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a b s t r a c t

In this paper, the quality of service multicast routing and channel assignment (QoS-MRCA) problem is
investigated. It is proved to be a NP-hard problem. Previous work separates the multicast tree construction
from the channel assignment. Therefore they bear severe drawback, that is, channel assignment cannot
work well with the determined multicast tree. In this paper, we integrate them together and solve it by
intelligent computational methods. First, we develop a unified framework which consists of the problem
formulation, the solution representation, the fitness function, and the channel assignment algorithm.
Then, we propose three separate algorithms based on three representative intelligent computational
methods (i.e., genetic algorithm, simulated annealing, and tabu search). These three algorithms aim to
hannel assignment
enetic algorithm
imulated annealing
abu search

search minimum-interference multicast trees which also satisfy the end-to-end delay constraint and
optimize the usage of the scarce radio network resource in wireless mesh networks. To achieve this goal,
the optimization techniques based on state of the art genetic algorithm and the techniques to control
the annealing process and the tabu search procedure are well developed separately. Simulation results
show that the proposed three intelligent computational methods based multicast algorithms all achieve
better performance in terms of both the total channel conflict and the tree cost than those comparative

references.

. Introduction

Wireless mesh networks (WMNs) [1] have emerged as a new
aradigm of static multi-hop wireless networks. A typical wireless
esh network consists of two types of wireless nodes, i.e., mesh

outers and mobile clients. Each mesh router functions as both a
elay node and an access point. As a relay node, a mesh router can
orward packets to other mesh routers according to the routing
nformation. As an access point, a mesh router can forward packets
rom or to the mobile clients which are currently associated with it.

esh routers are stationary with power supply while clients may
oam and change the associated mesh routers. In the wireless mesh
etworks, all the mesh routers are self-organized to establish ad hoc
etworks and maintain the network topology. As a result, WMNs
ave the advantages of easy deployment, high reliability, and large
overage. There is an increasing interest in using WMNs to provide

biquitous network connectivity in enterprises, campuses, and in
etropolitan areas [2].
Multicast [3–5] is an important network service, which is the

elivery of information from a source to multiple destinations
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simultaneously using the most efficient strategy to deliver the mes-
sages over each link of the network only once, creating copies only
when the links to the destinations split. It provides underlying net-
work support for collaborative multimedia applications such as
multimedia conference, distant education and content distribution.
Quality of service requirements [6] proposed by different multime-
dia applications are often versatile. Among them, end-to-end delay
[7,8] is a pretty important QoS metric since real-time delivery of
multimedia data is often required. The multicast tree cost, used to
evaluate the utilization of network resource, is also an important
QoS metric especially in wireless networks where limited radios
and channels are available. However, little work has addressed QoS
multicast in WMNs.

In WMNs, if two mesh routers falling into the radio transmission
range want to enable the communication link between them, they
must tune their radios to the same channel. However, the wireless
interference occurs when two links whose distance is less than 2
hops away are assigned to the same channel to support the concur-
rent communications, which is termed as channel conflict [9]. The

heavy interference caused by channel conflict degrades the per-
formance of the wireless communication severely. Therefore, for
multicast routing, each link on the multicast tree requires to be
assigned to one channel and the assignment should lead to mini-
mum interference. Therefore, the QoS multicast routing in WMNs

dx.doi.org/10.1016/j.asoc.2010.06.011
http://www.sciencedirect.com/science/journal/15684946
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nvolves not only to search a routing tree but also to assign proper
hannels to its links. In fact, the minimum-interference channel
ssignment problem itself is basically the Max K-cut problem [2],
hich is known to be NP-hard. Since our QoS-MRCA problem is

he routing tree construction plus minimum-interference channel
ssignment, it is also NP-hard.

So far the QoS multicast routing has not drawn much attention
rom the research community of WMNs. However, it is believed
hat efficient multicast, which cannot be readily achieved through
ombined unicast or simplified broadcast, is essential to WMNs and
eserves a thorough investigation [10]. In this paper, we develop a
nified framework for solving the WMN multicast problem using

ntelligent computational methods. This framework consists of
he problem formulation, the solution representation, the fitness
unction, and a simple yet effective channel assignment algorithm
hich assigns channels to each searched multicast tree for reliev-

ng the channel conflict. Based on the framework, we propose three
fficient QoS multicast routing algorithms based on genetic algo-
ithm (GA) [11], simulated annealing (SA) [12], and tabu search
TS) [13], separately. All of them aim to search low cost routing
rees on which the channel assignment can produce the minimum
nterference. The idea is that for each searched delay-bounded mul-
icast tree, we first assign channels to its links by the proposed
hannel assignment algorithm, and then evaluate it by the total
hannel conflict and tree cost. Since the channel assignment strat-
gy is fixed, intuitively by examining more candidate routing trees,
e can find the one on which the minimum-interference channel

ssignment can be achieved. Hence, the strong search capability of
A, SA and TS can be well utilized to solve this problem. Further-
ore, these algorithms integrate the multicast tree construction

nd channel assignment, thereby avoiding that channel assignment
annot work well with the determined multicast tree.

The rest of this paper is organized as follows. We discuss related
ork in Section 2. We describe the framework in Section 3. We
resent the proposed GA, SA and TS based QoS-MRCA algorithms

n Sections 4–6, separately. We present our simulation results in
ection 7 and conclude this paper in Section 8, respectively.

