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Slow start

The initial start-up performance of TCP largely depends on two parameters - ssthresh and
cwnd. When these values are not accurate, TCP cannot utilize the bandwidth fully or may
generate multiple packet drops. Unfortunately, estimating these parameters are not easy,
since little network state information is available for the TCP connection initially.

From earlier research, a TCP parameter of a previous connection with the same destina-
tion was suggested to be used for a new TCP connection. However, the effectiveness of this
method is limited, since the cached parameter of single destination is used. As another
attempt, a network monitor was adopted to identify the connections sharing the same sub-
net, and an averaged parameter of those connections was used for a new TCP connection. In
this approach, the overhead of the network monitor may be high.

In this paper, fairness of TCP connections sharing the same bottleneck links is considered
in obtaining ssthresh and cwnd of a new TCP connection without a network monitor. For
evaluation, these parameters are used in simulation with four different slow start strate-
gies, namely, LISS, ISS, MISS, and JS, depending on which parameters are used and whether
packet pacing is used. The simulation results show that our estimation method works well

for homogeneous and moderately heterogenous environments.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In TCP [1], slow start uses the slow start threshold
(ssthresh) as a parameter for the upper bound of rapid con-
gestion window growth. The value of ssthresh significantly
impacts the performance of TCP. When it is too small, the
slow start phase terminates too early, losing the opportu-
nity to utilize available bandwidth. When it is too large,
slow start induces multiple packet losses before it reaches
ssthresh. It is obvious that a good ssthresh value early in
the slow start phase can significantly improve TCP
performance.

First, we introduce a new method to obtain ssthresh.
This method, which we call Less Informed Slow Start (LISS),
determines ssthresh using the congestion window (cwnd)
of the oldest connection among connections sharing com-

* Corresponding author.
E-mail address: inkwan@gmail.com (I. Yu).

1389-1286/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2011.08.009

mon bottlenecks. Assuming fairness of TCP [2], LISS is rel-
atively accurate, although its application is rather limited
since it requires steady and active TCP connections sharing
bottlenecks. In other words, our scheme assumes that a
new TCP connection will use the same bandwidth as other
TCP connections sharing bottleneck links and assigns the
ssthresh value according to this bandwidth. It should be
noted that LISS improves TCP Reno [3] without modifying
the TCP algorithm itself, as it only changes a TCP parame-
ter. If it is allowable to modify the TCP algorithm, further
improvement over LISS is attainable. When estimating
ssthresh, Exponentially Weighted Moving Average (EWMA)
of cwnd of the oldest connection among connections shar-
ing common bottlenecks, can be used instead of cwnd, as in
the ns-2 [4] simulator, to smooth out the typical cwnd

We call this slow start scheme Informed Slow Start (ISS).
Related to LISS and ISS, Hoe [5] uses the original TCP slow
start algorithm with ssthresh estimated with a packet pair.

E:!rowth pattern that follows the saw-tooth shaped cycles.
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Both LISS and ISS use the standard initial value of cwnd,
which is one. In addition to the value for ssthresh obtained
by LISS, it would be beneficial if we can estimate an initial
cwnd value that would not induce packet drops. If a new
TCP connection can start with the estimated cwnd value,
slow start can increase cwnd rapidly until ssthresh is
reached. We introduce a novel method in Section 4 to esti-
mate such a value for cwnd based on the states of the exist-
ing TCP connections. As this scheme relies on estimation of
both cwnd and ssthresh, it will be called More Informed Slow
Start (MISS).

As yet another approach, the initial ssthresh obtained in
LISS is also used as the initial cwnd. We call this scheme
Jump Start (JS), as it does not involve exponential growth
of cwnd. JS is similar to the work of Zhang et al. [6], as their
algorithm also bursts initial cwnd packets with packet pac-
ing. However, in their algorithm, the initial cwnd value of a
new connection is taken from a moving average of cwnd
values of other connections sharing bottleneck links esti-
mated by a network monitor. In both MISS and ]S, in order
to reduce the impact of overshooting packets, packet pac-
ing as in Padmanabhan and Katz [7] is employed.

To summarize, for a new connection, LISS is the same as
TCP Reno’s slow start algorithm except that ssthresh is ta-
ken from cwnd of the TCP connection with the longest
duration sharing the same bottlenecks. ISS differs from LISS
in that ssthresh is obtained from an EWMA of cwnd from
the TCP connection with the longest duration. MISS uses
ssthresh as in LISS and, in addition, obtains the initial cwnd
of new connection estimated from Eq. (5). JS sets the initial
cwnd value from ssthresh of LISS. Both MISS and ]S adopt
packet pacing for initial cwnd packets.

All these approaches apply to a server that handles mul-
tiple clients. By using the IP address prefixes to relate con-
nections, the server has the opportunity to obtain the
information about connections that may share common
bottlenecks.

The performance of our schemes is influenced by fair-
ness of TCP. Fairness is achieved if each connection with
common bottlenecks has the same bandwidth. It seems
that fairness is harder to observe with greater cross traffic
and larger heterogeneous networks. In general, TCP perfor-
mance degrades with a long delay paths. Consequently our
scheme works better with a small and homogeneous
network.

In this study, without losing the general principles of
TCP, we assume that ssthresh represents the number of
packets, and slow start terminates if cwnd reaches ssthresh,
whereas, with the standard TCP, ssthresh is represented in
bytes.

2. Related work

In TCP Reno, slow start increases cwnd by one for every
acknowledgement (ACK) the TCP sender receives from the
TCP receiver, until ssthresh is reached. The default ssthresh
value is fixed at 65,535 bytes. This fixed ssthresh value is
chosen in the absence of measurement information at the
initial stage of a TCP connection. Evidently, it is desirable
to estimate initial bandwidth to obtain a more accurate

ssthresh value in order to improve slow start performance.
To estimate the end-to-end bandwidth, there have been a
number of research efforts [8,9,5,10-13].

