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Abstract

Wireless sensor networks (WSNs) and pervasive systems are increasingly used for applications

such as building monitoring and control, health-care and environmental monitoring. The users

are frequently non-technical and devices may not be easily accessible, thus their management

and complexity should be transparent to the users. To this extent, the systems need to be

self-healing, able to respond to failures. We extend previous work on self-managed cell (SMC),

which introduced an infrastructure for autonomous pervasive systems, with fault detection and

recovery services.

We present a middleware for constrained platforms, which supports dynamic adaptation of

network components imposing small overheads. It provides an event-driven paradigm for ex-

pressing system behaviour based on policies. We identify and define sensor readings’ fault

models extracted from long-running, real-world sensor deployments. We describe a fault detec-

tion mechanism for sensor readings based on heuristic and Bayesian probabilistic approaches

that accurately identifies error occurrences in readings and minimises false positives. We im-

plemented a recovery mechanism that responds to sensor and communication link degradation

to dynamically reorganise the original role and task allocation among sensor nodes without dis-

rupting service operations. Finally, we present a case study on a production-quality, multi-hop

routing middleware, ITA Sensor Fabric, where we prototyped an adaptive routing mechanism,

which set-ups virtual circuits for sensor data subscriptions avoiding recurring communication

link and traffic congestion patterns that appear in the network.

Evaluation of the framework shows that the embedded policy management system is lightweight

for power constrained nodes. The self-healing service accurately identifies erroneous sensors

and is capable to effectively reconfigure network assets to improve quality of information while

maintaining long life expectancy of the system.
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‘Any sufficiently advanced technology is indistinguishable from magic.’

Arthur C. Clarke
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Chapter 1

Introduction

The development of small wireless sensors and smart-phones that include various sound, video,

motion and location sensors has facilitated pervasive systems, i.e. applications that integrate in

the environment and augment human-computer interactions. These include healthcare, which

requires monitoring body readings as well as activity; traffic condition estimation using GPS

and accelerometers; monitoring and controlling temperature, humidity and lighting levels in

buildings; environmental monitoring and flood warning and even tracking wildlife movement.

These pervasive systems are expected to perform in an extensive number of environments, rang-

ing from urban to rural, with different requirements and resources. They are often mobile and

thus subject to dynamic changes in environment and application requirements that demands

flexible adaptation. Since users of such applications do not necessarily have technical skills, the

system needs to be self-managing. Moreover, some applications such as healthcare and flood

warning, may be life-critical. Consequently, the self-healing ability of the system with regard

to faults and errors, becomes imperative.

Wireless sensor networks (WSNs) are the interface of the pervasive systems with the physical

environment. They provide input necessary for integration and evaluation of the system’s

operational context. Context is any information that can be used to characterize the situation

of an entity. An entity is a person, place, or object that is considered relevant to the interaction

between a user and an application, including the user and applications themselves [Dey01]. Due

1



2 Chapter 1. Introduction

to the unique need of pervasive computing to blend in the physical environment of end-users,

context information is vital. Consequently, the systems need to be context-aware. The above

definition is very generic implying that the set of information, which is defined as context,

depends on the application’s needs. A system is context-aware if it uses context to provide

relevant information and/or services to the user, where relevancy depends on the user’s task

[Dey01]. The actual deployment of sensing devices varies substantially from a small set of nodes

to hundreds, forming complex network structures.

Typical sensor node devices run on batteries and thus have limited processing and power re-

sources. Nodes communicate by creating asymmetric, ad-hoc, short-range and potentially mo-

bile wireless channels. Rather than the traditional client-server model, the interactions between

nodes resembles the peer-to-peer (p2p) model, where nodes interchangeably take the roles of

both server and client. As a result, many of the research issues in p2p networking become

relevant in the context of WSNs, such as efficient multi-hop routing, given that direct com-

munication between nodes is not always feasible due to radio limitations. WSNs are usually

organised in mesh or hierarchical structures for efficient communication. Information flows in-

side the network towards collection centres and eventually to one or more network information

sinks. Sinks are gateway nodes that provide access to the WSN network cloud, collect data for

analysis and provide an interface for pervasive applications to access the network’s resources

and interactive environments for administrators to manage them.

WSN management frameworks have been proposed for supporting node configuration and main-

tenance. Yet, many management frameworks found in literature [AMC07, PH07, RNL03,

RCK+05] assume the existence of a centralised manager located behind a network sink that

controls, synchronises network nodes and monitors faults and misbehaving network compo-

nents. The manager can periodically query parts of the system to collect information and

analyse metrics to discover malfunctions. A global view of the network is maintained centrally,

including routing tables, node connectivity and energy maps. As the manager resides outside

the network, an unlimited amount of resources and processing power are assumed, contrary

to nodes inside the network. Consequently, the sink becomes an attractive point for execut-

ing a wide range of maintenance operations and performance evaluation. However, central
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management introduces overheads and limitations in a system as we discuss later in chapter

2. Moreover, proposed solutions look into the problem of fault-tolerance as separate compo-

nents: dynamic network infrastructure, sensor data faults, network failures, readings correction

mechanisms, network recovery mechanisms, etc., or as a combination of some of them. In this

thesis, we look into a holistic, autonomous architecture that places these issues under a common

framework that allows network administrators to express adaptation in a natural way.

1.1 Motivation

Fault management in distributed systems has been studied extensively in the past. Tanenbaum

and Van Steen [TvS02] give a detailed summary of fundamental issues in fault-tolerance. In

the literature three terms have been used to define defective behaviour in systems – faults,

errors and failures. A fault is typically a consequence of a malfunction or misbehaviour of a

system’s component. An error is an unexpected state that the system should not have reached

under normal execution, being the immediate of fault occurrences. Finally, a failure is the

manifestation of one or more errors that have appeared in the system, as observed by the user.

In distributed systems, faults are to be expected. The role of fault-tolerance is to prevent

observation of failures by effectively handling errors.

Faults in pervasive systems, however, are more frequent than in traditional distributed systems.

Due to their exposure in their operational environment, they are subjected to physical damage,

circuitry fouling or user abuse. Therefore, provisions for handling and recovering from faults

are critical. Systems should be able to cope with both transient and permanent errors by

provisioning for potential outages or malfunctioning of their resources. However, the task of

planning ahead to cover all potential erroneous states quickly becomes infeasible for any but

the most trivial systems. Because of their complexity, prediction of all possible system states is

a challenging problem. As stated before, the goal of fault-tolerance is to mask faults in order to

prevent observation of failures. Fault masking is typically achieved by introducing redundant

components and thus increasing the probability that sufficient working components remain in
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service, even though some may degrade or fail. A single malfunctioning component should not

halt the operations of the entire system. Instead, the objective of a fault tolerant system is to

achieve graceful quality of service degradation as components fail, containing the faults’ areas

of effect.

Fault management can be separated in to three tasks – fault detection, fault identification

and system recovery. Fault detection deals with the exposure of an anomaly or malfunction

in one or more system components. Typically, systems collect several operational metrics

that quantify the system’s performance. Comparison of the metrics to a model of expected

behaviour indicates deviations that may hint at faults or component degradation that threatens

the reliability of the system. Fault identification attempts to diagnose the cause of a system’s

malfunction using detected faults. This process provides a diagnosis inferred using domain-

specific knowledge from observed symptoms. The inference process may be guided by heuristic

rules or statistical and probabilistic models. Finally, fault recovery involves masking of fault

and proactive actions to prevent failures. Masking can be achieved by exploiting redundancy

in systems, for example, providing backup components that allow service operation without

perceivable disruptions to users.

Pervasive systems and WSNs introduce unique characteristics to fault management that are not

relevant in other distributed systems. Concerns such as power consumption – a limited resource

in sensor nodes, high network drop-rates – due to the ad-hoc nature of communication, and

incorporation of mechanical and physical components – such as thermometers, accelerometers,

microphones, pH and ECG sensors that are exposed to every day use, constitute a unique chal-

lenge to fault-management in large scale networks. Exceptional cases are very likely to occur,

hence, failures in WSNs are more frequent and are anticipated, being a part of the system’s life-

cycle. Human administrators of these networks have to cater for heterogeneous components,

with regard to processing power, hardware resources, sensor devices, storage and communi-

cation capabilities [AMC07], which may fail in several ways. For example, sensor accuracy

deteriorates over time due to physical phenomena such as overheating or chemical fouling. Ad-

ditionally, external factors such as physical damage, variable wireless link quality (particularly

in mobile systems) and devices that may fail completely disrupting network operations.



1.2. Autonomic Sensor Networks 5

Frequent replacement of devices and manual recalibration are impractical even in small scale

networks and hinder adoption by non-expert users with limited technical skills. A pervasive

system is required to be self-diagnosing, self-healing and maintain operational state to mask

component failures from users by graceful degradation of its service. Given the scale of intended

deployment and pervasiveness, such systems are required to function as autonomous services

that manage themselves and respond effectively to dynamic conditions with as little human

intervention as possible. To this extent, in this thesis we explore the integration of autonomic

computing principles in pervasive systems and propose an adaptive, self-healing framework.

1.2 Autonomic Sensor Networks

Autonomic computing [KC03] brings together different disciplines of computer science to pro-

mote self-managing systems that adapt to their operating environment and user needs. To

this end, different systems exhibit different degrees of adaptation to dynamic environments

without manual administration [HM08]. Autonomic computing is defined by its properties –

self-configuration, self-healing, self-protection and self-optimisation, also referred as the self-*

attributes. Self-* attributes are not orthogonal. For instance, in order for a network to heal a

defective component, it should be able to reconfigure itself and possibly optimise the use of its

resources to allow for alternative solutions.

Common among autonomic systems is a closed feedback control-loop pattern that consists of

four distinct steps – monitoring, analysis, planning and execution, as illustrated in figure 1.1.

The monitoring step collects performance metrics to measure the condition of different system

components. The analysis phase processes information collected in order to infer the system’s

status. Analysis of monitored attributes may identify node or sensor failures, poor or failed

communication links, low battery levels or poor quality of service due to overloaded processors

or communication links. The planning phase constructs an alternative system configuration,

based on observed symptoms and identifies actions necessary to counter defects and to tran-

sition to a better state. Finally, the execution phase applies the reconfiguration plan that
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Figure 1.1: Closed feedback control-loop in Autonomic systems

has been produced. This process implies a dynamic system infrastructure that enables in-situ

reorganisation without disrupting operations.

Sensor networks are structured in three layers, shown in figure 1.2, which presents the functional

architecture of a wireless sensor network (WSN) application. The bottom layer, sensing, sam-

ples the environmental attributes and extracts features such as the mean or variance of sensor

readings, e.g. sensing room temperature for air-conditioning control in buildings. The middle

layer, analysis, processes events, e.g. change of room temperature, to infer system context. For

instance, a node may infer room condition by fusing information from extracted features. Infor-

mation fusion is not, however, restricted to features but extends to decisions as well. A decision

fusion process combines localised or low-level decisions with domain-specific knowledge to infer

higher level concepts, e.g. based on local decisions of several rooms it may be inferred that

the air-conditioning in the conference room under-performs. The top layer, network, involves

node management and orchestration. The functional role of the node manager is to organise

the flow of information, e.g. the dissemination of decision from fusion centres to other ends of

the network, as well as the nodes’ structure in the network, e.g. ad-hoc, hierarchical, clustered

communications, etc. The network manager finally assigns tasks among nodes and orchestrates

their interactions.

Faults in this architecture propagate upwards affecting decision quality in higher layers. Conse-

quently, faults need to be identified and contained as close to their source as possible. We look
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Figure 1.2: Functional architecture of a self-healing wireless sensor network

at extending services in different layers of the architecture that allow the network to tolerate

faults and heal. In the sensing layer redundancy of resources, i.e. sensing devices deployed,

provisions for fault tolerance. Fault detection and correction mechanisms can be deployed in

the analysis layer based on features extracted from sensors and domain-specific knowledge of

the application environment. Finally, at the network layer a reconfiguration mechanism is re-

quired to handle identified failures, which will be able to restore broken communication links,

reallocate assigned tasks of failed components or redistribute available resources.

Approaches in autonomic computing can be split in two categories, top-down and bottom-up

[CGL08]. We follow the former approach where typically an abstract model is defined in the

system and the middleware attempts to refine it in order to be distributed among participants

and implement the required service. In the latter approach instead of a model, requirements and

goals are defined in the system. The global behaviour is expected to emerge out of interactions

among components in the environment that form ad-hoc relationships, recursively composing

larger systems to satisfy the specified requirements. Examples of such systems are swarm robots

systems and their emerging behaviour from their interactions [KKL04, WFGDF05].



8 Chapter 1. Introduction

While the ad-hoc nature of bottom-up approach has certain properties, such as versatility and

robustness, that benefit autonomic computing [McF86], we favour the properties of top-down

approaches such as formal specification of the behaviour that is exhibited by the system and

its control of its operations by human administrators.

1.3 Objectives

The objective of this thesis is to present an autonomic, self-healing framework for pervasive

systems. We present an architecture for pervasive systems that includes the services necessary

to identify, recover and potentially modify its operational plan dynamically in order to adapt

to its operational challenges. We focus on failures caused by deterioration of a component’s

quality, rather than on systematic attacks of malicious participants. Moreover, we attempt to

minimise manual administration of the network and delegate much of the maintenance tasks

from the human operators to the the system itself. The services presented throughout this thesis

are controlled by policies, i.e. Event-Condition-Action (ECA) rules, which are a lightweight

means for expressing adaptation strategies. Policies, further, separate the adaptation aspects

of the system them from its core operational logic and components.

We, initially, present the overall architecture of the system. In addition, we look into more

detail individual parts of the self-healing service such as sensor readings fault-detection and

recovery, autonomic task allocation among sensor nodes and pro-active adaptation for recurring

communication link failures and congestion.

1.4 Contribution

The contributions of this thesis are briefly stated below.

• A middleware platform for WSNs that brings dynamic adaptation of network components

in constrained platforms with small overheads and provides an event-driven paradigm for



1.5. Thesis Structure 9

expressing system behaviour using the policies abstraction.

• Definition of self-healing services in the Self-Managed Cell (SMC) architectural pattern

and prototyping an SMC instantiation for the tinyOS sensor platform.

• Identification and formal definition of sensor reading faults studied in long-running, real-

world WSN deployments.

• A novel, adaptable, probabilistic fault detection mechanism for sensor readings that im-

proves accuracy of sensor faults characterisation and minimises false positives.

• A dynamic task-allocation mechanism that responds to failures to mitigate service degra-

dation due to sub-components’ faults by reorganising network assets.

• A case study on a self-adaptive, multi-hop routing middleware for real-world systems that

is designed to avoid repetitive communication link failures.

1.5 Thesis Structure

Chapter 2 presents a literature review in the fields of WSN management, network adaptation

and fault handling.

Chapter 3 defines the operation of a sensor fault handling framework. It further provides

background on the Self-Managed Cell (SMC) architectural pattern for autonomous com-

puting systems. Finally, it presents an overview of self-healing services added in the SMC

architecture.

Chapter 4 discusses starfish, a platform for embedded wireless sensor networks that follows

the SMC architecture that introduces self-healing services. An overview of its components

is presented, such as finger2, an embedded policy system and starfish editor, a mission

specification and authoring environment based on obligation policies.
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Chapter 5 formalises the models of different fault types in sensor readings and expands on

a fault detection mechanisms that can be applied inside WSNs. Insight and evaluation

results are provided from case studies in WSN applications.

Chapter 6 discusses autonomic adaptation of assigned WSN missions in response to contin-

uously changing environmental conditions, component degradation and failures in the

network.

Chapter 7 presents a case study on routing adaptation in response to failures in a multi-hop

WSN network using time-series forecasting models to avoid repetitive communication link

faults and congestion in high traffic networks.

Chapter 8 summarises the thesis contributions and presents discussion and future directions

for research sections.



Chapter 2

Related Work

In this chapter we present an overview of the related work in the area. The study is partitioned

in three parts. First, we look into management architectures for WSNs. We, also, examine

programming paradigms and abstractions that support development in pervasive environments

as well as network programming mechanisms for on-the-fly node adaptation. Finally, we present

fault identification and handling approaches. They incorporate sensor node collaboration for

defective node classification.

2.1 WSN Management

As the sensor network size increases manual administration and management of nodes be-

comes virtually impossible by human operators. Management frameworks have been proposed

to support configuration, monitoring and remote administration of the nodes. Most existing

frameworks focus on centralised managers that assumes the role of the leader that synchronises

nodes in the network and collect information on performance for human operators to study

[PH07, AMC07]. Such systems can adopt either an active monitoring model, where the leader

periodically injects queries to different parts of the network from a sink node, or a passive

monitoring model, where metrics are collected locally on nodes and are piggybacked on normal

network traffic that eventually reaches the manager that resides outside the network. In the

11
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following paragraphs, we describe some representative WSN management frameworks.

2.1.1 Manna

Manna presented in [RNL03] is an an architecture for network management in WSNs. The

network monitors node or network failures. The basic building blocks for the Manna architec-

ture are the services, functions and models orchestrated together to construct a management

scheme for the application. A service in the system is a complex operation that is a composition

of functions provided by the framework. Functions are processes that operate on supported

models. A model represents the state of a network’s aspect, e.g. node energy levels. Execution

of services is dictated by management policies that respond to model modification.

Models are built and reside in a base station outside the network and represent a global view

of the system. Examples of models may include the network topology, which maps nodes to the

physical area in their deployment, the neighbouring set of nodes that can be reached directly,

i.e. in one-hop, the routing table, for relaying of messages in a multi-hop network and the

residual energy map, which provides an estimate of nodes life expectancy. Models are built by

functions that run on a network manager and collect network information by actively querying

nodes.

Regarding the functional roles in the Manna architecture, three different type of participants

are identified – the manager of the WSN, the agents and standard nodes. A single manager,

which typically resides behind the sink, outside the network, controls the sensor cloud. Agents

operate as local leaders in the network and are placed inside the network close to nodes they

manage. They are essentially cluster-heads that aggregate information from standard nodes

and propagate it to the manager in order to control communication costs inside the network.

The authors also describe a fault management system [RSO+04] that operates on top of the

Manna architecture, as a proof of concept. It operates in a network of heterogeneous, clustered,

event-based monitoring system for temperature observation. Being an event-based system,

the cluster-head only sends notifications to the sink when temperature exceeds a predefined
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threshold. Fault-tolerance is provided by two services, the coverage area maintenance service

and the failure detection service. The two services detect temporary or permanent node failures,

i.e. power depletion or physical damage, and discover areas that are not covered by sensor

monitoring. There are two phases in the fault-management operations, first, installation where

services are initiated at nodes and second, operation that is monitoring during application’s

normal execution. During installation, nodes send information to agents that build localized

topology and energy maps, which are finally aggregated at the manager constructing global

maps. During the operation phase, nodes run management activities like energy level checking

along with their normal readings collection tasks. When a node state is modified it reports it

back to the manager. The manager can also query nodes by sending ‘get’ commands to agents

over the network, which in turn will collect data from the nodes under their cluster and report

them back to the manager.

The Manna architecture is based on a centralised management authority that collects informa-

tion to build global models of the network and uses policies for adaptation. The adaptation

decision point resides outside the network and thus, outcomes need to be propagated back to

the nodes. The approach significantly contributes to shorter life of cluster-heads and nodes

around the sink that support network traffic to keep network models up-to-date. In addition it

introduces extended delays on message and decision delivery. Finally, the Manna network fo-

cuses only on network faults, not sensor faults, even though it appears that it could be extended

with corresponding functions and services.

2.1.2 Sympathy

Sympathy [RCK+05] is an another approach for node management in WSN environments. It is

meant as a debugging and detection tool for WSN applications during their development and

deployment phases. It employs a centralized approach for detecting faults on data-gathering

sensor applications and assumes networks with regular exchange of messages among nodes and

the sink, rather than event-driven networks. As a detection tool, it provides failure reports

on the network, localizing the suspected source and speculating causes. Causes fall in three
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categories; node failure, path failure between a node and the sink and sink failure when a node

cannot be reached even though it appears operational to the rest of the network.

Even though information flows towards the sink for analysis, it does not impose any hierarchical

structure in the network, e.g. cluster-heads or tree-like propagation. It employs both active

and passive monitoring techniques for collecting network performance metrics. A failure is

considered to happen if a monitored node generate less traffic than originally expected. The

metrics for the decision are collected in three ways – nodes actively running Sympathy code

and periodically transmitting collected data, sink passively monitoring application traffic and,

last, extract metrics from the application that runs at the sink.

Sympathy collects three types of metrics related to faults in WSNs that focus on node com-

munication. Connectivity metrics, such as routing tables and neighbour lists, flow metrics

measuring node packet traffic load and node metrics that include node uptime as well as good

and bad packets counters.

The localization technique for the failures includes four stages. The sink collects metrics from

nodes and they are analysed to detect insufficient data received from nodes. If insufficient data

are detected, Sympathy tries to pinpoint the root-causes of the failure from those metrics and

possibly by actively doing some queries in the networks if necessary. Finally, in the last stage a

localized source is attached to each failure. An empirical decision tree is the basis for network

failures characterization.

2.1.3 SPINE

SPINE (Signal-Processing in Node Environment) [KGG+09] is a node programming framework

developed for tinyOS 2.x [LMP+05] nodes that assists development of WSN applications fo-

cusing particularly on body sensor networks (BSN). Nodes are running the SPINE middleware

while a base station coordinator endpoint aggregates information from nodes at the sink.

The framework’s goal is to provide feature extraction components that assist in the distributed

classification problem that BSN applications solve for obtaining activity recognition, context-
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awareness, patient’s vitals condition, etc. The node side of the platform supplies development

facilities such as data storage buffers, mathematical function libraries and common feature

extractors for signal processing. Furthermore, it includes a features transfer protocol between

the node and the BSN coordinator. At server side, the framework provides an API that can

manage the sensors and make service requests on the network, scalable to adapt in different

platforms like a PC or a mobile phone.

The framework supports only star network topologies with the BSN coordinator at the centre

of the star. This is very reminiscent of the centralized applications, although, in the case of

BSNs nodes are usually one hop away from the base station. Sensors unlike other management

platforms do not transmit raw collected data to the sink, but do some initial local preprocessing,

i.e. features extraction, before updating the sink, saving bandwidth and, consequently, power

over the wireless medium.

2.1.4 Redflag

Redflag [UBH09] is a middleware platform for sensor nodes running tinyOS 2.x. It focuses

as a support layer between the operating system and the application that helps to identify

sensor readings as well as network faults. It consists of two independent services – sensor

reading validity (SRV) and network status report (NSR), which provide fault notifications to

the application through API interfaces. Similarly, the application can configure the parameters

of the algorithms used.

The sensor reading validity service employs signal processing techniques to reduce the effect of

persistent errors, such as noise or drift, as well as a rule-based system to characterise potentially

suspicious readings and provide notifications to the application layer. Even though Redflag

provides a mechanism to apply a linear calibration function output = α · input + β, there

is no mechanism for detecting drift faults or extract parameters α and β. Instead, they are

provided as parameters from the application. Moreover, the rule-based system is based on

predefined heuristics that are domain-specific and rely solely on information gathered from

a single sensor, without contradicting readings with surrounding sensing devices. Examples
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of rules are hard thresholds on readings’ variance, upper/lower limits and difference between

consequent samplings.

Similarly, the network status report service monitors fault that appear at the network level.

The authors propose a collaborative scheme that is similar to other approaches in the literature

[HL06, CKS06]. However, Redflag improves the scheme by using duty-cycling and bounding

message broadcasts in epochs as well as allow more flexible thresholds for deciding that a node

has disappeared. The main assumption for the technique to work is that nodes have synchro-

nised clocks [SY04]. Nodes broadcast a ‘hello’ message that neighbours listen at predefined

time periods. If a node misses a a consequent number of neighbour’s ‘hello’ messages, it consid-

ers that neighbour suspicious and initiates a neighbourhood collaboration process to determine

it has disappeared. It broadcasts an alarm for the suspected node and waits for a broadcast

that rejects the alarm to which it responds with an acknowledgement message. If no rejection

message is received after a number of epochs the node is considered failed. Nodes maintain a

neighbour status table that contains a counter of missed messages, residual energy as well as

link quality between nodes, which is also a metric that determines the selection of a node’s

neighbours. However, there is no discussion on how this metric is collected from the network.

The authors evaluate their techniques by replaying traces from existing sensor deployments,

injecting persistent and random faults using Bernoulli processes. Node failures are similarly

simulated as Bernoulli processes and for node link quality the SNR-based packet error model

[LCL07] of the Tossim emulator [LLWC03] for tinyOS 2.x is used.

2.1.5 Summary of WSN management

WSN management systems tend to be centralised, dealing with fault identification and planning

centrally. While a base station is a good processing point in the network with regard to

computational power and storage it creates traffic bottlenecks, uneven power consumption

on nodes and introduces operational delays due to multi-hop routing. We are looking into

a framework that is designed to operate in a distributed fashion without requiring a central

authority that collects a composes information. The need for communication is still required
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for reaching a consensus but we investigate ways that push decision centres inside the network

rather than behind a gateway node.

Furthermore, most management frameworks are focusing on network faults without adequately

catering for data faults that appear on their sensors. We are trying to amend for data faults

that appear in the network to improve the quality of information extracted. Frameworks like

RedFlag attempt to cover both aspects of faults in the network, however, the models introduced

are simple heuristics that do not cover an adequate breadth of faults. Instead they are simple

rules that rely on a-priori knowledge and hard thresholds on attribute values. Our approach

supports such heuristics for cases where fault discrimination is simple, but also incorporates

machine learning techniques in order to identify more complex fault types such as drift.

Finally, adaptation on these frameworks is limited and is not supported at the node level. We

present a framework that allows behavioural modification to a significant extend on the node

level. The framework consists not only of an adaptable centralised manager with monolithic

small clients spread across an area. Instead it is able to disseminate behavioural changes and

plan modifications over the entire network, which is not present in the management systems

discussed in this section.

2.2 Network Adaptation

Fault management in WSNs implies a dynamic infrastructure where modifications can take

place during runtime in order to address observed faults. Dynamic adaptation to new conditions

at run-time is an essential attribute for self-healing pervasive systems. Adaptive systems have

the benefit of undisrupted operation catering for new requirements that had not been predicted

during the initial deployment of an application. The number of components in pervasive systems

and their distribution renders manual reprogramming of nodes impractical. Exposure and

interaction with the physical world further highlights the necessity for an adaptation mechanism

as it is a dynamic and unpredictable environment. Adaptation is relevant in our work in terms of

response to failures in the system by modifying network operations to utilise available resources.
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In the following section, we discuss in more detail approaches in the literature for software and

network adaptation.

2.2.1 Code Updates

Code updates have been proposed as a failure recovery process, where faults are caused by

software bugs or there is a need to include additional features [HC04, KW05, PBM11]. Manual

reprogramming of each sensor is impractical, even in networks with a small number of nodes.