. Related work

Similar as mobile ad hoc networks (MANETs) [14], a wireless
esh network is also a type of self-organizing wireless network.
owever, there are three main differences between them. First,
odes in MANETs are often moving while mesh routers in WMNs
re normally stationary. Second, in MANETs all the mobile nodes
ork in a peer-to-peer fashion and each node forwards packets on

ehalf of other nodes, while in WMNs a hierarchy is formed where
esh routers form a backbone and mesh clients can only access

heir associated mesh routers. Third, a mobile node in MANETs is
ormally equipped with one radio while a mesh router in WMNs is
quipped with at least two radios.

In MANETs, a number of multicast routing protocols, using a
ariety of basic routing algorithms and techniques, have been pro-
osed over the past few years [14]. However, they mainly focus on
he discovery of the optimal multicast forwarding structure (i.e.,
ree or mesh) spanning mobile nodes and do not need to consider
he channel assignment problem. In MANETs, since a mobile node

ay be equipped with a Global Positioning System (GPS) device,
eographical information can also be utilized for route discovery.
herefore, according to the type of the utilized information, the

ulticast routing protocols in MANETs can be classified as topo-

ogical routing and geographical routing.
In WMNs, little work has been done on multicast routing due to

ts intractability. In [10], Zeng proposed the Level Channel Assign-
ent (LCA) multicast algorithm which is a deterministic one. The
puting 11 (2011) 1953–1964

LCA multicast algorithm is composed of two components. First,
it constructs a multicast tree based on breadth first search (BFS)
aiming to minimize the hop count distances between the source
and the receivers. Second, it uses a dedicated strategy to assign
channels to the tree aiming to reduce the interference. However,
since LCA separates the construction of the multicast tree from the
channel assignment, it bears a potential drawback, that is, channel
assignment cannot work well with the determined multicast tree.
Furthermore, it does not consider the delay constraint which is a
common issue for multicast problems. To our best knowledge, so
far LCA is the best multicast algorithm in WMNs.

Genetic algorithm is a type of stochastic meta-heuristic opti-
mization method that models the biological principles of Darwinian
theory of evolution and Mendelian principles of inheritance [15,16].
Genetic algorithm has been extensively used in solving the QoS
multicast problems in various networks such as the wired multi-
media networks [4] and optical networks [17].

Simulated annealing algorithm simulates the annealing process
in the physics of solids. It is observed that a metal body heated to
high temperature cools slowly and tends to a state with the least
internal energy. SA regards the optimization problem as a physi-
cal system and the value of the objective function as its internal
energy. With this analogy, annealing is the process of determining
a solution with the least value of the objective function. Simulated
annealing algorithm is a powerful tool to solve the combinatorial
optimization problems. It has been applied to the QoS multicast
routing in the wired networks such as the multimedia communi-
cation networks [4,18].

Tabu search is a meta-heuristic that can lead a local search pro-
cedure to explore the solution space beyond local optimality. Tabu
search uses a local or neighborhood search procedure to iteratively
move from a solution x to a solution x′ in the neighborhood of x, until
some stopping criterion has been satisfied. Compared with other
meta-heuristics such as genetic algorithm and simulate annealing,
tabu search is more general and conceptually much simpler. How-
ever, TS still shows comepeting performance when it is used for
solving many combinatorial optimization problems. Tabu search
has been applied to the QoS multicast routing in the wired networks
such as the multimedia communication networks [4,19].

In [4], the binary encoding is adopted where each bit of the
binary string corresponds to a different node in the network. For
each binary string, a graph G′ is derived from the network topol-
ogy G by including all the nodes appearing in the string and the
links connecting these nodes. Then the minimum spanning tree T
of G′ acts as the candidate multicast tree represented by the binary
string. This encoding method is a bit complicated and each binary
string cannot directly represent the candidate solution. A multicast
tree is a union of the routing paths from the source to each receiver.
Hence, it is a more natural choice to adopt the path-oriented encod-
ing method [17,20] than the binary encoding.

In [18], the path-oriented encoding is adopted. For each destina-
tion, a backup-path-set is constructed consisting of the k shortest
(i.e., least-delay) paths from the source to it. Each time the SA algo-
rithm generates a neighbor of a multicast tree by replacing its one
path using a randomly selected backup path. Assuming m is the
number of the destinations, each candidate solution is just one com-
bination of m paths from the m backup-path-sets. Therefore, the
size of the candidate solution space is limited by all the backup-
path-sets. The performance of the algorithm will be hindered by
the limited size of the solution space to be explored.

In [19], the path-oriented encoding is also employed. For each

destination, a sink tree is constructed by connecting it to the source
and all the other destinations using the shortest (i.e., least-cost)
paths. On the sink tree, each path from the tree root to a leaf node
is named as a superpath. Each iteration the TS algorithm first gen-
erates a few neighbors of a multicast tree by replacing its one
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uperpath using a few randomly selected superpaths separately.
hen, among these new neighbors, the one with the best cost is
elected, and considered as the new solution for the next itera-
ion. If a superpath is deleted at one iteration, then reintroducing
he same superpath to the current tree is tabu. Assuming m is the
umber of the destinations, there are m sink trees. Each candidate
olution is just one combination of m paths from the m sink trees.
herefore, the size of the candidate solution space is limited by all
he sink trees. The performance of the algorithm is hindered by the
imited solution space to be explored.

We are not aware of any other work that jointly considers mul-
icast routing, which further consists of channel assignment as
ell as QoS in multiradio multichannel wireless mesh networks,

lthough there are quite a few works that are related to some rele-
ant aspects. Since GA, SA and TS show good performance in the
ired networks, we believe their strong search capabilities can

lso help find low cost low interference routing trees in wireless
esh networks. However, to our best knowledge, none of them

as been addressed to solve the QoS multicast routing and channel
ssignment problem in WMNs.