A weakness of the current TCP slow start mechanism
becomes apparent, when there is a large delay bandwidth
product (delay x bandwidth) path. In a network path with
a large round trip time (RTT) value and high bandwidth,
slow start is not fast enough. For example, it takes a long
time to increase cwnd for a typical satellite network [14].
In TCP Reno, self-clocking of packets is used while
cwnd is limited by ssthresh [15]. Due to self-clocking,
the cwnd size does not grow fast enough if RTT is large,
even though the congestion window growth rate is
exponential.

If the initial ssthresh value is small in a large delay band-
width product path, the slow start phase terminates too
early, and then the cwnd increases slowly under the Addi-
tive Increase and Multiplicative Decrease (AIMD) phase of
TCP Reno. To alleviate the small initial window size prob-
lem, some modifications have been suggested [14,16].
Nevertheless, the fixed initial window size is still a prob-
lem [17]. If we have a good estimate of available band-
width, it is reasonable to increase cwnd to the available
bandwidth quicker than TCP Reno.

Visweswariah and Heidemann [18] investigate the re-

se of previous packet transmission rate or the congestion
window size of an idle TCP connection. In their work, sim-
ulation results show that pacing packets using the rate be-
fore the idle period performs better than the standard slow
start algorithm or bursting packets, when the connections
have been idle for less than a minute. Even though it is not
shown in the paper, if the idle time is more than a few min-
utes, it may not be effective as the previous window size
would be stale for the current network state. TCP Fast Start
introduced in Padmanabhan and Katz [7] uses a previous
connection’s cached connection information for a new con-
nection with the same destination address. In TCP Fast
Start, multiple packet drops may occur, if the cache be-
comes stale and inaccurate. In contrast to Visweswariah
and Heidemann [18] and TCP Fast Start [7], where only
one connection is considered in estimation, our approach
uses other connections sharing bottleneck links with a
new connection to determine the cwnd and ssthresh values
for the new connection.

Zhang et al. [6] is similar to our approach in that they
use other connection information with the same destina-
tion subnet. However, their algorithm requires a network
monitor called the performance gateway to aggregate infor-
mation and to estimate the cwnd value for a new connec-
tion, while we use TCP fairness to estimate cwnd without
a network monitor.

To accelerate cwnd growth, the slow start transmission
rate can change based on the amount of available band-
width [17]. When there is more available bandwidth, more
packets are sent. Several ways of increasing cwnd are sug-
gested [14,16,17].

Slow start may occur in three different stages of a TCP
connection — when the connection is initially established,
when the connection is idle for a while, and when there
is a timeout [16]. These three cases can be handled differ-
ently since the connection information available for each
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case is different. There have been efforts to solve each case
in the literature [19,8,7,18,17]. Among these three cases,
the latter two have an advantage in that they can easily ac-
quire the states of the current connection such as the con-
gestion window size, RTT, and its variance.

For the initial slow start, it’s hard to obtain an acc@
estimate of available bandwidth. Hoe [5] uses a packe
method to estimate the initial ssthresh value. However, the
inter-packet gap of the first single packet pair is not
accurate enough due to multiple hops in the path and mea-
surement error. Furthermore, the first inter-packet gap
causes overestimation of initial congestion window size
[20,11,21,22]. Multiple packet pairs are used to estimate
the ssthresh value in Hu et al. [23] and Aron and Druschel
[8]. In Hu and Steenkiste [23], a variant of the slow start
algorithm detects the change between inter-packet gaps
when the connection reaches the peak available band-
width. The authors also use packet pacing to reduce the im-
pact of slow start on routers.

In another approach, TCP Westwood [17] uses an im-
proved bandwidth estimation method of TCP Vegas [24].
This approach dynamically adjusts the slow start packet
transmission rate. When there is more available band-
width, the sending rate increases more rapidly and con-
versely, when there is less bandwidth available, the
sending rate decreases. Although not directly related to
slow start, there have been a number of studies calculating
available bandwidth [20,25,21,22,26,13]. Most of these
schemes use trains of packets to measure the bandwidth
more accurately.

As for the initial cwnd, Allman [14] shows that it is ben-
eficial to use a large initial cwnd for certain cases. Zhang
et al. [6] introduce a scheme to speed up the transfer of
small files using TCP. They take a moving average of cwnd
values of other connections sharing bottleneck links and
the file size to be transferred, in calculating the initial cwnd
value. This scheme is similar to JS in that it also bursts
cwnd number of packets with packet pacing initially, how-
ever, it differs in the cwnd estimation method.

The idea of using information of other connections shar-
ing bottleneck links has been around for nearly two dec-
ades. Savage et al. [27] show strong evidence of locality
among network connections. This locality facilitates “in-
formed congestion control” of other connections with the
same locality. For the purpose of collecting information
of connections with shared bottlenecks, a passive monitor
can be adopted. Then, this information can help other con-
nections in making congestion control decisions.

Balakrishnan et al. [28] introduce a scheme called Con-
gestion Manager (CM) to aggregate connection information
in the OS kernel residing in between TCP and IP stacks. In
addition, CM behaves as mediator of TCP and UDP flows
to provide better congestion control performance using
the information from multiple flows sharing the same net-
work characteristics.

In this paper, by way of simulation, the initial slow start
performance is measured during 1 s through 10 s. Selvidge
et al. [29] mention that users tend to lose interest if they
have to wait more than 10 s to download a web document.
Wang [30] also finds that the actual delay affects user
experience significantly.

