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Vehicular Ad hoc NETworks (VANETs), an emerging technology, would allow vehicles on
roads to form a self-organized network without the aid of a permanent infrastructure. As
a prerequisite to communication in VANETs, an efficient route between communicating
nodes in the network must be established, and the routing protocol must adapt to the rap-
idly changing topology of vehicles in motion. This is one of the goals of VANET routing pro-
tocols. In this paper, we present an efficient routing protocol for VANETs, called the Reliable
Inter-VEhicular Routing (RIVER) protocol. RIVER utilizes an undirected graph that repre-
sents the surrounding street layout where the vertices of the graph are points at which
streets curve or intersect, and the graph edges represent the street segments between
those vertices. Unlike existing protocols, RIVER performs real-time, active traffic monitor-
ing and uses these data and other data gathered through passive mechanisms to assign a
reliability rating to each street edge. The protocol then uses these reliability ratings to
select the most reliable route. Control messages are used to identify a node’s neighbors,
determine the reliability of street edges, and to share street edge reliability information
with other nodes.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The vehicular ad hoc network (VANET) provides the
ability for vehicles to spontaneously and wirelessly net-
work with other vehicles nearby for the purposes of pro-
viding travelers with new features and applications that
have never been previously possible. Within this ever-
changing network, messages must be passed from vehicle
to vehicle in order to reach their intended destination. To
participate in such a network, a routing protocol must di-
rect these message transfers in an efficient manner to en-
sure robust data communication. Bernsen et al. [3],
discuss various design factors of VANET protocols, sur-
. All rights reserved.

n), mani@cs.uky.edu

ivannan).
veyed a number of VANET routing protocols, and presented
an analysis of them.

As a special class of mobile ad hoc networks, VANETs
have their own unique characteristics that distinguish
them as a subset of this larger class. Most nodes in a VANET
are mobile, but because vehicles are generally constrained
to roadways, they have a distinct controlled mobility pat-
tern that is subject to vehicular traffic regulations. In urban
areas, gaps between roads are often occupied by buildings
and other obstacles to radio communication, so routing
messages along roads is typically necessary.
2. Motivation

A fundamental aspect of the success of any VANET is the
presence of a sufficient number of network nodes to allow
forwarding of messages in the network. Road characteris-
tics such as traffic signals and stop signs affect the flow
of traffic in urban areas, breaking any sufficiently dense
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streams of similar-velocity vehicles. Traffic density, mea-
sured in the number of vehicles per unit distance, has a
large influence on road capacity and vehicle velocity. Mes-
sages in a VANET are forwarded along streets due to the
unique constraints of this kind of network. However, due
to various factors in a real-world situation, there is no
guarantee that network-participating vehicles are present
on any particular street at a given time. A lack of net-
worked vehicles may occur due to factors such as date
and time, road construction, detours, community events,
traffic laws, and poor road conditions due to weather.
Some of these factors affect all streets in a particular area,
while other factors may cause only a few selected streets to
be void of network nodes.

The seminal VANET protocols such as GSR [13] and SAR
[18] did not take traffic factors into account. A-STAR [17]
utilized static traffic information from bus schedules. The
designers of A-STAR hypothesized that buses travel on ma-
jor thoroughfares that are more likely to have dense vehic-
ular traffic. A-STAR was therefore programmed to prefer
these roads for forwarding. Other methods of traffic mon-
itoring considered to be static approaches may include
caching ‘‘typical’’ traffic data and potentially supplement-
ing that data with updates about less-frequently scheduled
traffic conditions. For example, nodes might store data
about typical traffic patterns such as rush-hour commuter
traffic on weekdays, and then they might also receive peri-
odic updates about road construction or community events
that disrupt these typical patterns.

While typical traffic patterns may persist for a signifi-
cant amount of time, it is quite probable that temporary
gaps in network coverage are common on most streets at
frequent intervals. If distance between a node and its near-
est neighbor is greater than the transmission ranges of
both of them, it causes a network gap. These kinds of gaps
may occur frequently because of traffic signals that stop
vehicular traffic, for example. They may also be caused
even when the road is full of vehicles if many of the vehi-
cles are not network-equipped. These temporary gaps can
be extremely disruptive because they often happen in a
non-deterministic manner. A typical network gap is de-
picted in Fig. 1 where vehicular traffic on a street is moving
away from each other, thus partitioning the network.

Temporary gaps in network are common on most
streets at frequent intervals. The use of static data alone
cannot adapt to dynamically changing network gaps. A
real-time approach is required, and some protocols have
attempted this to varying degrees. STAR [8] monitors the
Fig. 1. Formation of a network gap.
number of nodes it encounters in each of the cardinal
and intercardinal directions relative to each node to aid
in routing decisions. Each node in CAR [15] adapts its beac-
oning interval to the number of neighboring nodes it has
detected so that beacons do not saturate network band-
width in dense traffic conditions. SADV [6] measures mes-
sage delivery delays to estimate traffic densities.

ACAR [19], like our protocol, uses a pre-loaded map.
However, for determining the connectivity of a road seg-
ment, it uses a probabilistic approach. It divides the road
segments into cells and clusters and collects the density
of vehicles in these clusters and cells. Based on the density
of the clusters and cells, it determines the probability of
the connectivity of a road segment. It uses this connectivity
to choose routes. When a node selects a next hop for for-
warding a packet, it does not use a greedy approach in
selecting the neighbor but uses the node with best quality
of transmission based on the intuition that the farthest
neighbor may have high packet error rate. VADD [20] uses
a carry-and-forward approach to deal with disconnectivity
on a road segment which can cause very large delay. To
handle this delay, they propose different variations of the
protocol.

