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Abstract

Similarity measures are becoming increasingly commonly used in comparison of multiple datasets from various sources.

Semblance filtering compares two datasets on the basis of their phase, as a function of frequency. Semblance analysis based

on the Fourier transform suffers from problems associated with that transform, in particular its assumption that the

frequency content of the data must not change with time (for time-series data) or location (for data measured as a function

of position). To overcome these problems, semblance is calculated here using the continuous wavelet transform. When

calculated in this way, semblance analysis allows the local phase relationships between the two datasets to be studied as a

function of both scale (or wavelength) and time. Semblance analysis is demonstrated on synthetic datasets and on gravity

and aeromagnetic data from the Vredefort Dome, South Africa. Matlab source code is available from the IAMG server at

www.iamg.org.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Because of the inherent ambiguity in the inter-
pretation of geophysical datasets, most projects use
more than one data type, such as magnetics, gravity
and EM. The interpretation process can then
include looking for correlations (both positive and
negative, depending on the target) between the
different datasets. There are various methods of
doing this, such as cross-correlation or cross-
e front matter r 2007 Elsevier Ltd. All rights reserved
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spectral density. These methods often produce
results that are hard to interpret or that do not
give information about the relative phases of the
datasets. Semblance filtering compares two datasets
based on correlations between their phase angles, as
a function of frequency. The Fourier transform
H( f ) of a dataset h(t) is given by (Blackledge 2003,
p. 76)

Hðf Þ ¼

Z 1
�1

hðtÞe�2pift dt, (1)

where f is the frequency and t is the time. In general
H is complex, and so has both an amplitude and a
phase at each frequency. When the Fourier trans-
forms of two datasets are calculated, the diffe-
rence in their phase angles at each frequency can
be computed simply (von Frese et al., 1997a;
.
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Christensen, 2003):

S ¼ cos yðf Þ ¼
R1ð f ÞR2ð f Þ þ I1ð f ÞI2ð f Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
1ð f Þ þ I21ð f Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2ð f Þ þ I22ð f Þ

q ,

(2)

where R1( f ) and I1( f ) are the real and imaginary
components of the Fourier transform of dataset 1,
expressed as a function of frequency f (R2 and I2 are
defined similarly for dataset 2). The semblance S

can take on values from �1 to +1. A value of +1
implies perfect phase correlation, 0 implies no
correlation, and �1 implies perfect anticorrelation.
Semblance filtering splits each input dataset into
two output datasets consisting of the portion of the
input datasets that is correlated to a given degree,
and the portion that is not. This process is
performed in the frequency domain. A threshold
correlation value is chosen, and the Fourier trans-
form of each dataset is split into two parts, one
comprising the Fourier coefficients with a sem-
blance above the threshold and the other compris-
ing the remainder. The missing coefficients are
replaced with zeros in each case. The inverse
Fourier transform is then applied to each part, thus
producing two output datasets for each input
dataset. However, care must be taken or the sharp
discontinuities in the filter shape will cause ringing
in the output datasets (the Gibbs phenomenon). von
Frese et al. (1997b) used the method to compare
magnetic and gravity anomalies in Ohio, and
Christensen (2003) used it to compare airborne
magnetic and gravity datasets.
Fig. 1. (a) Real part of complex Morlet wavelet. (b
2. The continuous wavelet transform and semblance

analysis

Wavelet-based approaches provide the ability to
account for temporal (or spatial) variability in
spectral character. Although wavelet analysis is
relatively new compared with Fourier analysis, its
use has become widespread in recent years, and so
the theory will be described only briefly here. Mallat
(1998) or Strang and Nguyen (1996) contain
excellent and detailed summaries of wavelet analy-
sis. The continuous wavelet transform (CWT) of a
dataset h(t) is given by (Mallat, 1998, p. 5)

CWTðu; sÞ ¼

Z 1
�1

hðtÞ
1

jsj0:5
C�

t� u

s

� �
dt, (3)

where s is scale, u is displacement, C is the mother
wavelet used, and * means complex conjugate. The
CWT is therefore a convolution of the data with
scaled version of the mother wavelet. Of course, the
time coordinate t in Eq. (3) could equally well be the
spatial coordinate x if profile data were being
analysed. In this study, the complex Morlet wavelet
was used, which is defined as (Teolis, 1998, p. 62)

CðxÞ ¼
1

pf b

e2pif cxe�x2=f b , (4)

where fb controls the wavelet bandwidth and fc is
the wavelet centre frequency. The complex Morlet
wavelet is shown in Fig. 1. A value of 1.0 was used
for fc in order that scale became equivalent to
wavelength. Unlike Fourier transform-based sem-
blance analysis, the wavelet transform does not
) Imaginary part of complex Morlet wavelet.
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assume that the frequency content of a dataset is
constant with time (or position), and in fact allows
changes in that behaviour to be analysed. Hence the
wavelet-transform-based semblance analysis pro-
vides much better temporal (or spatial) resolution
than Fourier-transform-based semblance methods.
The use of different values of s (in Eq. (3)) yields
information about the behaviour of the dataset on
different scales. In addition, the mother wavelet on
which the analysis is based can be chosen for its
particular mathematical properties. When the
mother wavelet is complex, its real and imaginary
parts form a Hilbert transform pair, to ensure
orthogonality. The use of a complex wavelet results
in the CWT being complex, and therefore having a
phase at each time (or position) and scale.

