point becomes its own cluster.  That is not 

desirable however because it’s magnitude is so small at 0.0071.  It is preferable that the last 

three rows with small magnitudes be clustered together.  No matter how hard it is tried to 

make row 7 become a large and thus interesting price perturbation, it will always remain 

small in magnitude.  This is demonstrated using eigen-analysis and setting row 7 to be 𝐵+.  

 
𝐵−

−
𝐵+

 =

 
 
 
 
 
 
 

0.499 −0.5061

0.501 −0.4938

0.499 0.506

0.501 0.4938

0.005 0.0051

0.005 −0.0051______________________

−0.005 −0.0051  
 
 
 
 
 
 

 

max 𝑥𝑇 𝐵+
𝑇𝐵+ − 𝐵−

𝑇𝐵− 𝑥 → 𝑥𝑚𝑎𝑥 =  
0.0583
−0.9983

  

 
 
 
 
 
 
 

0.499 −0.5061
0.501 −0.4938
0.499 0.506
0.501 0.4938
0.005 0.0051
0.005 −0.0051
−0.005 −0.0051 

 
 
 
 
 
 

𝑥𝑚𝑎𝑥 =

 
 
 
 
 
 
 

0.5343
0.5222
−0.476
−0.4637
−0.0022
0.0054
0.0048  

 
 
 
 
 
 

~

 
 
 
 
 
 
 

1
0.9772
−0.8909
−0.8678
−0.0041
0.0101
0.009  

 
 
 
 
 
 

 

In general when there are many rows that are small in magnitude, they should be 

clustered together.  Therefore the Euclidean distance between points will be used for 

Row 7 still 

small in 

magnitude 
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measurement when clustering the rows of 𝐵.  This is not a problem however during our 

second round of clustering price perturbation vectors.  Each column is scaled to have a 

maximum entry of 1.0, and thus there really are no columns drastically smaller in magnitude 

than others.  The problem illustrated in Figure 15 is thus not applicable when clustering price 

perturbation vectors for output.  The next issue at hand is determining if cosine angle 

clustering actually outperforms Euclidean distance clustering.  This hints at the need for 

some measure of quality of results which will be discussed next.  

6.  Assessing Quality of Price Perturbation Results 

The last challenge in writing this market power algorithm is the need to develop a 

means of measuring the quality of results.  This will assist in multiple ways like determining 

which K-means distance measurement suits desires best.  It will primarily be used to select 

the best performing price perturbation vector from its cluster set, thus filtering results and 

giving a more easily observable output to the user.  Earlier in Section 4.2  K-Means 

Clustering, 32 price perturbation vectors were clustered into 6 clusters.  The best vector from 

each cluster should be selected, and the 6 vectors should be outputted as final results.  

Consider the following two price perturbation vectors for example. 
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|vec 1| |vec 2| 
0.1098 0.0001 
0.0512 0.0003 
0.5613 0.6958 
0.3787 0.5022 
1.0000 1.0000 
0.3623 0.4886 
0.4082 0.5457 
0.4569 0.6066 
0.5011 0.6618 
0.5224 0.6884 
0.5712 0.7494 
0.4865 0.6435 
0.0628 0.0778 
0.0177 0.0211 
0.0037 0.0047 
0.0064 0.0080 
0.0100 0.0121 
0.0100 0.0121 
0.0100 0.0121 
Table 16:  Vector 

Quality Assessment 

 
Figure 16:  Vector Quality Assessment 

 

It may appear vague as to which vector would be preferred over another.  The price 

perturbation scenario of the solid green line shows generator 5 maximally raising its price 

and generators 3, 4 and 6 – 12 moderately raising prices without affecting dispatch.  The 

dashed blue line similarly shows generator 5 maximally raising its price, but the prices of 

generators 3, 4 and 6 – 12 are decreased from about $0.65 to $0.50.  Generators 1 and 2 also 

now have prices up around $0.08 as well.  The question is which price perturbation scenario 

is more interesting?  It is almost a matter of preference, but a consistent method of 

calculation should be implemented. 

6.1  One-Norm Quality Assessment 

The first measure of success suggested is using the one-norm, the sum of the absolute 

valued vector entries.  A small one-norm would then imply success so as many of the price 
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increments as possible are driven to zero, 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  Δ𝑦 1 .  The one-norms of the above 

two vectors are 5.5302 for vector 1 and 6.7305 for vector 2.  This implies the dashed blue 

vector 1 would be chosen as the better of the two and outputted for final results, but this may 

not actually be the price perturbation vector wanted for selection.           