. A unified framework for QoS-MRCA using intelligent
omputational methods

This section describes the proposed unified framework for
olving the QoS-MRCA problem using intelligent computational
ethods. First, the network is modelled and the problem is formu-

ated. The objective function is determined to minimize the total
hannel conflict. Then, two common components required by all
he intelligent computational methods are provided, i.e., the solu-
ion representation and the fitness function. Finally, a simple yet
ffective channel assignment algorithm is proposed to produce the
east channel conflict on any multicast tree.

.1. Problem formulation

In this section, we first present our network model and then
ormulate the problem of joint QoS multicast routing and channel
ssignment.

We consider a wireless mesh network with stationary mesh
outers where each router is equipped with a certain number of
adio network interface cards (NICs). We model a wireless mesh
etwork by a undirected and connected topology graph G(V, E),
here V represents the set of mesh routers and E represents the set

f communication links connecting two neighboring mesh routers
alling into the radio transmission range. A communication link (i,
) can not be used for packet transmission until both node i and
ode j have a radio interface each with a common channel. In addi-
ion, message transmission on a wireless communication link will
xperience a remarkable delay.

For clarity of presentation, we assume the binary interference
odel, i.e., two communication links either interfere or do not

nterfere. Given the binary interference model, the set of pairs of
ommunication links that interfere with each other over the same
hannel can be represented by a conflict graph [9]. A communi-
ation link in the topology graph corresponds to a vertex in the
onflict graph. With the binary interference model, the conflict
raph Gc (Vc, Ec) can be easily derived from the topology graph
(V, E). We assume the communication links (a, b) and (c, d) in the

opology graph G(V, E) are represented by the node ic and node jc

n the conflict graph Gc (Vc, Ec), respectively. Then if the minimum
istance between (a, b) and (c, d) is less than two hops, we have (ic,

c) ∈ Ec.
Here, we summarize some notations that we use throughout

his paper.
puting 11 (2011) 1953–1964 1955

• G(V, E), the WMN topology graph.
• Gc(Vc, Ec), the conflict graph derived from the WMN topology

graph.
• K = {0, 1, 2, . . ., k}, the set of available orthogonal channels.
• s, the source node of the multicast communication.
• R = {r0, r1, . . ., rm}, the set of receivers of the multicast communi-

cation.
• T(VT, ET), a multicast tree with nodes VT and links ET.
• VLeaf

T , the set of leaf nodes on the tree T.
• PT(s, ri), a path from s to ri on the tree T.
• dl, the delay on the communication link l.
• IT(f), the total channel conflict on the tree T.
• CT, the cost of the tree T.

The problem of joint QoS multicast routing and channel assign-
ment in a multiradio multichannel wireless mesh network can be
informally described as follows. Given a network of mesh routers
with multiple radio interfaces, a delay upper bound, a source node
and a set of receivers, we wish to find a delay-bounded multicast
tree and assign a unique channel to each communication link on
the tree. We define the total channel conflict as the number of pairs
of communication links on the tree that are interfering (i.e., are
assigned the same channel and are connected by an edge in the
conflict graph). The objective of our problem is to minimize the
above defined total channel conflict, as it results in improving the
system throughput [10].

We also want to optimize the usage of the scarce network
resources in the multicast tree. So we define the tree cost as the
number of the radio interfaces involved in the multicast commu-
nications. We aim to find a multicast tree with low cost. There are
two factors related to the tree cost. One is the number of commu-
nication links on the tree. Each communication link has one sender
and one receiver, thereby occupying two radio interfaces. So we
should reduce the number of links on the multicast tree, which
also helps reduce the multicast end-to-end delay. The other factor is
the number of broadcast nodes generated from the channel assign-
ment. We make all the branch nodes become broadcast nodes by
exploiting wireless multicast advantage (WMA) [21] and the detail
is described in Section 3.4. If there are several multicast trees which
have the same channel conflict value, we will choose the one with
the minimum tree cost.

More formally, consider a wireless mesh network G(V, E) and a
multicast communication request from the source node s to a set of
receivers R with the delay upper bound �. The joint QoS multicast
routing and channel assignment problem is to find a multicast tree
T(VT, ET) satisfying the delay constraint as shown in (1) and compute
a function f: ET → K defined in (2) to minimize the total channel
conflict IT (f) defined in (3).

max
ri ∈ R

⎧⎨
⎩

∑
l ∈ PT (s,ri)

dl

⎫⎬
⎭ ≤ �, (1)

f (ic ∈ ET ) = {j|j ∈ K}, (2)

IT (f ) = |{(ic, jc) ∈ Ec |f (ic) = f (jc), ic ∈ ET , jc ∈ ET }|. (3)

Since the source only transmits packets and all the leaf nodes
only receive packets, each of them occupies one radio interface

only. All the other nodes are branch nodes which need to do both
the transmission and reception. So each branch node occupies two
radio interfaces. As a result, the tree cost CT is calculated as follows:

CT = |{s}| + |VLeaf
T | + 2 × (|VT | − |{s}| − |VLeaf

T |). (4)
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Fig. 1. Illustration of the array representation of a multicast tree.

.2. Solution representation

A routing path is encoded by a string of positive integers that
epresent the IDs of nodes through which the path passes. Each
ocus of the string represents an order of a node. The first locus is
or the source and the last one is for the receiver. The length of a
outing path should not exceed the maximum length |V|, where V
s the set of nodes in the WMN.