3. Estimating congestion window size for slow start
threshold

When a TCP connection is already established from a

source to a destination, it is reasonable to assume that
the bandwidth of the initiating connection from the same
source to the same destination should not exceed the sta-
ble connection bandwidth, if TCP is fair in the sense that
the protocol allocates the same bandwidth for each con-
nection. Also, it can be assumed that the new connection
bandwidth would not be lower than the half of the stable
connection bandwidth. Thus, the new connection band-
width would follow the following inequality:
B < b, < b, 1)
2
where b, is the stable connection bandwidth, and b,, is the
new connection bandwidth sharing the same source and
destination. The latter equality of Eq. (1) occurs when the
capacity of bottleneck is larger than the additional band-
width required by the new connection. To generalize this,
define C as the bottleneck link capacity, B; as a connection
currently passing through the bottleneck link, and let b; be
the bandwidth of B;, where i € {1,2,3,...}. Let B, be the sta-
ble connection with long duration and B,, be the new con-
nection. If C > >";b; + b, with {B,} cJ{Bi} and {B,} ¢
(J {Bi}, then with fair TCP, b, = b,. The first equality of Eq.
(1) can happen when C=b,, and |J{B;} = {B,}. In this case,
with addition of B,, we have C=b,/2 +b, and b, = b,/2.
More generally, if C = },;b;, and a new connection is added,
its bandwidth will be reciprocal to the number of connec-
tions in the bottleneck link. Hence, if the number of stable
connections is n, then the minimum available bandwidth
for the new connection is

_ nb,
Tn4+1

n

The same idea can be generalized when a set of hosts
share a common set of bottlenecks. As heuristics, it is pos-
sible to assume that hosts in the same subnet share a set of
bottlenecks to a single source. In this case, we can further
expect that connections from the same subnet to the same
source behave just like connections from a single host. Fur-
thermore, if bottlenecks exist between ISPs and not within
an ISP and delay within the ISP is negligible, the connec-
tions from the same ISP will behave similarly as a single
host.

If B, is the new connection bandwidth from a LAN or an
ISP and g, is stable connection bandwidth in the same LAN
or the ISP with fair TCP, and the source can determine a set
of destinations passing through the shared bottleneck
links, then the minimum bandwidth of new connection
will be

_ Kg,
anK_i_lv

where K is the total number of connections sharing the
bottleneck links.

In practice, an accurate value for the available band-
width is not readily available. To avoid making changes
to the TCP Reno implementation, we take cwnd of an
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existing TCP connection in the AIMD phase as an estimate
of available bandwidth. If there are multiple live connec-
tions sharing bottlenecks, cwnd of the oldest connection
is taken. Selecting the oldest connection can be easily
implemented using a queue and gives a better bandwidth
estimate as TCP connections take time to reach steady
state. Among live connections, ones under the slow start
phase should be separated from those under the AIMD
phase. Connections in the slow start stage are not stable
and should not be assumed to take the same bandwidth
as other, steady connections.

Now, in light of the above discussion, a practical ssthresh
estimation scheme can be given. First, let w, be the conges-
tion window size of the oldest steady connection and s, be
the ssthresh value of the new connection. The number of ac-
tive TCP connections in the AIMD phase is represented as L
and the number of active TCP connections in the slow start
phase as M. Define cwnd of a single TCP connection under
the slow start phase as a;, i € {1,2,3,...,M} and the sum
of them as S = >V, g;. Then, the ssthresh value for a new
connection is estimated by

S+Lw,
LSt @
Wo

In Eq. (2), S+ Lw, estimates the sum of cwnds of TCP
connections sharing the same bottlenecks. To get a fair
congestion window size estimate for a new connection,
the sum is divided by the number of TCP connections plus
one. However, TCP connections under the slow start phase
are not in a stable state and their cwnd values are not fair
compared to other steady TCP connections. If w, is a fair
cwnd value, Wi can estimate the number of steady connec-
tions, assuming S is used for steady connections instead of
start-up connections.

The estimation of ssthresh described above depends on
w, in Eq. (2). If we take cwnd of the oldest connection as
w,, slow start would be LISS. Instead, if awnd is taken for
W, as given in the pseudo code below, then slow start
would be ISS.

awnd «— (1 —a) -awnd + o - cwnd.

JS uses ssthresh obtained in LISS for both initial cwnd
and ssthresh values of JS. This way, JS avoids exponential
growth of cwnd and starts to transmit cwnd number of
packets in a burst. To reduce the impact from the burst,
JS adopts packet pacing.

4. Estimating initial congestion window size

Slow start performance is influenced by the ssthresh
value to increase cwnd rapidly. Also the performance de-
pends on the initial cwnd value. To motivate our approach,
assume that there is only one TCP connection between the
TCP sender and the TCP receiver with a constant FTP feed.
As there is no competing traffic, the cwnd size of this TCP
connection in congestion avoidance phase will linearly in-
crease until no more bandwidth is available, whereupon a
packet drop occurs and cwnd shrinks to half of its size.
When the linear growth rate of cwnd is 1/R, where R is
the RTT of the connection [31], we’d like to know a good

initial cwnd value for a new connection that shares the
same source and destination.

If we know the packet drop interval of the existing con-
nection and the last time that a packet drop occurred, it is
possible to estimate a good initial cwnd value. Let § be the
packet drop interval and the time of last packet drop be t;.
If the current time when a new connection starts is t., then
t. — t; represents the amount of time since the last packet
drop until now and § — (t;. — t;) becomes the amount of
time until the next packet drop. As the existing TCP con-
nection increases cwnd during this period with the rate
of 1/R,
o—(tc—1t)

R b
can be a good initial cwnd value for the new connection.

This idea can be generalized for TCP connections with
shared bottleneck links. Let

T= {ti‘i: l,2,3,...,land fj < fk,j<k},

be the ordered set of packet drop times of all connections
sharing the same bottleneck links. Also let

U={u|i=1,2,3,...,mand y; < u, j <k},

be the set of packet drop time of the oldest connection
among connections sharing the same bottleneck links with
U c T. For example, in Fig. 1, it is assumed that two TCP
flows F; and F, share the same bottleneck links. As F; is
the oldest connection among F; and F,, u; refer to packet
drop times of F;. Also, packet drop times of both connec-
tions are labeled with t;, where u; coincide with some of t;.

If we define the packet drop interval of connections
with shared bottlenecks as ti, — t;, where t;.q, t; € T, then
EWMA of shared connections’ packet drop interval would
be

Ti= (1= 2)Ti1 + At — ti1), (3)

where 2 <i<1,0< A< 1and 1 =t, — t;. Likewise, for u.q,
u; € U, when the packet drop interval of the oldest connec-
tion among connections with shared bottlenecks is
u;1 — U, EWMA of the oldest connection packet drop inter-
val would be

Yi=(1—=0)piq +0(Ui — Uiq), 4)

where 2 <i<m,0<0<1and y;=u; —uy.