6.2  Eigenvalue Quality Assessment 

The purpose of the market power monitoring tool is to maximize large entries and 

minimize small entries accomplished using eigen-analysis.  It appears the solid green vector 

2 fits this criterion better.    

𝐵𝑥 =  
𝐵+

−
𝐵−

 𝑥 =  
𝐵+𝑥
−

𝐵−𝑥
 
⃪ 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑡𝑟𝑖𝑒𝑠    

 
⃪ 𝑠𝑚𝑎𝑙𝑙 𝑒𝑛𝑡𝑟𝑖𝑒𝑠

          (𝑚 𝑟𝑜𝑤𝑠 𝑥 1 𝑐𝑜𝑙𝑢𝑚𝑛)

 

𝜆𝑚𝑎𝑥 = max 𝑥𝑇 𝐵+
𝑇𝐵+ − 𝐵−

𝑇𝐵− 𝑥  

Intuitively it may make sense to simply select the price perturbation vector having being 

generated by the eigenvector with largest eigenvalue.  This implies the greatest separation 

between 𝐵+𝑥 and 𝐵−𝑥 as desired, but there is a caveat in that switching any given row or 

more rows out of 𝐵− and into 𝐵+ will automatically increase or not change the eigenvalue 𝜆.  

 𝐵+𝑥 𝑇 𝐵+𝑥 −  𝐵−𝑥 
𝑇 𝐵−𝑥  is to be maximized. 

𝐵𝑥 =  
𝐵+

−
𝐵−

 𝑥 =  
𝐵+𝑥
−

𝐵−𝑥
 =

 
 
 
 
 
 
 
 
 
𝑏+,1𝑥

𝑏+,2𝑥
⋮

𝑏+,𝑟𝑥________
𝑏−,𝑟+1𝑥

𝑏−,𝑟+2𝑥

⋮
𝑏−,𝑚𝑥  

 
 
 
 
 
 
 
 

= Δ𝑦 =

 
 
 
 
 
 
 
 
 
Δ𝑦+,1

Δ𝑦+,2

⋮
Δ𝑦+,𝑟________

Δ𝑦−,𝑟+1

Δ𝑦−,𝑟+2

⋮
Δ𝑦−,𝑚   

 
 
 
 
 
 
 
 

   (𝑚 × 1) 
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𝜆 =  𝐵+𝑥 𝑇 𝐵+𝑥 −  𝐵−𝑥 
𝑇 𝐵−𝑥 

=  Δ𝑦+,1
2 + Δ𝑦+,2

2 + ⋯ + Δ𝑦+,𝑟
2  −  Δ𝑦−,𝑟+1

2 + Δ𝑦−,𝑟+2
2 + ⋯ + Δ𝑦−,𝑚

2   

All Δ𝑦±,𝑖
2 ≥ 0, so one can see moving any row from 𝐵− to 𝐵+ will always increase or not 

change the eigenvalue 𝜆.  Furthermore the eigenvalue 𝜆 will max out at 1.0 when 

#𝑟𝑜𝑤𝑠(𝐵−) ≤ 𝑛 − 1 or equivalently #𝑟𝑜𝑤𝑠(𝐵+) ≥ 𝑚 − 𝑛 + 1.  

Consider a basis 𝐵 with 𝑚 > 𝑛, as typically there will be more generators than line 

constraints plus one.  Assuming that the 𝑛 columns are linearly independent the basis will 

have rank 𝑟 = 𝑛.   

𝐵 =  

𝑏1,1 … 𝑏1,𝑛

⋮ ⋮
𝑏𝑚,1 … 𝑏𝑚,𝑛

    (𝑚 × 𝑛) 

                                                       𝑚 > 𝑛,   𝑟𝑎𝑛𝑘 𝑟 = 𝑛 

Nullity is defined by 𝐵𝑥1 = ⋯ = 𝐵𝑥𝑞 = 0 where 𝑞 equals the nullity 𝜐.  The rank-nullity 

theorem shows 𝑟𝑎𝑛𝑘 𝑟 + 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 𝜈 = min⁡(𝑚, 𝑛) [xi].  In this example, 𝑛 + 𝑛𝑢𝑙𝑙𝑖𝑡𝑦 𝜈 = n, 

which implies the nullity 𝜐 = 0, or that there is no null space for 𝐵.  However there is a 

guarantee that at least 𝑛 − 1 of the rows of 𝐵𝑥 can be nullified.  