On-line software updates is currently supported by some embedded operating systems, notably

Contiki [DGV04, DFEV06], and there have been extensions for tinyOS 2.x [MALW10], but the

distribution of the updates over a multi-hop, unreliable network with high communication cost

remains a research topic. A näıve approach for updating software on the sensors is flooding

the network with the new version. Though it is a simple solution, it is inefficient as flooding of

redundant large messages drain node resources quickly. Moreover, in heterogeneous networks

nodes also receive updates that are not relevant to them.

A more elaborate method for disseminating software updates is presented in [MLM+05]. The

configuration system of the network organises nodes with the same role so that they can be fully

connected and updates are propagated through role specific network paths, reducing flooding

of messages. Efficiency in the propagation process depends, of course, on the success of the

configuration management process to distribute roles in the network so that nodes of the same

role remain connected, given the remaining constraints of role assignments imposed by the

application. In the case of fragmented areas of a functional role, neighbours of a different

role must participate in the update process. The authors assume that role assignment in the

network is static.

Another issue that the authors attempt to tackle is reduction on updates size transmitted over

the air. The embedded operating system used is tinyOS [LMP+05], the de-facto operating

system for WSNs, which builds all of the application’s code into a single binary object. As a

result the complete binary image needs to be transmitted to a node. Contrary to the clean

separation of components existing in the source code level of nesC [GLB+03], the native tinyOS
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language, compiled code is a uniform binary image. FlexCUP is introduced which actually

breaks the single C source files into multiple compilation units, called packages, based on the

nesC components used. The outcome is the production of several smaller object units that can

be distributed separately and linked on the motes themselves, instead of the PC. In this way,

the authors succeed in distribution of smaller updates, by propagating into the network only

packages that have been modified by the update, saving retransmission of standard components

that tinyOS provides.

Impala [LM03] is middleware for driving adaptation in WSN. The concept in Impala is to

provide a native adaptation mechanism that does not rely on embedded virtual machines for

reprogramming nodes. Instead, it hot-swaps running applications. Applications that run on

sensor nodes are comprised of independent modules that are compiled into native, binary code.

Modules are the smallest units of updates that are transmitted to nodes. Even though module

transmission limits the updates size significantly it still appears that the granularity is still

coarse resulting in significant overheads for small changes, such as parameter modifications.

The adaptation mechanism in Impala is hot-swapping of applications that is driven by two

sources – applications and devices. Application driven adaptation is expressed an adaptation

FSM (AFSM), where states are different applications that are installed on a node and transitions

occur when certain application specific conditions are met. Device driven adaptation is triggered

by a failure in a device. Applications provide dependency associations with hardware devices

that nodes are equipped with, e.g. GPS device, radio etc. When the middleware detects a device

failure, dependent applications are turned off and replaced by back-up solutions specified by the

developer. The design of Impala is tied to the facilities provided by the linux operating system

that runs on hand-held personal devices, used for prototyping. However, the majority of sensor

nodes operate on more constrained environments [LMP+05, DGV04] that do not share similar

properties. Furthermore, the impact and effectiveness of the update distribution mechanism

has been evaluated over the IEEE 802.11.2 communication channel that is very reliable and

power consuming compared to the more widely used IEEE 802.14.5 protocol that is used in

low-power sensor communications.

Transmission of node images, even if they involve only parts of the program, impose big over-
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heads for program modification, especially when changes are frequent and small modifications

and the number of affected nodes is large. Even dissemination of only a few KB of code over

the air may prove to be more than the limited power constrained nodes are able to handle.

Maté [LC02] is an attempt for lightweight software updates in sensor nodes. Maté is a virtual

machine (VM) developed for sensor nodes running tinyOS. It allows a customisable instruction

set, where instruction op-codes can be associated to native functions. Nodes are reprogrammed

by transmitting updated scripts that run in the node virtual machine. Script transmission in

Maté allows significant reduction in code size transfers, but it is not possible to modify the

mapping of op-code to functions at run-time or add new native functions on the node.

2.2.2 Policies

Policies are another means of lightweight adaptation in response to events. They have been used

in traditional distributed systems for network management [Slo94]. Policies define responses

to events in the system and their expressiveness is constrained, as it is not a general purpose

programming language. Instead, it permits invocation of lower-level components, developed in

native code and installed on sensor nodes. Policies simplify parametrisation of algorithms and

allow delegation of network management to a less technical administrator instead of the system

developer. In addition, policies can be transformed in formal logic for analysis and conflict

resolution that is not possible with imperative languages. Management frameworks for sensors

that handle fault detection have also been proposed in the past [RNL03, LDCO06]. Some of

these frameworks use policies for reacting to detected faults inside the networks. However,

policy evaluation points are located centrally typically in the sink and decisions are taken by

collecting information from nodes and later pushed back to the nodes.

Facts [TWS06] is a middleware architecture for WSNs that uses policies for decision-making

and adaptation in the network. The authors use the term rules instead of policy, but they are

essentially the same event-condition-action (ECA) mechanism. Information in the system is

represented as facts that are stored in a local fact repositories and processed by rules. Rules

incorporate application logic in an event-based, high-level language. Rules can call functions



2.2. Network Adaptation 21

that implement resource-critical operations in the native code of the platform. A fact can be a

simple value, constrained to boolean, integer, float or string, without any support for aggregate

types like arrays or lists. Facts and rules are stored and operate on sensor nodes inside the

network, allowing scripting node behaviour using rules in a distributed scheme. Some support

constructs are introduced such as rule-sets that are collections of rules and facts that form

closed components and slots that are a filtering mechanism for fact selection from the reposi-

tory. However, there is no attempt for adaptation using mechanisms for reprogramming node

behaviour with new sets of rules, even though transfer of facts between nodes is supported.

Finally, modelling information as facts, i.e. values, and rules that control operation on them

does not support encapsulation. In contrast modelling rules to respond to events from modules

would provide more object-oriented and reusable entities that hide implementation details from

the policy author providing only interfaces. The rule-sets, the system’s equivalent of a compo-

nent, are a remedy for associating data with operations, but they still expose the internals of

the component.

Auxo [DWSC10] is an architecture-centric approach to adaptation in pervasive systems. It uses

a model very similar to that introduced in the nesC [GLB+03] programming model, where com-

ponents are defined by the interfaces that they provide and use making them closed, reusable

building block for service specification. Application are defined by wiring components together,

i.e. connecting use and provide slots among components. While wiring in nesC is static, de-

fined at compilation time, Auxo allows run-time adaptation by replacing hardcoded wiring of

components with policies, i.e. ECA rules, that dictate service composition. The runtime recon-

figuration process is supported by an adaptation service in the system. The system is designed

for x86 and ARM/linux platforms. Instead, we scale down for embedded, resource-constrained

platforms.

Misra and Jain [MJ10], also, use policies as a distributed decision-making mechanism in the

network, but constrained their use for self-configuration and adaptation of sensor node topolo-

gies, i.e. building neighbourhood groups, based on three metrics; physical distance between

nodes, residual energy and neighbour count per node.
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Pham et al. [PPS+09] propose an adaptation platform for pervasive systems that is based on

component graphs. It separates a pervasive applications in two distinct layers – the constructor

logic and the component implementation layer. An application is defined as a composition of

primitive components that provide input/output interfaces. The components can be grouped

to define new aggregate components that are considered as a single unit defining their own

connections. The approach for component interfacing and composition closely resembles the

nesC [GLB+03] paradigm for module definition and wiring. The main distinction, however, is

that components in this case are network objects that can remotely interact over network pro-

tocols. This introduces the necessity for discovery and event queue mechanisms for building a

directory of available network objects and manage asynchronous communication through events

and notifications. Finally, adaptation is supported by the hot-swapping ability of components

in the system. The main requirement for hot-swapping is for a component to define interfaces

that allows to serialise its state in order to be replaced by a different component that provides

the same interface options to replace the original functionality. Adaptation logic is expressed

as a transformation in the component graph by modifying connections and replacing compo-

nents in response to events. In spite of targeting pervasive systems, the platform applies only

to unconstrained devices as constructor and adaptation logic is stored and processed centrally

and assumes high-capacity, reliable communication channels between network objects. It has

been prototyped for desktop servers and hand-held devices like smart-phones.

We use policies as the driving mechanism for adaptation in our framework as well. However,

policies are much more integrated in our platform as they are able to control virtually all

operations of the system. In the approaches discussed above, policies are used either centrally

as a decision mechanism or they are used to control only an aspect of the system. We use policies

as the means to define behaviour, modify parameters and compose available components and

resources in the network in order to build comprehensive services. Policy evaluation and decision

points are moved inside the network operating on the sensor nodes themselves. We build on

top of policies higher level construct and tools that dictate the operations of the network and

define how components are composed and interact with each other. Adaptation occurs in terms

of policies by applying a different set of rules. As policies are lightweight and can be easily
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transmitted without disrupting node operations, modifications of services and operational plans

happen by transmission and activation of policies to remote nodes. We discuss these aspects

in more detail in chapters 4 and 6.

2.3 Sensor Fault Handling

In this section, we present fault handling approaches from the literature that present fault de-

tection and adaptation mechanisms as well as modelling of sensor networks to exhibit tolerance

of faults inside the network utilising neighbourhood collaboration and sensor redundancy. Most

distributed fault handling approaches, in an attempt to reduce traffic, initially locally deter-

mine fault occurrences before propagating information to a central base station. This way, they

reduce control message overheads, thus, energy costs.

2.3.1 Fault Detection

In distributed approaches, a considerable part of fault detection is transferred to the nodes

themselves. The goal is self-monitoring and self-detection of individual parts of the network.

For example, an individual node could detect a poor link quality by the number of packet drops

it had with an adjacent node but it is not able to report a failure in its communication, or it

could report a very low power level but not the depletion of its battery. The latter events

could only be reported by third-party observers. Nevertheless, moving some monitoring tasks

to the sensors reduces communication costs; hence lengthens network overall life. Based on the

fact that physical events are spatially and time correlated, while faults are exceptional cases,

neighbourhoods can utilise sensor observation correlation to identify the cause of irregularities

in readings.

A localised algorithm for faulty sensor detection is presented in [DCXC05], for robust event

boundaries detection in dense WSNs. Neighbouring nodes cooperate to detect abnormal be-

haviour of nodes that present a large deviation in a constrained area. A neighbourhood N(Si)
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is defined as a set of nodes around node Si and a set {x(i)1 , x
(i)
2 , ..., x

(i)
k } of readings from its

nodes. The deviation of nodes from the median value of the neighbourhood is computed to

characterise faulty nodes that exceed a threshold. Median is commonly used instead of the

mean as it is more robust, filtering out extreme outliers in a set.

The authors in [CKS06] extend the idea for scenarios in which nodes are not aware of their

physical location. The authors present an alternative algorithm, also based on local commu-

nication that focuses on sensor errors, such as drifting, random noise and completely irregular

values. Nodes initially exchange readings within their clique and calculate differences. In the

second step, each node separates its neighbours into two sets – those that deviate below a

threshold and the rest. If at least half of the neighbours belongs to the former set, the node

is characterised as ‘likely good’, otherwise ‘likely faulty’. In the third step, ‘likely good’ nodes

collect the characterisation of their neighbours. If at least half of them are ‘likely good’ then

the node is promoted to a ‘good’ node. Finally, the remaining ‘likely good’ and ‘likely faulty’

nodes are given a definite label based on the ‘good’ nodes classified in the last step.

Node collaboration is also employed for node faults [HL06], where a group of nodes collects high

confidence in a decision, e.g. a node’s disappearance, before sending an alarm to a central base

station to handle the fault. A two-phase timer C = {C1, C2} approach is proposed, where nodes

maintain a timer pair for each neighbour, which is reset when a message from the corresponding

node is received. If timer C1 runs out, then the node suspects that its neighbour may have

failed and broadcasts a liveness query to its area, while starting timer C2. Nodes that receive

the broadcast either confirm that the suspected node is not reachable or contradict it with a

response stating last time they have interacted with it. The scheme enables nodes to decide

locally whether a node has failed or the timer expiration was due to a partial fragmentation of

the network.

Multi-sensor collaboration is also demonstrated in [KPSV03] for identification of faulty sensors.

The impact of each particular sensor is evaluated during information fusion. If removal of a

sensor from the fusion process yields consistently improved accuracy compared with an existing

model then the sensor is regarded as faulty. Combination of different types of sensors allows for
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cross validation of evidence for sensed phenomena, strengthening inference belief of the system.

Self-diagnosis on sensor nodes [HRR05] introduces a self-monitoring layer on nodes consisting of

three accelerometers that monitor potential node impacts, by inferring collisions from irregular

and intensive movement in the three-dimensional space, which may partially damage the sensor

and affect its operation. Nodes analyse input from the accelerometer sensors trying to match

it with known impact patterns. This approach differs from traditional fault identification

approaches that use external observers to identify consequences of faults, while this approach

tries to identify a cause before a malfunction becomes apparent. It, further, requires additional,

application-specific, hardware components, i.e. the accelerometers, for fault detection. As long

as the communication module of the node remains intact, a node can provide hints that it

might have been affected by physical damage.

FIND [GZH09] is a centralised approach for fault sensor data detection. It does not rely on an

a-priori model of the observed events or neighbourhood collaboration. Instead, it bases fault

detection decisions on ranking of nodes and their distance. It targets networks that use sensors

whose signal attenuates in space, e.g. acoustic volume or radio signal strength. The position

of all sensor nodes is assumed to be known to the base station, which partitions the space in

multiple faces. Faces are a fragmentation of the physical space, such that for each face a unique

ascending distance sequence to the deployed sensors exists. The algorithm proposed operates

on mismatches of observed event intensities sequences with estimated face sequences in order

to identify sensors that exhibit either biased or random reading faults. The approach, however,

is restricted for attenuating signals and could not work for a substantial set of sensors such as

thermometers or accelerometers. Moreover, it is a centralised approach that requires collection

of all information in a base station. The nodes are assumed to be stationary, as movement would

require recalculation of faces fragmentation, which is computationally expensive to update on-

line. Finally, sensor node deployment density dictates the granularity of the physical space

partitioning in faces. This makes detection accuracy highly dependent to node density, where

high accuracy levels may require a high density/redundancy of nodes in the environment.
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2.3.2 Tolerating Faults

There are approaches in the literature that avoid the fault detection phase acknowledging that

all sensor observations are subject to faults. Instead, they try to minimise the amount of

transient errors by using models of monitored attributes based on a-priori knowledge. An issue

of this approach, apart from how to build a model, is the mechanism that can decide between

observed and predicted values produced from models.

The prediction history tree (PHT) [MPD04a] attempts to tackle this issue by building a binary

tree that represents the time-line of sensor readings, where each tree level represents the po-

tential values of the monitored attribute at the a time instance. The leaf nodes represent time

instance t, the current time instance, while the root of the tree is time instance t−h, where h is

the tree depth. The children of a node are the observed values from the sensor and the predicted

values from the model. An error value is associated with every node, which is the difference

of its value from the observed value. When a new reading arrives the tree selects a new root

from current root’s immediate children, which is going to represent the node’s output for the

time instance t− h. Consequently, the approach assumes that the applications are tolerant to

some configurable delay of h samples from nodes. The authors examine different approaches on

selection of a new root based on the error costs of their branches. They study the effectiveness

of minimum root mean square error as well as a min-max approach [MPD04b]. Apart from the

implicit requirement of delay tolerance, the approach also requires large amounts of memory

in order to maintain large binary trees. The accuracy of the approach is a trade-off against

delay and storage requirements. Finally, the approach is applicable on binary decisions, i.e.

high-level states, rather that readings from sensors.

An alternative to model employment for monitored attributes is fusion of observations from

multiple sources, which can be used to compensate for fault occurrences. An example of

multi-modal sensor fusion for compensating for errors is described in [KPSV02]. The authors

demonstrate a fault-tolerant system for moving nodes location detection that incorporates four

types of sensors; Received Signal Strength Indication (RSSI) distance discovery, speedometer,

accelerometer and a compass. Different metrics are associated by building a mathematical sys-



2.3. Sensor Fault Handling 27

tem that uses the functions of Euclidean distance in two-dimensional space, Newton mechanics

and trigonometry laws. The resulting model contains fifteen equations describing twelve vari-

ables. Consequently, a model of the physical world is provided, rich enough that the equation

system remains solvable even when a subset of its equations is missing. Moreover, malfunc-

tioning sensors can be identified by looking at variables that do not satisfy the system. The

scenario described is just a motivation example proposed by the authors. While the approach

can potentially be very effective, it is not always possible to accurately define associations of

monitored attributes in a way that would provide strong indications for faults.

Multi-sensor fusion becomes more straightforward when observations from directly comparable

sensors are fused, i.e. sensors that measure the same attribute. The benefits from sensor

fusion are increase of Signal to Noise Ratio (SNR), enhanced robustness and reliability in

sensor failures, identification of malfunctioning sensors and improved resolution and precision

of measurements decreasing the uncertainty of the decisions.

Feature fusion in homogeneous sensors has been used for reliable location extraction of sensors

[KHB07]. Measurements from sensors include signal strength and angle of receiving over an

IEEE 802.11a network. By combining readings from unreliable sources of relative locations, they

can average out systematic error, to better pinpoint the location of a sensor in the environment.

Data fusion is also proposed in Sasha [BBJ05] that outlines a self-healing framework for sensor

networks. A centralised architecture is proposed for production of monitoring scripts that

define quality on readings collected from a group of densely deployed sensors monitoring the

same attribute. A neural-network approach is used to determine validity of sensor readings and

later disseminate quality weights for sensors to a tree hierarchy topology of nodes. The approach

is not very flexible as it requires centralised collection of data for decision making and imposes

a hierarchical tree structure in a network that requires more processing and communication to

maintain.

A distributed approach for decision-level fusion from sensors is presented in [WHVC05]. Error

correcting codes are introduced for distributed, fault-tolerant classification fusion. Classification

of an M-class problem is solved in the fusion centre by the combination of binary decisions from
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deployed sensors. The error-correcting code matrix for an M-class problem with N observing

sensors, is defined as a M × N matrix, where rows are codewords that correspond to classes

and columns represents the binary decision rule for a sensor. The fusion centre collects binary

decisions from corresponding nodes and deduce a final decision from the code matrix. It may

be possible that there is no exact match of the aggregated binary decisions with a codeword,

thus the closest codeword is preferred. The Hamming distance is used as the metric between

codewords. The Hamming distance of two binary vectors corresponds to the number of distinct

positions that contain different symbols. The fault-tolerance of the system is established by

the minimum Hamming distance of codewords, being tolerant to erroneous local decisions from

a subset of sensors. Appropriate encoding of the code matrix has a significant effect to the

effectiveness in tolerating faults by the fusion centre. Ideally, the codewords should exhibit

maximum possible distance from each other to maximise sensor faults endurance. The design

of a code matrix is not a trivial issue, exhaustive search for an optimal code matrix is a

computationally intensive process, which is, nevertheless, carried out off-line.

Ye et al. [YMC+08] reason about information fusion in order to indirectly cope with errors in

terms of higher-level context. Context is defined as triplet of subject, relation, object. Mapping

functions transform sensor input of subject and object into a different domain that allows

values to be associated in terms of granularity, i.e. associate a 2D position vector with the

coarser information of ‘conference room’. Consequently, the authors build a framework that is

based of Bayes theorem to calculate conditional confidence by integrating (i.e. fusing) context

information, collected from unreliable sensors, that is overlapping or containing.

Sensors tend to gain a systematic bias and drift due to ageing or low power. As a result, readings

are gradually moving away from the ground truth, degrading the quality of observations and

the accuracy of the overall system. Manual replacement and recalibration of drifting sensors

can be both impractical and cost-ineffective even in networks of moderate size. An alternative

to replacement is on-line recalibration of the sensing devices by applying a translation function

on their readings, returning to an acceptable state of operation.

A collaborative in-situ recalibration [BMEP03a] attempts to detect and correct systematic bias,
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but instead of being based on supplying known stimuli for the sensors to calibrate against, it

uses observations from adjacent nodes. The approach is different from traditional calibration

since sensors are calibrated against outputs from their peers instead to external, manual mea-

suring tools. The approach assumes synchronisation among participating nodes. A calibration

function (CF) Fi,j(x) is defined that maps a reading x of sensor si to the reading of sensor sj.

A confidence level value wi,j is attached to a calibration function. A node’s calibration matrix

(CM) is defined as a matrix of size S×S, S being the number of collaborating nodes. Element

(i, j) of the matrix corresponds to the function Fi,j.

The calibration process is separated in two phases; initially pair-wise relationships between

nodes are calculated, i.e. the Fi,j functions. The second phase is formulated as an optimisa-

tion problem on functions Fi,j. Pair-wise functions are computed by collected time-series of

neighbouring readings, weighted to represent the correlation of the sensor pair. Lowly corre-

lated time-series are filtered out and linear functions of the pair-wise difference of sensors are

produced. Functions Fi,j are expected to be inconsistent, due to sensing and fitting errors.

The second phase of the algorithm minimises the inconsistencies using a heuristic optimisation

algorithm on the calibration matrix.

2.4 Summary

We gave an overview of representative WSN management systems in the literature with a focus

on the fault aspects of the network and what fault detection mechanisms they employ. We

also provided a summary on the state-of-the-art on dynamic, in-situ node reprogramming and

adaptation. We argue that complete node reprogramming should be avoided unless necessary

for introducing new functionality that was not provisioned in the initial deployment. The argu-

ments against node reprogramming are the high cost of binary transmission and the disruption

of operations due to the need to reboot sensor nodes.

Conversely, we look into behavioural adaptation through the mechanism of policies, a lightweight

behaviour definition language. We review systems from the literature that make use of policies
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to support adaptation. The described approach only exposes to the policy mechanism some

aspects of the system. On the contrary, we propose a holistic solution, where the system is

controlled completely by policies that become the service specification mechanism in the envi-

ronment. This advantage of this approach is a fully customisable and adaptable environment

that can self-configure its components.

Finally, we reviewed mechanisms that detect network faults in WSN or sustain faulty sensor

readings in collaborative environments, such as information fusion techniques. Collaborative

approaches reviewed use heuristics that are based on expert knowledge on the environments

they operate. While heuristics provide lightweight approaches for processing inside the net-

work, we attempt to introduce machine learning mechanisms that operate inside the network

that can more effectively discriminate between faults and unexpected events in the monitored

environment.

In the next chapter, we present an overview of how such mechanisms are tied together to support

self-healing pervasive applications that rely on sensor nodes for receiving input from their

operational environment. We define our self-healing framework and what are the challenges

that we tackle throughout this thesis.
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Self-Healing Framework

In this chapter, we provide an overview of a self-healing framework for sensor readings. We,

further, discuss the communication implications of a distributed fault detection and handling

approach. Finally, we present previous work and background on the Self-Managed Cell (SMC)

architecture. We describe its fundamental components, their functional role in a system and

their interactions. We, also, describe the extension services on the original architecture that

are required in a self-healing framework for faults that appear in pervasive computing systems.

3.1 Sensor Readings Fault Model

We formalise the concept of a self-healing framework for sensor reading faults and its require-

ments in order to understand the faults that need to be detected and how the system needs to

adapt to the faults. Values received from sensing devices are subject to transient or permanent

faults due to environmental factors such as interference that distorts the observed attribute,

electronic fouling of a sensor’s circuitry, physical damage or deterioration of quality due to low

energy levels of nodes. Consequently, the sensor’s observation, dσ(x, t), at the time instance

t of an attribute modelled as a random variable X, will be the ground truth, g(x, t), plus a

random error factor, σ(x, t), as illustrated in equation 3.1.

31
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Figure 3.1: Fault handling models

dσ(x, t) = g(x, t) + σ(x, t) (3.1)

The goal of a self-healing framework is to minimise the error factor, σ(x, t), in order to approx-

imate the ground truth as accurately as possible. Hence, the reading from a sensor, where the

ground truth value is g(x, t) at time instance t, becomes the approximation function µ(x, t),

dependent on variables x and t.

The error factor is affected by both transient and permanent faults on sensors. A transient error

is a random deviation from reality that does not deteriorate the state of the sensor. Instead, it

only affects the input temporarily. A permanent error is an error that the sensor cannot recover

from and has an effect on all subsequent readings, unless corrective measures are taken.

A typical approach in the literature to reduce transient errors, is model-based correction [MPD04a],

where the expected behaviour of observed attributes in the environment is formally represented

as a mathematical, probabilistic or heuristic, rule-based models. This approach provides an

estimate of the input values based on a-priori knowledge of the observed subject by correlating

readings in time, which constitutes a prediction model.

Figure 3.1(a) illustrates this approach, where transient errors in a sensor distort the ground

truth. The observed value, dσ(x, t), is subject to errors. The estimated value of the system,

µ(x, t)) is a composition of the observed and expected, eσ(x, t), values. Assuming a linear

combination of the two values the error correction unit would produce and update parameters
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α and β in equation 3.2. The expected value is generated by the data prediction unit that uses

the attribute model with recently observed values to produce its estimation.

µ(x, t) = αdσ(x, t) + βeσ(x, t) (3.2)

In cases where multiple sensors are available, cooperation in a neighbourhood can be employed

to reduce errors. The process, known as information fusion [HM04, Yan06], is illustrated in

figure 3.1(b). Observations from a group of sensors are aggregated in the fusion point, where

they are combined to produce the estimated value. The fusion function depends on the type

of sensors involved – homogeneous sensors that monitor the same attribute, or heterogenous

sensors that monitor different but correlated attributes.

In homogeneous groups the fusion function, fσ([xi/i ∈ S], t), is a combination formula among

participating nodes in set S. For instance, majority voting for binary random variables or an av-

eraging formula for continuous random variables. Such schemes can be enhanced with weighted

alternatives, where weights represent belief in the sensor’s quality or degree of relevance for the

considered attribute [OAVRH06]. Homogeneous fusion is a case of explicit redundancy, where

readings from defective nodes can be adequately replaced with readings from remaining nodes.

In heterogeneous fusion there is instead an implicit redundancy of sensing devices, where differ-

ent types of correlated sensors monitor different attributes of the same phenomenon. Loss of a

sensor cannot be entirely compensated. Instead, remaining sensors produce a rough estimation

of missing values and provide a potentially degraded but operational service.

Finally, permanent, non terminal (fail-stop) errors may manifest over time in sensors and affect

their accuracy. Such faults are commonly referred to as drift, i.e. deviation from ground

truth, and are cumulative – the error increases over time amplifying the effect of previous

errors. Collaborative on-line recalibration algorithms [BMEP03b] have been studied that use

co-located nodes to construct a correction function, ∆σ(x, t).

By combining different fault correction components – model-based, collaborative and drift

correction – the estimation function µ(x, t) in equation 3.2 can be extended into equation 3.3.
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µ(x, t) = αdσ(x, t) + βeσ(x, t) + γfσ([xi/i ∈ S], t) + δ∆σ(x, t) (3.3)

Parameters α, β, γ and δ are the weights for each component that represent the relative

impact each observation estimation function has on the final result. A fault handling framework

should allow deployment of such functions on the network nodes when necessary to maintain the

quality of the monitoring service within acceptable levels. In set-ups where energy conservation

is important, deployment of these functions is dictated by indications of fault manifestation.