If we take yn,/t; as the number of connections sharing
bottleneck links with the same cwnd growth rate, and each
connection cwnd growth rate is 1/R, then

cwnd

L=u 1, =u, t, time

Fig. 1. cwnd graphs of two TCP flows F; and F, sharing the common
bottlenecks.
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'ym(’l‘-l _‘E’(}sc B t[)) , (5)

can be a candidate cwnd size for a new TCP connection
sharing the same bottleneck links.

This is reasonable as the number of packets estimated
in Eq. (5) is the amount of packets we may add on the path
with shared bottlenecks without causing a packet drop. In
MISS, we take cwnd for a new connection as estimated
above and ssthresh as obtained in LISS, and to be conserva-
tive when cwnd > ssthresh, we set the ssthresh value to
cwnd. Furthermore, to reduce the impact of the initial
start-up burst of packets, the first cwnd packets are paced
with the packet transmission rate cwnd/R.

5. Simulation

To compare these approaches to improving early TCP
performance, let T be the total number of connections
established between the server and clients during the sim-
ulation, and ¢; be an instance of such connection with
ie{1,2,3,...,T}. The number of packets acknowledged of
the connection ¢; by time t is represented as cf. Here, we as-
sume that the unit of time is the second. Then, 3"|_, ¢! is the
number of packets acknowledged by the server during the
first n seconds of each connection, which we call the initial
n second throughput. In comparison, the total number of
packets acknowledged by the server during the whole sim-
ulation is called the total throughput. Occasionally, these
two throughput criteria are collectively called the server
throughput.

Usually, networks with large delay bandwidth product
paths benefit from LISS and ISS in terms of the server
throughput. Depending on the network topology and traf-
fic characteristics, the degree of performance gain of LISS
and ISS against TCP Reno may differ significantly. With a
homogeneous network, LISS and ISS show much higher
throughput than TCP Reno since fairness of TCP is well pre-
served in such an environment. However, LISS and ISS
achieve only slightly better throughput compared to TCP
Reno in a large and heterogeneous network.

In contrast, MISS and ]S show significant performance
improvement over LISS and ISS in terms of the n second
throughput for connections with long duration. However,
as bandwidth increases, MISS and ]S perform slightly
worse in terms of the total throughput even though the ini-
tial n second throughput shows impressive improvement,

5Mbps/10ms

(E Cross Traffic o

when the router queue size is limited. Unfortunately, for
connections with short duration, the MISS performance
drops significantly as a good cwnd value cannot be ob-
tained from connections with short duration.

To evaluate each model, we simulate each scheme using
ns-2 [4] version 2.28 on Linux. As there is no tear down
mechanism for one-way TCP connection in ns-2, reset OTCL
command is added to the TCP agent class. Terminated TCP
connections are reset and reused later as a new connection
needs to be established between the same sender and the
receiver. In ns-2, the default value of ssthresh is initialized
to the default advertised window size, which is undesir-
able for our purpose. Hence, we decouple these two
parameters by initializing the default advertised window
size to 100 and the default slow start threshold value to
10. Also, by default, cwnd is set to one. These default initial
cwnd and ssthresh values are used for TCP Reno and the de-
fault initial cwnd value is used for ISS and LISS. For all sim-
ulation scenarios, the TCP receiver is not enabled with
delayed acknowledgement. A new OTCL command in ns-
2 is added to set the ssthresh value for the TCP sender to
use the obtained ssthresh value. When there is no other ac-
tive TCP connections sharing bottlenecks, the default
ssthresh value is used. awnd is predefined in ns-2 where
the EWMA weight parameter o of awnd is set to 0.002 by
default. EWMA weight parameters of Eqs. (3) and (4) are
set to 27> for ease of implementation.

5.1. Homogeneous network

First, a homogeneous network is considered, where the
effect of TCP fairness is noticeable and the obtained
ssthresh is relatively accurate as clients share the same net-
work characteristics. The topology used for the simulation
is shown in Fig. 2. There is a single server and five clients
each labeled with “s” and with “c”, respectively. Routers
between them are labeled as “r1”, “r2”, and “r3”. To gener-
ate cross traffic between routers r1 and r2, five pairs of
source and destination are used. Nodes labeled with “xs”
are cross traffic sources and nodes with “xc” are corre-
sponding destinations in the figure. “Delay” labeled on
the links between r1 and r2, as well as r2 and r3 is a param-
eter used in the simulation to assign different link delays.
Similarly, “Bandwidth” is a parameter for link bandwidth.

For cross traffic, FTP traffic is generated between five
(xs,xc) pairs. To alleviate the effect of simultaneous con-
nection establishments, FTP connections arrive with the

5Mbps/10ms

r2
10Mbps/Delay \./

5Mbps/10ms

Bandwidth/Delay

\_’/  20Mbps/10ms

Fig. 2. Homogeneous network topology.
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exponential distribution average of 1s. Queueing disci-
pline for routers is drop-tail with 50 packets as the maxi-
mum queue size. Other router parameters are default
values in ns-2. FTP connections from the server to clients
arrive with the exponential distribution average of 5s
while each client may have multiple FTP connections with
the server. Unless mentioned, Delay is set to 50 ms and
Bandwidth is set to 20 Mbps in Fig. 2. Duration of connec-
tions between the server and clients follows the Pareto dis-
tribution with a mean of 100s and shape parameter of
1.35. The simulation runs for 3000 s.

Based on the simulation setup given above, we ﬁr@

evaluate how each model behaves with varying Bandwidt

values. In Fig. 3, TCP Reno, LISS, ISS, MISS and ]S are com-
pared in terms of the server throughput. Fig. 3b shows
the total number of packets acknowledged by the server,
i.e., the total throughput with varying Bandwidth, whereas
Fig. 3a shows the initial 5s throughput. Clearly, there is
significant difference in the initial 5 s throughput as Band-
width increases. Even though there is not so much differ-
ence of the total throughput, it is visible that as
Bandwidth reaches 18 Mpbs, MISS and ]S throughput be-
comes slightly worse. This can be attributable to the initial
burst transmission of packets in MISS and JS with higher

3937

capacity links, even when they try to reduce the impact
by packet pacing.