For a multicast tree T spanning the source s and the set of
eceivers R, there are |R| routing paths all originating from s. There-
ore, we encode a tree by an integer array in which each row
ncodes a routing path along the tree. For example, for T spanning
and R, row i in the corresponding array A lists up node IDs on the

outing path from s to ri along T. Therefore, A is an array of |R| rows.
ig. 1 illustrates a multicast tree and its representation in an array.
ll the solutions are encoded under the delay constraint. In case it

s violated, the encoding process is usually repeated so as to satisfy
he delay constraint.
.3. Fitness function

Given a solution, we should accurately evaluate its quality (i.e.,
tness value), which is determined by the fitness function. In our
lgorithm, we aim to find a low cost multicast tree on which the
puting 11 (2011) 1953–1964

minimum-interference channel assignment can also be achieved.
Our primary criterion regarding solution quality is the total channel
conflict and the subsidiary one is the tree cost. Therefore, among a
set of candidate solutions (i.e., multicast trees) with the same mini-
mum channel conflict value, we choose the one with the lowest tree
cost. The fitness value of chromosome Chi (representing multicast
tree T), denoted as F(Chi), is given by:

F(Chi) = [IT (f ) + 1.0]−1. (5)

The proposed fitness function only involves the total channel
conflict. As mentioned above, The tree cost is used in the course
of selecting the elitism [22] for recording the searched optimal
solution.

3.4. Channel assignment algorithm

In a wireless mesh network, a link cannot be used for data
transmission until it has been assigned a wireless communica-
tion channel. To support the multicast communication over the
routing tree, an appropriate channel should be assigned to each
link on the tree so as to achieve the minimum interference (i.e.,
channel conflict). In addition, the number of available channels
is limited in the current network protocols. For example, in IEEE
802.11-based wireless networks, there are 11 available channels.
However, at most three of them are orthogonal (non-interfering).
The number of radio interfaces is also limited as a type of scarce
radio network resource. Hence the channel assignment should
use as small number of channels and radio interfaces as possi-
ble.

Since the minimum-interference channel assignment problem
is NP-hard, we propose a heuristic algorithm which aims to reduce
both the channel conflict and resource utilization. Given the set of
orthogonal channels K = 0, 1, . . ., k (k ≥ 2), the algorithm works on
the multicast tree T as follows.

Fig. 2 illustrates the channel assignment result over a multicast
tree. For each routing path, the algorithm uses three channels to
do the assignment. Since the minimum distance between two links
to avoid channel conflict is two hops, three is the least number of
channels to achieve conflict-free assignment on each routing path
of the multicast tree. By our assignment strategy, all the links orig-
inating from the same branch node are assigned the same channel

as utilizes the so-called WMA [21]. WMA refers to that a single
transmission can be received by all the nodes that are within the
transmission range of a transmitting node. Hence, using one radio
interface only, the branch node transmits packets to all its children.
This also saves the number of used radio interfaces.
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. GA based joint QoS-MRCA algorithm

This section describes the proposed GA based joint QoS multi-
ast routing and channel assignment algorithm. The GA operations
onsist of several key components: genetic representation, popu-
ation initialization, fitness function, selection scheme, crossover
nd mutation. Chromosomes (i.e., the candidate solutions) are
xpressed by tree data structure. The initial population explores
he genetic diversity and also exploits the knowledge we have
lready known. Fitness function returns the total channel conflict
f the multicast tree. Variation operators (i.e., crossover and muta-
ion) efficiently promote the search capability. Note that every step
uarantees that a tree does not violate the delay constraint. The
opulation keeps evolving until it converges.

.1. Population initialization

In GA, each chromosome corresponds to a potential solution.
he initial population Q is composed of a certain number, denoted
s q, of chromosomes. A general method to initialize the popula-
ion is to explore the genetic diversity, that is, for each chromosome,
ll its routing paths are randomly generated. We start to search a
andom path from s to ri ∈ R by randomly selecting a node v1 from
(s), the neighborhood of s. Then we randomly select a node v2 from
(v1). This process is repeated until ri is reached. Thus, we get a ran-
om path PT (s, ri) = {s, v1, v2, . . . , ri}. Since no loop is allowed on
he multicast tree, the nodes that are already included in the current
ree are excluded, thereby avoiding reentry of the same node.

However, to exploit the knowledge that we have already known,
e generate two multicast trees by the LCA multicast algorithm and

he shortest path tree algorithm, respectively. Then we add these
wo trees into the initial population. We hope that they can help
peed up the convergence. Thus, the initial population is generated
s follows.

Thus, the initial population Q = {Ch0, Ch1, . . ., Chq−1} is obtained.

.2. Selection scheme

Selection plays an important role in improving the average

uality of the population by passing the high quality chromo-
omes to the next generation. The selection of chromosome is
ased on the fitness value. We adopt the scheme of pair-wise tour-
ament selection without replacement [23] as it is simple and
ffective.
Fig. 2. Channel assignment over a multicast tree.

4.3. Crossover and mutation

Genetic algorithm relies on two basic genetic operators –
crossover and mutation. Crossover processes the current solutions
so as to find better ones. Mutation helps GA keep away from local
optima [20]. Performance of GA very depends on them. Type and
implementation of operators depends on encoding and also on a
problem.

In our algorithm, since chromosomes are expressed by tree data
structure, we adopt single point crossover to exchange partial chro-

mosomes (sub-trees) at positionally independent crossing sites
between two chromosomes [20]. With the crossover probability,
each time we select two chromosomes Chi and Chj for crossover.
To at least one receiver, Chi and Chj should possess at least one
common node from which one, denoted as v, is randomly selected.

In Ch , there is a path consisting of two parts: (s
Chi−→v) and (v

Chi−→r ).
i i

In Chj, there is a path consisting of two parts: (s
Chj−→v) and (s

Chj−→ri).