𝐵𝑥 =  
𝐵−

−
𝐵+

 𝑥 =

 
 
 
 
 
 
 

𝑏1,1 … 𝑏1,𝑛

⋮ ⋮
𝑏𝑛−1,1 … 𝑏𝑛−1,𝑛_____________________

𝑏𝑛,1 … 𝑏𝑛,𝑛

⋮ ⋮
𝑏𝑚,1 … 𝑏𝑚,𝑛  

 
 
 
 
 
 

𝑥 =

 
 
 
 
 
 

0
⋮
0_____________________

 𝑏𝑛,1 … 𝑏𝑛,𝑛  𝑥
⋮

 𝑏𝑚,1 … 𝑏𝑚,𝑛  𝑥 
 
 
 
 
 

 

For 𝑛 − 1 number of rows of  𝐵𝑥 to exactly equal zero, the number of rows in 𝐵− 

must equal 𝑛 − 1 or equivalently the number of rows in 𝐵+ must equal 𝑚 − 𝑛 + 1.  If all 

rows of 𝐵−𝑥 = 0 then the eigenvalue  𝜆 = 𝑥𝑇 𝐵+
𝑇𝐵+ − 𝐵−

𝑇𝐵− 𝑥 = 1.0.   Therefore the caveat 
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of using eigenvalues as a measure of vector quality is that an eigenvalue 𝜆 = 1.0 will always 

be achievable by moving 𝑚 − 𝑛 + 1 rows or more into 𝐵+.  The price perturbation vectors 

generated by eigenvectors with the largest eigenvalues would always be selected for output, 

but it can be shown that these vectors are often not the best output choice of their clusters.     

6.3  Midpoint Quality Assessment 

 It seems that minimizing the one-norm of price perturbation vectors does not 

necessarily select the best vector, and using eigenvalues biases some vectors over others.  It 

is preferred to either have entries that are large tending toward 1.0 or very low tending 

toward 0.  This would imply that entries floating halfway around 0.5 are unwanted.  

Therefore a measure that penalizes entries near 0.5 and rewards values far from 0.5 might 

select the results preferred.  Here it is proposed to do so by subtracting the absolute value of a 

price perturbation vector by 0.5, computing the one-norm, and selecting the vector with this 

maximum one-norm for output results.  

 
Figure 17:  Midpoint Quality Assessment 
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The above figure graphically shows where it is desired for rows of the absolute value price 

perturbation vectors to fall, with the reference line 0.5 in red being the least desired.  The 

dashed blue vector 1 appears to have more points floating around 0.5 than the solid green 

vector 2, and is thus less desired for identifying market power price increment scenarios.  

The procedure used for output selection is demonstrated below.   

   𝐯𝐞𝐜 𝟏 − 0.5      𝐯𝐞𝐜 𝟐 − 0.5  

 0.3902   0.4999 

 0.4488   0.4997 

 0.0613   0.1958 

 0.1213   0.0022 

 0.5000   0.5000 

 0.1377   0.0114 

 0.0918   0.0457 

 0.0431   0.1066 

 0.0011   0.1618 

 0.0224   0.1884 

 0.0712   0.2494 

 0.0135   0.1435 

 0.4372   0.4222 

 0.4823   0.4789 

 0.4963   0.4953 

 0.4936   0.4920 

 0.4900   0.4879 

 0.4900   0.4879 

 0.4900   0.4879 

𝑛𝑜𝑟𝑚   𝐯𝐞𝐜 𝟏 − 0.5  
1
 5.2818  𝑛𝑜𝑟𝑚   𝐯𝐞𝐜 𝟐 − 0.5  

1
 5.9565 

Table 17:  Midpoint Quality Assessment 

 

 Vector 2 has the greater one-norm, and thus has more absolute value points away 

from 0.5.  Using this measure of vector quality, the solid green vector 2 would be selected for 

output.  One problem does arise however which will be demonstrated with a basic example.       
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Figure 18:  0.5 Reference Line 

 Both of the vectors are an equal distance from the reference line at 0.5.  If the solid 

blue vector were slightly further from or the dashed red vector slightly closer to 0.5, then the 

solid blue vector would be chosen for output.  In general a vector with many small entries 

and few large entries is wanted, like the dashed red vector, and not the other way around.  To 

avoid selection of vectors with many large entries over vectors with many small entries the 

reference line will be slightly shifted above 0.5.  Doing so will favor vectors having many 

small entries.     