Like the edges of a graph, road segments between inter-
sections are one-dimensional in terms of communication:
messages can be sent either to vehicles ahead of the cur-
rent node or to vehicles behind it. As such, the majority
of routing decisions are made at intersections, called an-
chor points. These decisions are crucial: sending a message
down a street that contains a network gap causes the mes-
sage to either be dropped, buffered, or to backtrack. With
these factors in mind, it becomes clear that the shortest
path between a sender and receiver is not always the most
successful path since a single disconnected street segment
will cause a strictly shortest-path routing to fail. Instead, a
VANET routing protocol must have a method to determine
which street edges are most likely to result in delivery of a
packet to the next intersection.

These observations lead us to a position-based VANET
routing protocol that utilizes real-time traffic information
to generate a route that travels along a reliable path (a path
which is less likely to contain network gaps), even if such a
path is not the shortest path in a geographic sense. The rest
of the paper is organized as follows: Section 3 introduces
the basic idea behind our protocol. Section 4 presents the
traffic monitoring component of the protocol. In Section 5,
we present how our algorithm calculates the reliability of
the edges in the street graph. In Section 6, we present
our routing algorithm in detail. Section 7 contains the per-
formance evaluation results and Section 8 concludes the
paper.
3. Basic idea of the protocol

Reliable Inter-VEhicular Routing (RIVER) [2] is a posi-
tion-based VANET routing protocol with an optimized
greedy strategy. This protocol prefers transmitting mes-
sages using routes it deems to be reliable through its traffic
monitoring components. This traffic monitoring happens
in real-time by actively sending probe messages along
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streets and by passively monitoring messages that are
transmitted between adjacent intersections. Furthermore,
RIVER takes traffic monitoring a step further by propagat-
ing reliability information within the network without the
use of broadcast, network flooding, or other means that
have been shown to cause network congestion. Instead,
street reliability data is distributed in a more localized
manner by piggybacking the information on routing mes-
sages, probes, and beacons. To take full advantage of this
localized information throughout the life of a routing mes-
sage that may travel outside of its sender’s limited zone of
knowledge, our protocol allows routes to be recalculated
dynamically at any anchor point during message transmis-
sion. This route recalculation is also used as part of the pro-
tocol’s route recovery mechanism when no neighboring
nodes can be found along the current route.

Like other greedy, position-based, VANET routing algo-
rithms, RIVER is a geographic protocol that identifies
neighboring nodes with beacon messages, has street-
awareness, utilizes position-based routes, and forwards
packets greedily towards its destination. A node can iden-
tify neighboring nodes and their locations via beacon mes-
sages. RIVER uses these coordinates to choose appropriate
forwarding nodes for the purpose of transmitting a mes-
sage toward its current anchor point. Our protocol is
street-aware in the sense that it attempts to route mes-
sages through vehicles along streets. Street-awareness re-
quires a basic knowledge of the physical location of
streets and their intersections, which RIVER acquires from
static pre-loaded data. Based on this street-awareness, the
protocol generates routes that are anchored at specific geo-
graphic positions, typically street intersections, as opposed
to defining route hops using transient network nodes in
motion. Although the protocol is not strictly greedy from
source to destination, it greedily forwards a message be-
tween each of the anchor points it sets in its routes.

A fundamental mechanism of its active traffic monitor-
ing component is also a unique aspect of RIVER: probe mes-
sages. Unlike a unicast message, a probe message is sent to
an unknown network node along a particular street edge to
determine the connectivity of that particular street edge.
This real-time, active traffic monitoring allows the protocol
to avoid routes along streets containing gaps in node cover-
age that would prevent message transmission. The protocol
tries to avoid roads with network gap by calculating the
reliability of routing paths. This reliability information is
based on first-hand observation by each node and by sec-
ond-hand information that is distributed between nodes.
The reliability data allows RIVER to route messages around
network voids that a simpler shortest-path algorithm can-
not detect. Finally, while the protocol has a route recovery
mechanism like other VANET routing protocols, its dynamic
route recalculation may prevent the need for recovery prior
to a route failure. We will expand on these differentiating
aspects of the RIVER protocol in Sections 4–6.
4. Traffic monitoring

Traffic monitoring in our protocol consists of both ac-
tive and passive components that operate in real-time.
For active traffic monitoring, the primary mechanism is
the probe message: a RIVER protocol packet that is period-
ically sent by each node in the network. Probes perform
dual functions of traffic detection and traffic information
distribution. In addition, each node performs passive traffic
monitoring by gathering data from each packet that it re-
ceives. Probe and routing packets carry two other forms
of traffic information: the known edge list and weighted
routes.

4.1. Active monitoring

In VANETs, beacon messages primarily serve as a mech-
anism for a node to advertise its existence to its neighbors.
In a sense, this is a form of traffic awareness. Beacon-ori-
ented traffic monitoring is employed by some of the rout-
ing protocols that have made limited use of real-time
traffic monitoring, such as STAR [8] and CAR [15]. How-
ever, a node can only detect beacons emanating from
nodes within its radio range, and frequently, the reliable
range of a radio may be less than the distance between
street intersections.

To determine if a message can be delivered along a par-
ticular street edge to the next intersection, RIVER uses a
probe message. A probe is best described as an anycast
message: it is sent to any node in a group of nodes defined
by a particular geographic area. Its content is similar to a
beacon message in that it does not carry a data payload.
However, probe messages are not one-hop broadcast
messages.

Each node maintains a copy of the surrounding street
layout in its street graph where each road segment is rep-
resented by an edge in the graph, incident on two vertices.
A probe message is sent by a node that is located near a
street vertex (within 50 m), and it is forwarded greedily
to intended next-hop recipients along the streets that are
incident to that vertex. The destination node of a probe
message is not known to its sender; the probe traverses a
street edge and is finally received by any node within
range of the opposite street vertex. If there is a gap in the
network coverage along the street edge, the probe is
dropped. However, if the probe is delivered to its destina-
tion vertex, any nodes at that vertex become aware that
the vertex is traversable at that moment. When a departing
probe is received, a return probe is generated back to its
original sender so that the sender will also be aware of
the connectivity of the probed street edge.