The crossover operation exchanges the paths (v
Chi−→ri) and (v

Chj−→ri).
Fig. 3 illustrates the crossover operation. Node 13 is the selected
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eceiver and node 11 is the selected common node. The paths
11 → 12 → 13) and (11 → 8 → 13) are swapped.

The population will undergo the mutation operation after the
rossover operation is performed. With the mutation probability,
ach time we select one chromosome Chi on which one receiver ri

s randomly selected. On the path (s
Chi−→ri) one gene is selected as

he mutation point (i.e., mutation node) denoted as v. The mutation

ill replace the path (v
Chi−→ri) by a new random path.

Both crossover and mutation may produce new chromosomes
hich are infeasible solutions. Therefore, we check if the multicast

rees represented by the new chromosomes are acyclic. If not, repair
unctions [24] will be applied to eliminate the loops. Here the detail
s omitted due to the space limit. All the new chromosomes pro-
uced by crossover or mutation satisfy the delay constraint since it
as already been taken into consideration.

. SA based joint QoS-MRCA algorithm

This section describes the proposed SA based joint QoS multi-
ast routing and channel assignment algorithm. The SA operations
onsist of the following key components: solution representation,
eighborhood structure, initial temperature, temperature decreas-

ng, iterative length at each temperature, and the termination rule.
ote that every step also guarantees that a multicast tree does not
iolate the delay constraint.
rossover operation.

We adapt SA to the joint multicast routing and channel assign-
ment problem, and the objective function is just the fitness
function, which returns the total channel conflict of the multi-
cast tree. The fitness value just simulates the internal energy.
First, the initial solution is generated by comparing the LCA tree
and the SP tree in terms of the total channel conflict. Then we
start the annealing process at a high temperature. As the tem-
perature decreases, the annealing process tries to converge to the
optimal solution. At each temperature, the algorithm searches a
number of solutions in the solution space so that the current
optimal solution stabilizes at a fitness value. When the temper-
ature decreasing number reaches a specified upper bound and
the current optimal solution keeps unchanged, the algorithm ter-
minates and outputs the current optimal solution as the final
solution.

5.1. Initial solution

Given the source and a set of receivers, both the LCA multi-
cast algorithm and the shortest path tree algorithm can produce
their own multicast trees. Intuitively, if we start the search from
them, a better solution can be obtained. Therefore, we calculate
the total channel conflict values for both the LCA tree and the SP
tree. Then, we select the one with less value as the initial solution
Q.
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Fig. 4. Construction of a fine-grain neighborhood.

.2. Neighborhood structure

Since SA performs searching from one solution to one of its
eighbors in the solution space, we need to determine the neigh-
orhood structure of each solution. In accordance with the solution
epresentation, we propose two methods to construct the neigh-
orhood.

(a) First, randomly select one receiver ri from R, and randomly
select another node vi on the path (s → ri). Then replace the
subpath (vi → ri) by a new random subpath.

b) First, randomly select two receivers ri and rj from R, and ran-
domly select another two nodes vi and vj on the paths (s → ri)
and (s → rj), respectively. Then replace the subpaths (vi → ri)
and (vj → rj) by new random subpaths, respectively.

Given the current solution, a new neighbor solution will be pro-
uced using either of the above two methods. The first method only
hanges one path on the tree while the second method changes
wo paths at the same time. Intuitively, the adjustment to the
ree is relatively smaller in (a) than in (b). So we name the first

ethod as the fine-grain adjustment and the second method as
he coarse-grain adjustment. Fig. 4 illustrates how to construct the
eighborhood by the fine-grain adjustment. In the neighbor, a new
ath (9 → 8 → 12) is used to replace the path (9 → 11 → 12) in the
revious solution. In the proposed algorithm, we apply the fine-
rain adjustment in the first half of the temperature decreasing
rocedure, and then the coarse-grain adjustment in the second
alf of the temperature decreasing procedure. Therefore, we can
nt only guarantee the algorithm converges to the optimal solu-
ion theoretically, but also accelerate the procedure to improve the
fficiency.

.3. Initial temperature
We start the SA algorithm from a high temperature (T0) in order
o allow acceptance of any new neighbor solution. A reasonable
etting of the initial temperature will reduce the waste of the search
ime and still allow virtually all proposed uphill or downhill moves
o be accepted [18]. In this algorithm, we set T0 = 100.
puting 11 (2011) 1953–1964 1959

5.4. Temperature decreasing

We employ the following method:

Tk+1 = ˛ × Tk(0 ≤ k, 0 < ˛ < 1). (6)

This method is widely used, simple but effective. By this method,
the temperature decreases at the same ratio.

5.5. Iterative length at each temperature

In our algorithm, the iterative length at one temperature is pro-
portional to the number of temperature decreasing counted so far.
We use Li to denote the maximum iteration number allowed at tem-
perature Ti, and Mi to denote the maximum number of continuous
iterations without improving the present optimal solution allowed
at Ti. As the temperature gradually decreases to Ti, both Li and Mi
should become larger simultaneously to explore more candidate
solutions in the solution space.

We employ the method of linear increasing, that is, the max-
imum iteration number allowed at temperature Ti is in direct
proportion to the up-to-now times of temperature decreasing, and
the maximum number of continuous iterations without improving
the present optimal solution allowed at Ti is in direct proportion to
the maximum iteration number allowed at the same temperature.
The method is formulated as follows:

Li = (i + 1) × ı × �, (7)

Mi = ω × Li, (8)

where � is the size of the receiver set, serving as the cardinal num-
ber. Since in each iteration, we need to change the path to one
receiver. Ideally, we hope the paths to all the receivers will undergo
the change at the same temperature. Li limits the iteration number
at the same temperature to speed up the convergence, and Mi helps
stop the iteration at Ti since the search may be stuck in the local
optimum.