Hence, fault detection mechanisms for accurate identification of sensors’ state are the first

step for a self-healing pervasive systems. It should be noted that in our study we make the

assumption of linear drift functions in order to simplify the modelling and our analysis. This

assumption may not always be correct as drift may be exponential rather than linear in some

cases, however this does not have a major impact on the framework. The correction function

∆σ(x, t) would have to be modified to cater for the specific type of drift, but the models we

present in the thesis are still relevant.

3.2 Distributed Fault Detection

Centralised solutions for fault monitoring and handling, where performance metrics and signals

are collected outside the network for analysis in a resource unrestricted environment, do not

scale as the network size and complexity increase. This is mainly caused by increased communi-

cation cost due to relaying messages from remote locations of the network. Distributed solutions

become more attractive in large-scale networks. However, even in a distributed environment

there are alternatives for building the network structure and managing communications. Im-

plications in communication and effectiveness of metrics collection for fault detection in sensor

readings are discussed in this section.
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Local Detectors

Local fault detectors can be applied for checking sensor features to validate readings with

respect to a model of the attribute. Models are tied to the application and deployment usually

by setting hard thresholds that define erroneous behaviour, e.g. the room temperature cannot

exceed 42 ◦C. Such heuristic thresholds represent an expert’s knowledge about the domain.

Moreover, without external knowledge it is not feasible to assess whether a threshold has been

exceeded due to a sensor malfunction or an unexpected event that renders the irregular value

legitimate, e.g. a fire started in the room. Furthermore, fixed thresholds do not cope well with

variable-state attributes, i.e. attributes that modify their behaviour over time. Additionally,

large number of false positives, that are typically yielded in local detectors, are potentially more

critical and expensive than the number of false negatives.

Local fault detectors inherently depend on the accuracy of monitored attributes models, assum-

ing that a-priori knowledge exists. If this is not the case, it may instead confuse the system,

decreasing overall quality. Moreover, local monitors are unable to handle unexpected behaviour

that has not been foreseen when building the model. For instance, a model that restricts ac-

celeration values of a sensor to those that can be achieved by a human, falls short when the

user uses a vehicle that will increase sensor values. Nevertheless, local detectors are an initial,

inexpensive detection step. They can operate even when a node has additional information

from its neighbourhood and are a first indication of fault appearances.

Collaborative Detectors

Collaborative detectors use input from a multitude of signals in the system and associate them to

reach conclusions on component state. They overcome limitations of local monitors that cannot

use external information for reasoning. Collaborative detectors can be either homogeneous, i.e.

sensors monitoring the same attribute, where direct comparison of features may occur, or

heterogeneous, i.e. sensors that monitor different attributes that are correlated, where implicit

redundancy of information can be used to assess operational correctness.
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Nodes can reason about their state, realising which sensors are more likely to be defective

in their neighbourhood, e.g. using voting schemes. For instance, sensors can compare their

input’s variance to identify whether high or low values are the result of normal behaviour

or errors in the sensing device caused by noise in the signal. The key assumption in using

collaborative detectors is that a phenomenon or event has an area of effect. Consequently,

all sensing devices within that area observe its effects. We assume that faults manifesting in

nodes are stochastically uncorrelated, thus, defective sensors can be identified as they deviate

from the majority. This assumption will be valid for many cases may not be correct in some

deployments where sensors from the same manufacturer have identical failure characteristics.

The probability of concurrent faults decreases as the number of participating sensors increases.

In heterogeneous collaboration, algorithms try to utilise implicit redundancy of sensors. Implicit

redundancy exists in the network when deploying sensors that monitor different attributes

of a phenomenon that combined give insight on occurring events in the environment. Such

attributes, though not directly comparable as in the case of homogeneous detectors, exhibit a

degree of correlation allowing study of their interdependence. Consider an ambient deployment

of thermometer and humidity sensors – although these attributes are not straightforwardly

comparable, we can determine their dependence by studying their correlation. Similarly, sensors

of a 3D-accelerometer, though of the same type, are also not directly comparable, as they

monitor three different attributes – acceleration in orthogonal axes. Nevertheless, inputs in all

three axes are correlated when the device is worn by a patient.

Collaboration of sensors deployed in different nodes involves network communication and thus

raise the issue of information distribution in the network. A completely distributed commu-

nication approach requires all nodes in a neighbourhood to exchange information with each

other. Every node applies, respectively, the fault detection algorithms locally. The benefit

of this approach is that it is decentralised. Lack of central arbitration increases resilience to

failures of individual nodes. Moreover, decisions are made at the enforcement points avoiding

extra routing of reconfiguration messages from evaluation points to the enforcement points.

The downside of a fully distributed approach is the increased energy consumption, even though



3.3. Self-Managed Cell 37

it is distributed fairly among participating nodes. Consumption increases as every node must

use its radio for listening for incoming messages from neighbours. Active listening for incoming

messages consumes significant amounts of energy preventing nodes from entering a low-power

sleep mode. Constant radio listening can be prevented by using duty-cycle solutions that wake

nodes at predetermined time periods for communication. Nevertheless, this requires synchro-

nisation among nodes. Power consumption deteriorates further in scenarios where the sensing

radius of a node is greater than its communication range, requiring multi-hop communication

protocols to disseminate information in its sensing neighbourhood. In such cases, the dis-

tributed approach does not scale well as the communication cost for a group of N nodes is

O(N2) requiring every member of the group to communicate with all other members.

A hierarchical approach that using local leaders helps to alleviate, to a degree, most of these

problems. Nodes are assigned to potentially overlapping clusters that elect a representative

leader (cluster-head), which collects feature information from the group members. Clustering

allows leaf nodes to enter a sleep mode when not sampling or transmitting data, saving signif-

icant amounts of energy. However, it introduces uneven energy consumption in the network at

the cluster-heads. Leadership roles can be assigned to more powerful nodes with greater storage

and processing capacity. Furthermore, leader outages can be addressed with leader re-election

schemes [DHS02]. Structure inside the networks decreases communication expenditure, when

the sensing radius is greater than the communication radius. The worst case scenario remains

O(N2), when every node has only one single-hop neighbour and the group forms a minimal

connected graph. Nonetheless, the complexity of communication reduces to O(Nlogb(N)) for

an even distribution of nodes in the physical space, where the logarithm base, b, is the average

connectivity degree of nodes in the group.

3.3 Self-Managed Cell

The Self-Managed Cell (SMC) is a structural, architectural paradigm for autonomic manage-

ment of pervasive systems [LDS+08]. It is defined as a set of functional components that forms
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an autonomous management domain that is not divisible, in other words, it is the minimum

set of functional roles that can accommodate an autonomous system. SMCs are the building

blocks for the construction of large-scale systems by forming federations between them. The

platform facilitates addition and removal of components by providing a well-defined interface

for interactions with other SMCs. A typical SMC can be considered as a set of sensor and

actuator nodes in addition to a smart-phone controller that form a body sensor network mon-

itoring the health of a patient, the devices in an intelligent building, a group of autonomous

vehicles collaborating on a search and rescue mission, or the routers and firewalls managed by

an Internet Service Provider.

As an architectural pattern, the SMC can be customised and tailored on instantiations applied

at different levels of scale. The core SMC design, as seen in figure 3.2, consists of a set of

services that includes a discovery service for location and authentication of new components and

neighbouring SMCs, a policy service for specifying adaptive behaviour, an event bus supporting

publish-subscribe interactions between services and components. These are the three core

services of an SMC. In addition a cell maintains a set of managed objects. Managed objects

are, essentially, the components that carry out the tasks of the system. They encapsulate

heterogeneous resources such as software and hardware modules or even remote SMCs that the

host SMC interacts with as a managed object for composition to form complex structures. In

order to abstract this complexity from the developer, managed objects are connected to the

SMC event bus via resource adapters. The adapters are necessary in the system to hide the

heterogeneity of managed objects and provide uniform interfaces for interactions that abstract

communication details.

The event bus component uses the publish/subscribe programming abstraction [EFGK03a] to

decouple communication among components. Removing hard dependencies among them simpli-

fies software implementation and maintenance by easily matching notifications with components

that have registered interest for them.

The discovery service locates nearby SMCs that can interact with the original and collects

their profiles. SMC profiles include their credentials and the services, i.e. managed objects,
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Figure 3.2: The core Self-Managed Cell architecture

they provide. It further carries out the admission control process for negotiating access of

remote components by SMCs.

The policy service is the control mechanism of the SMC that supports specification of adap-

tive behaviour in network management. It uses interpreted policies that allow for changes in

execution at run-time without disruption of system’s operation. There are two types of poli-

cies – obligation and authorisation policies, based on the Ponder21 policy management system

[DDLS01]. Obligation policies are Event-Condition-Action (ECA) rules that express system

behaviour in an event-driven model. Authorisation policies are the access control mechanism

of SMC that define what resources or services can be accessed by remote SMCs. The policy

notation is presented in figure 3.3.

def 〈authpolicy〉 [+/−]
subject 〈role〉
target 〈role〉
if 〈condition〉
action 〈name〉

(a) authorisation policy

def 〈obligpolicy〉
on 〈event〉
if 〈condition〉
do 〈action〉

(b) obligation policy

Figure 3.3: Syntax of policies in the SMC environment

Events and actions in the system are provided by managed objects through the local resource

adapters that conceal location and communication details. Managed objects may in fact be local

or remote with regard to the SMC. Policy conditions are predicate functions of managed objects

1http://www.ponder2.net
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that return a boolean value and control policy execution. Roles in authorisation policies refer

to semantic labels that have been assigned to SMCs. Role assignment to SMCs is a many-to-

many relation, where an SMC may be assigned many roles and one role can be assigned to more

than one SMC. SMCs advertise their roles when discovered by a neighbouring discovery service.

Authentication mechanisms can verify the role assignment in a distributed SMC environment

[ZKS+08a]. Authorisation policies can allow or reject access to a remote resource, i.e. a

managed object or a subset of its functionality. Interaction allow or reject is denoted by the

[+/−] symbols, respectively, in the policy specification. Each managed object is placed under

a specific domain path. The domains are also the identifiers that policies can use to access

managed objects ’ functionality by referencing their location in the hierarchy. SMC federations

are achieved by using architectural patterns, such as collaboration or composition, to form more

complex structures to build larger-scale distributed systems [FL07].

3.4 Self-healing Services in SMC

The core SMC architecture provides the fundamental infrastructure for an autonomous environ-

ment. However, it does not define specific mechanisms that support the self-healing attributes

of an autonomous system. In this thesis we extend the SMC architecture with the specifica-

tion of services that support the self-healing characteristic in pervasive WSN environments.

We identify the services that are essential in this context and discuss their interactions and

integration in the SMC core architecture.

The goal of a self-healing system is to adapt in response to faults and errors before users

observe deterioration in the provided service or a failure. Essentially, a combination of an

adaptive framework with a set of detection and correction algorithms is required. The SMC

model provides the underlying adaptive framework of managed objects along with a policy

service that supports flexible behavioural modification. Algorithms and services deployed are

controlled in term of policies. We take a top-down view on these services by first identifying

their functional role in the architecture by extending the SMC model and later describe them
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Figure 3.4: Self-Managed Cell architecture with self-healing services

in further details, with case studies and examples of mechanisms that provide a self-healing

platform.

Figure 3.4 extends the original SMC architecture in figure 3.2 with the services that are required

to build a self-healing system. These include a monitoring service that collects metrics from

the system to detect its status, a fault detection service that analyses metrics and compares

them with a model of acceptable system operation, a fault handling service that produces a

plan to transition the system to an improved state and, finally, an adaptation service that

controls the structure of the network and modifies it to satisfy new operational plans. These

services are installed in the SMC as managed objects, therefore, they are fully integrated in

its publish/subscribe system and expose their interfaces to the policy mechanisms through the

SMC domain system.

The monitoring service is the initial step of a feedback mechanism necessary for the system to

be aware of malfunctioning components. Metrics collected are defined by the system attributes

that need to be adapted. In the case of WSNs, they include sensor readings accuracy, link

channel drop-rates or computation and storage load. For sensor accuracy, metrics involves

features collected from sensors readings. An aggregation mechanism collects features from the

SMC’s managed objects being either local or remote sensing devices. The feature extraction

part of the service provides an API for policies to select the set of features and their sampling

rate in order to customise monitoring in accordance with the application’s needs.
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The fault detection service operates on features collected by the monitoring service to validate

input with provided models and identify misbehaving components. The fault handling service

makes a decision for an appropriate strategy that will most effectively reduce the impact of the

identified fault. Such strategies may involve isolating defective components, substituting them

with predictions of missing data or attempting to repair them whenever possible.

The adaptation service manages the structure of the SMC, its components and interactions with

neighbouring SMCs. It assesses reorganisation of assigned operational roles and allocation

of resources based on inferences derived by the fault handling service on the state of other

components. Adaptation actions include activation or deactivation of policies, reassignment of

roles to nodes or reconfiguration of the network’s communication structure.

The services described compose the closed feedback control-loop in the autonomic comput-

ing paradigm. Figure 3.5 illustrates the association of the services with the phases defined

in autonomous systems. The monitoring service corresponds to the monitoring phase of the

control-loop collecting information on the system’s condition. The fault detection service cor-

responds to the analysis step, diagnosing the state of the system and identifying potential

counter-actions. The planning step in the architecture is performed by the fault handling

and adaptation services that creates a plan derived from the analysis phase decisions. The

two services look at different aspects; fault handling service tries to apply corrective actions on

available misbehaving resources to restore their operation, while the adaptation service modifies

the structure of the network to cope with degraded or lost resources. Finally, the execution step

is handled by the policy framework of the SMC that can apply changes in different components

of the network.

Knowledge, which is the epicentre of the control-loop, is encapsulated in the SMC in different

forms. One form is policies that define behaviour and drive the adaptation mechanisms that

operate on the network. This is definitely a human-centric approach of expressing knowledge

about the system where the network administrator can specify system response to exceptional

conditions. Knowledge can also be encapsulated in the system through models and machine

learning mechanisms that define the correct operational attributes of the system. Knowledge
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Figure 3.5: Self-healing SMC feedback closed-loop

controls all steps in the feedback control-loop orchestrating components and their operation.

Throughout this thesis, we present examples of how knowledge is described for fault handling

and reconfiguration in pervasive networks.

3.5 Policy Specification

Obligation policies control system behaviour and interactions in the SMC. The adaptation

service modifies current active policies when adaptation is necessary. Policies are interpreted at

run-time, being essentially a means of scripting behaviour that can inexpensively be swapped

at run-time. Figure 3.6 demonstrates the expressiveness of obligation policies and provides

insight to the specification of SMC functionality.

Policy ‘AdaptOnTemperatureDrift’ responds to an event from the fault detection service and

disables temperature collection on a faulty node. Furthermore, the policy instructs the set-up

of a recalibration process on the temperature sensor. Identifiers in italics (fault, type, node)

are context variables of the triggered event while ‘drift’ and ‘temperature’ are literals that

correspond to an appropriate constant code. Finally, ‘TemperatureCollect’ and ‘RecalibTemp’

literals are identifier in the SMC’s policy repository. Policies only provide the glueing of available

functionality on a node while managed objects, such as ‘faultService’ and ‘policy’, encapsulate
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def AdaptOnTemperatureDrift
on faultService.Detected(fault, type, node)
if fault is drift and type is temperature
do node.policy.Disable(TemperatureCollect),

node.policy.Enable(RecalibTemp)

On detection of thermometer’s drift disable readings collec-
tion and start sensor recalibration instead.

def TemperatureCollect
on timer.Off(id)
if id is sample temperature
do buffers.Append(temperature, sensor.Sample(temperature))

In response to a pre-set timer, sample temperature from the
sensor and store the reading in a buffer.

Figure 3.6: Policy re-configuration and adaptation example

the implementation in native code. More details on the domain structure of managed objects

are provided in chapter 4.

Similarly, the second policy ‘TemperatureCollect’ responds to the notification of a periodic

timer and uses the on-board sensor to sample readings from the thermometer and store them

in a buffer under the ‘temperature’ id. Both ‘buffers’ and ‘sensor’ are managed objects in

the SMC. These examples illustrate how policies assemble primitives to construct interactions

among components in the system. In later chapters implications on remote interactions are

also discussed.

3.6 Summary

In this chapter, we have presented an overview of the work in this thesis. We introduced a fault

model for handling sensor readings of both transient and permanent nature. We discussed

implications of communication between sensor nodes that cooperate for detecting faults in

a local area. Finally, we presented previous work on the Self-Managed Cell architecture for

autonomic pervasive system and discussed the self-healing services that are our contributions.
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In the following chapter, we present an implementation of the SMC architecture for WSNs and

discuss how network adaptation can be expressed in terms of policies. In the remainder of the

thesis we look into more detail of the self-healing services in the framework such as monitoring,

analysis, recovery and planning.



Chapter 4

The Starfish Framework

The starfish platform is an adaptation framework for WSNs that focuses on the self-healing

aspects of the network. The framework’s fundamental components are finger2, an embedded

policy management system for sensor nodes; the Starfish Module Library (SML), a module

library that simplifies programming of motes providing basic functions and tools required in

sensing applications; and starfish editor, a client side graphical user interface for authoring and

control of policies, missions and roles on motes.

Starfish is, essentially, framework to facilitate building Self-Managed Cells (SMCs), introduced

in section 3.3, in the context of pervasive systems and sensor nodes. It provides the infrastruc-

ture for management and adaptation within the network as well as deployment of self-healing

strategies. A sensor node in starfish resembles an autonomous cell, i.e. the smallest unit

for self-management. Groups of nodes collaborate together to form federations that provide

composite services. The core SMC components in figure 3.2 have been prototyped for tinyOS

2.x1, an operating system for embedded sensor nodes. The event-driven programming model

of tinyOS fits the SMC event bus service, which carries messages from local and remote com-

ponents. A discovery service for detection and incorporation of neighbouring cells has also

been prototyped. Finger2 provides the policy service of the SMC for sensor nodes. Finally,

the managed objects in the node SMC are the starfish modules that are self-contained software

1http://www.tinyos.net/

46
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components written in native code, closely resembling the nesC language module system. They

encapsulate hardware components, i.e. sensors, radio, etc., and implement functions providing

interfaces for the policies to orchestrate their operation. An SMC can interact with modules

that may reside either locally or on remote nodes. Communication with remote modules is

handled transparently by the middleware, through object adapters.

In this chapter, we focus on autonomic pervasive systems. We discuss the evolution of the

original finger policy middleware in order to incorporate concepts that have been introduced

in previous work on the SMC architecture, such as missions and roles, in order to define

self-healing strategies in terms of the policy-based adaptation that can detect sensor faults or

component failures and handle them by applying necessary system reconfiguration.

4.1 Policy Management on Sensor Nodes

Policies provide a high-level abstraction for scripting sensor node behaviour in a network.

However, they are not a full fledged programming model. Policies are interpreted at run-

time on sensor nodes and are designed to be lightweight and compact to transmit over-the-air.

While they allow adaptation to new conditions without requiring nodes to reboot, they are not

a platform that supports complete software updates and node reprogramming. Instead, it is a

means for controlling behaviour by orchestrating existing software components on nodes.

Finger2 is an embedded policy system for sensor nodes and part of the starfish framework. It is

based on Ponder 22 [TDLS09] policy system. While Ponder 2 scales down to mobile devices, such

as smart phones or the gumstix platform3, it requires a Java runtime environment. However,

due to the dependency on the Java platform it cannot scale down to low-end nodes that run

the TinyOS 2.x environment.

Consider a scenario of health-care body deployment, illustrated in figure 4.1, where a nurse and

a doctor are treating a patient in a hospital. The patient is equipped with a wearable sensor

2http://www.ponder2.net/
3http://www.gumstix.com/
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Figure 4.1: Health-care scenario and roles

network consisting of several nodes that sample his vitals and activity for close monitoring

of his condition. Hospital personnel can query a patient ’s history of observations using an

application on their personal devices that communicate with the patient ’s wearable sensor

network. The deployed network on the patient consists of several components – a thermometer

for measuring body temperature, an ECG monitor and an activity recognition system that uses

accelerometers. This is, evidently, a heterogeneous pervasive application that involves a range

of devices, i.e. constrained body sensor nodes and more powerful smart-phone devices. Each

participating role (appearing in italics in the text) is assigned to a device that executes required

tasks and may also provide an interface for user interaction. Each device in this example is

considered an autonomous component in the system, i.e. an SMC.

Figure 4.14 illustrates the functional architecture of the system in terms of participating roles

and their interactions in this scenario. Two types of SMC interactions can be observed from

this example. A composition pattern of three sensor nodes with different roles; thermometer,

ECG and activity, which are composed together in a single SMC with the patient role. Other

SMCs can interact with the patient SMC instead of addressing its individual subcomponents.

4Icons by http://dryicons.com
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Furthermore, there are the bidirectional, peer-to-peer collaboration interactions between the

nurse/patient and doctor/patient roles, e.g. a nurse querying a patient ’s condition or an alert

from the patient to the nurse.

Even though the policy model does not define how the low-level processes work, e.g. sensor

sampling or radio communication, it does specify application behavioural logic by manipulating

native components. Figure 4.2 demonstrates interactions between components and nodes ex-

pressed in policies. The first policy ECG request runs on the nurse SMC handling the update

request on patient ’s ECG that is received from the device’s GUI. The request results in the

installation of a new policy, ECG update, at the patient ’s SMC.

def ECG request
on gui.RequestUpdate(patient, type)
if type is ECG and network.IsAvail(patient)
do patient.policy.Install(ECG update)

On nurse’s request for an ECG update, install
‘ECG update’ on patient’s endpoint.

def allow nurse policy install+
subject nurse
target patient
if nurse.type is staff nurse and power.Level() > 20
action policy.Install

Authorise access of ‘policy.Install()’ to a staff nurse
given that the local power level is above 20%.

def ECG update
on ecg.event.onEvt(type, value)
if type is onECGReading
do nurse.gui.Update(type, value, timer.Now())

On receiving of an ECG reading, update nurse’s
GUI module with the reading and a local timestamp.

Figure 4.2: Health-care scenario in policies

The policy language abstracts communication details of involved network components enabling

the policy author to expresses communication as interactions between roles. The discovery

service and the finger2 runtime handles the low-level details and implementation of commu-
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nication among physical nodes using the operating system’s networking primitives. In order

for the nurse SMC to perform a remote action on the patient SMC, in this case to install

a new policy, an authorisation is required from the patient ’s part. Access control of remote

interactions is handled by authorisation policies in the system. The corresponding authorisa-

tion policy for installation of new policies is allow nurse policy install in figure 4.2. It permits

invocation of the ‘Install’ action of module ‘policy’ on the patient SMC by the nurse SMC, if

the ‘type’ attribute of the nurse is ‘staff nurse’ and the local power level of the node is greater

than 20%. The authorisation policy resides in and is checked by the patient SMC. All remote

interactions in starfish are subject to authorisation policy checks. An authentication mecha-

nism for association of SMCs to roles is beyond the scope of this thesis, but it has been studied

in [ZSLK09].

According to the scenario in figure 4.1, the patient SMC is a composition of three SMCs; ecg,

temperature and activity. Each role in this case corresponds to a physical sensor node. However,

multiple roles can be assigned to a single SMC/node. Essentially, one of the three devices is also

assigned the role of the representative of the composite SMC, for interactions with others, i.e.

the nurse and the doctor. Specifics on the assignment mechanism of roles to physical devices

are described in more detail in chapter 6.

The ECG update policy on patient ’s SMC demonstrates a second type of role interaction be-

tween patient and ecg roles. Instead of a remote action invocation, this is a remote event

notification. The patient role responds to event notifications originating from SMCs with the

ecg role. The two roles may not reside on the same physical device, but communication de-

tails are again abstracted by the starfish runtime environment. The event module is a special

module that handles exactly these remote event interactions, and is described in more detail in

section 4.2.2. Finally, the nurse SMC is updated with the ECG reading along with an attached

local time-stamp.

Through the description of the health-care scenario some aspects of the starfish platform have

been introduced without much detail. In the remainder of this section, we look into these

concepts and abstractions of the framework in more detail.
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4.1.1 Modules

Modules are the low-level processes of sensor nodes that are implemented in native code and

encapsulate hardware and software functionality on the platform. Modules follow a component

oriented design in that they hide implementation details and state and provide clean interfaces

for interaction with other components. Modules support three classes of interfaces – EventI,

PredicateI and ActionI. The correspondence of these interfaces is straightforward with the three

parts of obligation policies – event, condition, action. The event part of an obligation policy

contains a module function that provides the EventI interfaces. An event also carries context,

which is represented as the context variables in the EventI interface. The condition part is

a composition of simple predicate functions provided by modules. The PredicateI interface

defines a function that returns a boolean value. Finally, the action part of the policy is a

chain of calls to starfish module functions that export the ActionI interface. Both actions and

predicates calls take arguments that can be constants, event context variables or return values

of predicate/action functions calls.

Events, predicates and actions are referenced using a domain hierarchy. Domains are also

used in Ponder 2 for referencing managed objects, i.e. modules in the starfish context. In

Ponder 2 domains are filesystem-like directory tree structures. Given that starfish targets

more constrained devices, we simplify the domain structure that references managed objects. A

domain is a dot ‘.’ separated string of identifiers with a length of two or three. Figure 4.3 gives

the formal grammar of starfish domain in EBNF form.

managed object ::= role module function
role ::= variable DOT | ID DOT | ε

module ::= ID DOT
function ::= ID
variable ::= ID

Figure 4.3: EBNF grammar of module domains

The grammar is straightforward, functions are referenced by the module to which they belong

followed by the function’s identifier, while the associated role is an optional prefix. If the role

prefix is omitted a local module call is assumed, otherwise the call is propagated to the nodes in
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the SMC’s proximity that are assigned the specified role. The role part in the domain can either

be referenced directly by its unique identifier or by a variable, as in the case of ECG request

policy in figure 4.2, where the role identifier is contained in the ‘patient ’ context variable.

Remote interactions between SMCs are subject to increased latency due to unreliability of

the wireless medium. Consequently, synchronous remote procedure calls can be prolonged.

In order to avoid stalling of obligation policy execution, and thus all node operations, remote

interactions are prohibited in cases where a call is required to return a value that is part of

the policy execution, i.e. inside nested function calls. Essentially, remote interactions are not

allowed in the predicate part of obligation policies or function calls that return values used

as actual arguments to another call in the action part of obligation policies. Even though this

design decision appears restrictive, it greatly simplifies the design and performance issues of the

embedded policy system without severely crippling the expressiveness of policies. Synchronous

calls on remote SMCs can straightforwardly be transformed to asynchronous calls, where the

return value can be implicitly returned by a remote event as a context variable, which can be

used on subsequent calls in the handling policy.