In Fig. 3a, LISS, ISS, MISS and JS all show better perfor-
mance than TCP Reno in terms of the initial 5 s throughput
with comparable performance of the total server through-
put. With a link speed of 16 Mbps, TCP Reno successfully
delivers 84,545 packets to clients, while 124,719,
136,307, 187,868, and 187,678 packets are delivered by
LISS, ISS, MISS, and ]S, respectively. This improvement
amounts to more than 100% for MISS and ]S against TCP
Reno.

Fig. 4 shows the initial 5s throughput and the total
throughput with varying Delay. It is well known that TCP
throughput decreases as RTT increases and Fig. 4b shows
this tendency clearly. Notice that LISS, ISS, MISS, and ]S
outperform TCP Reno in terms of the total throughput as
Delay increases even though the total throughput of JS ap-
proaches that of TCP Reno as Delay increases. With large
Delay, the initial cwnd and ssthresh values have greater
influence on the total throughput of TCP. The initial 5s
throughput shows better performance when Delay is rela-
tively small for LISS and ISS compared to TCP Reno, while
MISS and ]S show much better performance achieving
more than 30 times the initial 5 s throughput of TCP Reno

250000 3500000
3000000 MHIH
200000 PN
2500000 slllsl el lls
@ Reno EReno
2 150000 11| |=Liss £ 2000000 - N (muss
S alss S olss
& 100000 l |[OMISS & 1500000 il e OMISS
mJS
mJS 1000000 silisiligl il ll &
50000
’-I 500000 sillsilsgl il llg
0 |-l-l-I\ L L L L L L 0
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Bandwidth (Mbps) Bandwidth (Mbps)
(a) Initial 5 second throughput. (b) Total throughput.
Fig. 3. Server throughput with varying Bandwidth in homogeneous topology.
180000 3500000
160000 3000000 |—
140000 T
120000 [ @ Reno 2500000 HIl
2 mLISS BReno
% 100000 — 0188 ‘g 2000000 HIl | - mLISS
& 80000 S I olIss
& omiss| 8 Hinre
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Fig. 4. Server throughput with varying Delay in homogeneous topology.
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in some cases. This implies that the initial cwnd value im-
pacts the initial throughput of TCP significantly with long
delay paths.

Good performance of LISS, ISS, and MISS compared to
TCP Reno at small delay is probably due to self-clocking
of TCP Reno. Self-clocking limits the growth of cwnd during
the slow start phase. For example, during 5 s, there can be
10 self-clocking cycles for a connection with 500 ms RTT
while there can be 100 self-clocking cycles for a connection
with 50 ms RTT. This implies that the connection with
50 ms RTT has 10 times more opportunities to increase
its congestion window size while in the slow start phase.

Fig. 5 shows the initial 5s throughput and the total
throughput with varying average FTP connection inter-ar-
rival time between the server and clients. The inter-arrival
time follows the exponential distribution. The initial 5 s
throughput is apparently superior with LISS and ISS to
TCP Reno, while that of MISS and JS is even more superior.
The total throughput shows that LISS and ISS perform
slightly worse than TCP Reno, while MISS and ]S perform
even worse. When the link capacity is higher, large cwnd
and ssthresh values for new TCP connections can cause
packet drops in the router with a small queue size,
decreasing the total throughput. As evidence, in Fig. 6,
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the Band@ value is set to 10 Mbps instead of the de-
fault value of 20 Mbps. Here, the total bandwidth of LISS,
ISS, MISS and ]S is comparable against TCP Reno, while
the 5 s throughput shows significant improvement.

Fig. 7 shows the initial n second throughput where n
ranges from 1 to 10. It is observable that the throughput in-
creases much faster for LISS and ISS achieving 50% higher
throughput than TCP Reno at 3 s, whereas MISS and JS start
with more than 10 times of throughput at 1 s compared to
TCP Reno. This is attributable to the fact that these two
algorithms do not waste time reaching steady congestion
window size.

In our simulation, the connection duration between the
server and a client follows the Pareto distribution. The
smaller the shape parameter of the Pareto distribution,
the heavier tail the Pareto distribution has. For FTP connec-
tions with long duration, more accurate cwnd and ssthresh
values can be obtained as long connections tend to be in
steady state. In Fig. 8, LISS, ISS, MISS and ]S achieve higher
initial 5 s throughput than TCP Reno as the Pareto shape
parameter gets smaller. MISS and ]S show slightly worse
total throughput than TCP Reno due to their aggressive
cwnd increment policy. The shape parameter values, 1.05
and 1.95 are rather extreme, and considering that file
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Fig. 5. Server throughput with varying connection inter-arrival time in homogeneous topology (20 Mbps link).
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Fig. 6. Server throughput with varying connection inter-arrival time in homogeneous topology (10 Mbps link).
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Fig. 7. Server n second throughput in homogeneous topology.

transfers would take a heavy-tailed distribution [32-34],
the default parameter value of 1.35 is justified.

To summarize, it is shown that LISS, ISS, MISS, and ]S
outperform TCP Reno in a small homogeneous network.
Especially when the bandwidth is higher and the link delay
is small, these four models show significant improvement
over TCP Reno for the initial n throughput. Good perfor-
mance of four models is obtained, since fairness of TCP is
well preserved in the homogeneous environment. How-
ever, when the router is not equipped with enough queue-
ing buffer, packet drops can occur, especially with JS,
resulting in the slightly reduced total throughput. For
example, in Fig. 5b, the total throughput achieved by ]S
for all average inter-arrival times against that of TCP Reno
is 98.1%.