5.6. Termination rule

The termination rule employed in this algorithm is to control the
maximum number of continuous temperature decreasing without
improving the present optimal solution. Let the maximum num-
ber of temperature decreasing be I, and the upper bound of the
continuous temperature decreasing without improving the present
optimal solution be U. They have the following relationship:

U = � × I (0 < � < 1). (9)

In the proposed algorithm, during the first half period of tem-
perature decreasing, i.e., from T0 to T�I/2	, we generate a neighbor
solution by the coarse-grain method; during the second half period
of temperature decreasing, i.e., from T�I/2	+1 to TI, we generate a
neighbor solution by the fine-grain method. During the first half
period, it is more likely that the difference between the current
solution and the global optimal solution is relatively large. So we
change two paths to two receivers at each iteration. During the sec-
ond half period, the difference may become smaller. So we change
only one path at each iteration. This design philosophy can help
reduce the overhead of the fitness function calculation. Moreover,
the algorithm can be theoretically assured to find the global optimal
solution as the iteration approach infinity.
6. TS based joint QoS-MRCA algorithm

This section describes the proposed TS based joint QoS multi-
cast routing and channel assignment algorithm. The TS operations
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onsist of the following key components: solution representa-
ion, initial solution, neighborhood structure, fitness function, tabu

ove, tabu list, aspiration criterion, and termination rule. Note that
very step guarantees that a multicast tree does not violate the
elay constraint.

We adapt TS to the joint multicast routing and channel assign-
ent problem, and the objective function is just the fitness

unction, which returns the total channel conflict of the multicast
ree. First, the initial solution is generated. For the current solution,
ne of its neighbors is determined by the random path replacement.
hen TS moves from the current solution to its neighbor, even this
ove deteriorates the fitness value. To explore more unvisisted

olutions, solutions that have been recently visited are tabu for a
ew iterations. An aspiration criterion is proposed to free the solu-
ions in tabu status to continue the search. When the number of
ontinuous iterations without improving the current optimal solu-
ion reaches the specified upper bound, the algorithm ends and
utputs the best solution that TS has ever visited as the final solu-
ion.

.1. Initial solution

The method to generate the initial solution is the same as in the
A based algorithm.

.2. Neighborhood structure

Since TS performs searching from one solution to one of its
eighbors in the neighborhood, we need to determine the neigh-
orhood structure of each solution. In accordance with the solution
epresentation, we propose the following method to construct the
eighborhood. First, randomly select one receiver ri from R, and
andomly select another node vi on the path (s → ri). Then replace
he subpath (vi → ri) by a new random subpath to generate a neigh-
or solution. However, the replacement should guarantee that the
elay constraint is not violated. It is similar as the fine-grain adjust-
ent method in the SA based algorithm.

.3. Tabu move

According to the solution representation and the neighborhood
tructure, each tabu move is a replacement of a subpath from a
on-leaf node to a receiver. A new solution is reached after a move.
hree cases may appear after each move.

a) The fitness value of the new solution is greater than that of the
original solution. That is, the new solution is superior to the
original one.

b) The fitness value of the new solution is equal to that of the orig-
inal solution. That is, the new solution has the same quality as
the original one in terms of the total channel conflict. However,
they may still have different tree costs.

c) The fitness value of the new solution is less than that of the orig-
inal solution. That is, the new solution is inferior to the original
one.

In the algorithm, each iteration we randomly select one node
air {v1, r1}. Then we replace the subpath (v1 → r1) by another
ifferent random subpath. Thus, a new solution is generated as a
eighbor and its fitness value is calculated.
.4. Tabu list

A tabu list is maintained to prevent returning to previously vis-
ted solutions. Each iteration we generate one neighbor. Without
oss of generality, we assume that the neighbor is generated by
puting 11 (2011) 1953–1964

replacing (v1 → r1). Then we push the subpath (v1 → r1) into the
tabu list. As a result, one subpath is tabu each time. Since the new
neighbor is selected, it is necessary to forbid the addition of the sub-
path (v1 → r1), otherwise the solution may return to the previously
visited one in the following iterations.

The size of the tabu list is set to �|R|/2	, where R is the set of
receivers.

6.5. Aspiration criterion

Aspiration criterion is a device used to override the tabu status
of moves whenever appropriate [19]. It temporarily overrides the
tabu status if the move is sufficiently good. In our algorithm, at
each iteration a new subpath is generated randomly. However, if
the new path is currently in the tabu list, it cannot be used. Then
we generate another new subpath randomly. If this new subpath
is also in the tabu list, of these two tabu subpaths we will free the
one which lies closer to the tabu list head.

6.6. Termination rule

In the algorithm, we record the current optimal solution and we
also record the number of continuous iterations without improv-
ing it. Therefore, the termination rule employed is to control the
maximum number of continuous iterations without improving the
present optimal solution. We calculate the ratio of this number to
the total iteration number. If the ratio exceeds the specified upper
bound � , we believe that to run the algorithm further will not con-
tribute any improvement to the optimal solution. Therefore, we
terminate the search to reduce the overhead. In the algorithm, we
set � to 0.3.

The maximum number of iterations is given to guarantee that
the algorithm will terminate after sufficient search has been done.
We denote W as the total number of iterations. As suggested in [19],
we set W to 500. We denote U as the upper bound of the continuous
iterations without improving the current optimal solution. We have

U = � × W (0 < � < 1). (10)

So when U is reached, the algorithm will terminate. In the algo-
rithm, � ≤ 0.3.