4.1.2 Missions

Missions are sets of associated policies that combined accomplish a specific task. For instance,

the transmission of the average temperature from a node to a cluster-head can be described

as a combination of obligation policies, such as periodic polling of the on-board thermometer,

calculation of the average temperature value over a sampling window and finally, transmission

of the value to the cluster-head using the radio.

The scope of a single policy is usually very fine-grained, specifying only a small part of task.

Consequently, as applications become more sophisticated the complexity of managing single

policies escalates making the administrator’s task increasingly onerous. Missions are a tool

that assist organisation and grouping of policies [LDS+08].
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4.1.3 Roles

Roles, such as nurse, patient and ecg, have been extensively used during the health-care scenario

example. A role is an abstraction of the starfish framework that simplifies interaction defini-

tion among participating SMCs. Communication between devices over an unreliable wireless

medium is challenging to implement. As a result, we attempt to separate concerns of reliable

communication and service/application logic. Low-level module operations can handle delivery

of messages while the service developer can define communication in terms of functional com-

ponents in the network, i.e. roles, during development. The operations of a role are defined by

missions that are associated with it. Missions and roles have a many-to-many relation; a mission

may be associated to many roles and a role may contain several missions. SMCs are assigned

roles at deployment time either manually, by the network administrator, or autonomously after

policy and requirement analysis. The autonomic process is described in detail in chapter 6.

4.1.4 Configurations

Finally, a configuration is the initial set of roles, missions and modules loaded on a node. For

instance a node may be assigned the roles of data collector and cluster-head. Assignment of

these roles implies that necessary missions and modules must be included in its configuration

as well. In addition, a configuration may include modules that are not required by currently

assigned roles. Inclusion of additional modules is allowed to accommodate for future roles

that an SMC may be required to play, in order to adapt behaviour. Roles, missions and

policies can be loaded dynamically on nodes once they are deployed without disrupting their

operation. However, modules, which are essentially nesC5 code, cannot be modified after the

initial configuration, due to the limitations of the operating system (tinyOS) that does not

support binary images reprogramming on-the-fly. It would be feasible to extend starfish to

support such operation, should it be deployed in other platforms that support code-distribution

and in-situ reprogramming [DGV04].

5http://nescc.sourceforge.net/
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4.2 Starfish Architecture & Implementation

Having introduced the concepts used in the starfish framework, we consider the system’s ar-

chitecture, its abstractions, components, tools and prototype’s implementation.

4.2.1 Finger2 Architecture

Figure 4.4 illustrates the high level architecture of finger2. Central component in the architec-

ture is the obligation manager that processes obligation policies on nodes and is the driving

execution and adaptation mechanism of the system. It consists of two components, the event

manager and an embedded virtual machine. The event manager, as the name implies, pro-

cesses incoming events of the system. Event notifications may either be internal from the node,

originating from modules such as sensors or timers, or they can be external to the node, from

neighbouring SMCs over the network. The event manager looks up policies that are associated

with the event from the local node policy repository. Collected policies are dispatched to the

embedded virtual machine for execution. Policies are executed sequentially by the VM without

any execution order guarantee. Initially the condition part of the node is executed and if its

predicates are satisfied, execution of the action part takes place.
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Figure 4.4: finger2 architecture
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The virtual machine calls module functions from node’s local directory. The VM is implemented

using the function dispatcher mechanism [GLC07] that is provided in the nesC language making

it very efficient at runtime. All VM calls to modules are synchronous. In other words the VM

blocks until a module function finishes its execution. Thus, modules should typically have short

execution times. Long running and computation intensive operation can be scheduled with the

‘task’ mechanism of nesC, which addresses this exact issue. Local module adapters are used by

the VM for remote module invocations to collaborating SMCs, which propagate invocation to

the corresponding device. A mapping of roles to node devices is maintained and updated by

the node’s discovery service. Remote invocations are asynchronous calls that do not block the

VM execution.

External event notifications or remote module invocations that arrive at the node from the

network are first received by the authorisation manager to enforce access control policies.

The authorisation manager looks up the policy repository for a corresponding authorisation

policy that would allow the local node to respond to a remote event or execute a request

from the remote party. If authorisation succeeds the event or request is propagated to the

obligation manager for execution. Authorisation logic is based on the assigned roles of the

source SMC. Again, the discovery service catalogue of remote SMCs’ roles is consulted by the

authorisation manager. Means for authentication of claimed roles and SMC identity in an

embedded environment are beyond the scope of this thesis, but have been studied by Zhu et

al. [ZSLK09].

Solid black arrows in figure 4.4 represent the execution flow that has two starting and two ending

points; local modules or remote SMCs over the network in both cases. Bidirectional arrows

between the virtual machine and local modules illustrate that both predicates and actions can

return values to the virtual machine to be used in further execution. On the other hand, only

action execution is allowed on remote SMCs, through adapters, while the unidirectional arrow

refers to the asynchronous nature of the communication, i.e. the call does not directly return

a value. Finally, dashed arrows indicates data access, i.e. retrieval of policies from the policy

repository by the authentication and obligation managers.
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Evolution from Finger

Finger2 has evolved from the original Finger policy system [ZKS+08b] developed for tinyOS

1.1.x for the Imperial College BSN node6. Apart from porting to the newer version of the

tinyOS platform, finger2 is a major revamp to the original system that significantly extends

policy expressiveness and introduces new functionality. Below we briefly list the improvements

over the original version.

• Introduction of missions and roles abstractions that support management of policies and

remote interactions between SMCs.

• Introduction of an extensible framework of composable modules that encapsulate func-

tionality and promote re-usability of common processes in sensor networks.

• A discovery services that maintains a presence list of neighbouring SMCs and their asso-

ciated roles.

• An embedded virtual machine (VM) that allows execution of more complex and expressive

policies.

• Obligation policy events support more than one context variable.

• Policy conditions support more complex expressions instead of limited primitive boolean

predicates on the context variable.

• Actions allow for multiple module function calls as well as nested function calls.

• Enumerations and constants can be defined and used in the policies in order to improve

their readability, hence, their maintenance and updating.

• Policy are now stored in binary format for more efficient transmission and processing

instead of the original string representation.

6http://vip.doc.ic.ac.uk/bsn/index.php?article=167
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4.2.2 Starfish Module Library

The Starfish Module Library (SML) for finger2 is a collection of starfish modules that support

the most commonly used functions of WSN applications. These include sensor sampling, fea-

ture extraction, buffering, timers for scheduling of events and network primitives for exchange

of messages among nodes. In this section, we briefly discuss some modules of interest, the

extension infrastructure of the module system and how modules are implemented in tinyOS

native code.

4.2.3 Fundamental Modules

The sensor module encapsulates node hardware sensors abstracting details for the policy au-

thor. It provides interfaces for both periodic sampling, sensor.Sense(), and immediate sampling,

sensor.Get(). Modules usually provide asynchronous interfaces for tasks that require an arbi-

trary amount of time for completion. For example, periodic sampling of sensors are returned

through a sensor.Reading() event emitted by the module when a new reading is available. The

context variables of the event are the type of the sampled sensor (e.g. temperature, humidity,

acceleration, etc.) and the observation value. Context variables can be checked and passed as

actual arguments in the condition and action parts of the obligation policy.

Buffer is an auxiliary module that provides storage facilities on sensor nodes. Policy Initialize

in figure 4.5 allocates a new array of 50 elements for storage of the temperature readings

using buffer.Alloc() action. The buffer module emits an event when one of its allocated data-

stores is full, which triggers policy SendMeanTemp. Other modules in SML can also operate on

buffers, for instance, the features module. Function features.Avg() takes a buffer identifier as an

argument and calculates the mean value of its elements. Feature extraction functions include

operations such as average, median, variance etc. The composition of buffer and features

modules provides a feature extraction platform inside the network for preprocessing sensor

readings before transmission. Moreover, it allows to dynamically modify the set of extracted

features by modifying the policies acting on nodes.
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def Initialize
on boot.Done()
if sensor.IsEquipped(tempt)
do buffer.Alloc(tempt, 50), sensor.Sense(tempt, 250)

On boot-up allocate a buffer of size 50 for readings and set the temperature
sensor to sample at 4Hz frequency (250ms period).

def StoreReadings
on sensor.Reading(type, value)
if buffer.Exists(type)
do buffer.PushBack(type, value)

On receiving a sensor reading store it in the appropriately allocated buffer.

def SendMeanTempt
on buffer.Full(type)
if type is tempt and network.IsAvail(temptGtor)
do network.Send(temptGtor, temptUpdate, features.Avg(buffer.Get(type)))

When the buffer is full, send the average temperature over the network to
node ‘temptGtor’.

Figure 4.5: Sample policies that demonstrate starfish module library

Arithmetic (add, sub, mul, div), association (is, equal, not equal, less, greater, less or equal,

greater or equal) and logical (and, or, not) operators included in policies similar to that in

figure 4.5 are implemented as module predicates. Modules arith, assoc and logic, respectively,

provide these fundamental operations for usage in conditional clauses of policies. Even though

syntactic sugar is used for such operators, in order to improve policy readability, these operators

are translated to module predicates and actions that are no different from the other system

modules. In essence an expression such as ‘x < 5’ or ‘x and y’ will be transformed into

assoc.less(x, 5) and logic.and(x, y) respectively and executed by the VM.

Timers on embedded systems are used for scheduling activities, e.g. collection of data, periodic

heart-beat messages with neighbours, duty-cycling, etc. Module timer provides an interface

for scheduling event emissions for policies to perform future or periodic tasks. timer.Periodic()

and timer.OneShot() are the two actions that can schedule an event in the future. The timer

module allows allocation of several timers that are distinguished by an id, similar to the buffer

module. When a timer is fired, its id is included as a context variable of the event timer.Off().
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The network module provides communication primitives for policies and other modules for

message exchange among nodes. Action network.Send() transmits a message to another node.

The first two arguments, as seen in policy SendAvgTemp, are the destination node id and a

message type id, followed by a variable number of arguments that are inserted in the message

as payload. Module network only supports direct link communication. Multi-hop routing could

be implemented as an extension module using one of the approaches found in the literature.

The network module also includes action network.BCast() that broadcasts a message and a

predicate network.IsAvail() that checks neighbouring node presence. Incoming messages trigger

the network.Recv() event with a variable length signature, analogous to network.Send().

Additionally, module serial provides Send() and Recv() functions, similar to network, for com-

munication with the serial port of the node. It is a tool for communication between nodes and

a terminal client. Serial communication is used for application logging and debugging purposes

or controlling the sensor network from a desktop terminal.

The event module is a special component in starfish that provides the means for propagation

of events to remote SMCs. It provides an action event.Emit() with a variable number of

arguments, where the first one is the event id, which identifies the event, and the rest are event

context variables. The result of the action is emission of an event notification to the local event

bus in addition to a radio broadcast to nearby SMCs. Neighbouring SMCs that receive the

broadcast replay the event in their local event buses if the event passes the authorisation stage.

The authorisation is granted depending on roles that are associated with the originating SMCs.

A receiver SMC has a directory of the transmitter node’s roles in its local discovery service.

A corresponding event is provided event.onEvt() that is to be used as a trigger event in the

receiving SMC for corresponding obligation policies.

Policy Management

Network adaptation is supported by a set of starfish library modules – policy, mission and

role, which manipulate the local policy repository and discovery service to enable/disable or

dynamically load and remove elements. Actions Enable()/Disable() operate on element IDs
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and are the most basic means of adaptation. Install() uploads and enables a new element on a

remote node. In order to install an element to a remote SMC, e.g. a policy, it must reside in the

local repository of the initiating node in order to be transferred to the target node. Remove()

deletes an element from the local repository, as it may be desirable to free up space from unused

elements due to memory constraints. Consequently, adaptation is controlled either by a node

internally, enabling a different policy profile in response to the occurrence of an event, or by

new behaviour installation from remote SMCs that have the authorisation access to perform

such a task.

Module Extensions

The module library can be extended by the addition of new modules required in specific domains

or for implementation of specialised algorithms, e.g. multi-hop routing. The design facilitates

easy integration of new modules through three simple interfaces, EventI, PredicateI and ActionI,

that were discussed earlier. Module functions that provide such interfaces can be integrated

with obligation policies to configure node behaviour and authorisation policies to define access

control for remote SMCs.

The EventI interface defines a single nesC event, i.e. a function, named evt(). A low-level

nesC module, which implements the operations of a starfish module, must provide an EventI

interface for each event it offers. Events in nesC are an implementation of the signals and slots

mechanism, a specialisation of the observer design pattern [GHJV95]. They map language

events to function callbacks that are invoked at a later stage with corresponding context, i.e.

context variables. The context variables are mapped to the event variables in the obligation

policy.

Similarly, for predicates and actions a nesC module provides the PredicateI and ActionI inter-

faces that define two nesC commands; evaluate() and perform() respectively. The function’s

arguments are those provided by the policy author in an obligation policy. A starfish module

is modelled very closely to a nesC component structure being, in essence, a composite nesC

module, referred in the nesC terminology as a ‘configuration’. Figure 4.6(a) presents ‘policyP’,
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the base implementation of a policy module in starfish. The figure shows that events, predi-

cates and actions are exported, provides indicates a nesC interface of the corresponding type.

‘PolicyMgmtI’ interface used by the ‘policyP’ module is the interface provided by the policy

repository component to allow its manipulation by others in the system.

While provided EventI, PredicateI and ActionI interfaces can be recognised by the middle-

ware and hooked in finger2 runtime, there are dangling interfaces, e.g. ‘PolicyMgmtI’, that

are not wired to a source. Therefore, the construction of a starfish module requires one more

step, the wiring of a module’s internal interfaces. A composite nesC module ‘policyC’, aka

a ‘configuration’, is shown in figure 4.6(b). The purpose of a ‘configuration’ is to define the

internal, implementation-specific interface connections of native modules in order to be com-

plete and executable by the finger2 VM. It is also necessary, as shown, to forward all starfish

// policyP.nc file
module policyP {

provides {
interface EventI as Installed;
interface EventI as Removed;
interface ActionI as Install;
interface ActionI as Remove;
interface PredicateI as IsInstalled;
}

uses {
interface PolicyMgmtI;
}
}

implementation {
[...]
}

(a) policyP nesC module

// policyC.nc file
configuration policyC {

provides {
interface EventI as Installed;
interface EventI as Removed;
interface ActionI as Install;
interface ActionI as Remove;
interface PredicateI as IsInstalled;
}
}

implementation {
components PolicyRepoP, policyP;

// internal wiring of the ‘policy’ module
policyP.PolicyMgmtI –> PolicyRepoP;

// forward policyP interfaces
Installed = policyP.Installed;
Removed = policyP.Removed;
Install = policyP.Install;
Remove = policyP.Remove;
IsInstalled = policyP.IsInstalled;
}

(b) policyC nesC configuration

Figure 4.6: Example definition of module ‘policy’
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interfaces that are provided by the core module (‘policyP’) for the VM. While this involves

repetitive, boilerplate code, we provide tools that simplify this process leaving only internal

logic implementation to the developer.

4.2.4 Starfish Policy Editor

A complementary component to the starfish framework is an integrated environment that sup-

ports authoring, management and deployment of policies, missions and roles for sensor nodes.

Moreover, the environment supports authoring of starfish modules and node configurations.

The starfish editor includes a policy compiler that checks policy syntax and semantics and pro-

duces binary code for the embedded finger2 virtual machine running on the tinyOS platform.

Figure 4.7 shows an snapshot of the Starfish application that showcases the policy editor of the

application in the centre and the module, missions and configurations explorers at the sides of

the window.

Figure 4.7: The Starfish policy editor
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The starfish editor has been developed in the python7 programming language and is portable

to all major desktop platforms – Linux, Mac OS X and Windows. In the rest of this section

we examine in more detail the facilities it provides for WSN development.

Policy Editor

The policy editor is a significant component of the application, as policies are the main starfish

abstraction to support node behavioural specification. The policy editor allows the network

administrator to compose authorisation and obligation policies that are parsed and semantically

checked on-the-fly. The policy editor can be seen in the centre of figure 4.7. The authoring

area for policies lies on the top of the window. Below it lies a list of already created policies.

The policy that is selected from the list appears in the authoring area and the two views are

synchronised in real-time when changes are made in either of them. The validity of a policy

is indicated by a green or red sign in front of it in the list view, which allows for a quick

consistency overview of the existing policies. Policies are subject to both syntax and semantic

checks, i.e. whether the modules they refer to exist and are available in the system. Errors of

policy compilation are presented to the user in an error log at the bottom of the window.

The policy editor compiles policies in byte-code that is uploaded on sensor nodes for execution

in the VM, instead of their textual representation. Figure 4.8 provides a formal representation

of the policy language presenting its grammar in EBNF. Non-terminal symbols are presented

in lower-case italics while terminal symbols are in upper-case. As mentioned before the policy

language operators are syntactic sugar for actions and predicates that are implemented by

modules and they are transformed into function calls when compiled to byte-code.

Mission/Role Editor

In addition, to policy authoring support the starfish editor provides explorer panes with avail-

able policies, missions and roles. GUI facilities for creating new missions and roles are pro-

vided. Mission manipulation, i.e. adding/removing policies. Changes in policies or renaming

7http://www.python.org
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policy ::= DEF ID obligation
| DEF ID auth authorization

authorization ::= subject target condition actionIds
subject ::= SUBJECT ID
target ::= TARGET ID

actionIds ::= ACTION idlist
auth ::= ALLOW | DISALLOW

obligation ::= event condition action
event ::= ON notification

condition ::= IF expr
| ε

action ::= DO fcalllist
fcalllist ::= fcall COMMA fcalllist

| fcall
fcall ::= resource LEFT PARENTHESIS exprlist RIGHT PARENTHESIS

notification ::= resource LEFT PARENTHESIS idlist RIGHT PARENTHESIS
resource ::= role module function

role ::= variable DOT
| ID DOT
| ε

module ::= ID DOT
function ::= ID
variable ::= ID
exprlist ::= expr COMMA exprlist

| expr
| ε

expr ::= expr arith op expr
| expr assoc op expr
| expr logic op expr
| NOT expr
| MINUS expr
| fcall
| NUMBER
| ID

idlist ::= ID COMMA arglist
| ID
| ε

arith op ::= PLUS | MINUS | MUL | PLUS
assoc op ::= IS | EQ | NEQ | LESS | GREATER | LEQ | GEQ
logic op ::= AND | OR

Figure 4.8: EBNF grammar for finger2 policies

is automatically tracked in order to update dependent missions. Similarly, role creation and

association with missions is supported.
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Module Editor

Similar to authoring and listing of available policies, the environment supports authoring of

modules, which are the components that policies operate on. The editor provides a full list

of available modules in the system, which also provides introspection by including provided

events, predicates and actions. It compiles a comprehensive list of library utilities that can be

used by policies. This list can be seen on the left side of the editor in figure 4.7.

In section 4.2.2, we looked into some fundamental modules in finger2. Nevertheless, these

modules do not cover all functions required in a sensor network application. WSN developers

can define their own starfish modules to be used through policies. Section 4.2.2 presented

examples on how a starfish module can be authored in nesC. However, the process involved a

lot of boilerplate code that is cumbersome and error-prone. The starfish editor streamlines this

process by generating boilerplate code allowing creation of new modules through the GUI of

the application. The module authors are left to implement the core logic of the new component

in nesC as the wiring of the new component with the finger2 framework is automated.

Configuration Editor

Finally, in order to assist deployment of modules in nodes, the one component of starfish that

cannot be transferred over-the-air as an update, the starfish editor provides a configuration

editor the creates node profiles. These are essentially a set of ROM images to be flashed on

node devices. The environment provides a list of available roles and missions that a node

can be loaded with, and which of those should be enabled initially. A dependency checker

automatically handles inclusion of policies and modules that are associated with those roles by

parsing missions and policies and include them in the binary image. Moreover, the interface

allows the administrator to load additional modules not required by selected roles in order to

provision for dynamic deployment of new missions that may be required in the future.
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4.3 Behaviour Adaptation with Policies

The architecture and expressiveness of policies have been discussed so far in detail, however we

have not yet demonstrated behavioural adaptation through policies. There are three classes

of adaptation supported in starfish – local node adaptation of its objectives, network group

adaptation on operations and adaptation driven by new functional requirements.

In the first case, objectives adaptation, a node may decide that it needs to modify its behaviour,

i.e. objectives, in response to an event that prevents operation in the current state, for instance,

when a sensing device of the node fails. These kind of faults or events can be considered ahead

of time and a node can be scripted with an appropriate alternative behaviour. It can be

considered that policies are not necessary for such adaptation as this can be easily hard-coded

on the node instead. Nevertheless, we argue that policies allow for an easier mechanism to

express this kind of adaptation, which can also be scripted by the network administrator in a

high-level language, instead of being hard-coded by the developer.

In the case of operational adaptation, the behavioural modification is a consequence of a failure

that results in either the elimination or severe degradation of a service component, which

impedes the system operation. Alternatively, the configuration of the network may have been

degraded to the extent that an alternative configuration becomes more efficient for the operation

of the network. In such scenarios, reassignment of functional roles may assist the replacement of

a missing component or optimisation of the service, as long as redundant available components

in the network exist. A role re-assignment processes can operate autonomously and we look at

this mechanism in more depth in chapter 6.

Finally, adaptation on updated functional requirements involves modification of nodes’ func-

tions to accommodate new processes that were not provisioned during the deployment process.

Adaptation on functional requirements involves a human administrator, who authors new mis-

sions that describe orchestration of existing components. While starfish provides the platform

(finger2 ) and the primitives (policy, mission and role modules) to allow this form of adaptation,

it does not provide a protocol for dissemination of updates over multi-hop sensor networks.
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However, there are several approaches in the literature that span from flooding to epidemic

protocols [DHM06] to more targeted solutions [WZC06].

In this section, we demonstrate objectives adaptation expressed with policies. Finite State

Machines (FSMs) are commonly used to express behavioural modification in response to events

[UBH09, MSD10]. Their simple model is very convenient to express behaviour with a formal

mechanism that allows model analysis. An FSM consists of a finite set of states S, an initial

state s0 ∈ S and a set of final states F ⊆ S. It consumes as input a possibly infinite number

of symbols that belong to a finite set Σ called the alphabet. A set of transitions ∆ is defined,

where a transition δ ∈ ∆ is a function δ : S × Σ → S, which given a symbol from the input

transitions the system from the current state to a new one.

An example of an FSM that describes behavioural adaptation on nodes is shown in figure 4.9. It

demonstrates a simplified, yet functional, FSM that handles sensor fault detection and isolation

in a network that measures temperature in a room. The FSM provides a high-level view of node

behaviour expressed by missions. Each mission is encoded as a state of the FSM. The alphabet

OK
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Figure 4.9: FSM mission adaptation on node
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for the state transitions are starfish events with optional context variable predicates and side

effects that are executed during the transition. Missions involved in the FSM are mutually

exclusive, although it does not imply that they do not share any common policies/tasks. There

are four missions in this example – healthy (OK), irregular (IRG), faulty (FLT) and assist

(AST), which are abbreviated in the FSM for illustration purposes.

In the healthy state nodes execute policies that sample sensor readings periodically and propa-

gate them to a base station, while they also monitor the quality of their readings by extracting

the local variance feature. If the local variance monitor exceeds a heuristic threshold, the node

transitions to the irregular state/mission according to the FSM, which initiates a cooperative

monitor on variance that compares local variance with the neighbourhood’s average. Initiation

is triggered by emission of event ‘StartAssist’ that is broadcast by the node. If the variance ratio

of the sensor to that of its neighbourhood is acceptable, i.e. lower that a predefined threshold,

it returns back to the previous healty state. Group evidence attributed the increased variance

to an unexpected event instead of a isolated fault. On the other hand, if the ratio surpassed the

threshold, the node transitions to the faulty state/mission. Increased variance over the group

is translated as noise, hence, data dissemination to the base station is halted. However, local

monitoring of variance still operates and the node returns to a healthy state if variance drops

low enough, as noise is usually a transient effect.

A node in healthy state that receives an a ‘StartAssist’ event from its group transitions to

the assist state/mission for participating in collaborative group variance monitoring. It starts

broadcasting its local variance feature for neighbouring nodes to calculate variance ratio. Arrival

of a termination event ‘StopAssist’ transitions the node back to its original healthy state halting

broadcasting of its variance. In the example, the transition to assist state is triggered by an

event that originates from an SMC with the ‘room5’ role. All nodes of the group are assigned

a common role that allows them to identify their group, in this case an identifier of their

placement, ‘room5’. If a node overheard the collaboration request from a different group it

would not have triggered the transition as its sensor readings would probably be irrelevant for

a node group in a different room. Node, i.e. SMCs, may contain several roles that describe

different aspects of their operations.
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The example FSM of figure 4.9 is in essence a meta-mission that controls mission execution on

a single node. The FSM can be easily transformed to a set of policies that overlook mission

changes on a node. A simple utility has been created that parses FSMs written in a simple

custom language and transform them into missions that can be loaded in finger2. The mission’s

policies are shown in figure 4.10 as an example.

def healthy2irregular
on features.onVar(v)
if v > varLocalLim and mission.isActive(healthy)
do mission.Swap(irregular, healthy),

event.Emit(StartAssist)

def irregular2healthy
on features.onVarRatio(v)
if v <= varRatioLim and mission.isActive(irregular)
do mission.Swap(healthy, irregular),

event.Emit(StartAssist)

def irregular2faulty
on features.onVarRatio(v)
if v > varRatioLim and mission.isActive(irregular)
do mission.Swap(faulty, irregular),

event.Emit(StartAssist)

def faulty2healthy
on features.onVar(v)
if v <= varLocalLim and mission.isActive(faulty)
do mission.Swap(healthy, faulty)

def healthy2assist
on room5.event.onEvt(eid)
if eid is StartAssist and mission.isActive(healthy)
do mission.Swap(assist, healthy)

def assist2healthy
on room5.event.onEvt(eid)
if eid is StopAssist and mission.isActive(assist)
do mission.Swap(healthy, assist)

Figure 4.10: FSM mission adaptation in policies

It evident that an FSM description can be automatically translated into policies that enforce

the execution of the FSM logic on the node. The advantages of encoding the FSM as policies

instead of being hard-coded in the node include the flexibility to modify the FSM model at run-
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time without manual reprogramming of nodes. Furthermore, FSM parameters, for instance the

constant variance thresholds used in this example, can be modified during run-time if necessary.

Finally, it separates node adaptation logic, which is a cross-cutting concern, from actual task

execution following the principles of aspect oriented programming (AOP) [KLM+97, Lie96].

4.4 Finger2 Overheads

We have prototyped the finger2 middleware for nodes running tinyOS 2.x in order to provide

estimates on performance and memory requirements of the SMC architecture on resource con-

strained devices. The prototype includes the policy repository, obligation manager, embedded

virtual machine and an authorisation manager that does not implement any authentication

processes. A simplified version of a discovery service has also been prototyped that periodi-

cally broadcasts node id and roles and collects similar broadcasts from neighbours. Performance

and resource requirements give an impression of the impact the middleware has on nodes and

applications.