Our protocol’s probe messages act as implicit beacons
for each forwarding node by including each forwarder’s
geographic position and address. They also carry the ad-
dress and geographic position of their original sender,
and the position of their destination vertex. Finally, each
probe message also contains a known edge list, to be dis-
cussed further in Section 4.4.

4.2. Passive monitoring

Each node also monitors edge connectivity by passively
snooping into routing packets that are sent within the net-
work. Each message contains, either implicitly or explicitly,
reliability information about edges in the network. These
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monitored messages may be messages that are sent di-
rectly to a node as a next-hop or destination. However,
each node also taps into the link layer of its network stack
and listens for RIVER packets that are addressed to another
node. The learned reliability information is then shared
within the network in a distributed manner.

In the RIVER model, routing is aided by gathering and
distributing knowledge regarding the connectivity of edges
in the street graph. This is partially enabled through pas-
sive monitoring. Whenever a node near a street vertex Vx

receives a packet that has traversed an edge that is incident
on Vx, this implies that the traversed edge is currently con-
nected. (By connected, we mean that sufficient nodes are
present along the edge to transmit a message along that
edge.) Similar to the probe mechanism described earlier,
our routing packets also contain information that allows
a node to determine the reliability of the edges traversed
by a packet. Therefore, when node Nx near street vertex
Vx receives a probe or routing packet that has traversed
an edge incident to Vx, node Nx resets the weight of that
edge in its street graph to the minimum value, which indi-
cates that the traversed edge is connected.

Passive monitoring also enables a node to learn about
edges of the street graph that may be far away from the
node. As depicted in Fig. 2, suppose a node receives a rout-
ing packet from a distant node. The node is already aware
of the reliability of edges near it because it sends and re-
ceives probe packets along those edges (marked with an
‘‘x’’ in the figure). In addition, every edge in the routing
packet’s route (marked with a ‘‘y’’ in the figure) will be rep-
resented with an edge weight in the packet. Finally, any
edges incident on the route will likely also have their reli-
ability captured because the nodes that forward the packet
from the source to the destination may add into the packet
any reliability weights known to them also (marked with a
‘‘z’’ in the figure) within the known edge list. These fea-
tures will be described further in this section.

In addition to gathering traffic data from packets that
are directly received by a node, each node also eavesdrops
on the radio transmissions between other nearby nodes.
For example, probe and routing packets are forwarded to
Fig. 2. Data gained from passive monitoring of a routing packet.
a specific recipient at each hop. By default, other nodes
within radio range of sender discard the packet at the link
layer of their protocol stack. However, information con-
tained within these probe and routing packets carries va-
lue for other nodes in the area besides their intended
recipients. In order to perform passive traffic monitoring,
each node taps into the link layer of its network stack. By
eavesdropping at this level, any RIVER probe and routing
packets that are not addressed to the current node can be
pushed up the protocol stack for processing.

4.3. Weighted routes

Every RIVER routing packet contains a list of anchor
points for the route, identified by their geolocation. Any
two consecutive route anchor points in the list represent
an edge in the street graph of the sender node and has
an edge weight associated with it. When constructing the
routing packet, the sender includes this edge weight in
the packet, along with a timestamp which represents time
when that reliability value was last updated.

When a routing packet is received at a node, the node
analyzes the route and processes the reliability informa-
tion associated with it. If the node is not the final recipient
for this routing packet, it also updates the reliability infor-
mation within the route packet prior to forwarding it. The
rules in Section 5.2 govern the processing of incoming reli-
ability information and updating of outgoing reliability
information.

4.4. Known edge list

Each node monitors beacon, probe, and routing mes-
sages, each of which contains a known-edge list (KEL).
The known-edge list identifies edges by their endpoint
geolocations and communicates reliability information
about each edge (e.g. the ‘‘z’’-marked edges depicted in
Fig. 2) along the path. Upon sending a RIVER packet, the
sending node selects edges from its own street graph to
share with other nodes, and places them in the known-
edge list with their reliability values and the time when
each reliability value was last updated. Likewise, whenever
a RIVER packet is received at a node, the node reads the
known-edge list and processes any edge reliability values
found there. If the packet is a probe or routing packet that
the node will forward on, the node selects edges to share
from its street graph (which now includes the information
contained in the received KEL) and updates the known-
edge list in the packet before sending it on.
5. Edge reliability

A crucial component of our protocol is its ability to esti-
mate the reliability of a particular street edge. RIVER uses
this reliability data as the primary factor in determining
a successful routing path from a sender node to a receiver
node. Vehicular nodes move quickly and frequently, so it is
infeasible for each node to track the movement of all other
nodes across a particular area to determine usable routes.
Instead, we hypothesize that it is more efficient to deter-



J. Bernsen, D. Manivannan / Computer Networks 56 (2012) 3795–3807 3799
mine if a particular street edge became reliable recently
and share this information with other nodes.

5.1. Determining reliable paths

Each node in the RIVER model assigns a weight to every
known edge in its street graph. To determine reliable
paths, the protocol assigns these weights using both first-
hand observation and second-hand knowledge. First-hand
observations include the information that each node gains
when it receives a packet or when it attempts to send a
probe or routing message to another node. Second-hand
observations include the passive monitoring of known-
edge lists stored in beacons, probes, and routing packets,
and the monitoring of edge weights contained within rout-
ing messages.

In shortest-path routing algorithms, each edge weight
would be based on the length of the street segment repre-
sented by the edge. Our protocol is not a shortest-path
routing algorithm in this sense; its edges are weighted
with their reliability rating. A small weight (the minimum
weight is zero) indicates greater reliability; a large weight
indicates an unreliable edge, and the maximum weight
indicates an edge that is known to be not traversable. With
these weights assigned to each edge, our protocol uses
Dijkstra’s least weight path algorithm [5] to calculate what
it considers the most reliable routing path. The route, along
with each reliability rating used in the calculation, is writ-
ten into the packet.