7. Performance evaluation

In this section, we compare the proposed three joint QoS-MRCA
algorithms with the LCA multicast algorithm [10] and the shortest
path tree algorithm. LCA separates the multicast tree construction
from the channel assignment. If the channel assignment strategy
cannot work well on the determined multicast tree, the LCA algo-
rithm can do nothing while our algorithms can search other trees.
The shortest path tree algorithm also provides a deterministic tree
without considering the proper channel assignment.

A random WMN topology is generated using the following
method. We first specify a square region with the area of 200 × 200
that has the width [0, 200] on the x axis and the height [0, 200] on
the y axis. Then we generate a certain number of nodes and the posi-
tion (x, y) of each node is randomly specified within the square area.
If the distance between two nodes falls into the radio transmission
range D, a link will be added to connect them and the delay of this
link is randomly assigned within the range [1,5]. Finally, we check
if the generated topology is connected. If not, the above process
is repeated until a connected topology is generated. In the experi-

ments, D is given a reasonable value 50. In GA, SA, and TS, we have
a few algorithmic parameters and we list their suggested values in
Table 1.

Without loss of generality, we assume that each mesh router
has two radio network interface cards: one for transmission and
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Table 1
Algorithmic parameters and their suggested values.

Parameter variable Parameter description Suggested value

p (GA) Population size 50
�c (GA) Crossover probability 0.8
�m (GA) Mutation probability 0.05
T0 (SA) The initial temperature 100
˛ (SA) The coefficient of temperature decreasing 0.95
ı (SA) The coefficient of the maximum iteration number allowed at one temperature 1
ω (SA) The coefficient of the maximum number of continuous iterations without improving the present

optimal solution allowed at one temperature
0.50

� (SA) The coefficient of the maximum number of continuous temperature decreasing without improving the
present optimal solution

0.30
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have the same cost as the LCA multicast trees, and the SA multicast
trees have the same cost as the TS multicast trees. However, when
the multicast group size is equal to or greater than 6, the cost of the
TS multicast trees is higher than the GA and SA multicast trees. In
� (TS) The ratio of the number of continuous iteration
the total iteration number

� (TS) The coefficient of the number of continuous ite
� Delay upperbound

he other for reception. We assume that there are three orthogo-
al channels as the case in 802.11 wireless network. We compare
he GA, SA and TS multicast algorithms with the LCA multicast
lgorithm and the shortest path tree algorithm on two different
etwork topologies. One is small scale consisting of 23 nodes and
4 links and the other is larger consisting of 50 nodes and 201 links.
he topology for the small scale network is shown in Fig. 5. The met-
ics that we evaluate include the total channel conflict, the tree cost,
he average tree delay, and the maximum tree delay. Each exper-
ment is terminated when the population converges in GA or the
ermination condition is satisfied in either SA or TS.

In Section 3.3, we have mentioned that our primary optimiza-
ion objective regarding solution quality is the total channel conflict
nd the subsidiary one is the tree cost. In Formula (5), the fitness
unction is related to the total channel conflict value only. The tree
ost value is used only when two multicast trees have the same
hannel conflict values. In such a case, the tree with less cost will
e selected. However, it is interesting to investigate the use of both
ptimization objectives in the fitness function. In Section 7.1, the
tness function follows the one in Formula (5) and there is only
ne optimization objectives. In Section 7.2, we develop a new fit-
ess function which combines these two optimization objectives

inearly.

.1. Results under single-objective optimization
In the WMN of 23 nodes, the size of the multicast group ranges
rom 3 to 11 while in the WMN of 50 nodes it ranges from 9 to 17.
ig. 6 shows the comparison results in terms of the total channel
onflict. It shows that in both networks, our GA, SA and TS multicast

Fig. 5. The topology of the WMN with 23 nodes.
out improving the current optimal solution to 0.30

s without improving the current optimal solution 0.30
30

algorithms can find the multicast trees with less channel conflict
than the trees obtained by the LCA multicast algorithm and the SPT
multicast algorithm. In the network of 23 nodes, all the three pro-
posed algorithms can find the conflict-free multicast trees when
the multicast group size is less than or equal to 7. When the num-
ber of multicast nodes is beyond 7, GA multicast can still find the
conflict-free multicast trees.

Fig. 7 shows the comparison results in terms of the tree cost. It
shows that the LCA and SPT multicast trees always have higher cost
than any of the tree intelligent methods. It means that the GA, SA
and TS multicast trees consume less radio network resources than
both the LCA and SPT multicast trees. In the network of 23 nodes,
when the multicast group size is less than 6, the GA multicast trees
Fig. 6. Comparison of GA, SA, TS multicast and LCA multicast, SPT multicast in terms
of the total channel conflict in: (a) a WMN of 23 nodes; (b) a WMN of 50 nodes.



1962 H. Cheng, S. Yang / Applied Soft Computing 11 (2011) 1953–1964

F
o

t
t

d
t
t
a
o
m
b
f
o
o
a
t
r
a
n
F
t
i
c
t

7

b
n
i
i
m
i
t

Fig. 8. Comparison of GA, SA, TS multicast and LCA multicast, SPT multicast in terms
of the average tree delay in: (a) a WMN of 23 nodes; (b) a WMN of 50 nodes.
ig. 7. Comparison of GA, SA, TS multicast and LCA multicast, SPT multicast in terms
f the tree cost in: (a) a WMN of 23 nodes; (b) a WMN of 50 nodes.

he network of 50 nodes, among the three intelligent methods, TS
rees have the highest cost and GA trees have the lowest.