The numbers we present are obtained by compiling the prototype for the Tmote Sky / TelosB

platform8, which are also the nodes used in the motelab test-bet [WASW05]. Binary image and

stack size might differ slightly on other platforms, e.g. micaz. The total memory requirements

of the finger2 middleware is 24.38 KB in ROM and 0.72 KB of RAM. These numbers include

all mentioned middleware services, but do not include starfish modules that may be installed

alongside. The RAM requirement does not include storage requirements for policies, as they are

application specific. The minimum memory size for a policy stored in binary form is 24 bytes

and it increases depending on the number of event context arguments involved and function

invocations. From the prototyping experience the average size of policies tends to be around 40

bytes. In order to put these numbers in perspective, typical contemporary sensor nodes range

between 48 − 128 KB of ROM and 4 − 16 KB of RAM and the trends are increasing. This

indicates that adequate memory space should be left for developers to build applications on

top of finger2.

8http://www.sentilla.com/
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For comparison, lets consider the most basic application that comes bundled with the tinyOS

2.x, the Blink application. Blink when loaded on a node blinks the three LEDs that a node

like TelosB is equipped with. It is the equivalent of the famous ‘hello, world!’ application for

TinyOS. Blink occupies 2.59 KB of ROM and 55 bytes of RAM on a TelosB. We deployed an

application with the same functionality that is developed on top of starfish to provide better

insight of the overheads of the platform. Consequently, we prototyped a module that switches

the nodes LEDs and installed a policy that listens to a periodic timer event to trigger this

module. The size of the Blink application in starfish is 26.32 KB in ROM and 0.8 KB in RAM.

The size of the installed policy that triggers the Blink module is 24 bytes.

The overheads described above are significant for a simple application like Blink. Nevertheless,

starfish is not intended for such trivial applications. Another example of a stock application is

one that periodically polls the onboard sensor of the node and transmits its readings over the

network. When compiled, for the TelosB platform, the application occupies 14.81 KB of ROM

and 1.73 KB of RAM. This application, while still simple, better demostrates the benefits of

an embedded middleware, such as starfish. The application can makes use of already provided

starfish modules, like the timer for periodic events scheduling, the sensor and the network to

poll readings and transmit them respectively. The application only requires a single policy,

though more complex, with a size of 40 bytes. The policy responds to a timer ’s event and uses

network ’s Send() action to transmit a reading from the sensor module. The total size of the

application written using starfish is 36.45 KB in ROM and 1.92 KB in RAM.

With respect to computation requirements and performance, the impact of finger2 VM appears

to be minimal as the average processing time introduced by obligation policies is 74µs while for

authorisation policies it drops to 53µs. These numbers account for the time required to match

an incoming event with an active policy stored in the local repository and invoke associated

predicates and actions or check for access control in the case of authorisation. Execution time

for the actual evaluation of predicates and execution actions is not included in these numbers,

as they are classified as ‘user’ execution time and depend on the application.
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4.5 Summary

We presented the components of starfish framework, an platform for autonomic, self-healing

pervasive systems that is comprised of three main parts: the finger2 embedded policy system,

which control node behaviour and adaptation in the system; the starfish runtime support that

is a collection of modules that provide basic sensor network operation as well as facilities

for supporting adaptation on the SMC; and finally the starfish editor, a client application

that supports the authoring and deployment of starfish policies, missions, roles and modules

on sensor nodes. Policies are the central means of adaptation in our framework and allow

separation of concerns in the system, i.e. operational from adaptation logic. We demonstrated

how an adaptation FSM can be expressed in terms of obligation policies and presented tools

that make the translation automatically.
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Fault Classification

Sensor reading faults manifest as a result of circuit ageing and exposure to harsh environments

and user mistreatment, that may result in node physical damage or electronics fouling. More-

over, low energy levels on nodes contribute to sub-optimal circuit operation leading to accuracy

deterioration. A necessary initial step in an autonomous pervasive system is its ability to de-

tect and identify erroneous readings from sensors to provide input for recovery mechanisms to

isolate or repair (when possible) the faulty network component.

In this chapter we formalise fault models for sensor readings that closely resemble faults oc-

currences in real-world deployments and devise a flexible fault-detection model. The model is

flexible with regard to configuration of resources to balance the trade-off between Quality of

Information (QoI) and power consumption. Finally, we present a case study on long-running

traces that were collected from a real-world WSN deployment for experimental evaluation of

the framework’s detection accuracy.

5.1 Fault Modelling

We first introduce the faults that appear on sensor readings and study their different classes by

modelling them. We also conduct a case study on faults that we have encountered in real-world

73
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deployments and another case study that quantifies the impact of sensor readings degradation

in classification applications such as activity recognition.

5.1.1 Taxonomy of Sensor Faults

We provide a taxonomy of faults found in sensors that aid their study and development of

detection and recovery mechanisms. We identified four classes of faults – short, constant, noise

and drift faults. Table 5.1 summarises the characteristics and impact on the input for each

class.

Table 5.1: Classes of Sensor Reading Faults
Class Definition Impact

SHORT
momentary irregularity in the reading val-
ues of a sensor

very small impact as long as spikes remain
sparse, easily canceled out by simple rules

CONSTANT
invariant repetition of an arbitrary value
that may be relevant to the observed phe-
nomenon

impact could be significant if value is rele-
vant, otherwise it is similar to losing the in-
put of the sensor

NOISE
prolonged increased variance on the read-
ing values of sensors

impact depends on the signal-to-noise ratio,
it can be smoothed using mean

DRIFT
smooth persisting deviation (e.g. linear
or exponential) of the observed value from
the ground truth

initially minor impact that is accumulated
over time, eventually distorting readings

In general, short faults are perceived as irregular spikes on the input signal, constant faults

are indicated by a flat signal, whereas noise appears as an unstably fluctuating signal. Finally,

drift error is a permanent, additive deviation of readings from the ground truth. We define

formal models for each fault class to assist elaboration on their analysis and identification of

features that allow discrimination of these classes from accurate readings.

Short faults

modelled as Ss = αg(x, t), where g(x, t) is the ground truth and α ∈ [−k, k], k ∈ < a momentary

value fluctuation. Short faults manifest on sensors with a uniform probability p.
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Constant faults

modelled as Sc = v, a persistent value v over a period of time t. Missing readings can also be

modelled as a constant faults with v = 0, however the cause of the fault is a network failure

instead of sensing error.

Noise faults

modelled as Sn(x, t) = g(x, t) +N(0, σ2), where N(0, σ2) is a Gaussian distribution with mean

value zero and standard deviation σ. Similar noise models can be found in [UBH09]. Noise

faults, are persistent with a duration of t readings.

Drift faults

modelled as Sd(x, t) = g(x, t) + f(t), where f(t) = αt+β is a linear monotonic function adding

an accumulative error. The α parameter determines the deviation rate of the sensor readings,

while the β parameter models jumps in the readings that appear as step changes in the time

series. Drift differs compared to the other classes in that is a permanent error that affects

subsequent readings.

Modelling of faults allows study of their properties and helps the design of detection and

prevention mechanisms. Modelling is also necessary to evaluate the accuracy of detection

mechanisms. Unless we artificially inject faults on a sensor input, we are unable to assert that

the regions detected are actually faulty as we cannot verify the ground truth. Injecting artificial

errors enables precise identification of faulty regions and hence allows evaluation of detection

mechanisms.

We selected a linear drift function f(t) for two reasons. First, it simplifies our analysis and,

second, evidence from the case study presented in section 5.3 supported this assumption. Ex-

ponential drift may be common for other sensors e.g. those which suffer from chemical fouling.

The specific type of drift could easily be accommodated by modification of the function f(t)
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above, thus the assumption of linear drift does not impact the generalisation of the the pro-

posed detection model. A different set of features might be more appropriate from what was

used for linear drift, but the core fault detection model should not be dependent on the nature

of the drift.

5.1.2 Faults in Real World Deployments

The fault models presented closely follow errors observed in long-running, real-world deploy-

ments. We describe such a deployment in this section and contrast identified faults with our

modelling. Victoria & Albert Museum, in central London, has deployed a WSN for monitor-

ing temperature and humidity in its exhibition rooms as part of project Ocean1. Sensors are

deployed in the ambiance as well as inside exhibit casings. Examined data includes two years

trace from 78 nodes equipped with a pair of thermometer and humidity sensors. All nodes are

able to reach the base station in a single hop. They transmit reading samples every few minutes

and have their clocks desynchronised on purpose in order to minimise message collisions over

the air. The base station only logs one reading per node every 15 minutes and selects the one

closest to the deadline, discarding the rest. This case study was chosen as it used a substantial

number of sensors in a real deployment over a long lifetime, which allowed us to gain insight

on behaviour of nodes through a long period of time, from freshly calibrated and fully charged

to the time that their power levels have nearly or completely depleted.

Nodes are periodically replaced, in rounds, for recalibration and power replenishment, usually

annually. Node IDs remain immutable when replaced, even though the actual device serial

number changes. We have manually examined the node traces to identify instances where

sensor behaviour appeared to be abnormal.

We isolated cases where faults are apparent and verify that they follow one of the models intro-

duced. An example of sensor drift manifestation is shown in figure 5.1, where two neighbouring

nodes’ humidity readings, averaged daily, are plotted for a period of 130 days. Node B appears

to drift over a period of roughly 110 days from node A. Even though node readings are very

1http://www.vam.ac.uk/content/journals/conservation-journal/issue-46/the-ocean-project-at-the-v-and-a/
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Figure 5.1: Readings faults in real-world deployments

close initially, an event appears to increase variation in readings for roughly 20 days. However,

after the end of the event node B does not appear to realign with its neighbour, but instead

starts to steadily deviate from node A. The difference of the two sensor readings is plotted in

the figure below along with the trend-line that indicates a smooth linear increase. Replace-

ment of node B with a fresh one on day 117 makes more evident that the node was drifting

rather than showcasing an actual difference, given that the newly calibrated sensor realigns its

readings with those of node A.

5.1.3 Sensor Fault Impact

We use two case studies, where we examine the effects of sensor faults in the classification accu-

racy of the networks. The first network employs three accelerometer sensors worn on a subject’s

ear [AEP+07] to determine user activity, while the second one includes 19 accelerometers and

one fibre optic sensor for evaluating a surgeon’s skill through gesture recognition [KLDY05].

The traces of both the case studies were provided by the Institute of Biomedical Engineering,

Imperial College London.
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In the first case, the activity recognition trace is collected using the e-AR sensor, an Imperial

College London BSN node2, communicating collected data to a nearby data-logger. It consists

of three accelerometers that monitor three orthogonal axes. The experiment involves trace

from twelve different subjects performing predefined activities in the following order: sitting,

reading, eating, standing, tilting her head, walking, sitting, slouching and lying on a sofa. Each

activity is performed for a few tens of seconds up to a minute. As such, the original trace did

not exhibit significant amount of faults, caused by ageing of sensors. In [PSM+07], where the

trace was originally used, the authors proposed a Bayesian network mixture model approach

for their classification method. Further analysis of the trace is presented in [MPT+08] where

the authors also use ambient sensors that collect image blobs for profiling of behaviour.

The second trace is collected from a glove that has 19 attached accelerometer sensors on the

fingers and the back of the hand and an optical sensor across the palm that measures bending

of the hand. A surgeon wearing the glove performs five activities operating a tool tip; left/right

traverse, open/close, up/down traverse, rotating the roticulator and rotating the tool tip anti-

clockwise. The 20 sensors are attached to four different nodes that propagate readings to a

sink node. Five different subjects perform the activities in the trace, for the duration of a few

seconds.

For the classification of the activities, we have used a simple k Nearest Neighbours (k-NN)

algorithm. In k-NN a data-point’s distance in space is compared to a set of previously classified

samples and the class that has the most appearances in the k closest samples to it is assigned

to the instance. We use a vector of extracted features from a rolling mean of window size 50

for each signal. The k parameter was set to 5 and we use the Euclidean distance in our vector

space.

We inject faults from classes modelled in section 5.1 to study the impact of each class to activity

classification accuracy. For every BSN node we inject faults into 1/3 of the signals. Accuracy

decline in overall classification is illustrated in figure 5.2. In general, the glove trace is much

more resilient to fault occurrences that the e-AR trace due to significantly more input signals

2http://vip.doc.ic.ac.uk/bsn/
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involved in the classification process.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

C
la

ss
if

ic
at

io
n
 A

cc
u
ra

cy
 R

at
e

Noise Fault Standard Deviation

glove
eAR

(b) Classification impact of noise faults
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Figure 5.2: Sensor fault impact on classification accuracy

Short faults, shown in figure 5.2(a), have the least impact on classifications. We have set the

occurrence of short faults to 5% in the trace and we examine results for different values of the

parameter α in the {0.1, 0.2, 0.3, 0.4} set. Classification in e-AR trace is affected even with

small intensity short faults due to the small number of input signals, however classification for

the glove experiment is virtually unaffected.

Similarly, the glove trace is resilient to noise faults as well, as shown in figure 5.2(b). However,

noise has even more impact on the e-AR accuracy, which drops from 90% to 60% for noise

errors with standard deviation set to 4. The x-axis of the figure is the values of the σ parameter

in the additive Gaussian distribution model, N(0, σ2), of noise faults.

Finally, drift has the greatest impact of all faults classes, shown in figure 5.2(c). We apply linear
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drift to a third of the input signals, where parameter α ranges from 10−6 to 10−3. Contrary to

the other fault classes, drift confuses even the glove trace classification in higher values of the

α parameter, while the e-AR trace accuracy suffers significantly even in low drift cases.

5.2 Fault Detection Model

Figure 5.3 presents the proposed fault detection model per sensor. It consists of three main

components – Feature Extraction, Fault Classification and Temporal Correlation.
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Figure 5.3: Fault Detection Model

Feature extraction collects features produced from sensor readings that help discriminate be-

tween correct and erroneous sensor behaviour. A feature selection mechanism that is config-

urable through policies filters features that are relevant to the application’s requirements.

Fault classifier is the component that makes a decision on sensor readings based on receiving

signals from extracted features. Such a unit incorporates some of our knowledge and expec-

tations on the monitored attributes in order to make decision on sensor accuracy. Machine

learning techniques are usually robust methods for pointing to a good decision based on ob-

served data, even though they lack representation of the formal underlying structure of the

system.

Finally, temporal correlation is an optional component that operates on the output of the fault

classifier adding a sense of continuity and consistency on the decisions of a typically stateless

classifiers. There are classifiers that include this attribute however many machine learning
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techniques are endowed with the Markov property, that the next system state depends only on

the current one, which propagates incorrect decisions.

In the following sections, we look in more depth the three main components of this model,

studying alternative instantiation of such services.

5.2.1 Feature Extraction

Feature extraction highlights specific aspects of readings from sensors. Such aspects are utilised

for identifying anomalies or inconsistencies in collected values. We discuss what we consider

are the features that assist in detection of erroneous sensor behaviour.

The selection of features is based on attributes that each fault class, described in section 5.1.1,

is expected to affect. Features like mean and median value over a moving window of readings

remove the inherent noise of the sensors and allows discrimination of outliers. Furthermore,

variance provides a metric on input fluctuation. These features can indicate the presence of

short constant and noise faults in readings. Linear regression on input samples provides the

trend-line that the sensor is following over a long period. It can significantly contribute for

identification of drift error.

While unary features like these provide some indication on the sensor’s condition, errors in

many cases are indistinguishable from events. Synergy of multiple sources enables observation

correlation to discriminate between the two cases. The main assumption is that a manifested

event has an area of effect contrary to faults that are expected to be stochastically uncorrelated

among nodes. We argue that this assumption applies to a large class of networks that monitor

temperature, humidity or illumination in buildings, human vitals on body deployments, acoustic

or seismic activity in open areas, etc. The assumption of stochastically uncorrelated sensor

faults might not always be the case, for instance, sensors from the same manufacturer tend to

have similar failure patterns or a set of co-located sensors may be damaged at the same time.

Nevertheless, we argue that for a significant number of cases faults follow this assumption and,

thus, are good candidates for detection in our system.
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Collaborative features such as difference, ratio and correlation coefficient can contrast observa-

tion and utilise their dependencies to reason on fault conditions. These basic features can be

composed to more elaborate ones such as difference of mean values or variance ratio among

sensors. Starfish provides an adaptive, configurable mechanism for operators to allow balancing

between resource consumption and detection accuracy.

Our goal is to provide a flexible feature extraction mechanism that will allow composition of

features concealing details in their implementation. A similar approach on streaming feature

extraction in WSNs has been presented in DexterNet [KGG+09] based on SPINE framework3

for tinyOS that allows applications to easily extract features from sensor deployments focused

on body sensor networks. However, DexterNet does not provide for dynamic modification of

the streaming feature extraction at run-time.

abs(reading(s)− avg(s))

ratio(var(s), var(clique(cid, s)))

Figure 5.4: Composition of feature extractors

We use a simple language based on expressions similar to function calls to allow users to define

required features. Figure 5.4 presents sample feature composition that can be expressed, where

s is a sensor in the system. Primitive features such as mean, variance, ratio etc. are provided as

system functions that operate on their arguments that can either be sensor readings or output

values from other feature extractors.

Such composite features can be extracted using the features and buffer modules discussed in

section 4.2.2. Direct transformation of expressions in figure 5.4 into obligation policies that

can execute directly on starfish nodes is supported by a translation tool and examples are

showcased in figure 5.5.

The figure presents the transformation of the two feature expressions of figure 5.4 into obligation

policies. The first expression is contained in a single policy that is triggered by a reading of the

humidity sensor and calculates the absolute difference of the sampled value and the past average

3http://spine.tilab.com/
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abs(reading(HUMIDITY)− avg(HUMIDITY))
def policy0

on sensor.Reading(type, value)
if type is HUMIDITY
do features.Abs(value - features.GetAvg(type))

ratio(var(HUMIDITY), var(clique(room5,HUMIDITY)))
def policy1

on sensor.Reading(type, value)
if type is HUMIDITY
do event.Emit(Clique, type, nodeId, value)

def policy2
on room5.event.OnEvt(evt, sensor, node, value)
if evt is Clique and type is HUMIDITY
do features.UpdateClique(room5, sensor, node, value)

def policy3
on features.OnClique(cliqueId, sensor, value)
if cliqueId is room5 and type is HUMIDITY
do buffers.PushBack(cliqueId, value)

def policy4
on sensor.Reading(type, value)
if type is HUMIDITY
do features.ratio( features.Var(type), features.Var(room5) )

Figure 5.5: Feature extractors translated in obligation policies

value readings. The second expression is more complicated and requires network communication

among a group of nodes. The clique feature is the set of latest readings from a group of nodes.

In this case the clique’s ID is ‘room5’ and is a role assigned to a set of nodes that designates

their co-location property. Role assignment as discussed in section 4.1 creates dynamic groups

in the framework and assists communication.

The clique feature is supported by two functions of the ‘features’ module. The first is ‘fea-

tures.UpdateClique()’ action, which updates the module with a sensor’s latest reading. Event

‘features.OnClique()’ is fired when latest readings from all sensors are received and carries the

mean value of the clique’s readings. Policies 1-4 in figure 5.5 demonstrate a composite feature

extractor that uses the clique feature and its translation into obligation policies. The first
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policy propagates the sensor reading to the network emitting an event with the ‘Clique’ ID.

The second policy collects all the ‘Clique’ events from SMCs that are assigned the ‘room5’ role

and updates the local ‘features’ module. When all sensor readings are collected the average is

calculated and the third policy stores the received value in an allocated buffer. Finally, a local

reading triggers the fourth policy that compares local variance of the sensor with the clique

aggregate variance.

Defining feature extraction in terms of obligation policies helps updating them dynamically

when necessary to meet dynamic requirements of the application. Consequently it allows on

demand allocation of resources for fault detection.

5.2.2 Fault Classifiers

The fault classifier unit uses collected features for reasoning about a sensor’s condition to infer

its state. We compare rule-based heuristics and Bayes probabilistic classifiers in the trace from

the V&A deployment and investigate their performance.

Heuristic Rules

Rule based systems can express expert knowledge on normal behaviour of monitored properties

and characterisation of faulty readings. Although it is a lightweight and efficient mechanism for

error discrimination, it can be ineffective when a priori knowledge of the underlying attributes

and their relations is inadequate.

We applied heuristic fault detectors on the two body area network deployments discussed in

section 5.1.3 – the e-AR and glove traces. We inject faults at one third of the sensors in each

trace. Table 5.2 summarises the overall accuracy of detection rules per fault class. The table

presents the average results for experiments that were run with different fault parameters.

Evaluation of the constant fault detection is omitted as, in the case of accelerometer, detection

is trivial due to the unstable nature of the accelerometer’s signal.
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Table 5.2: Fault Detection Accuracy

detector hit-rate fall-out

SHORT (stdvar) 99.54% 0.77%
NOISE (variance) 98.33% 7.43%
NOISE (corrcoef) 100% 6.32%
DRIFT (regress.) 95.22% 19.47%
DRIFT (corrcoef) 78.22% 3.89%

The metrics used for the evaluation are the hit-rate of detected faults, where a hit indicates at

least one alert is triggered during fault manifestation, and the fall-out, which is defined as the

ratio of false positives to the sum of false positives and true negatives. The experiments run for

roughly 10 minutes. Nodes take 32 samples per second from their sensors, while the duration

of injected faults like noise or drift is 1200 samples.

The local detector for short faults proved to be very accurate, yielding very low false positives.

A simple heuristic that checks whether the reading falls inside the µ̂ ± 3 · σ range, where µ̂ is

the mean value over a recent sampling window and σ is the standard deviation.

For noise and drift faults we use two different heuristics, one using local features of readings

variance and linear regression analysis respectively for each class and a second that compares to

neighbouring sensors using correlation coefficient. Both noise detection techniques have high

hit-rates, however, the correlation coefficient approach slightly decreases the number of false

positives. Local variance of sensor readings is, however, less expensive to extract in terms of

power consumption. We use a window of 200 samples in the calculation of correlation coefficient.

The window size is a trade-off between detection delay and the number of false positives.

The linear regression technique for drift faults has a higher hit-rate compared to correlation

coefficient, but at a cost of high number of false positives. As expected, further analysis of the

results indicated that the drift cases that escaped detection from the heterogeneous method are

those that have a very smooth deviation from ground truth, thus with lower impact. Regression

analysis for detecting the input’s trend is computationally intensive to perform on the sensor

nodes. Instead we take a very rough estimation by calculating the slope of the line passing

over two data-points, one at the beginning and one at the end of the regression window. In
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order to tolerate outliers that could significantly skew, instead of the first and last reading in

the window, we use the median of the first five and last five readings. The approach yielded

slightly degraded results compared to actual linear regression, but is comparable, considering

the computation gains.

In the V&A deployment, short and const faults can be easily expressed by heuristic rules with

very low false positives. Noise faults can also be described with relative success, but the drift

faults are more subtle and elusive to heuristics. Figure 5.6 demonstrates heuristic rules for

different fault classes. Rules are expressed in terms of composite feature extractors that were

discussed in section 5.2.1 and can be transformed into obligation policies.

if abs(reading(s)− avg(s)) > 3 ∗ stdev(s) and
abs(reading(s)− clique(s)) > TSclique then short

if var(s) < TClocal and
ratio(var(s), var(clique(s))) < TCclique then const

if var(s) > TNlocal and
corrcoef(reading(s), clique(s)) < TNclique then noise

if regr(avg(s)) > TDlocal and
ratio(regr(avg(s)), regr(clique(s))) > TDclique then drift

Figure 5.6: Heuristic rules examples for sensor readings fault detection

These rules express our expectations for the monitored attributes. For instance, we do not

expect the temperature and humidity readings to make sudden jumps. As a result, any reading

that exceeds the mean value of readings more that three times their standard deviation becomes

suspicious for short fault. Further evidence of the fault is provided, if the sensor reading’s

difference from the mean value of its neighbouring clique is greater than a threshold.

Similar rules are devised for other fault classes. Const faults are characterised by a low variance

on the sensor’s reading and is further validated when the ratio of a node’s variance to its clique’s

is very low. Increased variance in the input is used to characterise noise faults that are described

by two rules. The first is based on a local decision when the variance of a sliding window that

is calculated on every new sample is above the TNlocal threshold. The second rule uses the

observation of the neighbourhood and compares the correlation coefficient of local readings
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with that the mean value of the neighbour.
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Figure 5.7: Distribution of correlation coefficient metric of temperature and humidity sensors

Figure 5.7 shows that the majority of neighbouring nodes exhibit a very high correlation co-

efficient, when they are healthy. The top plot shows the probability density function (PDF)

of the correlation coefficient metric between pairs of co-located temperature and humidity sen-

sors. It demonstrates that these sensors exhibit a very high correlation in their readings. The

lower plot demonstrates that a similar negative correlation exists when comparing readings of

temperature to humidity sensors, even though the monitored attributes are not homogeneous.

Nevertheless, the correlation evidence in this case is weaker.

The second rule, in figure 5.6, is necessary to override cases where an increased variance is

caused due to an event in the environment observed in an area instead of a random error.

Sensor input is typically somewhat noisy but this comparison allows discrimination of input

that is noisy beyond an acceptable level. For drift detection, we rely on the long term analysis of

the input by calculating the trends and deviation between neighbouring nodes. Thus, the rule

calculates the trend of the median difference of readings of two sensors and alerts for drifting

in cases where this trend appears to be deviating from a low threshold.
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Composition of basic features allow for a variety of attributes that can be examined. The rules

work by short-circuiting the condition parts resulting in avoiding calculation of the second part

of the condition if the first one is false. Consequently, power consuming functions that require

node communication are invoked only after an initial hint from local functions.

Bayes Classifier

Heuristic rules are very tied to deployment relying on hard thresholds and fail to accurately

capture complex relations of attributes resulting in a high rate of inaccurate classification

and false positives. A näıve Bayes classifier is a method of supervised learning. Although it

assumes independence of random variables, in practice it outperforms other methods even when

the model does not follow the variable independence assumption. Among its strengths is the

fact that it is a very efficient method for probabilistic inference.

The formal model of the classifier is shown in equation 5.1, where the probability of the random

variable C, in this case sensor’s state (healthy, noise, drift), is dependent on the values of features

F1, ..., F2. In other words the posterior probability of the value of a random variable C is the

product of the prior probability and the likelihood given a vector of features.

p(C|F1, ..., Fn) =
p(C)p(F1, ..., Fn|C)

p(F1, ..., Fn)
(5.1)

As the main assumption in a Bayesian classifier is that features F1, ..., F2 are independent their

conditional probability of the vector is the product of their separate conditional probabilities

shown in equation 5.2.

p(F1, ..., Fn|C) = p(F1|C)p(F2|C)...p(Fn|C) (5.2)

Consequently, a classifier based on this model selects the value for the random variable C that

is most probable, as expressed in equation 5.3, where the argmax function returns the argument
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that maximises the expression that follows. The denominator from equation 5.1 can be removed

as it is a constant.

classify(f1, ..., fn) = argmaxc| p(c)
n∏
i=1

p(fi|c) (5.3)

The näıve Bayes classifier is an efficient supervised learning mechanism that is feasible to

implement inside the network running on individual nodes, or cluster heads. Its memory

requirements are relatively low, requiring storage of link matrices of joint-probabilities between

random variables Fi and C. Communication is limited to cases where a classifier uses features

that require information from other sensors inside a clique.