5.2. Large network

For simulation of larger networks, the hierarchical
addressing feature of ns-2 is used. As the hierarchical
addressing is prefix-based, it is possible to identify nodes
with common address prefixes similar to subnets in the
Internet. In addition to hierarchical addressing, a transit-
stub based random topology generator is used. For this
purpose, Georgia Tech Internetwork Topology Models
(GT-ITM) [35] is chosen. The ns-2 package provides a few
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Fig. 9. Random topology with 200 nodes.

sample configurations of GT-ITM and we slightly modify
two of the sample configurations, one for 200 nodes and
the other for 600 nodes. The modification on the configura-
tion increases the sub-domain connectivity to form a
topology where the nodes in a sub-domain share the com-
mon bottleneck links. Network topologies generated by
these configurations are shown in Figs. 9 and 10.

The GT-ITM topology format is converted into the ns-2
code format for hierarchical addressing, using a tool pro-
vided by the ns-2 webpage [4]. The converted ns-2 code as-
signs a random delay to each link while bandwidth is
configurable only as a single value for all links. For simula-
tion, we assign a server near core routers.

5.2.1. Network topology with 200 nodes

With the 200-node topology in Fig. 9, the bandwidth for
all links is 10 Mpbs by default and the lifetime of FTP con-
nections between the server and clients follow the Pareto
distribution with an average of 100 s and shape parameter
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(b) Total throughput.

Fig. 8. Server throughput with varying Pareto shape parameter in homogeneous topology.
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Fig. 10. Random topology with 600 nodes.

of 1.35. There are 25 random pairs of nodes generating FTP
cross traffic. Each node of a pair belongs to a different sub-
domain. Cross traffic connections arrive with an exponen-
tial distribution average of 1s. Clients are randomly
selected to establish connections with the server. The
inter-arrival time of connections between the server and
clients is distributed with an exponential distribution aver-
age of 1s.

Fig. 11 shows the initial 5 s throughput and the total
throughput with varying link bandwidth values. As the
bandwidth increases, the initial 5 s throughput values of
LISS, ISS and MISS increase gradually as shown in
Fig. 11a. However, the total throughput of MISS for all
Bandwidth values is 95.9% of that of TCP Reno. JS shows
significantly better performance of the 5 s throughput than
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Fig. 12. Server n second throughput in 200-node topology.

TCP Reno, while its total throughput for all Bandwidth val-

s is 93.8% of that of TCP Reno.

One noticeable tendency observed in Fig. 11b is that the
total throughput of MISS and ]S gets worse against TCP
Reno as bandwidth increases. One reason for this may be
that the initial overshooting packets of TCP connections
negatively impacts the total throughput causing packet
drops. Also, with the 200-node topology, the average delay
is larger than the homogenous topology, which increases
the initial burst of TCP causing more packet drops at the
routers even with packet pacing. In addition, with hetero-
geneous networks, it is not easy to obtain good estimates
of cwnd and ssthresh, as TCP fairness is not well maintained.

In Fig. 11a, the initial 5 s throughput is greater for LISS,
ISS, MISS, and JS than for TCP Reno. As large initial 5s
throughput implies reduced initial download time for mul-
timedia objects or web documents, users will have better
experience with these four models than TCP Reno.

In Fig. 12, the initial n second throughput is shown as n
ranges from 1 to 10 for the topology with 200 nodes in
Fig. 9. Parameters of simulation are the same as in
Fig. 11. MISS and ]S achieve higher initial n second
throughput for small n, as they start with large cwnd val-
ues. In contrast, the initial n second throughput of LISS
and ISS starts with small values. Obviously, aggressive
behavior to increase cwnd rapidly in MISS and ]S helps to
achieve higher throughput initially. However, this is not
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Fig. 11. Server throughput with varying bandwidth in 200-node topology.
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Fig. 13. Server throughput with varying exponential inter-arrival time in 200-node topology.

without cost, as the total throughput of MISS is 94.2% of
TCP Reno, and the total throughput of JS is 95.7% of TCP
Reno, when the total throughput for all Bandwidth values
are added.

Fig. 13 shows the initial 5 s throughput and the total
throughput with varying average connection inter-arrival
time between the server and clients. As the average inter-
arrival time of exponential distribution ranges from 5 to
0.5, LISS, ISS, MISS, and JS show increasing gain over TCP
Reno in terms of the initial 5 s throughput. This is reason-
able as there are more connections with common bottle-
neck links, so cwnd and ssthresh values can be determined
more accurately. However, a large initial cwnd value causes
overshooting of packets, inducing packet drops at the rou-
ter with small buffer size. For this reason, MISS and JS show
poor total throughput performance when the average inter-
arrival time is small.

Since the topology with 200 nodes in Fig. 9 has larger
average delay than the homogenous network in Fig. 2,
aggressive growth of cwnd for a new connection could be
detrimental to TCP start-up performance, whereas good
estimates of cwnd, ssthresh and packet pacing are benefi-
cial. Even with packet pacing, a sudden burst of packets
tends to generate packet drops in the router with small
queue for the topology with 200 nodes, as large average
delay of the topology tends to introduce large initial cwnd
values.
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5.2.2. Network topology with 600 nodes

For simulation of topology with 600 nodes in Fig. 10, the
default bandwidth for all links is 10 Mbps. The number of
pairs of nodes used for cross traffic is 100. Cross traffic con-
nection arrivals follow the exponential distribution with
average of 1 s. FTP connections between the server and cli-
ents terminate with the average lifetime of 100 s. This life-
time duration follows the Pareto distribution, where the
shape parameter of Pareto distribution is 1.35. The average
inter-arrival time of connections between the server and
clients is 0.5 s by default.

For varying link bandwidth values, Fig. 14 illustrates
TCP Reno, LISS, ISS, MISS and JS in terms of the initial 5 s
throughput and the total throughput. In Fig. 14a, it is not
clear which one performs better in terms of the initial 5 s
throughput among LISS, ISS and TCP Reno, whereas MISS
and ]S significantly outperform TCP Reno. However, MISS
and JS achieve this by sacrificing the total throughput.