 
Figure 19:  0.55 Reference Line 
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6.4  Output Price Perturbation Vectors 

Lastly this midway quality measurement will be used to select output price 

perturbation vectors for the cluster examples of Table 8 - Table 13 from Section 5.2  K-

Means Column Clustering Example.   
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Table 18:  
Output 1 

Figure 20:  Cluster 1 Output  

 
(See Cluster Chosen From Figure 9) 
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−0.0173
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−0.1199
−0.0121
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0.0447
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0.0141
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−0.0005
0.0172
−0.0096
0.0092
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0.0048
0.0062
0.0062
0.0062  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 19:  
Output 2 

Figure 21:  Cluster 2 Output 

 
(See Cluster Chosen From Figure 10) 
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Table 20:  
Output 3 

Figure 22:  Cluster 3 Output 

 
(See Cluster Chosen From Figure 11) 
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0.7887
−0.0008
0.7509
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0.9014
0.9313

1
0.8807
0.0824
−0.0201
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−0.0093
−0.0128
−0.0128
−0.0128 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 21:  
Output 4 

Figure 23:  Cluster 4 Output 

 
(See Cluster Chosen From Figure 12) 
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Table 22:  
Output 5 

Figure 24:  Cluster 5 Output 

 
(See Cluster Chosen From Figure 13) 
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Table 23:  
Output 6 

Figure 25:  Cluster 6 Output 

 
(See Cluster Chosen From Figure 14) 
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7. Conclusions 

 The methods presented in this paper can be used to quickly and efficiently identify 

generator suppliers possessing market power potential.  A DC optimal power flow is first 

performed on the network to identify binding constraints on congested lines.  With the 

binding constraints known a dispatch/offer price sensitivity matrix can be easily computed 

from a linear programming tableau, and a basis 𝐵 is constructed from the null space of the 

sensitivity matrix.  Linear combinations of the columns of 𝐵 produce new price perturbation 

vectors as a combined effect of all line constraints.  The desired form of the price 

perturbations vectors is having few large entries and many small entries, so eigen-analysis is 

used to optimize this separation.   

Next the rows of basis 𝐵 are organized into 𝑘1 clusters, specified by the user, using 

the K-means clustering algorithm.  Similar generators are clustered together to avoid an 

unreasonably large number of future computations.  All combinations of row clusters are 

evaluated in the eigen-analysis equation (2) which produces 2𝑘1  new price perturbation 

vectors.  To avoid redundant results the price perturbation vectors are organized into 𝑘2 

clusters, specified by the user, using the cosine angle between vectors and the K-means 

clustering algorithm.  Finally the best performing price perturbation from each cluster is 

selected for output using the norm described in Section 6.3  Midpoint Quality Assessment. 
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Appendix – Matlab Routine 

function price_perturbation_vectors = 

MPP(B,num_gen_clusters,num_output_clusters) 

  
tic 

  
%-------------------------------------------------------------------------

- 
% B: add column of ones and/or orthonormalize if necessary  

  
[num_rows num_cols] = size(B); 
b=ones(num_rows,1); 
x=B\b; 
if roundn(max(abs(B*x-b)),-5)>0 
    B=[B b]; % add column ones to end 
    num_cols=num_cols+1; 
    B=orth(B); 
elseif min(sum(B'*B==eye(num_cols)))~=num_cols % orthonormalize if needed 
    B=orth(B); 
end 

  
%-------------------------------------------------------------------------

- 
% Clustering 

  
size_vecs=2^num_gen_clusters; 
warning('off','stats:kmeans:EmptyCluster') % turn off K-means error 

message 
try clusters=kmeans(B,num_gen_clusters,'replicates',100); % generator 

clusters 
catch ME 
    clusters=(1:num_rows)'; 
    size_vecs=2^num_rows; 
end 

  