The Bayes classifier is also adaptable with regard to detection accuracy as a trade-off against

features that are used for the classifier’s input. In general, features that include information

from other nodes provide more accurate detection of faults, but increase the operational cost,

as communication increases the power consumption. The features used are similar to those in

a rule-based classifier and their characteristics (i.e. joint-probabilities of random variables) can

be learned by statistical sampling from existing observations.

5.2.3 Temporal Correlation

The classifiers discussed in the last section do not consider the history of decisions made during

the operation. For chaotic faults in readings such as short faults, which appear instantaneously,

this has no important consequences. However, for noise and drift classes that appear for a

prolonged period, the classifiers alone return a significant number of false negatives.

Consistency of fault detection allows for disambiguations between different instances of the

same fault class. It is also important to have an accurate estimation of a fault’s duration

for developing automated mechanisms that can study its effect and determine its scale. For

instance, identifying the time interval for which drift appears, allows for a better estimation of

a linear function that can be applied to reverse the effect.
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Furthermore, even though the classifiers have been successful in detecting fault cases they yield

a significant amount of instantaneous or short-lived alerts of false-positives. Fault detection

alerts trigger processes of self-recovery from faults, either by isolating a sensor or applying

correction functions, increasing control traffic between nodes. It becomes crucial to confine

such resource usage only in cases that are necessary for avoiding false alerts.

This is the role of the Temporal Correlation (TC) unit in the fault detection model in figure

5.3 that is used to compensate for the lack of temporal continuity in classifier decisions. TC

unit’s role is to incorporate history into the final decision.

Hidden Markov Models (HMMs) is a probabilistic inference tool that we use to achieve consis-

tency by post-processing decisions from classifiers. HMMs provide a mechanism to determine

the state of system, which is unknown, based on a series of observations, which are perceivable

by the system. The model is presented in figure 5.8. There are two planes in the model – the

Hidden States and the Observations. The former plane consists of all the potential states a

system may be in, in our modelling this includes healthy, noise and drift. We focus on noise

and drift faults as they are the most challenging to classify. The Observation plane includes

signals that are provided as input to the model. Classifier’s output decisions are used as input

observation for the HMM.

Hlth Nse Drift

c0 c1 c2 c3

Hidden States

Observations

Figure 5.8: Hidden Markov Model for decision post-processing

The system may transition from one state a to state b with a transition probability pa,b. A
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symbol λ, i.e. observation, may appear while the system resides in a state s with an emission

probability eλs . Given this model there is a number of inference problems. Filtering is the

process of estimating the distribution of hidden states at the end of a sequence of observations,

given the model’s parameters. The filtering problem is solved with a forward algorithm that

calculates the belief on a state based on evidence, i.e. observations. The forward algorithm is

efficient. For an HMM with S states running on a observation sequence of length N , it has a

complexity of O(N × S2). Given the constant, very small number of states in our model, the

algorithm is transformed into linear to the length of the observations’ history, O(N).

This model has the limitation of being able to detect only one type of fault, i.e. either noise

or drift, in the system even though they may manifest concurrently. We argue that this is not

a major flaw as it allows the model to remain simple and robust, while the dominating fault

type is detected in such cases.

5.3 Case Study: Victoria & Albert Museum

We study the effectiveness of the fault detection model by measuring its accuracy in identifying

faults. We use the trace collected in the Victoria & Albert museum deployment that was

described in section 5.1.2. We evaluate our detection mechanisms by manually selecting traces

that appear to have no major faults and inject faults following the models introduced in section

5.1.

5.3.1 Fault Detection

Fault injection is necessary to evaluate a fault detection mechanism. It enables testing and

measuring accuracy of detection and false alarms, which otherwise would not be possible to

assess without knowledge of the ground truth. Fault injection allows control of the exact period

of faults and testing a range of intensities of the effect. Experimental analysis, showcased in

section 5.1.2, provides evidence that our models closely follow real-world error conditions.
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We randomly inject faults of all four classes with different scale, parameters and duration. Short

and const class faults were easier to identify as expected with simple heuristic rules presented

in figure 5.6. In the evaluation section we focus on the noise and drift classes that are more

challenging to accurately detect with heuristic rules.

Intensive noise faults are relatively easy to identify, especially when information from co-located

sensors is used, as a sensor’s variance in readings is significantly skewed. However, for noise

faults with lower intensity (i.e. lower values of σ in their Gaussian distribution) heuristic rules

are not as effective. Increased variance can also be translated as a behavioural change in the

environment. Hence, disambiguation between fault or normal behaviour becomes hard without

the use of information external to the node.

Drift errors present lower detection rates, usually, being a very smooth deviation from the

ground truth that is accumulated over time. Their initial phase has minor effects, thus, becomes

hard to discriminate. Again, without reference from neighbouring nodes drift may be confused

with a normal decrease/increase of temperature due to external factors, e.g. moving from

summer to autumn.

Plots in figure 5.9 summarise the accuracy detection results of different fault classification

approaches. Performance of each classifier is presented in the form of the Receiver Operating

Characteristic (ROC) curve for each sensor condition – healthy, noise, drift. The ROC curve

compares the relation between false positives (FP) ratio and true positives (TP) ratio of a

detection mechanism for binary variables by modifying the discrimination threshold used. A

perfect classifier has a ROC curve that is as close to the top left corner of the plot as possible,

which translates to a perfect detection without any false alerts.

The results have been extracted by averaging classification algorithms accuracies for faults on

both temperature and humidity sensors over 9 groups of nodes. The node groups were manually

hand-picked based on their proximity and room location from the museum’s deployment floor-

plan.

Figure 5.9(a) presents the accuracy results of a rule-based classifier, presented in figure 5.6, using
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(a) Local features rule-based classifier
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(b) Local features rule-based classifier with HMM
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(c) Rule-based classifier
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(d) Rule-based classifier with HMM
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(e) Näıve Bayes classifier
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(f) Näıve Bayes classifier with HMM

Figure 5.9: ROC analysis of fault classification approaches
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only local features, i.e. only the first part of the rules. It is evident that fault classification is

not accurate and particularly the classification of healthy state is confused. As the tolerance

to false positive increase so does the successful detection of faults, however the lack of external

information causes healthy states to be confused. This is also the ROC curve that demonstrate

the detection accuracy of Redflag [UBH09] that uses the same heuristic rule for discriminating

noisy signal based on a variance hard threshold. Even though Redflag has a mechanism to

correct drift error it does not support a detection mechanism, thus cannot be compared.

Figure 5.9(b) presents the classification of the same local rule-based classifier post-processed

by the HMM model introduced. The HMM post-processing increases the accuracy of fault

detection especially for noise faults that used to have disparate alerts. The HMM is able to

correctly infer those alerts as a single event of long duration. However, the classification of the

healthy state does not substantially improve. Both classification methods are limited by the

lack of context obtained from neighbouring nodes.

In figure 5.9(c) and figure 5.9(d), we plot the ROC curves for a rule-based classifier that uses

information from neighbouring nodes in addition to local features, as defined in figure 5.6.

We present result both with and without HMM post-processing to highlight the improvement

they provide on the initial classification. Results are significantly improved compared to the

corresponding local approaches. It is interesting to note that HMM provide great consistency

on fault classification as, in general, local classification with HMMs provide higher true positives

on fault detection rather the simple rule-based classifier with neighbourhood information. The

HMM adjustment does not improve on the number of events that have been detected but

rather constrains their manifestation periods, thus increases the overall true positive sampling

instances in the ROC curves.

In general, the HMMs and rule-based classifier approach that uses network information yields

limited false positive rates and increases correct classification, especially for noise faults. Drift

faults still present moderate success in detection, but this is mostly caused by misclassification

of early stage instances of drift, when the impact on sensor readings is minimal due to slow

manifestation of the error.
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The most significant improvement on fault detection accuracy is presented in figure 5.9(e) and

figure 5.9(f), which are the ROC curves of the näıve bayes classifier without and with HMM

support respectively. Features used are the same as in the case of the rule-based classifier.

The näıve bayes classifier accuracy is very close to the results of a rule-based system with

HMM support, that provides moderately high detection. However, HMM support dramatically

improves classification, moving all the curves to the upper left corner of the diagram. Most

notably, noise fault detection achieves almost perfect classification rates, while misclassified

healthy states are decreased to a minimum, reducing the vast amount of false alerts.

5.3.2 Fault Correction

When a reading fault is identified the system may select to ignore the reading, if it is transient;

isolate the sensor, by removing it from the data collection mission; or attempt to replace the

faulty signal either by applying a filter function or by replacing it with a prediction model. In

this section, we present experimental results that compare different approaches for the case of

faulty temperature readings in the Victoria & Albert museum trace. We present an analysis

on the qualitative improvement that is gained with a self-healing network that detects and

automatically provides alternatives to faulty sensor readings. We focus our study on noise

and drift faults and compare filtering and replacement approaches with regard to root mean

squared error (RMSE).

In the case of noise faults, we apply correction of sensor readings by applying an averaging and

a median filter that consider sensor readings of the past hour. Alternatively, we use forecasting

based on the Holt-Winter’s additive model for time-series for replacement of the faulty sensor.

The Holt-Winter’s approach builds a model by using historic data from sensor readings and

is able to create prediction for future values. It decomposes the signal in three components

– level, trend and seasonality. The output is a linear combination of the three components.

The prediction model is described in more detail in section 7.1.2. We prototyped the recovery

mechanisms in python and run them against sensor traces with injected noise of different

intensities – σ ∈ {0.001, 0.003, 0.005, 0.01}.
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(a) noise σ = 0.001
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(b) noise σ = 0.003
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(c) noise σ = 0.005
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(d) noise σ = 0.01

Figure 5.10: Root Mean Squared Error (RMSE) of readings estimators on noisy sensors

Figure 5.10 presents the root mean squared error (RMSE) values for each readings estimator

and compares it with the RMSE values from a faulty sensor without applying any healing

mechanisms over a period of 15 days. In the first, figure 5.10(a), the noise injected in the signal

is very low. Consequently, the RMSE from the faulty sensor is minor and the averaging and

median filters doe not provide any improvement. The Holt-Winter based prediction estimator

actually returns higher error rates. On the contrary, in figures 5.10(b)-5.10(c), which present

results with noise σ values of 0.003 and 0.005 respectively, the RMSE of the faulty sensor

is increased. The forecasting estimator performs better in the initial days after the failure.

However, the predictions start to become inaccurate as the model projects values further away

in the future. Averaging and median filters present a stable RMSE that after the first week

of erroneous readings becomes more resilient than the forecasting estimator. However, as the

intensity of the noise faults increases (e.g. in figure 5.10(d)) averaging and median filters
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cannot adjust well to the increased variation of the signal and return higher RMSE compared

to the forecasting estimator. Between the two filtering methods, averaging filter consistently

outperforms the median. A cause appears to be the low sampling rate that includes only 4

readings in an hour. An ideal self-healing mechanism should consider the value of the standard

deviation of sensor input as well as the time distance from the appearance of the faulty behaviour

in order to select an optimal mechanism. Policies can express such behaviour by dynamically

swapping correction techniques on the fly based on these criteria.

Figure 5.11 shows, respectively, the root mean squared error values for drift errors of different

intensities – deviation of 0.5, 1, 2, 3 degrees Celsius over a period of 6 months. Figures that

demonstrate drift RMSE expand to longer time periods, 120 days, as the effects of drift become

more intense over time compared to its initial phase. Contrary to noise faults, RMSE of drift

readings start very low but they linearly increase over time as expected, since we consider linear

drift of sensor nodes. The forecasting estimator is again unaffected by the fault’s intensity as

it only uses past healthy observations for its model. In this case, a long period of forecasting

predictions is presented that spans to over 4 months. The prediction quality fluctuates a lot

over time presenting spikes for days that do not follow the expected pattern. Nevertheless, it

still performs better than the faulty readings for deviations higher than 2 degrees over a period

of 5 months.

Finally, we apply a correction function on sensor readings that attempt to inverse the effect

of drift. As the drift is linear (i.e. αx + β), we estimate the α and β parameters by applying

linear regression on the distance of the daily average value of readings from the faulty sensor to

the daily average value of its neighbouring clique. Nodes in the same neighbourhood tend to

be highly correlated as described earlier in this chapter, so we expect their difference to remain

stable under normal conditions. The curve that presents the correction functions performance

in figures 5.11a-d initially performs similar to the fault sensors as there is not enough data

for linear regression estimation and soon after it has a sudden jump in its error rate. Due to

the small number of samples the initial estimation is not very accurate, however, this changes

quickly. After a period the faulty sensor’s RMSE increases while the correction estimator’s

RMSE decreases having more accurately identified the amount of drift. After that point in
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(a) deviation of 0.5oC over 5 months
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(b) deviation of 1oC over 5 months
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(c) deviation of 2oC over 5 months
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(d) deviation of 3oC over 5 months

Figure 5.11: Root Mean Squared Error (RMSE) of readings estimators on drifting sensors

time, it significantly outperforms the other approaches. In the example presented in figures

5.11a-d some humps in the RMSE curve can be spotted. These are due to days that the sensors

exhibits a lower than usual correlation to its neighbours. Such occurrences can be explained

by external factors, e.g. a window that is opened and affects temperature in one part of the

room. However, such conditions do not significantly degrade the quality of the estimator.

The average improvement of root mean squared error for noise fault on a single sensor per day

is shown in figure 5.12, derived from average RMSE presented in figures 5.10a-d. In the figure

the improvements of the estimators are compared. First, the averaging filtering approach and

second an adaptive estimator that start using forecasting values from the Holt-Winter’s model

for an initial period that depends on the noise intensity and later switches to the averaging

filter for the remaining time.
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Figure 5.12: RMSE reduction of averaging filter and optimal estimators over noisy sensor

Similarly, figure 5.13 presents overall RMSE improvement for the case of a faulty node that

exhibits drift. In this case, we compare the estimator that uses a reverse correction function

and estimator that uses Holt-Winter’s forecasting against the RMSE of the drifting sensor. The

forecasting mechanism does not provide any improvement for small amounts of drift. On the
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Figure 5.13: RMSE reduction of averaging filter and optimal estimators over drifting sensor
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contrary, it provides worse RMSE rates, and thus, is omitted from the figure. This is a result of

projecting predictions too far in the future that become more inaccurate as the prediction model

does not have enough evidence for those trends. On the other hand, the correction function that

is devised by linear regression on the distance between sensor against neighbourhood readings

gives a very good estimation of the ground truth as long as the involved sensors are correlated.

Sensor nodes in the V&A deployment are substituted annually for battery replacement and

recalibration. By manually analysing the trace, we identify instances where faults manifest

in the trace, similar to the case in figure 5.1. The histogram in figure 5.14 presents the ob-

servations of noise and drift faults in sensor input from our analysis. Time in the horizontal

axis is measured in weeks past a node’s deployment and normalised over a year, which is their

replacement period, i.e. approximately 52 weeks. Instead of a batch replacement of all nodes at

the same time, node substitutions are spread over the year. Consequently, there is constantly

a mix of recently calibrated and older nodes in the trace.
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Figure 5.14: Probability Density Function of sensor failures during their lifetime

Our observations indicate that the probability of a node reporting faulty readings increases with

its age. Most fault appearances occur close to the end of node lifetimes, in the last third of their

deployment time. The observations fit a beta distribution, where beta function’s parameters
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extracted from the fitting process are α = 5.2 and β = 1.7. The curve in figure 5.14 presents

the probability density distribution for the time instance that a node starts reporting faulty

readings since initial deployment. The probability density function of the beta distributions is

defined in equation 5.4.

f(x;α, β) =
xα−1(1− x)β−1∫ 1

0 u
α−1(1− u)β−1du

(5.4)

The mean value of the beta distribution, given equation 5.5, results in sensors failing around

their 39th week of deployment (roughly after the 75% of their lifetime). Consequently, a sensor

operates with errors for 13 weeks (91 days) on average.

µ̂B =
α

α + β
(5.5)

The standard deviation of the beta distribution is given in equation 5.6, which results to

σ = 0.153.

σB =

√
αβ

(α + β)2(α + β + 1)
(5.6)

Results from recovery techniques are reported in this section in an attempt to quantify and

provide some insight on the benefits of self-healing mechanisms in a pervasive system. Other

more elaborate healing mechanisms may be employed as well that can further decrease RMSE.

For instance, Kalman filters or a domain-specific prediction model that incorporates knowledge

on temperature behaviour might prove to be even more accurate in similar applications. How-

ever, our goal is to give an estimate of the benefits provided from a self-healing approach and

the benefits of fault detection rather than present the most effective filtering mechanism.

5.4 Summary

In this chapter, we presented a classification framework for data faults in sensor networks. The

framework describes a two-phase solution. In the first phase a classifier infers sensor condition
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based on collected local and nearby node features. In the second phase, we use a Hidden Markov

Model to refine the decisions of the classifiers by modelling the persistent nature of the fault

classes. The framework is flexible in the sense that refining of fault detection is not dependent

on the classifier used by the network. We further demonstrate the accuracy of our approach

and the benefits of a sensor readings recovery mechanism by a case study on real-world trace

collected in a museum environment in central London.



Chapter 6

Role & Mission Adaptation

In section 4.3, we discussed and provided examples for different types of adaptation supported

by the starfish framework – local node adaptation on its objectives, network group adaptation

on operations and adaptation driven by new functional requirements. This chapter focuses on

adaptation of network node operations in the face of failing components. We focus on the

planning phase of the autonomic feedback closed-control loop and more specifically on dynamic

task reallocation in pervasive systems. We propose a mechanism that automatically allocates

starfish roles and missions at deployment-time. Furthermore, it autonomously updates the

initial plan based on metrics it collects during the system’s execution.

Task allocation has been studied extensively in traditional distributed systems, however, the

setting differs significantly from pervasive systems. In traditional distributed systems allocated

tasks typically involve batch processing and splitting jobs in parallel chunks to increase the

overall system throughput. Power consumption or limited resources are not concerns in such

cases. In pervasive applications, allocation of the tasks is motivated by spatial distribution of

the monitoring process to cover the observation range of the system and provide monitoring re-

dundancy rather than load balancing and parallelism. Tasks are, typically, not computationally

heavy, long running batch processes. Instead the model is event-driven where tasks respond

to events from their environment with short running processing. Minimising communication is

more crucial given that it is the most costly operation on power-constrained nodes.

103
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Figure 6.1: Health-care scenario task graph

6.1 Task Adaptation Scenario

We use, as motivation, a scenario from health-care similar to that introduced in figure 4.1 in

chapter 3, where patients’ condition is monitored by wearable sensors. A patient’s condition is

monitored by a network of wearable sensors that monitor his attributes, such as temperature,

blood pressure and ECG, as well as his activity, using a 3D accelerometer. Reports are sent to

a terminal (e.g. personnel mobile device or stationary node) that produces alerts for a clinic’s

medical staff.

Figure 6.1 illustrates the application task graph, where the vertices are starfish roles and edges

represent message exchanges. The application uses three thermometers and accelerometers

tasks for enhancing sensing accuracy. Temperature and acceleration fusion tasks collect read-

ings from individual sensing tasks to extract a single reading for each attribute. Accordingly,

a Vitals Fusion task collects extracted features to infer patient state based on his vitals. An-

other, independent, branch of the application performs Activity recognition from accelerometer

readings. Decisions from the two branches are collected by the Infer Status role that infers

patient status given his activity context. If necessary, the Alert task is executed.

Arrows between tasks indicate the flow of messages in the task graph. The application exhibits
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a hierarchical structure with multiple information fusion centres. Typically, leaf nodes are

sampling tasks that encapsulate sensing devices of the network, while intermediate nodes are

fusion and processing centres. Even though, for simplicity, the example application is a tree

graph, our approach can also be applied to graphs that are not necessarily acyclic or may

involve several sinks.

Tasks may have different hardware requirements, which constrains their placement in the net-

work. For example, the ECG task must be placed on a node with an ECG sensor. Moreover,

if there are multiple sensors available, the most reliable and accurate should be preferred. An-

other consideration for placement is minimisation of communication cost among nodes. This

is achieved either by tasks residing on the same node, thus eliminating the cost, or by placing

them in nearby nodes with good communication channels. Finally, we must also consider that

certain tasks are mutually exclusive, thus cannot be placed together. For instance, the three

Temperature tasks should be allocated on different sensor nodes for redundancy. Alternatively,

some tasks need to be placed only in specific locations, e.g. one Accelerometer task needs to

be on a node attached the patient’s arm.

Even for simple applications, this task assignment to nodes can be overwhelming for a human

administrator. The process does not scale well with the size of the network and becomes

impossible to handle manually in a dynamic environment, where components degrade or fail

and response time is critical. Processes and tools are necessary that will allow the definition of

application requirements for autonomic orchestration and deployment that reacts to component

degradation and failure during the system’s lifetime.

We assume the existence of a monitoring and fault-detection mechanism, as in chapter 5, that

grades component quality. We assume that multiple tasks can be executed on a single node

concurrently. Typically, tasks in such systems perform short chunks of processing, e.g. sensor

sampling, data buffering and feature extraction. The programming paradigm is event-driven,

i.e. tasks are triggered by a network message, timers, sensor readings, etc.
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6.2 Extracting Task Graph from Roles

Figure 6.2 demonstrates two policies that are associated with the ‘Temperature Fusion’ role in

the scenario from figure 6.1. The first policy, ‘TemperatureAggregation’, related to collection

of thermometers node readings and temporary storage of these values in a local buffer. The

second policy, ‘TemperatureFusion’, fuses sensor readings by calculating their mean value and

passes it to the ‘fusion’ module of the ‘VitalsFusion’ role.

def TemperatureAggregation
on Temper.event.onEvt(type, value)
if type is temperatureReading
do buffer.PushBack(type, value)

Collect temperature readings from nodes with ‘Temper’ role and store them.

def TemperatureFusion
on buffer.Full(type)
if type is temperatureReading
do VitalsFusion.fusion.Update(type, features.Avg(buffer.Get(type))),

buffer.Clear(type)

Fuse temperatures by averaging and propagate value to the ‘Vitals-
Fusion’ SMC.

Figure 6.2: ‘Temper’ and ‘Temper Fusion’ roles’ policies

The policies in figure 6.2 are a service specification that composes lower-level primitives, i.e.

starfish modules. There are two kinds of information that can be extracted from this speci-

fication: a mission’s dependencies on other roles; and a mission’s resource requirements, i.e.

modules used in the mission. Role dependencies are extracted by remote SMC interactions

defined in the policies (see section 4.1).

There are two classes of remote SMC interactions – event notifications and action invocations.

In the example of figure 6.2, the first remote interaction is ‘Temper.event.onEvt(type, value)’,

a remote event notification from the SMC with the role ‘Temper’ with the local role, which is

‘Temper Fusion’. Consequently, a directed edge is created between the two roles as seen in figure

6.1. The edge direction is from the remote SMC to the local as it refers to an event notification.
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Similarly, the second remote SMC interaction is an action invocation to the ‘VitalsFusion’ SMC,

which creates an edge between the two roles with a direction from the local to the remote SMC.

Two types of task properties are not included in the mission specification: the number of

instances required per task and placement constraints, such as tasks that should not be placed

on the same node and tasks that should be placed on a restricted network area. The network

administrator can specify these properties in the starfish editor.

6.3 Integer Linear Programming Formulation

The task of role allocation in nodes is a combinatorial optimisation problem, reduced to a

generalisation of the Quadratic Assignment Problem (QAP), an NP-hard problem, where n

facilities need to be allocated to n locations minimising the cost of allocation given a flow

between facilities and distances, i.e. weights, between locations. However, there are no co-

location constraints in QAP, only a single separation constraint.

We formally define the task allocation problem in Integer Linear Programming (ILP). This

entails mapping the task graph Gt(T,E) and its constraints, extracted from policies, to the

network graph Gn(N,L). The problem is similar for both the initial and dynamic allocation

that occur during the lifespan of an application.

For the graph node sets T and N , of Gt and Gn, respectively, a set of binary variables xt,k ∈ X

is defined, where t ∈ T and k ∈ N . If variable xt,k is set then task t is allocated to node k.

Consequently, the objective function to maximise in the ILP problem is given in equation 6.1.

ε =
∑
t∈T
k∈N

f(t, k)xt,k +
∑
i,j∈N

e=(a,b)∈E

g(e, i, j)(xa,i · xb,j) (6.1)

There are two main components in the equation. The first sum is the utility function f(t, k)

for allocating a task to a node. The second sum is the utility function g(e, i, j) that represents
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the cost of allocating two tasks a, b that are dependent in the task graph Gm(T,E), in two

nodes i, j of the network. It is possible that i = j.

In addition to the objective function, ILP allows the definition of constraints on the allocation

problem. We identified three constraints in section 6.1. The first is the unique allocation of

a task as expressed in equation 6.2. Every task instance can only be placed on a single node.

Note that in the example of figure 6.1 the leaf temperature and acceleration sampling tasks are

different instances of the same task.

∑
k∈N

xt,k = 1, t ∈ T (6.2)

The second constraint discussed was the mutual exclusion of some tasks that prevents placement

on the same node. For a set Ts of mutually exclusive tasks, the constraint in equation 6.3

enforces that they will be spread out appropriately. For instance, in the healthcare scenario

such a set of mutually exclusive tasks would be the three temperature sampling tasks, which

need to be spread out to use different thermometers for redundancy purposes.

∑
t∈Ts

xt,k ≤ 1, ∀k ∈ N (6.3)

Finally, there are cases that some of the tasks need to be constrained only to a specific area

of the network. For instance, we need to measure acceleration from the sensors attached on

the patient’s torso, not his arm. In such cases, a set Nc of eligible nodes can be defined by the

policy author. The property can be enforced with the constraint of equation 6.4.

∑
k∈Nc

xt,k = 1, t ∈ T (6.4)

Next, we define the node and communication utility functions. Utility functions express the

benefit of a proposed allocation. The accuracy and availability of the required resources, i.e.

sensors, is considered. Additionally, to achieve high quality and reliable measurements the
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packet drop rates of the communication channels between nodes that perform interdependent

tasks are also considered.

The node utility function, defined in equation 6.5, concerns the quality of resources on a node.