Note that when using reliability as a path metric, dis-
tance (in terms of the number of edges in a path) is still ta-
ken into account. Dijkstra’s least weight path algorithm
finds a path with least-weight based on the sum of the
weights of edges on the path. If two paths Px and Py have
equal weights on each edge but Px has more edges (is a
longer path) than Py, then Py is chosen because its total
weight is less. The shorter of the two paths is chosen.

5.2. Reliability distribution

When a node sends a beacon, probe, or routing packet
that contains a known-edge list, that node distributes its
Table 1
Edge data fields.

Field Description

Packet received Timestamp of th
Last marked Timestamp of th
Last declared Timestamp whe
Last shared Timestamp of th
Last probe sent Timestamp of th
First probe sent Timestamp of w
Static value When a static r

Table 2
Calculated edge data.

Data Description

Reliability Based on the information known about the edge, t
reliability value above

Shareability Ranking that dictates how worthy an edge reliabil
Last updated Equal to the most recent value of the edge’s packe
street graph reliability information within the packet. For
clarity here, we define an edge’s reliability rating as shared
when a node writes the edge’s reliability rating into a pack-
et’s known-edge list for distribution. We define an edge’s
reliability rating as declared when a node reads this rating
from a known-edge list in a packet that it has received. In
addition to the reliability rating, each node also tracks
other values relative to each edge in its street graph, shown
in Table 1; other important data points calculated with re-
spect to each edge in the street graph are shown in Table 2.
These values are used to make a number of decisions about
edges, calculate the reliability of each edge, and to deter-
mine when a declared value should be used or discarded.

In an effort to conserve network bandwidth, a node
does not simply write all of its known-edge information
into every packet it sends. Edges whose reliabilities are un-
known (and set to a default value) are not shared. From the
remaining edges, a node selects an edge for sharing based
on several criteria: whether it has been updated since the
last time it was shared, how recent the update was, and
whether the update originated from first-hand observation
or a second-hand declared value. The most selective factor
is whether the edge has been updated since the last time it
was shared: information about an edge is shared only if
this condition is true. Beyond that, edges are ranked
relative to one another for ‘‘shareability’’. An edge that
was updated more recently is favored over an edge that
was updated less recently, so a relative shareability rank-
ing is given to each edge based on the time that has
elapsed since its last update.

When a node receives declared information about the
reliability of an edge, it must decide whether to accept or
reject the declared value based on the timestamp associ-
ated with the declared value and the timestamp informa-
tion the node associates with its current edge rating. If a
node has no reliability information for an edge from any
source (receiving a packet over the edge, marking the edge
unreliable in the past, or from a prior declaration of the
edge), then it accepts the declared value. If a node already
has reliability information for the edge, then it compares
the declared timestamp information with its own last
updated timestamp and accepts the declared rating if the
e last time when this node received a packet that traversed this edge
e last time when this node marked this edge as disconnected
n this node last accepted a declared reliability value for this edge
e last time when this node shared this edge’s reliability
e last time when this node sent a departing probe along this edge
hen this node first sent a probe along this edge

eliability rating is in effect, it is stored here

his may be a calculated value (Section 5.3) or equal to the static

ity value is to be shared
t received, last marked, and last declared timestamps
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declared timestamp is more recent. After the declared va-
lue is accepted, the node sets the edge’s last declared time-
stamp to be the timestamp recorded in the packet (not to
the current time when the value is accepted) and sets the
static reliability value for the edge to the declared value.
5.3. Reliability calculation

Network gaps frequently emerge and dissolve, so the
RIVER protocol discards notions of persistent, static traffic
models in favor of a more dynamic model. The transmis-
sion of a packet from sender to receiver happens on a much
shorter time scale than traffic movements, so even a net-
work gap that has only formed for a few seconds can cause
many packets to be dropped or delayed. To ensure fewer
packet delays, up-to-date information is preferable. The
freshness of the reliability information maintained by a
node is important to take into account. Older information
is less likely to reflect reality than recent information.

In order to give preference to recent information, when
first-hand observed information is available, our protocol
calculates the reliability of an edge as the number of milli-
seconds since the edge was last known to be traversed by a
packet. With this model, a low reliability value represents a
recently-traversed edge. Edges with low values are pre-
ferred over edges with high values when generating a
route.

When a node receives a packet that has traversed some
edge e, the node sets the reliability value of e to zero (most
reliable). As time elapses from that event, the reliability va-
lue for the edge decays in a linear fashion to a higher (less
reliable) value until another packet traverses the edge. To
accelerate the decay of an edge that appears to be unreli-
able, a constant waiting multiplier (10) is used in the cal-
culation. When a node does not receive a response to a
probe message sent along an edge, the waiting multiplier
is used in the calculation to discourage the use of that edge
for routing. The waiting multiplier remains in effect for
that edge until the edge weight is updated with new infor-
mation. Another constant never-received multiplier (2) is
used in cases where no packet has ever been received
along the edge.
Table 3
Evaluating reliability.

# Condition

X This node marked the edge as ‘‘unreliable’’ within the reliability default
and this is still the most up-to-date data

0 This node accepted another node’s declared rating and the declared time
within the reliability default duration and this is still the most up-to-dat

1 This node received a packet along this edge within the reliability default
and this is still the most up-to-date data

2 This node has neither received nor sent any packets along this edge
3 This node received a packet along the edge but the reliability default ela

that event and the node has never sent a probe along the edge
4 This node received a packet along the edge but the reliability default ela

that event and the last probe this node sent along the edge was before t
5 This node received a packet along the edge but the reliability default ela

that event and the last probe this node sent along the edge was after tha
6 This node has sent a probe along this edge but has never received a packe

edge
In addition to the dynamically calculated values, there
are some static values used in RIVER reliability ratings. If
no packet has been received along an edge (and the node
has not sent a probe along this edge to test it) for a while,
a time out period known as the reliability default (10 s)
eventually expires. This value, also measured in millisec-
onds, acts as a default value for any edge whose reliability
is undetermined. If the reliability data about a particular
edge is not updated within this period, its reliability re-
verts to this default value. Furthermore, if a node on some
edge attempts to forward a packet along that edge but can
find no neighbor to whom the packet can be sent, the node
instantly marks that edge as unreliable by setting it to 1
(represented by the largest value that can be stored in
the data range). This unreliable rating is distributed to
other reachable nodes through the known-edge list of the
packet.