As shown earlier, estimation of ssthresh becomes more
difficult as the network size grows, since fairness of TCP
is harder to achieve in large and heterogeneous networks.
LISS, ISS, MISS, and JS show better performance in the net-
work with 200 nodes in Fig. 9 than in the network with 600
nodes in Fig. 10, since the topology with 600 node has lar-
ger average delay.

Fig. 15 shows the initial 5s throughput and the total
throughput, as the average inter-arrival time of connec-
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Fig. 14. Server throughput with varying bandwidth in 600-node topology.



3942 I Yu, R. Newman /Computer Networks 55 (2011) 3932-3946

160000
140000
120000
100000 BReno
2 mLISS
£ 80000 oIss
o
8 oMIss
60000 s
40000
o o 1 1
o (ol e ol ol JEALAND,

1 09 08 07 06 05 04 03 0.2 0.1

Average Inter-arrival Time (sec)

(a) Initial 5 second throughput.

4500000

4000000 -

3500000

3000000 H |B Reno
4 2500000 | (ELISS
g oIss
& 2000000 o miss

1500000 L (mJs

1000000

500000

0

1 09 08 0.7 06 0.5 04 03 0.2 0.1
Average Inter-arrival Time (sec)

(b) Total throughput.

Fig. 15. Server throughput with varying exponential inter-arrival time in 600-node topology.

tions between the server and clients ranges from 1 to 0.1 s.
LISS and ISS perform better than TCP Reno in both cases
but the gain is not too impressive. MISS and JS outperform
others in terms of the initial 5s throughput but show
slightly worse performance in terms of the total through-
put as the average inter-arrival time decreases.

The initial n second throughput of Fig. 16 illustrates@

how each model performs as n increases. The throughput
gain of LISS and ISS in Fig. 16 is more noticeable with large
n for the topology with 600 nodes, whereas relatively small
n is enough to see the difference in Fig. 12 for the topology
with 200 nodes. The reason that it takes larger n to observe
throughput gain in case of 600-node topology is probably
the longer average delay resulting in a slower self-clocking
cycle. On the other hand, MISS and ]S do not rely on ACKs
to increase cwnd initially. Consequently, they show good
performance even with small n with significant decrease
in terms of the total throughput due to the initial burst
of packets. The throughput gain of LISS, ISS against TCP
Reno is significant only when n is large in terms of the ini-
tial n second throughput with the large average link delay.
Also, as the network size grows, fairness of TCP becomes
harder to achieve due to heterogeneity of the environment,
and cwnd and ssthresh determined by our methods tend to
be inaccurate. Usually, MISS and ]S start with large initial
cwnd values with a network with large delay bandwidth
product. As a consequence, when the router queue size is
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Fig. 16. Server n second throughput in 600-node topology.

not large enough, MISS and JS may generate more packet
drops with increasing network size.

5.3. Connections with short duration

In the previous subsections, the mean connection dura-
tion was set to 100 s for simulation. This workload models
multimedia streaming rather than general web traffic,
where a typical connection duration time is a few seconds.
To evaluate our slow start strategies with connections with
short duration, the mean duration time of connections be-
tween the server and clients is adjusted to 5 s following the
Pareto distribution.

First, the simulation results in Fig. 17 is obtained using
the same simulation parameters as Fig. 3 for the homoge-
nous network environment except that the mean connec-
tion duration is 5 s rather than 100 s. In this setting, ISS,
LISS, MISS and ]S all outperform TCP Reno in terms of the
5s throughput and the total throughput. It is interesting
to note that the effectiveness of MISS much deteriorated
than other slow start strategies for short-lived connections.

Next, Fig. 18 shows simulation results using the topol-
ogy with 200 nodes. Except for the shorter mean connec-
tion duration time, the parameters used in simulation of
Fig. 11 remain the same. In this moderately heterogeneous
environment, ISS, LISS, JS show better performance than
TCP Reno in terms of the 5s throughput and the total
throughput. In particular, JS shows excellent performance
in the 5 s throughput as in the case of long-lived connec-
tions. However, MISS performs worse than TCP Reno in
terms of the 5 s throughput and the total throughput.

Finally, Fig. 19 illustrates the simulation results exe-
cuted with the topology with 600 nodes. Simulation
parameters are identical as executed in Fig. 14 except that
the mean connection duration is changed from 100 s to 5 s.
ISS and LISS show better performance than TCP Reno in
most cases, while JS generates massive packet drops even
though it shows excellent 5 s throughput. MISS does not
performs well with connections with short duration both
in terms of the 5 s throughput and the total throughput.

Overall, ISS, LISS and ]S show similar behavior when
the mean connection duration time changes. However,
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Fig. 19. Server throughput with varying bandwidth in 600-node topology with short-lived connections.

performance degradation of MISS for connections with
short duration is evident. As MISS requires a long running
TCP connection with occasional packet drops to calculate
cwnd using Eq. (5), we conjecture that MISS is not able to
obtain good cwnd values when the mean connection dura-
tion is short. Consequently, MISS may be effective only
when the multimedia-like workload is considered.

5.4. Comparison with other methods

In this subsection, the performance of LISS is compared
with modified versions of TCP Fast Start [7] and Zhang
et al. [6]. For the purpose of reference, we call the first
method the “cached” method and the second one the
“averaged” method. With the cached method, when there



3944

4000
3500
3000
2500
2000
1500
1000

500

oLIss

BCache

Packets

DOAverage

1 2 3 4 5 6 7 8 9
Bandwidth (Mbps)

(a) Initial 5 second throughput.

Packets

I Yu, R. Newman /Computer Networks 55 (2011) 3932-3946

200000
180000
160000
140000
120000

100000 L
80000 *‘I B
60000 I

3

40000
20000
0

N [—
1

4 5 6 7 8 9 10
Bandwidth (Mbps)

(b) Total throughput.