As discussed before, resources specific to a node are identified by corresponding starfish mod-

ules. For some resources, such as a sensor, an associated score is attached that is indicative of

the quality condition of the node. The scoring scheme derives from a fault detection mecha-

nism similar to the one discussed in chapter 5, which updates resource scores on-line. Balance

between readings quality and economical energy consumption remains a consideration, thus,

the second component of the utility function favours nodes with higher residual energy levels.

f(t, k) = ek
∏

r∈R(t)

score(r, k) (6.5)

The communication utility function, in equation 6.6, considers DRi,j the message delivery rate

between nodes i and j that is measured by the monitoring service of the network. Nodes are

not necessarily directly within range and may have to relay messages via intermediaries.

g(d, i, j) = min(en) ·Dd ·DRij, ∀en where n ∈ Li,j (6.6)

Li,j is the set of nodes that relay a message from node i to node j. For direct link communication

the set is reduced to just two nodes, i and j. Again residual energy is part of the equation.

Energy-wise the best node pair selection is the one that involves nodes with high power levels

for avoiding task reallocation in the close future. Therefore, the utility function tries to select a

pair whose Li,j set has the most residual energy in its most depleted node, i.e. if n is the node

with the lowest residual energy (min(en) in the path between nodes i and j we favour nodes

selection of nodes i, j with the maximum min(en).

The original objective function 6.1 provided is not a linear equation due to the xa,i ·xb,j product.

However, there is a standard way for transforming the problem into a linear one by introducing

a set of binary, utility variables Y that replace the product in the equation.
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ya,i,b,j = xa,i · xb,j, ya,i,b,j ∈ Y (6.7)

In addition, some new constraints are required that maintain the properties of the replaced

binary product. This constraints are presented in equations 6.8-6.10.

ya,i,b,j − xb,j ≤ 0 (6.8)

ya,i,b,j − xa,i ≤ 0 (6.9)

xa,i + xb,j − ya,i,b,j ≤ 1 (6.10)

The simplex algorithm, used in LP-solvers to find the optimal solution, tries to minimise the

objective function, instead of maximising it as in equation 6.1. There is, however, again a

straightforward transformation of the function to achieve this.

6.4 Heuristic Approximation

The simplex algorithm in linear programming problems gives an optimal solution in polynomial

time. However, when the variables are constrained to be integers, as in the formulation above

with the binary xt,k variables, the problem becomes NP-hard. Consequently, the solution is not

viable as the network size or the complexity of the mission increases. The problem is essen-

tially a combinatorial optimisation selecting T binary variables from a set of T ×N variables.

The solution is a combination of those variables under the constraints discussed before. An

exhaustive exploration of all combinations requires exponential complexity of O(2T ·N).

Heuristics can be used to approximate the problem solution in polynomial time. They, typically,

involve either random sampling of solutions or stepwise improvements on a selected solution.

The former is inefficient as it does not provide any gradual improvement over-time. The latter

includes hill-climbing approaches, where the algorithm tries to make small changes to a ran-



6.4. Heuristic Approximation 111

domly selected solution to transition to a better one. This method is usually trapped in local

optimum solutions when the problem space is not convex.

Simulated annealing [Cer85], shown in figure 6.3, is a general meta-heuristic algorithm that

combines the two approaches. It tries to emulate atom behaviour during the cooling of metal

materials that try to reach a balance state by making jumps and releasing energy. Jumps are

more frequent at high temperatures. As the material cools down, the jumps get less probable

and the system, as a whole, reaches an equilibrium state.

K ← 1
S ← random solution
repeat

for i← 1 to M do
Si ← transition(S)

if C(S) ≥ C(Si) OR rand(0, 1) < e
C(S)−C(Si)

K

S ← Si
K ← c ·K

until C(S) does not change

Figure 6.3: Simulated annealing algorithm

Simulated annealing uses a temperature parameter, K that decreases over time with a rate

c ∈ (0, 1). Like hill-climbing, the algorithm tries to transition to a better solution, one with

lower cost C(S), by making small adjustments to the existing one. While the temperature is

high, there is a relatively high probability that the algorithm will progress to a solution with a

higher cost than the current one. Consequently, this will eventually allow it to escape from a

local minimum to another area. As the temperature drops, it becomes less likely to make bad

transitions and eventually the termination condition is reached. More frequent transitions at

the initial rounds allow the algorithm to search a larger problem space until it, finally, reaches

an area that it will explore exhaustively. An optimal solution is not guaranteed, but in practice

a very good estimation is obtained, having explored a broad spectrum. The simulated annealing

process in this case looks for a permutation of the vector in equation 6.11.

V = {xt,k | t ∈ T, k ∈ N} (6.11)
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The cost function of a solution is derived from equation 6.1 in the original ILP formulation by

transforming the utility to cost functions. The algorithm makes the transition by randomly

switching a variable of vector V in every step, i.e. a role assignment to a node. A transition

is first asserted against constraints 6.2-6.4 before being considered as an eligible solution. It

should be noted that the objective function does not need to be transformed to a linear equation

any more.

The complexity of the heuristic is not directly dependent on the input and is capped by the

parameters of steps and rounds of the algorithm. While there is no time guarantee, in practice

it only takes a few rounds for the algorithm to stabilise and provide a solution.

6.5 Evaluation

In this section we experimentally evaluate our approach to autonomic dynamic reconfiguration

of the network. Initially, we consider the ability of the simulated annealing heuristic to approx-

imate the optimal solution. Later, we attempt to quantify the benefit of the reconfiguration in

terms of sensor data quality and packet delivery. Finally, we compare the life-time performance

of our approach to more power-saving focused methods that appear in the literature. For the

evaluation, we use a realistic sensor network application specification, as was described in sec-

tion 6.2. In addition, we use larger examples of randomly generated task graphs, in order to

investigate how the approach scales on larger networks and missions.

6.5.1 Quality of the Solution

Initially, we examine how closely the heuristic solutions compare to the optimal. For the ILP

problem solving, we used the GNU Linear Programming Kit1, while for the simulated annealing

we implemented a prototype in Python. Even though the simulated annealing code runs in an

interpreted language, the execution time is in the order of a few seconds per round, while the

1http://www.gnu.org/software/glpk/
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execution time for the native implementation of the ILP solver requires several hours (or days)

for large mission sets.

Initially, we map the health-care scenario to a wearable network of eight nodes. Each node is

equipped with a different set of sensors so that there are four thermometers, four 3D accelerom-

eters, two ECG and two blood pressure monitors in total. We use randomly generated task and

network graphs. Sensor are assigned a random score and nodes are connected with asymmetric

links that are also assigned random packet drop rates.

Figure 6.4: Simulated annealing approximation quality

Figure 6.4 compares the solutions provided by simulated annealing in relation to the optimal

solution. In the health-care scenario, consisting of 14 tasks on 8 nodes, simulated annealing

usually approaches the optimal solution only in a few number of rounds. Similarly, we try the

same test for randomly generated graphs of different sizes and we observe that the simulated

annealing can approach very close to the optimal solution, typically in 5 to 6 rounds.

We limit the experiments to problems with 64 tasks and 32 nodes as computation time for the

ILP becomes impractical with increased size. However, the trend demonstrates that simulated

annealing is capable of providing similarly good solutions as the problem size increases.
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6.5.2 Quantify Benefits

We now quantify the benefits of dynamic adaptation and task reallocation at runtime, where

sensor and node link quality metrics vary during the simulation. Runtime reallocation implies

transmission of tasks over the network. In the case of Starfish, this is a relatively cheap

process, as tasks, which are encoded in compiled obligation policies are typically between 20-

100 bytes. However, in other frameworks, task migration might involve transmission of much

larger binary images for nodes. Consequently, constant relocation of tasks can be inefficient or

even impractical.

We consider a more conservative reallocation scheme to reduce this overhead; a partial realloca-

tion of tasks, whose quality metrics have dropped beyond a threshold. We study how these two

approaches affect overall service quality in the system. More specifically, the dynamic, tabula-

rasa, approach considers reallocation of all tasks in every round given updated metrics from

the network. The partial, conservative, approach reconsiders only allocation of tasks whose

operation is hindered by significant degradation of resources.

In order to study how drop rates are affected by neighbouring nodes and cross-traffic, we use the

Castalia simulator [PPB07]. Castalia provides an accurate radio and wireless channel model,

modelling the error-prone behaviour of low-power wireless links, which is common for wireless

sensor networks. Node deployment in the network is random, but it retains a connected graph.

We use a simple sensor quality classification model with three possible states: accurate, degraded

and faulty with numerical score 3, 2 and 1 respectively. Each sensor may deteriorate at any

round with a small probability. Finally, node energy consumption is modelled to increase with

the number of tasks allocated in order to capture computational and communication costs.

We ran a test of 250 rounds comparing the two adaptive approaches and a static deployment that

does not migrate tasks after the initial allocation. In the conservative (i.e. partial reallocation)

approach, a task is migrated from a node if one of its required resources becomes faulty, the

communication link’s delivery rate with a dependent task drops below 50% or its node has

disappeared from the network due to power depletion.
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Figure 6.5: Sensor readings quality degradation in the network

Figure 6.5 presents the average sensor data quality degradation compared to the initial alloca-

tion over multiple simulation runs. The static, non-adaptive approach degrades quickly, unable

to take advantage of the remaining high accuracy sensors. The dynamic approach provides the

slowest degradation, immediately adapting to sensor degradation. Partial reallocation follows

a similar, graceful degradation, but adapts slower to changes being frugal on task movements.

Similarly, figure 6.6 shows the average delivery rate of messages to nodes in relation to the initial
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Figure 6.6: Node link quality degradation in the network
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allocation. In all scenarios, the link quality drops from the initial allocation as a result of the

traffic that the application introduces in the network. Message transmission affects drop rates

in a node’s neighbourhood. As can be seen, the static approach exhibits a sharp drop initially

followed by further decrease at a slower pace fro the ramining of the simulation. Both adaptive

approaches, while still affected by collisions in the wireless medium, manage to maintain a

stable trend on their delivery rates.

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300  350  400

re
al

lo
ca

tio
ns

rounds

16 tasks 8 nodes
32 tasks 16 nodes
64 tasks 32 nodes

Figure 6.7: Cumulative task migrations in partial reallocation scheme

Finally, figure 6.7 shows the cumulative number of average role migrations in the case of partial

reallocation for problems of different sizes. For reference, the tabula-rasa reallocation on every

round results in migration of almost every task, as it is very sensitive to subtle changes result-

ing in task thrashing between the network nodes. Partial reallocation significantly limits the

amount of task movement inside the network making it a more viable alternative, while at the

same time provides smooth service degradation on component failures. Even as the network

size increases the number of migrations does not increase drastically. An increase in the rate as

tasks are reallocated, however, can be noticed as the application grows older and nodes start

running out of power.



6.5. Evaluation 117

6.5.3 Comparison with Energy Focused Deployment

Our model tries to find a trade-off between quality metrics and energy consumption. Con-

sequently, we examine how the network’s lifetime is affected compared to a model that only

considers task allocation based on the nodes’ residual energy. We compare our approach to

the objective function used in [PP10]. We modify our original cost function pair in the ob-

jective equation 6.1 to only reflect the power consumed by computation and communication

load imposed on a node by each task. Furthermore, we examine a third model where energy

consumption is completely ignored in the utility functions and task assignment is solely based

on the quality metrics.

 0

 50

 100

 150

 200

 250

 0  5  10  15  20  25  30  35  40  45  50

lif
e-

tim
e 

in
 ro

un
ds

simulations

energy focused allocation
quality focused allocation

balanced allocation

Figure 6.8: Application’s lifetime based on task allocation scheme

For every model, we run 50 simulations with random task and network graphs of random

sizes. For all simulations, we use the partial migration scheme. As expected, the balanced

approach, followed for all previous simulations, falls in-between the two extremes as shown

in figure 6.8. The figure depicts the running time in rounds of different simulation instances.

The horizontal level-lines denote the median network lifetime for each approach. Lifetime

fluctuates in each model due to the random nature of graphs and manifesting faults. However,

it is clearly observable that the energy focused allocation supports longer running applications

than the other two models. More specifically, the average running time for the energy focused
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allocation is 206 rounds, 127 rounds for energy unaware allocation and 182 rounds for the

balanced approach.

Consequently, the energy focused model provides 62% lifetime increase compared to an allo-

cation scheme that ignores energy constraints. On the other hand, the balanced cost-function

pair increases the average lifetime of the application, while it degrades more gracefully as com-

ponents start to fail in the network. It sacrifices roughly 12% life-time on average, compared

to the pure energy aware model, while it improves quality metrics at the same time.

6.6 Related Work

In [AGGB10] the authors formulate the problem of task allocation as an ILP problem, similar

to what we attempt later. However, the objective function in that case only accounts for

minimising power consumption in nodes. The authors account for computation costs, selecting

voltage power for CPU, and exchange of messages. They use LU factorisation and Fast Fourier

Transform as applications to test the system. A similar approach is also presented in [TEO05],

however, the authors make the assumption that only one task is assigned to a node at a time,

which resembles batch processing rather than pervasive applications. Similarly, Johnson et al.

[JRP+10] consider single task allocation per node using utility and requirement functions for

selection of nodes, but also examining dynamic scenarios where new tasks are introduced during

the network lifetime. Integer linear programming (ILP) has been used [PS03, PP10, AKF+10]

to optimise the energy cost of the network, while other approaches consider failures that are

caused by battery depletion [CGC09, ZLG07] by dynamically adapting their configuration when

a node reaches low battery levels to extend network lifetime.

Other approaches include heuristics or agents-based auctions [XLTD09, SYH09]. In [EXT+09]

a market model for nodes is built, where clients bid for a task based on local knowledge of their

resource availability. Bids from nodes are evaluated centrally by the node that offers the task on

the market. GAP-E, a knapsack approximation algorithm, is also used to model sensor agents

that bid for tasks [LNV09]. Lie et al. [LBBL10] collect task satisfaction from competed tasks
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and employ an admission control mechanism based on available capacity of the network. Salazar

et al. [SRAA10] introduce a distributed algorithm, where nodes are collectively searching for

a solution to the combinatorial problem of node configuration. Nodes diffuse good solutions

to neighbours until the network stabilises. The approach, however, assumes each node has

knowledge about other nodes’ possible configurations. The expensive solution-search operation

takes place on power constrained nodes.

Task allocation approaches in the literature aim solely for a network set-up with minimal energy

consumption or prolonged lifetime. Our contribution is integration of component failure and

degradation in the task allocation decision mechanism for self-healing of the network. We

consider optimisation on reliability and quality of collected information. This entails both high

delivery rates among nodes and high quality of sensed data. An economical task allocation

indirectly implies also a reliable system, where nodes operate for longer periods and sensors

function optimally. Consequently, we attempt to achieve an allocation that balances both

information quality and energy consumption.

Furthermore, most approaches focus on long running tasks in WSNs similar to traditional dis-

tributed systems. We argue that this model does not fit modern pervasive applications that are

predominantly data-driven; typically, monitoring application and data aggregation processes.

Nodes are responding to events that involve execution of brief, concurrent tasks and transmis-

sion of several messages. Our second contribution is a task-allocation model more appropriate

for pervasive systems that is directly extracted from the service specification. Our mechanism

reasons about task assignment in terms of roles and missions of the starfish framework. A task

is a starfish role and the two terms are used interchangeably throughout this chapter. As a

result, tasks, dependencies and their requirements are automatically extracted from the roles

and the policy code in their missions. Task dependencies are dynamically updated when the

administrator modifies them without requiring manual update of separate models.
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6.7 Summary

In this chapter, we presented a mechanism for autonomic role allocation to SMCs and on-line

adaptation in pervasive systems that consist of several networked components. We discussed

how a task graph of the deployed service is extracted directly from its policy specification in

the starfish framework and consequently we transformed the task graph into a linear program-

ming problem so we could formally analyse it. The linear programming problem has integral

constraints on the variable and ILP problems are NP-hard. Consequently, an approximation

method is proposed using simulated annealing, a general meta-heuristic method, which searches

a broad spectrum of the problem space. We evaluated the benefits of on-line adaptation in terms

of service life-time and impact of degradation in sensor readings and communication links.



Chapter 7

Network Adaptation

Chapter 6 has dealt with adaptation of service deployment as a consequence of node failures

(e.g. energy depletion), sensor failures (e.g. noise or drift) or link degradation. In large-scale

area networks nodes are usually unable to establish direct connections with all other nodes and

rely on multi-hop communication where intermediate nodes forward messages from a producer

node to a consumer. These networks may be susceptible to various communication disruptions

such as connectivity loss due to unreliable links, packet drops due to noise on the wireless

medium or high-volume of traffic overloading links and network buffers.

While many of the faults can be attributed to random events, some of them exhibit specific

repeating patterns caused by periodic events in the environment, such as day-night cycle of

nearby electrical equipment, movement of inhabitants or vehicles in the environment generating

noise or affecting signal paths. Periodic events detected by multiple nodes in the sensor network

may result in increased traffic within a region of the network leading to congestion and possible

message loss. Finally, in hostile environments, causes may include adversaries that try to

compromise communication.

We look into recurring network connection faults and propose an effective way to forecast repet-

itive patterns using time-series analysis to avoid affected areas. We propose a novel application-

level, autonomic routing service to adapt sensor readings routes to avoid areas that are expected

to have low link-quality and prevent overloading good quality routing paths. The routing ser-

121
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vice maintains forecasting models for each link performance metric and decides route allocation

to active network paths that match the delivery requirements in the short future. Our work is

motivated from errors observed in a large scale deployment in a desert environment. The ap-

proach is focused and integrated as a prototype in the ITA-developed Sensor Fabric [WGB+09],

a sensor network middleware that provides sensor identification, discovery, access control in-

teroperability, data dissemination and management of sensor nodes predominately focused on

military applications. We describe the use of the extension mechanisms of the Fabric to col-

lect real-time network information on node availability, link packet drop rates and traffic loads

in order to select the routes that maximise the likelihood of message delivery across the net-

work over an unreliable multi-hop network. Finally, we present performance evaluation results

obtained from simulated environments to assess the effectiveness of proposed network failure

forecasting feature.

7.1 Adaptive Routing with Forecasts

In this section we describe our approach for predicting recurring link failures and packet conges-

tions in the network. We discuss performance metrics collected in our approach, the forecasting

mechanism used and, finally, route selection.

7.1.1 Performance Metrics

We measure the performance and reliability of the network by collecting a set of application-

layer metrics from nodes, which allows the approach to be independent from the underlying

network. We account for node availability, drop rate of network links and traffic characteristics

of feed subscriptions. Based on these attributes, we build forecasting models to update multi-

hop message routes.

Node availability is not a symmetric relation between a pair of nodes. Wireless links are usually

asymmetric, having as a consequence that if node A is directly reachable from node B the
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opposite is not necessarily implied in a wireless sensor network. Periodic beacon broadcasts can

be used to verify a node’s presence to its neighbours. In order to conserve battery power, nodes

do not constantly listen for incoming messages. Instead, duty-cycling is a very common process,

where nodes turn-on their radio only for certain periods to allow for message exchange. Due to

the inevitable bursts of traffic and synchronisation issues of the process we allow for a threshold

of consecutive messages that can be missed before a neighbour is considered unavailable.

Apart from node availability, we also consider the quality of the wireless links, based on mea-

sured packet drop rate (PDR). We measure PDR by piggybacking sequence numbers on mes-

sages at each hop. The approach has the advantage of being inexpensive requiring only to

append a few extra bytes on existing traffic, hence, minimise energy overheads. However, there

are drawbacks to the approach. First, there is a non-bounded delay for metric updates. In case

no messages are received by a node, either lack of traffic or a large number of dropped messages

can be inferred. On the other hand though, the beacon messages between nodes allow to dis-

ambiguate between link failures and lack of traffic and also sets an upper bound on the update

delay. In case of low underlying traffic, sampling of the underutilised links is weak for statistical

inference. To compensate for statistical bias, additional low frequency control messages can be

introduced over low-traffic links to sample their status, if necessary. Furthermore, we introduce

a confidence level on the link quality metric. The confidence level is a real number value in the

range (0, 1] that quantifies the statistical confidence on the observations for link PDR, based

on the number of packets that have been relayed over the link. The confidence is the fraction

of a minimum acceptable number of messages, c, that need to be relayed over the link in order

to have a reliable metric on the link quality. We cap the confidence level to 1, even when a link

accommodates more than c messages. We choose to follow a more lax and less taxing approach

of counting sequence numbers instead of ACK or NACK messages due to the severe overheads

they introduce. However, the use of confidence factor on link quality compensates to a certain

extent for their weaknesses.

With regard to network traffic, nodes monitor the volume of traffic that they relay and the

volume of messages they produce. Messages originating from other nodes, passing through

intermediaries count as a relayed traffic, while messages generated from a local platform at-
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tached to the node are considered originating traffic. Originating traffic is unavoidable, whereas

relayed traffic could be rerouted to bypass the node in case of overload. They are both used to

train a prediction model on future message volumes.

7.1.2 Forecasting Mechanism

Three forecasting models for different metrics of the network are used to produced two network

prediction models – link quality and the traffic load graphs. The first metric caters for recurring

isolation of nodes, the second considers the packet drop rates between node links and, finally,

a forecast model is used for predicting the traffic volumes that sensor feeds produce.

We consider these metrics as a time-series and use a fitting model that describes their behaviour.

We have selected the Holt-Winter Additive Seasonal model that captures trends in addition to

periodic effects in time-series. Holt-Winter applies exponentially decreasing weights on historic

data to update the model. It decomposes the time-series in three components; the level St, local

trend bt and the periodic factor It. Each of these components are updated incrementally (on-

line) using exponential smoothing. Forecasts in the model are calculated as a linear combination

of the aforementioned components, shown in equation 7.1, where t is the current time instance,

m is the units in the future for the prediction and L is the period of the time-series.

Ft+m = St + bt ∗m+ It+m−L (7.1)

We use the IBM Watson Forecasting library (WatFore) to construct and manage the forecasting

models. The WatFore library provides a fully automated, extensible and scalable streaming

predictive analytics framework, suitable for monitoring any type of performance KPIs (Key

Performance Indicators). It implements a number of streaming algorithms (including the Holt-

Winters Additive Seasonal) in a streaming fashion that does not require permanent storage

of historical performance measurements, thus bounding memory requirements for maintaining

and using forecasting models. This is particularly important in our application domain, as

sensor platforms cannot be assumed to have large storage capabilities solely for performance
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monitoring purposes. Furthermore, the incremental updates to the forecasting models with

newly obtained measurements from continuous monitoring minimizes the processing require-

ments for keeping the models up to speed, imposing only marginal overhead to the sensor

platform. The library also provides methods for calculating the periodicity of the performance

metric using Fourier analysis, and automatic training of the forecasting models once enough

data measurements have been collected.

7.1.3 Subscription Routes Selection

Selecting subscription routes from constructed models is not trivial. We construct a link graph

GR = (V,ER) of the network, where the vertices V are the network nodes, and edges ER are

the direct links between them. Edge weights represent the expected failure rate between node

pairs. Weights are calculated as a linear combination of node availability and the product of

link PDR and the confidence level of the metric. The graph GR essentially represents a map of

link health in the network. Applying a shortest path algorithm on GR between the producers

and the consumers of feeds, gives a prediction for the most reliable route, i.e. the one that is

less likely to drop messages in the near future.

In event-driven, multi-hop sensor networks manifestation of a monitored event results in bursts

of traffic from sensors in the network, due to the increased frequency that monitored attributes

in the affected area are changing. Bursty traffic is bound to increase packet loss due to trans-

mission collisions and congestion in nodes’ network buffers. In such cases, it is preferable to

diverge high traffic flows to use different nodes for relaying messages. Consequently, we use the

information on the traffic volumes that a sensor generates to separate high volume flows over

different paths. To prevent congestion, we enhance the routing map GR generated based on

link qualities, using the expected traffic of the channels in order to prevent overloading healthy

channels with too many subscriptions. To achieve this we increase link costs on graph GR by

a proportion of the overall traffic they expect to carry which penalises high traffic links. In

order to determine the load of a link, we normalise the number of packets that are expected to

traverse the link based on allocated feed subscriptions. All loads are expressed as a proportion
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of the link with maximum load. However the actual link utilisation is not known, so this could

result in penalising links with low utilisation which carry a relatively high percentage of traffic

even though the total traffic is quite low. In order to resolve this issue, the administrator can

specify a threshold above which the congestion prevention algorithm would start.

Finally, the intention is to avoid routing traffic through congested links while avoiding throttling

links with low to medium utilisation that can carry more traffic. Thus, instead of a linear scale

on link cost penalties, we use an exponential scale so that penalisation will mostly affect the

costs of highest-traffic links of the network, which are also the most likely to exhibit congestion.

7.2 Case Study: ITA Sensor Fabric

We perform a case study by applying our approach to ITA Sensor Fabric [WGB+09], a sensor

network middelware designed and implemented by IBM, that supports multi-hop communica-

tion used in real-world deployments.

The Fabric middleware is a network management layer that connects assets in a sensor network

to clients/actors providing a publish/subscribe communication abstraction [EFGK03b]. Sensors

act as publishers providing data feeds of raw or processed sensor readings. Client nodes are

the consumers of this information and can subscribe to sensor feeds to receive readings as they

become available. There can be multiple subscribers to published messages and publishers

are not aware of the identity or address of the subscribers, i.e. there is a decoupling between

publishers and subscribers. Clients refer to a directory service to locate potential messages

types of interest that they subscribe to. The Fabric infrastructure matches publications of

these messages to subscriptions and sets up routes over the multi-hop network for relaying

messages to the subscriber.

Fabric supports multi-hop communication among nodes in the network while abstracting details

of their location from the application developer, who perceives the existence of a fully connected

network. Fabric provides the abstraction of a communication bus, where nodes can publish

information, i.e. sensor feed readings, that eventually reach consumers that are subscribed to
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these feeds. Fabric builds an expandable platform of assets, where producers of information,

e.g. physical or even virtual sensors, generate data that consumers, e.g. fusion centres or

applications, subscribe to without imposing a single endpoint/sink in the network.

Fabric middleware uses virtual circuit routing instead of connectionless datagrams as it targets

military environments, where all nodes are not equally trusted. Routing selection is also affected

by administrator policies that are enforced by a policy management system that dictate whether

a data subscription can be relayed by certain nodes. This would be more complex to do with

connectionless datagram routing requiring per hop decisions instead of a decision at the set-up

time. Subscription routes are locally cached on nodes. When routes are updated in Fabric

Registry, nodes do not immediately update their current routes. Instead, nodes update data

subscription routes only when they break due to a link failure or bad reception rate that

degrades below a predefined threshold. Then the producer node sets-up a new subscription

path using the updated route from the Registry.

Sensor data feeds are identified using globally unique names that consumers, i.e. subscribers,

can refer to and receive produced data. Information for available resources and assets, as well as

real-time metrics on network status, are stored in a distributed database, the Fabric Registry.

7.2.1 Fabric Components Architecture

Figure 7.1 presents the architectural components of Fabric. We provide a brief description of

these component introduce the terminology used in the remaining of this chapter.