The complete set of ordered cases for evaluating the
reliability of an edge are shown in Table 3.
6. Routing

At its most basic level, RIVER is not unlike other geo-
graphic routing algorithms; our protocol identifies a path
that connects a number of geographic locations and at-
tempts to forward the message along that path. When a
node originates a new message, it must first identify the
geographic location of the message destination. In reality,
the node may have cached this information from a previ-
ous message exchange with the destination, or it may need
to inquire about the location. The design of an efficient
location service is outside the scope of this routing proto-
col and is a separate area of research [1,4,10–12,14]. For
our simulations of RIVER, the sending node identifies the
initial geographic location of its message destination using
an external location database. This is the only instance dur-
ing a message transmission when an external location
database is consulted.

After identifying the geographic location of the destina-
tion, the distance to the destination is computed. If this
distance is small (for example, if the sender and receiver
are already within radio range of each other or they are lo-
Reliability result

duration ‘‘Unreliable’’ rating

stamp is
e data

Declared reliability rating

duration Time elapsed since packet received

Reliability default
psed since Reliability default

psed since
hat

Reliability default

psed since
t

Reliability default + ((time elapsed between last packet
received and last probe sent) �waiting multiplier)

t along the Reliability default + ((time elapsed between first and last
probe sent) �waiting multiplier � 2)
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cated on the same street edge), then the sending node sim-
ply forwards the packet greedily toward the destination.
Otherwise, the sending node consults its reliability-
weighted street graph and uses Dijkstra’s least weight path
algorithm to calculate the most reliable path to the desti-
nation. The geographic locations of the vertices of the
street graph that make up the routing path are known as
anchor points, and we often refer to the route itself as
an anchor path. A RIVER routing header is generated
around the data packet, and the anchor path is written into
that routing header.

The process of identifying a next-hop node begins at the
sender node and repeats at each forwarding node. The
node in possession of a routing packet consults the anchor
path in the packet header for the current anchor point.
Then, it refers to its neighbors-table to identify the node
that it believes is within radio range and is nearest to the
current anchor point. The node sets the next-hop address
in the routing packet’s encapsulating header (e.g. IP header
destination address [16]) and attempts to send the packet.
At this point, our protocol takes advantage of a link-level
transmission failure detection feature, as is described in
GPSR [9]. If the link layer cannot recognize that a link
was established with the next hop (e.g. no link-layer
acknowledgment from the next hop), then the forwarding
node repeats the next-hop identification process and at-
tempts to send the packet again.

As the packet is received at each hop, the node performs
its passive monitoring functions: conditionally updating its
edge weights with values declared in the known-edge list
and in the weighted route of the packet (Section 5.2). Then,
the node examines the current anchor point in the packet.
When an anchor point has been reached or passed (Sec-
tion 6.4), then a pointer is incremented to set a new ‘‘cur-
rent anchor point’’. If only one anchor point remains in the
route, the node checks whether it is between the last an-
chor point and the destination and increments the anchor
pointer if that is the case. Finally, the algorithm chooses its
next hop. If more anchor points remain in the routing
packet header, the next hop is chosen based on the current
anchor point, otherwise the next hop is chosen greedily to-
ward the geolocation of the destination stored in the route
header. If a next hop is found in the neighbor table, the
packet is forwarded to that node.

If no neighbor can be found closer to the current anchor
point than itself, then the node tries to find a neighbor clo-
ser to the subsequent anchor point instead (explained fur-
ther in Section 6.4).

6.1. Route recovery

When a node attempts to find a next-hop for routing a
packet as described above, if no suitable next-hop neighbor
can be found, RIVER’s recovery function is engaged. First,
the failed anchor path is examined. The edge where the
failure occurred is determined by its vertices, which con-
sist of the last anchor point that was successfully reached
and the current anchor point in the route. (If the route
has failed at the first anchor in the route, our protocol can-
not recover and drops the packet.) This failed edge is
marked in the street graph by giving it the maximum
weight possible, which we will refer to as the discon-
nected edge weight. With the disconnected edge weight
in place, Dijkstra’s least weight path algorithm is run on
the graph again. If the algorithm finds a route whose mean
weight is less than the current route’s mean weight by a
significant threshold, then the routing header’s remaining
anchor path is overwritten with the proposed anchor path.
The threshold is defined as 50% of the reliability default
value.

Once the new anchor path is established in the routing
header, the next edge in the proposed route is examined.
The routing process drops the packet if the weight of the
proposed routing path’s next edge is equal to the discon-
nected edge weight. This indicates that Dijkstra’s algo-
rithm found that the least weight path is a path whose
leading edge is already marked as a failed edge.

6.2. Route recalculation

Our protocol also has a route recalculation feature that
is similar to the recovery feature described above. This fea-
ture has the potential to prevent a route recovery scenario
before a failure occurs in selecting a next-hop neighbor. For
this reason, the recalculation feature can be considered as a
proactive version of the recovery feature, while recovery
only occurs as a reaction to a failed next-hop neighbor
selection.

If this feature is enabled, the opportunity for recalculat-
ing a route is evaluated at a forwarding node when the cur-
rent anchor point in the route has been reached or passed
at that node. When this occurs, the node runs Dijkstra’s
algorithm to propose a new anchor path. If the proposed
path’s mean weight is less than the current path’s mean
weight by a significant threshold, then the remaining an-
chor path in the packet is overwritten with the proposed
anchor path. As in route recovery, the significant threshold
is defined as 50% of the reliability default value. (This
threshold was introduced specifically for the route recalcu-
lation feature. In early versions of our protocol, it was
sometimes the case that two or more nodes performing
recalculation along a route would have a slight discrepancy
about the weight of one or more edges in that route and
send the packet back and forth to each other in a loop.
The threshold reduces the possibility of this occurrence.)