  
%-------------------------------------------------------------------------

- 
% Finding 1-Norms 

  
length_counter=1; 
counter=[1 zeros(1,num_gen_clusters-1)];  
counter2=1; 
midpoint_norms=zeros(1,size_vecs); % quality assessment 
vecs=zeros(num_rows,size_vecs); 
B1s=zeros(num_rows,size_vecs);  
B1_lengths=zeros(1,size_vecs); 
while length_counter<=num_gen_clusters 
    B1_uncluster=[]; 
    for i=1:length_counter 
        B1_uncluster=[B1_uncluster; find(clusters==counter(i))]; 
    end 
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    B1_uncluster=sort(B1_uncluster); 
    B1=B(B1_uncluster,:); % B+ 
    B2=B(setdiff(1:num_rows,B1_uncluster),:); % B- 
    [X D]=eig(B1'*B1-B2'*B2);vec=B*X(:,end); 
    peak=find(abs(vec)==max(abs(vec)),1,'first'); 
    vec=vec/vec(peak); 
    midpoint_norms(counter2)=norm(abs(vec)-0.55,1); 
    B1s(1:length(B1_uncluster),counter2)=sort(B1_uncluster); 
    B1_lengths(counter2)=length(B1_uncluster); 
    vecs(:,counter2)=vec; 
    if counter(length_counter)<num_gen_clusters 
        counter(length_counter)=counter(length_counter)+1; 
    elseif num_gen_clusters-counter(1)>=length_counter 
        for i=1:length_counter-1 
            if counter(length_counter-i)<num_gen_clusters-i 
                temp=counter(length_counter-i); 
                for j=1:i+1 
                    counter(length_counter-i+j-1)=temp+j; 
                end 
                break 
            elseif i==length_counter-1 
                length_counter=num_gen_clusters+1; 
            end 
        end 
    else 
        length_counter=length_counter+1; 
        for i=1:length_counter 
            counter(i)=i; 
        end 
    end 
    counter2=counter2+1; 
end 

  
% appending case where B1=[] and B2=B 
[X D]=eig(-B'*B);vec=B*X(:,end); 
peak=find(abs(vec)==max(abs(vec)),1,'first'); 
vecs(:,size_vecs)=vec/vec(peak); 
midpoint_norms(size_vecs)=norm(abs(vec)-0.55,1); 

  
%-------------------------------------------------------------------------

- 
%Filter Results 

  
try 

angle_clusters=kmeans(abs(vecs'),num_output_clusters,'distance','cosine','

replicates',100)'; % cluster price perturbation vectors by cosine angle 
catch ME 
    angle_clusters=1:size(vecs,2); 
end 

     
vecs2=[]; 
B1s2=[]; 
B1_lengths2=[]; 
many_clustered=[]; 
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num_clustered=[]; 
angle_clusters2=[]; 
for i=1:size_vecs 
    clustered=find(angle_clusters==i); 
    if ~isempty(clustered) 
        if size(clustered,2)>1 
            [max_midpoint_norm position]=max(midpoint_norms(clustered)); 
            vecs2=[vecs2 vecs(:,clustered(position))]; 
            num_clustered=[num_clustered size(clustered,2)]; 
            B1s2=[B1s2 B1s(:,clustered(position))]; 
            B1_lengths2=[B1_lengths2 B1_lengths(clustered(position))]; 
            many_clustered=[many_clustered 1]; 
            angle_clusters2=[angle_clusters2 i]; 
        else 
            vecs2=[vecs2 vecs(:,clustered)]; 
            num_clustered=[num_clustered 1]; 
            B1s2=[B1s2 B1s(:,clustered)]; 
            B1_lengths2=[B1_lengths2 B1_lengths(clustered)]; 
            many_clustered=[many_clustered 0]; 
            angle_clusters2=[angle_clusters2 i]; 
        end 
    end 
end 

  
price_perturbation_vectors=vecs2; 

  
j=1; 
set(0,'DefaultFigureWindowStyle','docked')  
for i=1:size(num_clustered,2); 
    if many_clustered(i)==0 
        figure(j), plot(abs(vecs2(:,i))), axis([1 num_rows 0 1]) 
        B1=B1s2(1:B1_lengths2(i),i)'; 
        title(['B+ = ' num2str(B1)]) 
        j=j+1;     
    else 
        clustered=find(angle_clusters==angle_clusters2(i)); 
        figure(j), plot(abs(vecs(:,clustered))), axis([1 num_rows 0 1]) 
        title(['number similar vectors = ' num2str(size(clustered,2))]) 
        figure(j+1), plot(abs(vecs2(:,i))), axis([1 num_rows 0 1]) 
        B1=B1s2(1:B1_lengths2(i),i)'; 
        title(['B+ = ' num2str(B1)]) 
        j=j+2; 
    end 
end 
figure(j), plot(abs(vecs2)), axis([1 num_rows 0 1])  
title(['total number vectors = ' num2str(size(num_clustered,2))]) 

  
warning('on','stats:kmeans:EmptyCluster') % return K-means warning to on 

  
toc 

  
end 
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