Registry is a distributed Gaian database1 operating on Fabric nodes. It contains all information

on network state including node IDs, physical location, neighbouring sets, assets, registered data

subscriptions and virtual circuit paths between nodes. The database is distributed among a

subset of Fabric nodes, each maintaining local data. Information retrieval happens as a query

that collects data from nodes that eventually get propagated to the request point. Registry

communication can take place over a secondary low-traffic link that is not subject to our

1http://www.alphaworks.ibm.com/tech/gaiandb
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Figure 7.1: Fabric component architecture

mechanism as it is considered more reliable, due to the sparsity of data on it.

Node is the network endpoint of Fabric, which runs a Fabric Manager service. The Fabric

Manager provides multi-hop communication and the publish-subscribe service. Fabric nodes

are different from typical sensor nodes that are considered to be resource constrained devices.

Instead they run a Java runtime with the processing capabilities similar to a netbook. Fabric

deployments employ heterogeneous devices; ranging from unattended sensor nodes to aerial

unmanned vehicles. In addition, Fabric nodes maintain a part of the Fabric Registry that

stores local runtime information and are the extension points in Fabric as discussed later.

Platform is an adaptor that connects sensors and actors to a Fabric node. Platform is the equiv-

alent of what is usually considered a sensor node in the literature, a small, constrained device

with low-power radio running on batteries. In spite of being logically a separate component to

the Fabric node, a platform could also reside on the same physical device.

Sensors are attached to platforms and are the producers/publishers of information in the net-

work. They provide feeds of data that actors can subscribe to in order to receive readings

updates. A sensor may encapsulate a hardware sensing device or it can be a virtual device that

produces information by consuming feeds from other network endpoints, i.e. a fusion centre.

Data Feeds are series of values produced by sensors. One sensor may provide multiple feeds, for
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example two separate resolution feeds from a camera or a feed with raw thermometer readings

as well as their averages.

Actors are either human users or software services. Similar to sensors, they have a unique

identifier that allows the middeware to route information towards them.

Client is a virtual entity, consisting of an actor and a platform through which it can interact

with Fabric.

7.2.2 Extension Infrastructure

The Fabric core provides a minimum set of services required to implement a distributed commu-

nication bus service, while maintaining a small footprint and overhead in the system. Additional

capabilities are introduced as plug-ins, grouped into extension families. An extension family is

a user-defined collection of plug-ins that share data and management operations. Fabric allows

for three types of plug-ins; Message Plug-ins, Fablets and Services.

Message Plug-Ins

Nodes process messages as they are relayed by Fabric on each hop. Message Plug-ins are

modules that can be attached to a node’s Fabric Manager to process messages directly. There

are three sub-types of Message Plug-ins: node, task and actor – allowing filtering of messages

that are related to any of these. Their life-cycle is managed by the Fabric Manager and

they are, typically, short-lived operations, such as policy enforcement, filtering, transformation,

logging, caching and encryption, without the ability to have side-effects outside their controlled

environment. Plug-ins can be registered to operate either on incoming or outgoing messages

of a node allowing messages to be decrypted, processed and encrypted again using different

plug-ins.

Within the Fabric Manager, the Registry contains information about each data-feed that flows

over the bus. This includes what tasks it is part of, where it was generated, who is subscribed
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to it and the characteristics of its destination actors. This information is available to message

plug-ins as they are applied to each individual data-feed message.

Fablets

Fablets are extensions that run on nodes independently of the message flow. They run in

separate threads, managed by the Fabric Manager, and are more flexible than Message Plug-

ins allowing a broader range of operations. They can directly access Fabric resources such as

the Registry and the publish-subscribe bus, but also other non-Fabric resources such as storage

devices or application databases. Typical uses of Fablets include accessing non-Fabric resources

and platforms, or implementation of data fusion algorithms.

Fabric Services

Fabric Services are the mechanism used to implement most high-level Fabric features, a modular

approach that builds on Fabric’s core message passing functions. Services are complementary

to other plug-ins. They are separate processes that work on the side and can be attached

to Fabric though the Actors mechanism to interact with the node’s local bus. For instance,

Fabric’s sensor subscription service is implemented to provide sensor data feeds as a service on

top of Fabric’s core features: communication bus, the Registry and event handling.

7.2.3 Integration into ITA Sensor Fabric

We prototyped a forecasting routing service and integrated it into the ITA Sensor Fabric as

an extension family. We discuss synergy among developed plug-ins and implementation details

for the subscription virtual circuit decision mechanism. Figure 7.2 gives an overview of the

adaptive Forecast Routing service architecture for Fabric.

The node availability metric is already provided in Registry by the Fabric Manager’s Discovery

Service. However, we have implemented message plug-ins to measure link quality as well as
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generated and relayed traffic. Three message plug-ins have been prototyped for measuring link

packet drop rates and message traffic load. An outgoing message plug-in at the transmitting

node inserted messages sequence numbers related to a node pair, while an incoming message

plug-in at the receiving node checks the sequence number to verify whether any messages have

been lost from that link. The message plug-in system in Fabric permits piggybacking informa-

tion on messages as an extension, without needing to modify the underlying feed subscription

service. A third message plug-in monitors a node’s local publish/subscribe bus for feed messages

and counts them per time unit to quantify traffic of the node.

Message plug-ins are expected to be short-lived and avoid the use of external resources such as

hard-disk writes or network communication as this would have a performance impact on the

number of messages a node can process. Thus, message plug-ins write information extracted

from messages to a Fablet that is running alongside the Fabric Manager on the node. Fablets,

being separate threads, have their own execution flow control and memory storage. They

collect information posted by local message plug-ins and use it to update the forecasting models

they maintain. The link quality and traffic load forecasting models in the Fablet periodically

update the distributed Fabric Registry with new values for monitored attributes. Although the

forecasting model incorporates information from all samples collected throughout a system’s

lifetime, it is relatively small in size – in the order of a few kilobytes. As a result, it can be

serialised and stored in the Registry in a binary format. Updating forecasting models locally,

rather than close to the Registry, significantly reduces the communication overhead introduced,
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compared to propagating observations to a sink to perform forecasting model update outside

the network.

The Routing Service pulls forecasting models from Fabric Registry to update its routing paths.

After the forecasting phase of the algorithm, it updates the subscription routes table in the

Registry used by nodes when they need to deploy new subscriptions.

7.3 Evaluation

For the evaluation of the forecasting effectiveness on route selection we emulated network

scenarios that we consider fit well with expected periodic failure error classes in sensor networks.

We initially evaluated the effectiveness of the algorithm for coping with node and link failures

and then considered congestion effects in high-traffic networks. In all scenarios, we use a grid

layout, where nodes can directly communicate only with its immediate neighbours. Hence,

most nodes can send messages directly to 8 neighbours while nodes at the corners are limited

to 3-5 neighbours, depending on their position.

Feed subscriptions, as in the ITA Sensor Fabric framework, may set-up from any point of the

network. Hence, there is no single sink in the network, but there are multiple subscribers that

consume data from producers. Subscribers may be terminal recipients of information or may

in turn produce new data to be consumed by other nodes, after processing their input feeds.

This creates an environment where information does not have a single flow among nodes. We

randomly generate feed subscription in the simulated network set-ups that are examined in this

section.

We compared three routing approaches in the simulations. The first one is the static paths

that are currently implemented in the ITA Sensor Fabric framework. This is a näıve approach

that provides a lower bound of network performance – an indication of the impact of failures in

the network, as it is unable to respond to them. The second approach is dynamic adaptation

of routes based on the metrics discussed. However, instead of forecasting future values, route

adaptations are based on recent observations. Essentially, this approach performs adaptation
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based on current network status. Finally, we make use of future predictions of metric values,

by projecting from historic data using the Holt-Winter additive model provided by the IBM

WatFore library, to dynamically adapt routes in Fabric Registry.

7.3.1 Periodic Node Communication Failures

We first studied the accuracy of forecasting fail-stop communication link failures inside the

network. We emulated a 5 × 5 network grid where 26 subscription are placed among nodes

randomly. Sensor feeds produce data regularly in random intervals between 1 to 10sec. In

every run, 8 nodes, roughly 1/3 of the population, experience periodic failures that cause them

to disappear from their neighbourhood for random time intervals. Failure times and duration

are selected from the range 10 to 50sec, with an average close to 20sec. For this particular

scenario, we assume that links between nodes are ideal and do not drop packets due to noise,

in order to study only the effects of node disappearance. We emulated the scenario running

Fabric on desktop clients where different nodes run on separate virtual machines. We emulated

communication failures by editing linux iptables2 to add rules that drop packets from nodes to

isolate them.

Figure 7.3 shows the overall packet delivery rate achieved in the network, as an average of several

experiments, with three different approaches mentioned earlier; static routes (SR), adaptive

current routes (ACR) and adaptive forecasting routes (AFR). The static routing achieves a

74% packet delivery rate, which we consider as the lower bound because there is no effort to

adapt to node failures. The dynamic selection of routes based on recent observations improves

the rate close to 85% while forecasting outperforms both, reaching a 95% packet delivery rate.

Even though ACR is able to adapt to nodes that have a longer uptime phase based on recent

observation, its decisions quickly become outdated. However, AFR by projecting these values

in the future achieves better adaptation of the routing schemes as it is able to predict which

nodes are going to be available in the next rounds.

As shown in figure 7.3, the AFR method exhibits similar performance with SR. The dive in

2http://www.netfilter.org/
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Figure 7.3: Average message delivery rate on periodic node disappearance

the graph is due to the training phase that is required by the Holt-Winter model in order

to start producing predictions. As soon as the model is trained and routes are adapting, a

sharp increase at the delivery rate is presented. Furthermore, as the model continues to collect

feedback from the network, it further improves its forecasting ability until it converges at 95%

packet delivery. It should be noted that a portion of the failed messages are due to destination

nodes, instead of intermediates, that have failed. In that case, there is no alternative delivery

path, but the messages are still counted as undelivered.

Figure 7.4 presents results from a similar set-up, however nodes do not have stable down/up-

time periods. Instead their periods follow a Gaussian distribution with a random average value

in the range of 10 to 50sec, as before, and σ value 2. Static routing is mostly unaffected from

this change as it was expected. Average node downtime is not changing in the experiment,

only the fixed periodicity that nodes disappear from the network. Similar situations are not

uncommon in mobile networks, where patrolling nodes may occasionally come into contact with

stationary nodes. Delivery rate of forecasting routing is affected by the introduced irregularity

in node disappearance, though still remains high around 90%. The irregularity appears to also

affect the routing based on recent observations, but not by a significant proportion (2%) to
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Figure 7.4: Average message delivery rate on irregularly periodic node disappearance

affect any change to the performance.

7.3.2 Node Link Reliability

The second network aspect we studied is link quality between nodes. During the lifetime of

a deployed network we have noticed that links may exhibit recurring, periodic issues with

delivery rates. This was typically due to moving obstacles that interfered with the signal, such

as environmental inhabitants that have a certain routine or connectivity can be affected by

nodes themselves being carried by entities, which move, even though they remain in theoretical

communication range.

In order to address such repetitive adjustments on link quality, we apply the forecasting model

on message drop rates of links in the network and study its effectiveness in this section. We

use Castalia [PPB07] as a simulation environment. Castalia is built on top of Omnet++3 and

provides realistic link quality behaviour in a sensor network based on traffic, signal interference,

node distance and noise in the wireless medium. To introduce the periodic fluctuation on the

link quality, we modify the underlying connectivity map during the simulation. We study how

3http://www.omnetpp.org/
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Figure 7.5: Packet delivery rate over periodically unreliable links

feed subscription delivery rates are affected and how effective is dynamic forecasting in such

situations.

Figure 7.5 illustrates the performance of each approach when link quality varies periodically

over time. The graph presents averages for every ten rounds and the variance is illustrated

as the y-axis error bars. SR is, again, the reference line of network degradation reaching an

average message delivery rate slightly above 50%. ACR does improve the näıve, static approach

but on average it does not reach 70% message delivery rates. AFR performs best in this case as

well. After an initial training phase, of roughly 20 rounds, it increases the delivery rate slightly

below 90%.

7.3.3 Traffic Load and Congestion

Exclusive use of best quality paths in the network may result in over-utilisation of nodes causing

packet congestion in their network buffers. Congestion can be caused either in incoming buffers,

when a node is not able to process receiving packets fast enough, or in the outgoing buffers,

when the medium is very busy for transmission and packets get queued. Castalia emulates
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Figure 7.6: Average delivery rate with congestion forecasting and ideal network links

MAC and physical layer buffers and we study the behaviour of our forecasting approach under

heavy traffic. We compare the approach from previous paragraphs, which ignores traffic load

on nodes, with the the traffic-aware penalisation scheme that was introduced in section 7.1.3.

We ran an experiment, where nodes generate random medium-level traffic and there are four

events during the simulation that cause group of nodes in the network to generate increased

traffic. Each event produces different volumes of traffic. Figure 7.6 shows the routing behaviour

in an ideal network, where no packets are dropped, apart from those in congested buffers. We

ran the experiment in an ideal network to observe solely the impact of congestion and quantify

the benefit of preventing node overload with excessive traffic. The four events that cause

increased traffic can be easily observed in the graph as delivery rates fall sharply for the traffic-

unaware scheme. On the other hand, the heavy traffic load penalisation scheme learns over time

to spread traffic through different routes in the network grid avoiding packets due to congestion.

It should be noted that even in an ideal network there are packet drops without heavy traffic.

Such drops can be attributed to the half-duplex radio used in the simulation, where packets

are lost on a node when the radio is in the transmission state.

Figure 7.7 presents the results of the same experiment that runs on a realistic network, where
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Figure 7.7: Average delivery rate with congestion forecasting and realistic network links

links drop packets due to noise similar to the set-up used in section 7.3.2. Overall, packet

delivery rates are lower and their variance is increased for both cases. However, the trends

remain similar, where the congestion-preventing scheme performs better during high-traffic

events. In this case, the gap between the two approaches is closing however. This can be

explained as a side-effect of the noisy links that reduce the amount of received packets, hence

the effects of buffer congestion are decreased.

7.4 Related Work

In the literature the problem of reliable multi-hop communication among sensor nodes has been

studied extensively. Approaches [PH07, RSO+04, UBH09] include collections of metrics such

neighbour availability, measured as beacon messages that detect neighbour presence or absence

from the network; and link quality, based on the reception rate of messages. Neighbourhood

collaboration is used in [HL06] for detection of missing neighbours. First, nodes monitor their

neighbours by exchanging ‘hello’ messages. Then, the neighbourhood exchanges local observa-

tions of missing nodes to reach a local consensus before it triggers a failure alert for a missing
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node to the sink. RedFlag [UBH09] improves on the original algorithm using clock synchroni-

sation among nodes. If a node misses a configurable number of handshakes, a neighbourhood

consensus protocol starts. Nodes monitor information on link quality and neighbours’ resid-

ual energy to infer whether failures are caused by broken links or power depletion. Similarly,

Memento [RB07] monitors fail-stop node failures using heart-beats to tag a failed node after it

misses a number of consecutive heart-beats. However, it further introduces a variance-bound

mechanism that sets an upper bound on false positives.

The collection tree protocol (CTP) [GFJ+09] is an efficient data collection protocol for multi-

hop sensor networks. It is based on two main ideas to improve message delivery rates and reduce

imposed overheads. A datapath validation mechanism avoids looping of messages among nodes

caused by dynamic link quality changes and adaptive node beaconing that reduced beacon

messages of nodes with healthy links to conserve energy. However, the rate is increased when

links start loosing packets. A backpressure collection protocol [MSKG10] improves the delivery

rates of CTP for dynamic environments with moving sinks. However, both protocols target

datagram packet routing and do not account for recurring patterns on failures and traffic.

Silberstein et al. [SPG+07] discuss how they cope with failures in a system that suppresses

updates of new readings, unless new readings differ above a threshold. They compare several

schemes including application level ACK messages, sequence numbers and hints of previous,

possibly lost values. They use a Bayesian approach at the sink to infer missing values using

models learned from the data instead of interpolating.

Detection of dropped and missing packets is a concern in many collection protocols. NACK

messages have been used in PSFQ [WCK05] and Garuda [PSAV08] for detecting missing pack-

ets. However, NACK messages require an indefinite amount of packets stored in intermediate

nodes. For streaming applications delay or lack of traffic is considered as a symptom of fault in

the network [RCK+05, SBD02]. We follow a less taxing approach counting sequence numbers.

Passively monitoring the link quality using snooping has been used in [WTC03] tracking

link layer sequence numbers. Congestion levels is monitored using buffer occupancy levels

in [SAA03] and channel loading in [WEC03]. However, both methods require the radio to op-
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erate constantly in listening mode, thus consuming high levels of energy. Snif [RRV06], which

operates as a secondary system with its own dedicated wireless channel deployed on the side of

to the normal sensor network for monitoring purposes, is also a snooping approach.

Forecasting approaches in literature focus on link availability prediction based on node move-

ment [JHR01] in mobile networks and life-time expectancy of nodes [MDP03]. Furthermore,

a predictive model for minimising transmission time in networks based on cross-traffic estima-

tions has been introduced in [YXZL06]. Finally, in [LFS10], a time-series model is proposed for

predicting link quality in the network based on RSSI and LQI metrics. In our approach, we se-

lected to utilise only application layer metrics and avoid common approaches such as RSSI and

PRR measurements. Our choice was dictated by the constraints of the custom radio interfaces

of our deployments that did not provide such information to higher levels.

7.5 Summary

In this chapter, we studied a case of network adaptation in multi-hop WSNs. We presented

a dynamic routing service based on forecasting recurring network attributes and integrated

in the ITA Sensor Fabric middleware. While the area of reliable multi-hop routing has been

extensively studied, recurring effects of link failures and congestion, which appear in open

space environments with mobile nodes, have not been a consideration in most of the literature.

Forecasting trends of the network allows pro-active adaptation of routing paths for long running

subscriptions, avoiding periodic network degradation. We demonstrated the effectiveness of

forecasting for periodic failures using the Holt-Winters Additive model. Network attributes

can be predicted and are able to distinguish different periods in the input, which enables

effective estimation on future node connectivity.
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Conclusion

In this thesis, we have pointed out the significance of autonomic pervasive systems and the self-

healing ability in response to component failures. We have looked into detection and healing

mechanisms in different levels of such systems – faults in sensor readings, communication link

failures and modification of application’s deployment plan to adapt in dynamic environments.

We have studied these approaches with regard to a common architecture, the Self-Managed

Cell, and provided a framework that promotes decentralised adaptation based on policies. We

showcased tools that were developed to support this framework as well as experimental results

that support our approaches for its self-healing services.

8.1 Summary of Thesis Achievements

1. A middleware platform for WSNs that brings dynamic adaptation of network components

in constrained platforms.

We presented finger2 middleware, a policy management system that controls adaptation

on embedded nodes with small overheads. It provides an event-driven paradigm for

expressing system behaviour in terms of policies and allows separation of operational and

adaptation logic.

141
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2. Definition of self-healing services in the Self-Managed Cell (SMC) architectural pattern

and a prototype for the tinyOS sensor platform.

Starfish platform provides the Self-Managed Cell architecture for pervasive and WSN ap-

plications. It provides an infrastructure that allows autonomous components to compose

into more complex services through well defined abstractions such as missions and roles.

3. Identification and formal definition of sensor reading faults studied in long-running, real-

world WSN deployments.

We identified four sensor readings fault types – short, constant, noise and drift. We

described their attributes and formally modelled them in order to study their effects and

impact on pervasive applications. Modelling of faults also contributes to our ability to

devise detection and correction mechanisms.

4. An adaptable, probabilistic fault detection mechanism for sensor readings that improves

accuracy of sensor faults characterisation and minimises false positives.

We described fault detection model that can be configured in several degrees in order to

balance fault detection accuracy and resource consumption on power constrained devices

such as sensor nodes. The framework proposed involved Bayesian probabilistic classifiers

for sensor readings and filtering of their decisions for incorporating the time dimension in

the decision, which significantly removes false positives alerts. We further demonstrated

the benefits of a detection and recovery mechanism based on a case study of a long-

running, existing sensor network deployment.

5. A dynamic task-allocation mechanism that responds to failures to decelerate service degra-

dation due to sub-component faults by reorganising network assets.

We described how services, which are specified in terms of missions and roles in the

starfish framework, can be statically analysed to automatically extract a task graph with

component interdependencies. We proposed an autonomic task allocation mechanism

that distributes tasks to nodes and dynamically modify the allocation plan to cope with

component degradation.
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6. A case study on a self-adaptive, multi-hop routing middleware for real-world systems that

is designed to avoid repetitive communication link failures.

Finally, we studied recurring patterns in communication link failures and congestion in

multi-hop sensor networks. In order to minimise packet losses in such cases, we proposed a

forecasting mechanism that can adapt the overlay communication network. We performed

a case study on an industrial strength middleware platform that uses virtual circuits to

connect consumers and producers of data in a sensor network.

8.2 Limitations of starfish

Adaptation in starfish is provided in term of policies. An immediate consequence of this is

the restriction that only adaptation on the network’s behaviour can be expressed. Native code

updates that fix programming bugs and errors or add new functionality to support facilities

that were not originally planned are hindered by the limitations of the underlying operating

system to dynamically reprogram sensor nodes in-situ. Restrictions of native code updates are

not a design limitation of starfish itself, but are rather inherited from the TinyOS platform

that is build on. Should a different platform be used instead (e.g. contiki or SunSpots), code

updates support could be added in the framework.

The core operations of sensor nodes are implemented in native code and policies are orches-

trating native components by defining their interactions and controlling the flow of information

among them. Policies should not, thus, be considered a programming mechanism for pervasive

systems. Nevertheless, policies still provide a large degree of adaptation and autonomic con-

figuration of the system as demonstrated throughout the thesis. They define new behaviour in

the system and may be introduced to configure a different service.

Furthermore, policies require a human administrator that will author the service specification

and adaptation logic and maintain/update this specification as necessary. The human factor

is not entirely removed from the control-loop even though the system gains more autonomic

properties. The system is not able to learn new adaptation approaches from its past obser-
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vations. Certain mechanisms, such as the sensor fault detection service, may be replaced by

alternatives that attempt to achieve such a goal [CRR+09, CSIR11], but the core logic of the

system, which decides application of such mechanisms, remains scripted by a human operator.

Limitations on the fault-models presented are based on our assumptions for the sensors’ be-

haviour. More specifically, we assume that events are observed by multiple sensors, deployed

in an area, which have a very similar view of the environment. In other words, their inputs are

highly correlated allowing us to discriminate deviating sensors as misbehaving. This attributes

hold true for a number of sensors, such as thermometers, humidity sensors and accelerometers

used in our case studies. However, the exact same models may not work similarly well in other

cases. For instance the signal of acoustic or seismic sensors attenuates in space, while in other

deployments there may not be adequate correlation among deployed sensors. In the former

case, models presented can be modified in order to cope with the attenuation effect of an event.

In the latter case, either injection of redundancy in the system should be considered or reliable

behavioural modelling of the monitored attributes, which requires extended a-priori knowledge.

8.3 Scaling starfish

Most examples that have been discussed in this thesis involved small groups of nodes that were

able to communicate directly and the information fusion centre we assumed to be within node

communication reach. Nevertheless, scaling the SMC architecture to larger sensor networks

that use multi-hop communication schemes introduces further challenges in collection of data

and dissemination of information and policies. We have studied network failures in the multi-

hop case study of ITA Sensor Fabric in chapter 7, however, multi-hop communication has not

been integrated in starfish in the context of this thesis. An aspect that has not been highlighted

in this thesis is dissemination of policies over such deployments. Starfish is designed so that

implementation of multi-hop functionality can be added as an extension service that replaces

the current ‘network’ module used to handle all communications between node SMCs.

In chapter 5, we looked into sensor data fault-models for small groups of closely located nodes,
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which create collaboration clusters to infer faulty behaviour among them. Scaling such de-

ployments to larger areas can also introduce models that correlate information among different

groups of remote sensors. Communication among groups can introduce new challenges on re-

liable multi-hop communication inside the network. Solutions found in the literature rely on

hierarchical structures inside the network in order to reduce communication costs. We have

not addressed such issues directly in our work but they are a direction that should be explored

in the future.

The challenges of multi-hop routing in an unreliable, wireless medium have been studied exten-

sively in the literature. Paradis and Han [PH07] provide an analytical survey on the matter.

Challenges include reliable point-to-point communication between nodes, broken links and net-

work fragmentation in addition to increased power consumption from relaying messages. Loss

of sensor data messages may be tolerated in a system by use of models that compensate for

gaps in sensor readings. However, control message loss prevention becomes more crucial. In

the case of a node plan modification it can be catastrophic for the system if only part of the

network adapts to the new plan while other nodes operate in an outdated fashion, leading to

an inconsistent state.

Finally, a scaling factor in the SMC architecture is the complexity of services defined in policies.

Policies are meant to be a mechanism to express adaptive behaviour in a system rather than

being a means for programming sensor networks. Implementation details should remain in

native code and provide interfaces, as defined in section 4.2.2, to be integrated in starfish

and used in adaptation policies. As the complexity of services described in policies increases,

management and maintenance of policies may require new constructs to tackle their complexity,

similar to roles and missions. Over time, we created structures and paradigms on how source

code is maintained in large code-bases. Complex policy-based services will require similar

facilities. The starfish editor and tools such as the FSM conversion to policies (introduced

in chapters 4.2.4 and 4.3 respectively) are a step towards that direction. Nevertheless, large-

scale deployments are bound to expose the need for more elaborate tools that will incorporate

common patterns in management of adaptive pervasive services.
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8.4 Future Work

Future work in the direction of this thesis includes issues related to scaling of the framework

on larger sensor networks as discussed in previous sections. Deployment of the middleware on

a real network (i.e. outside a test-bed) with self-healing services that run at real-time (i.e.

during the network’s operation) will undoubtedly reveal new research challenges that relate to

the scaling, management and propagation of the policies and SMC roles.

In terms of the models behind fault detection that encapsulate the knowledge on the system’s

condition, different deployments and sensor types exhibit different properties. More accurate

modelling of monitored attributes can help increase the accuracy of the detection mechanisms.

Also, on-line learning methods may assist adapting the monitoring mechanisms without a

human operator updating a model when environmental behaviour changes.

In the planning phase of the algorithm, we may consider scenarios where specific sensor nodes

are more valuable and difficult to replace than others and, thus, should be protected more

than those that have redundancy. Adjustment to our allocation approach can be done to cope

with requirements like this that provides additional information about a system’s operational

environment. Moreover, the dynamic allocation mechanism could be enhanced to deal with

uncertainty in sensor accuracy in the local node ranking.

8.5 Closing Remarks

The scale of deployment of pervasive systems is highly dependent to the human management in-

volvement and supervision that they require. Self-management is a key attribute for widespread

adoption that will allow these systems to ubiquitously blend into the environment without be-

ing apparent to their users or hinder their tasks. To this extent, pervasive systems need to be

able to collect knowledge about their operations and use it to adapt in a constantly changing

environment. We believe that the techniques and tools we have implemented during the course

of this thesis are a step towards this direction.
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