6.3. Routing loops

One common problem for routing algorithms is the
occurrence of loops within the route of a packet. Unneces-
sary forwarding of packets along a loop increases network
congestion. Packets may be dropped when their time-to-
live (TTL) values are exceeded prematurely or because
excessive network congestion prevents delivery.

We categorize routing loops in three inclusive group-
ings. A repeat-node loop occurs when a node receives a
packet that it previously forwarded. Similarly, we define a
repeat-vertex loop as the condition of a route that traverses
a particular street vertex more than once. Finally, we define
a repeat-edge loop as the condition of a route that traverses
a particular street edge in the same direction more than
once. The distinction about edge direction for a repeated



Fig. 3. Past anchor point, outside zone.
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edge loop is important since it permits backtracking to be
outside the definition of a repeat-edge loop. Note that a re-
peat-edge loop implies a repeat-vertex loop. Due to the
movement of nodes, it is possible to encounter a repeat-
vertex or repeat-edge loop without a repeat-node loop.

Dijkstra’s algorithm finds a least-weight path between
two vertices in a graph. It does this by generating a shortest
path tree: a set of paths with the lowest weight between the
destination vertex and every other vertex in the graph.
Since a path containing a repeat-vertex or repeat-edge loop
produces a path with a greater total weight than the same
path without the loop, we observe that the path found by
Dijkstra’s algorithm must be free of these kinds of loops.
However, our protocol allows anchor paths to be recom-
puted when a failure occurs (if recovery mode is enabled)
or at each anchor point (if route-recalculation mode is en-
abled). When a route is recomputed, the edge weights re-
corded in the street graphs of different nodes may provide
contradictory least-weight-paths, and repeat-vertex or re-
peat-edge loops may result. We choose not to eliminate
routing loops entirely because doing so reduces throughput
(by dropping packets) or delays delivery (by queuing them
until the network gap is reconnected). Instead, RIVER
adopts a perseverance strategy for packet delivery.

To reduce the occurrence of routing loops, each packet
header contains the last-known weight for each edge in
its anchor route. This ensures that when a route recalcula-
tion occurs, the node performing the recalculation has the
most up-to-date traffic information possible for each edge
in the already-traversed anchor route. In addition, the
packet header contains a known-edge list for adjacent
edges encountered during the packet’s lifetime. If the pack-
et has attempted to traverse an edge and found it failing,
then it includes the weight of the failed edge in the pack-
et’s known-edge list. Therefore, if later another node along
the anchor route’s path must recalculate the anchor route
(e.g. to recover from another edge failure), it will have
the most recent traffic information possible about edges
that the packet has attempted to traverse. Unless the node
has more recent information (indicating reliability) about
an edge that the packet has already failed to traverse, it
will attempt to send the packet down that previously-
failed edge again. Finally, each packet is expected to have
a TTL field in its network-layer header (for example, this
is present in the IP datagram [16]) that will eventually
cause the packet to be discarded when the TTL expires.

Even with the level of throughput that our protocol pro-
vides, some packets are dropped due to loops and other
unavoidable factors. In a typical TCP/IP network stack, it
is the responsibility of the transport layer to detect these
problems and resend dropped packets if an application re-
quires 100% delivery of packets. In VANET applications,
there are many use-cases where some delivery failures
are acceptable. Likewise, an appropriate transport protocol
is necessary for applications that expect delivery of all
packets in a VANET.

6.4. Greedy optimizations

In the strictest sense, forwarding packets along an an-
chor route involves greedily forwarding toward each an-
chor point until the packet arrives at a node that is
within some predefined range of the anchor point, called
the vertex range. However, during this process, complexi-
ties arise due to the differences between the vertex range
and each node’s radio range and the density of traffic.

Consider Fig. 3 where node Na is forwarding a packet to-
ward the anchor point at the depicted intersection. The
subsequent anchor point for this packet is along the street
edge in the direction beyond node Nb. The vertex range for
the current anchor point is shown as a circle, and node Nb

is the closest node to the anchor point but is still outside
the vertex range within which the anchor point is consid-
ered ‘‘reached’’.

According to greedy forwarding, node Na forwards the
packet to the closer node Nb. When Nb receives the packet,
there is still no node closer to the anchor point than node
Nb, and Nb is still outside the vertex range. Since the anchor
point has not yet been reached, this is technically a local
maximum. Strict greedy routing would dictate that node
Nb should drop the packet.

However, since node Nb is on the street edge that leads
to the subsequent anchor point in this route, it is prema-
ture to drop the packet at this point. Our protocol contains
an optimization to handle this scenario. When a node re-
ceives a routing packet with multiple anchor points
remaining in the route, it retrieves the current anchor
point and the subsequent anchor point (or the final desti-
nation if no more anchor points exist) for the anchor route.
If the node determines that it is located between those two
points, it increments the AP pointer in the packet. Thus,
RIVER detects when a packet has passed an anchor point,
even if the packet never actually reached it.