Fig. 20. Server throughput with varying bandwidth in 600-node topology for LISS, the cached method (labeled as cache) and the averaged method (labeled

as average).

is an active connection sharing the same subnet with a
new connection, the ssthresh value of the active connection
is chosen for that of the new connection. Otherwise, when
there is a cached ssthresh value having the same destina-
tion with a new connection, the cached value is used. If
there is no cached value, the default ssthresh is used as de-
scribed earlier in this section. For the averaged method,
each subnet samples the cwnd value of each connection
to the server and the number of the connections in the sub-
net, with the sampling interval of 1s. The accumulated
cwnd values are divided by the number of the connections
sampled during the last 5 min to obtain the average cwnd
value. This average value is updated every minute and then
it is used as ssthresh for a new connection.

A typical simulation result of these three methods is
shown in Fig. 20, where the simulation parameters are the
same as in Fig. 19. The cached method is comparable to LISS,
whereas the averaged method shows worse performance
than the other two. With different simulation scenarios, it
was found that the performance of the cached method im-
proved when cached ssthresh values were recent, while LISS
outperformed when there was a good chance to find con-
nections sharing the same bottlenecks with a new connec-
tion. For example, when connections were long-lived ones,
LISS showed the best performance, whereas the cached
method showed good performance when it could find re-
cent cache values with short-lived connections. The aver-
aged method consistently underperformed throughout
simulations, and this may be attributable to its low sam-
pling rate and averaging rate. However, increasing those
rates would imply more overhead.

From the observation above, in comparison with LISS,
the cached method can be beneficial when a new connec-
tion has no other connection sharing the same bottlenecks.
Naturally, LISS also can benefit from adopting the cached
ssthresh values when these values are not too old. How-
ever, it is not clear how old is not too old as will be dis-
cussed in the next section.

6. Discussion

A few implementations of the TCP protocol do not reset
the ssthresh value for at least several minutes when the TCP
connection is idle [18]. This is based on the assumption

that the network conditions might be steady at least for
several minutes [36,37]. The same assumption can be ap-
plied to connections terminated a few minutes earlier. If
we can find the bandwidth of recently terminated connec-
tions of the same subnet, an estimate of a new connection
bandwidth can be obtained. But how about the connec-
tions terminated more than a few minutes earlier? To an-
swer this question it is necessary to measure extensive
Internet traffic dynamics for long durations that is not in
the scope of this study.

Another issue that should be considered is a method to

ntify subnets with common bottlenecks. The Autono-
mous System (AS) prefix table from Border Gateway Proto-
col (BGP) can be used in locating web client clusters [38]. If
the AS prefix table is not available, Internet tomography
can be considered [39]. However, many probe packets are
necessary to get a good estimate using this technique.
FlowMate [40] shows that it is possible to find connections
with shared bottleneck links in the OS kernel effectively.
For simplicity, we may take the prefix of subnet mask
/24 assuming that most subnets have the subnet mask of
/24. In fact, IP addresses with prefixes longer than /24
show strong geographical locality as found in Freedman
et al. [41]. Also, it is reported in Cherkasova and Gupta
[42] that there is temporal and geographic locality of med-
ia requests from clients to a server, increasing the chance
to find connections with shared bottlenecks within a rea-
sonable time window.

To get a better cwnd value, Eq. (5) can be refined. One
way is to use L and S/w, from Eq. (2) in Eq. (5). As Eq. (5)
does not work well with short-lived connections, this can
be of help. For another, if 7,—(t.—t;)<R in Eq. (5), it
may imply that competing connections fill up the bottle-
neck earlier than when the next RTT terminates. In this
case, packet pacing during the next RTT could be too
aggressive and we can try to transmit

T — (tc—t)

R cwnd,
packets in t; — (t;. — t;). Unfortunately, the performance of
this scheme was not satisfactory. It seems Eq. (5) can be
used only as a coarse predictor of available bandwidth in
the bottleneck.
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7. Conclusion

We introduced LISS, ISS, MISS, and ]S as TCP initial start-
up models. LISS and ISS are the same as the original TCP
slow start algorithm except for ssthresh calculation. JS is
analogous to Zhang et al. [6], while the latter relies on a
network monitor to obtain ssthresh.

Each model determines an initial ssthresh value of a new
TCP connection. In addition, MISS tries to estimate a non-
intrusive initial cwnd value to reduce the impact on the
router, while JS uses ssthresh as the initial cwnd. MISS
and ]S also use packet pacing during slow start.

By way of simulation, the initial 5 s throughput and the
total throughput of our schemes are compared against TCP
Reno. The fast ramp-up of cwnd up to the ssthresh value
helps to achieve higher throughput, when the router is
equipped with reasonable queue size in a homogeneous
network where fairness of TCP is easier to observe. In con-
trast, when a network is large and heterogeneous, the total
throughput of our schemes tends to be lower than that of
TCP Reno, as it becomes harder to determine good cwnd
and ssthresh values. More importantly, as the initial cwnd
and ssthresh values are large with large delay bandwidth
product paths, packet drops are more likely to occur in a
router with a small queue. It is also evident that the initial
TCP start-up performance depends on cwnd increment pol-
icy. Even though it was not shown in the simulation, ]S
without packet pacing is prohibitive as it generates mas-
sive packet drops with large networks. In fact, JS generates
sizeable packet drops even when packet pacing is engaged
on the large delay bandwidth product path. However, it
should be noted that packet drops are significantly reduced
if routers have large queueing buffers for the large delay
bandwidth product paths, achieving almost the same total
throughput of ISS and LISS.

In conclusion, we believe MISS can work well within an
ISP equipped with multimedia servers, where the average
delay between clients and servers is small without requir-
ing that routers have large buffers. In practice, Content Dis-
tribution Networks (CDN) like Akamai [43] use a similar
architecture by placing dedicated (cache) servers at strate-
gic locations nearby clients. In such cases, MISS can pro-
vide multimedia content to users with much less delay
than TCP Reno without sacrificing the total throughput.

In situations where subscribers in large and heteroge-
neous networks with short-lived sessions should be consid-
ered, we believe LISS is a good choice. LISS does not require
modification of the TCP algorithm and improves the TCP
start-up performance even with routers with a limited buf-
fer size. Simply, with LISS, cwnd of the oldest connection
can be used to obtain ssthresh of a new TCP connection.
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