Fig. 8 shows the comparison results in terms of the average tree
elay. The average tree delay is defined as the average delay of all
he paths from the source to all the receivers on the tree. It shows
hat in the network of 23 nodes, the SPT multicast trees almost
lways have the lowest average delay. In the network of 50 nodes,
nly when the multicast group size is 9, the average delay of the LCA
ulticast tree is a bit lower than the TS tree. In all the other cases,

oth the LCA and SPT trees have higher cost than others. There-
ore, these five algorithms have competing performance in terms
f the average delay. Fig. 9 shows the comparison results in terms
f the maximum tree delay. The maximum tree delay is defined
s the maximum delay among all the paths from the source to all
he receivers on the tree. Similar as the average delay comparison
esults, in the network of 50 nodes the SPT multicast trees almost
lways have the highest end-to-end delay, and in the network of 23
odes, the five algorithms have the competing performance. From
igs. 8 and 9, the GA, SA and TS multicast algorithms do not improve
he delay performance no matter in the average delay or in the max-
mum delay. The reason is that they use long paths to avoiding the
hannel conflict. However, they still can find the trees which satisfy
he end-to-end delay constraint.

.2. Results under multi-objective optimization

Although both the total channel conflict and the tree cost have
een mentioned as the optimization objectives, only the total chan-
el conflict is used in the search procedure. The tree cost plays less
mportant role since it is just used for breaking the tie. To further
nvestigate the effects of both objectives on the algorithm perfor-

ance, we modify the fitness function by adding the tree cost value
nto it. These two optimization objectives are linearly combined
ogether and each has a different weight factor. The new fitness

Fig. 9. Comparison of GA, SA, TS multicast and LCA multicast, SPT multicast in terms
of the maximum tree delay in: (a) a WMN of 23 nodes; (b) a WMN of 50 nodes.
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ig. 10. Comparison of GA multicast in a WMN of 50 nodes under various weight
ombinations in terms of: (a) the total channel conflict; (b) the tree cost.

unction is shown below.

(Chi) = [˛ × IT + ˇ × CT ]−1. (11)

Since ˛ + ˇ = 1.0, we can have different combinations for these
wo weight factors by varying their values. Intuitively, the larger
he weight factor, the higher the importance of the corresponding
ptimization objective. In the following experiments, we propose
ve different combinations for (˛, ˇ), i.e., (0.1, 0.9), (0.3, 0.7), (0.5,
.5), (0.7, 0.3), and (0.9, 0.1). The weight factor for the total channel
onflict is increased gradually and oppositely, the factor for the tree
ost is reduced gradually. We have tested the GA multicast in the

MN of 50 nodes under these five combinations. In each run, the
ptimal individual regarding the fitness value is output as the final
olution. Then its channel conflict and tree cost are recorded for
omparison. The results are presented in Fig. 10.

From Fig. 10(a), we can see that with the gradual increase in the
eight factor for the total channel conflict, the solution quality is

mproved in terms of this optimization objective. However, when
he size of multicast group is larger than 13, there is no improve-

ent. From Fig. 10(b), we can see that basically the tree cost has
o response to the change of the weight factor. These results are
orse than the ones in the previous section where only the total

hannel conflict is used in the fitness function. We have also tested
he SA multicast and the TS multicast and found similar results. In
ummary, the weight factors have no significant effect on the algo-
ithm performance. The reason is due to the intrinsic drawbacks as
scalar objective function to provide solution for multi-objective

ptimization.

It is known that a single scalar objective function on ad hoc
asis not only makes the solution highly sensitive to the chosen
eight vector but also requires the user to have some knowledge

bout the priority or influence of a particular objective parameter
puting 11 (2011) 1953–1964 1963

over another [25]. For multi-objective multicast, the same problem
occurs because different optimization objectives evaluate different
properties of the trees. Moreover, the evaluation criterion is dif-
ferent for different objectives. Hence, it is difficult to determine
the weight factors for the objectives in the linear combination
formula. If an algorithm uses the weighted sum as a single objec-
tive, in our opinion, it is still a single-objective multicast approach
since it results in only one final solution. This solution cannot
always optimize both objectives simultaneously. If we really want
to reflect the impact of both objectives, we need to seek help from
multi-objective optimization algorithms, e.g., multi-objective evo-
lutionary algorithm (MOEA). This will be investigated in the future
work.

8. Conclusions

The wireless mesh networks have seen various collaborative
multimedia applications which require efficient information deliv-
ery service from a designated source to multiple receivers. A
multicast tree with orthogonal channels appropriately assigned
is preferred to support this service. However, the optimal mul-
ticast routing and channel assignment problem is proved to be
NP-hard. Unfortunately, so far little work has been done on it.
This paper presents three joint multicast routing and channel
assignment algorithm for wireless mesh networks. These algo-
rithms are based on different intelligent computational methods.
They apply GA, SA and TS separately to discover delay-bounded
minimum-interference low cost multicast trees. We believe that
the synergy achieved by combining the strong search capabilities
of the three intelligent computational methods and the effective
channel assignment results in the improved quality of solution.
We compare the performance of the proposed algorithms with the
prestigious LCA multicast algorithm. Experimental results demon-
strated that all our algorithms are capable of finding the multicast
trees which have both less channel conflict and lower cost (i.e., con-
suming less radio network interfaces) than the shortest path trees
and the trees produced by the LCA multicast algorithm. Although
they do not improve the delay performance, they still can find the
delay constrained multicast trees.
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