A similar scenario happens when node Na is closer to
the anchor point than node Nb, as in Fig. 4. Here, node Na

is the closest node to the anchor point but is still outside
the ‘‘reached’’ range. In a typical greedy algorithm, node
Na would drop the packet. However, since node Nb is with-
in radio range of node Na, and node Nb is in the direction of
the subsequent anchor point, dropping the packet is a poor
choice in this case. Our protocol will look for a neighbor
nearest to the subsequent anchor point such that the
neighbor is located on the street edge between the current



Fig. 4. Outside zone, no closer neighbor.
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anchor point and the subsequent anchor point. Instead of
dropping the packet, node Na finds node Nb and forwards
to that node. Node Nb detects that the packet has passed
the anchor point and increments the AP pointer
appropriately.
Fig. 5. Data packet throughput with recovery and recalculation
strategies.
7. Performance evaluation

To evaluate RIVER, we simulated the protocol with the
ns-2 simulator [7] at version 2.33 using the CMU wireless
extension, the default 802.11 bandwidth (2 Mbps) and de-
fault transmission ranges. Settings included ‘‘WirelessPhy’’
interface, the two-ray ground propagation model, omnidi-
rectional antenna, and wireless channel configurations.
(Our simulation source code is available upon request.)

For these simulations, an urban ‘‘Manhattan’’ street grid
was used with 5 streets running in the horizontal and ver-
tical directions spaced approximately 400 m apart for a to-
tal area of approximately 6.05 km2. This simulation area
was populated with varying traffic densities of 100–300
vehicular network nodes distributed randomly. Vehicles
traveled in both directions along each street, and vehicles
turned left or right or continued ahead (with equal proba-
bility) at intersections. To simulate urban conditions, vehi-
cle speeds range from 11 km/h to 51 km/h, with an average
speed of 36 km/h. Vehicles travel at a constant speed and
do not interact with one another. Each simulation iteration
used the same movement pattern.

The connection pattern consisted of five sender/receiver
pairs using constant bit rate (CBR) data bursts of 4 Kbps.
That is, each sender transmitted a 512 byte packet every
8 s, and each sender sent 21 packets, for a total of 105
packets sent during each simulation. Each packet sent
was offset by at least one second from the previous send
to prevent the possibility of two or more nodes transmit-
ting simultaneously. Each simulation ran for 20 s prior to
any routing packet transmissions, and the simulation ran
for 15 s following the final send, for a total of 200 s of sim-
ulation time (consistent with the simulation times for
STAR [8]). For each simulation iteration, the sender/recei-
ver node pairs were randomly selected.

The simulations were performed with various parame-
ter settings to test different scenarios and feature sets of
our protocol. The protocol was also compared against some
of its peers: the STAR routing protocol [8], the GPSR routing
protocol [9], and a shortest-path VANET routing algorithm.
For all results, each simulation configuration was repeated
for 20 iterations with a different seed at each iteration, and
the statistical mean of the results from these iterations was
calculated. For RIVER throughput measurements, standard
deviation was about 7.3%. As expected, 95% of throughput
values were within two standard deviations of the mean.

7.1. RIVER feature analysis

To analyze the effectiveness of various features of our
protocol, we simulated RIVER under a multitude of feature
combinations and studied the results. We used the follow-
ing metrics to evaluate performance through our simula-
tions. Data throughput represents the mean percentage of
routed data packets that were successfully delivered. Route
header size measures the average size of a routing packet,
excluding the data portion of the packet. Forwards per route
represents the average hop count of a routing packet. Route
transit time represents the number of seconds required to
deliver a routing packet from its original sender to its final
destination.

7.1.1. Route recalculation and recovery
We evaluated several RIVER protocol options for pre-

venting and/or recovering from routing failures due to net-
work gap as discussed in Section 6. The recovery option is a
reactive mechanism that engages when a network gap is
encountered, while the recalculation option is a proactive
mechanism that evaluates a data packet’s route at each
successive node, making route changes based on local
information. In addition, our performance evaluation also
included a combined strategy that proactively recalculates
routes and also reacts with the recovery option if a net-
work gap is encountered. For comparison purposes, a none
option was also evaluated where neither the proactive nor
the reactive strategies were employed. Under this option,
data packets are dropped when a network gap is encoun-
tered in the route.

Fig. 5 shows that the recovery strategy delivers the best
overall throughput, while the combined strategy performs
nearly as well. The recalculation strategy only yields the
best throughput in the sparsest of vehicle traffic
conditions.



Fig. 6. Route header size with recovery and recalculation strategies. Fig. 9. Effect of active reliability distribution on data packet throughput.
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Fig. 6 shows that the recalculation strategy offers the
smallest routing header size (excluding the None strategy),
and the recovery and combined strategies produce nearly
equal results in terms of routing header size.

In Fig. 7, we find that the recalculation strategy requires
the fewest number of hops per route (excluding the None
strategy).

In Fig. 8, we observe that the recalculation strategy
delivers route packets more quickly than either the recov-
ery or combined strategies.
7.1.2. Reliability distribution
A novel component of our protocol is each node’s ability

to distribute reliability information about street edges
through the use of mechanisms within beacon packets,
probe packets, and routing headers. All of these messages
may contain a known-edge list to which the sending node
and each forwarding node may contribute. In addition,
routing headers also may include reliability weights for
Fig. 7. Forwards per route with recovery and recalculation strategies.

Fig. 8. Route header size with recovery and recalculation strategies.
each edge represented in the encapsulated data packet’s
route. We evaluated the impact of these mechanisms on
data packet throughput, routing hop count, and route
header size.

In Fig. 9, we observe that in average to dense traffic sce-
narios, active distribution of reliability information via the
known-edge list and weighted route mechanisms have a
positive effect on data packet throughput. In sparse traffic
scenarios, there is a small negative effect.

In Fig. 10, we observe that the use of known-edge lists
and weighted routes on routing packets has a significant
effect on routing header size. We also find that active dis-
tribution of reliability information via the beacon and
probe known-edge list mechanisms has little effect on
the route header size. (Although not easily observed from
this graph, the beacon and probe known-edge list mecha-
nisms do marginally increase beacon and probe header
size.) We also note that a limit on the number of entries
in a known-edge list may be used to prevent the route
header size from growing excessively if it is found to have
a detrimental effect on throughput. In our simulations, we
only encountered this problem when we artificially in-
creased packet size to determine these effects.
7.1.3. Probe messages
To quantify the benefits of the active traffic monitoring

system in RIVER, we have run four different sets of simula-
tions. We simulate our protocol using two variations of the
recovery strategy described above – without any probe
messages transmitted and then with probes enabled. Then,
we simulate the protocol using two variations of the recal-
culation strategy described above – without any probe
messages transmitted and then with probes enabled.
Fig. 10. Effect of active reliability distribution on route header size.



Fig. 11. Effect of probe messages on data packet throughput.

Fig. 13. Peer protocol data packet throughput comparison.
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In Fig. 11, we can see that the recovery mechanism
nearly nullifies the data throughput benefits of probe mes-
sages. However, a distinct positive effect on throughput is
observed when the recalculation strategy is employed.
Although not depicted in this graph, we have observed
similar positive data throughput benefits from probe mes-
sages in other scenarios, such as when neither the recovery
nor recalculation mechanisms are enabled.

7.1.4. Optimized greedy strategy
As described in Section 6, if the algorithm forwarded

packets toward each anchor point in a strictly greedy man-
ner, then some packets would be dropped if no nodes were
located within the zone of the anchor point but nodes were
located around it. Our protocol uses an optimized greedy
forwarding strategy (Section 6.4) that detects these scenar-
ios and handles them appropriately. We compared RIVER
using its strict greedy forwarding strategy and the opti-
mized strategy.

In Fig. 12, we see that the optimized greedy strategy is
beneficial to data throughput in every test, regardless of
routing protocol or node density. We observe that the opti-
mized greedy strategy is not merely useful for the RIVER
protocol but also for a simple shortest-path greedy routing
protocol as well.

7.2. Protocol comparison

To determine how our protocol performs against its
peers, we simulated RIVER and several other routing algo-
rithms using the same suite of traffic density scenarios. We
compared RIVER with the STAR routing protocol for VA-
Fig. 12. Effect of optimized greedy strategy on data packet throughput.
NETs [8], the GPSR geographic routing protocol [9], and a
generic routing algorithm called Short-Path. Both GPSR
and STAR protocols use greedy forwarding and MAC layer
link failure detection. STAR is designed specifically for VA-
NETs, creates routes along streets, and contains a traffic
monitoring component. Short-Path generates greedy
routes along streets using a pre-populated street map like
RIVER, but it chooses its routes based on the shortest path
available without worrying about the reliability of the
path. Short-Path utilizes the optimized greedy strategy de-
scribed in RIVER and also utilizes MAC layer link failure
detection. Short-Path uses beacons and a neighbor-table
to identify nearby nodes but has no traffic monitoring or
reliability distribution components.

Performance of RIVER was measured with its recovery
strategy, optimized greedy forwarding, and with known-
edge-lists on beacons, probes, and weighted routes.

From Fig. 13, we find that RIVER delivers packet
throughput up to 75% better than Short-Path (45% better
on average), up to 222% better than GPSR (102% better on
average), and up to 39% better than STAR (8% better on
average).

From Fig. 14, we see that RIVER incurs about twice as
much delivery delay as Short-Path on average, up to seven
times the delay of GPSR, and up to four times the delay of
STAR. The reason for the increased route transit times be-
comes clearer as we examine the number of forwards re-
quired to for a data packet to reach its destination in
RIVER (Fig. 15). On average, a RIVER data packet travels
through about 40% more hops than Short-Path, 84% more
hops that GPSR, and 45% more hops than STAR. This is
Fig. 14. Peer protocol route transit time comparison.



Fig. 15. Peer protocol forwards per route comparison.
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due to the protocol’s ability to deliver packets to farther
destinations than its peer protocols.

8. Conclusions and future work

In this paper, we have proposed ‘‘Reliable Inter-Vehicu-
lar Routing’’ (RIVER), a routing protocol for VANETs based
on estimated network reliability. RIVER takes advantage
of real-time traffic monitoring using active and passive
methods. The protocol is able to effectively distribute reli-
ability data throughout the VANET using known edge lists
and weighted routes.

In our simulation environment, we found that RIVER
provides the highest throughput in most traffic densities
when using its recovery strategy, but the recalculation
strategy yields higher throughput in low traffic density
with less overhead. We also found that RIVER’s reliability
distribution components perform best in average to high
density scenarios. These components cause a significant in-
crease in routing header size, which can be effectively ne-
gated by restricting reliability distribution to beacon and
probe packets. We also learned that RIVER’s optimized
greedy forwarding strategy can significantly increase pack-
et throughput with no known negative effects, and this
strategy can be applied to routing protocols that do not
share RIVER’s reliable-path routing approach. Finally, sim-
ulations showed that RIVER performs well against peer
protocols – especially in average to high-density traffic.

Additional improvements to RIVER may yield further
benefits. Performance under low-density traffic was not a
focus point during the protocol’s design, so this is an area
where its performance could be enhanced. Performance
evaluation revealed that routing header size could be
greatly reduced without much loss of throughput by elim-
inating traffic distribution via routing packets. This should
be investigated further as routing packets do disseminate
information farther than other types of packets, and seek-
ing a balance between range of distribution and network
congestion seems wise.

While in the current implementation, a probe message
traverses only a single edge of the street graph, they could
conceivably traverse multiple edges for the purpose of
retrieving information from (and distributing data to) a
greater area. Note that messages must return in a relatively
short amount of time to their original sender before that
vehicle moves too far away from its original position. To
ensure this, a distance or time limit could be imposed on
the probe. Also in the case of a multi-edge probe, if a node
that is forwarding that probe has no neighbors in the spec-
ified direction (local maximum) and the probe has already
traversed at least one edge, the node could simply return
the probe instead of dropping it, and useful information
would still be gained from the probe on its return trip.

While VANETs are an exciting area of research, they are
not yet a practical reality. RIVER provides a glimpse into
the potential of reliability-based metrics for routing pack-
ets within a VANET and demonstrates convincing perfor-
mance for high throughput within the VANET paradigm.
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