One method of comparing two time series using
wavelets is the cross-wavelet transform (Torrence
and Compo, 1998), defined as

CWT1;2 ¼ CWT1 � CWT�2, (5)

which is a complex quantity having an amplitude
(the cross-wavelet power) given by

A ¼ jCWT1;2j (6)

and local phase y:

y ¼ tan�1ðIðCWT1;2Þ=<ðCWT1;2ÞÞ. (7)

Using y (which can range between �p and +p)
directly as a measure of phase correlation between
two datasets was not found to give good results (see
below), so the wavelet equivalent of Eq. (2) was
devised, namely

S ¼ cosnðyÞ, (8)

where n is an odd integer greater than zero. One
advantage of the use of S compared with y is that
values now range from �1 (inversely correlated)
through zero (uncorrelated) to +1 (correlated). In
addition, the use of odd values of n greater than 1
enables the wavelet semblance response to be
sharpened, as will be demonstrated. Because S and
y compare phase angles rather than amplitude
information, they have the advantage that the two
datasets being compared do not have to have the
same units. However, a disadvantage of the lack of
amplitude information is the sensitivity to noise, so
we now further define

D ¼ cosnðyÞjCWT1 � CWT�2j, (9)

which is equivalent to the vector dot product of the
two complex wavelet vectors at each point in scale
and position, when n ¼ 1. D combines the phase
information of S with the amplitude information of
A, which can be useful if the phase correlations of
the larger amplitude components of the dataset are
of the most interest.

3. Application to synthetic data

Unlike the standard Fourier-transform-based
semblance analysis, which is calculated solely as a
function of frequency, the CWT semblance analysis
is calculated as a function of both scale (or
wavelength) and time (or position). This enables
the changing phase relationships of the two datasets
to be visualised and analysed. Fig. 2 shows two
synthetic datasets which contain sine waves of
wavelengths 150 and 45 units. Both the datasets
have three parts, and the phase relationship between
any two parts in each dataset is constant for all
wavelengths. The parts are indicated as sections
A–B, B–C and C–D on Fig. 2, and their boundaries
are visible as discontinuities where the phase
changes are large (e.g. at B in Fig. 2c).

In the first dataset (Fig. 2a), both of the two sine
wave components exist for the duration of the
dataset, as can be seen from the real part of the
complex CWT shown in Fig. 2b. In the second
dataset (Fig. 2c and its CWT in Fig. 2d), the same
two sine wave components are present, but their
phases differ from those in the first dataset as a
function of position. In portion A–B of the datasets,
the longer wavelength component is anticorrelated
(1801 phase difference, S ¼ �1) with the longer
wavelength component in Fig. 2a, while the shorter
wavelength component is perfectly correlated
(01 phase difference, S ¼ 1). Fig. 2e shows the local
phase angle y, Fig. 2f shows the semblance S

(calculated with n ¼ 1), and Fig. 2(g) shows the dot
product D. The latter two figures show a broad blue
patch running throughout portion A–B at a
wavelength of approximately 150 units, indicating
a negative correlation between the two datasets at
that wavelength at those times. However, the phase
angle y pattern is not as clear in this regard as are
the plots for S and D. S and D also show a red
region at these times at a wavelength of 45 units,
indicating a positive correlation between the two
datasets at that wavelength. In the portion B–D of
the plot, the phase relationship between the sine
wave components of the two datasets was altered so
that they are correlated, uncorrelated or inversely
correlated as a function of position, and this
correlation can be read directly from the colours of



ARTICLE IN PRESS

Fig. 2. (a) Dataset containing sine waves of wavelengths 110 and 35 units. (b) Real part of the complex CWT of dataset in (a). White

(bright red in online version) indicates a large positive amplitude and black (dark blue in online version) indicates a large negative

amplitude. (c) Dataset containing sine waves of wavelengths 110 and 35 units with different phases to those in (a). (d) Real part of complex

CWT of dataset in (b). White (bright red in online version) indicates a large positive amplitude and black (dark blue in online version)

indicates a large negative amplitude. (e) Local phase angle y (calculated from Eq. (7)). White (bright red in online version) indicates a

phase of71801 and black (dark blue in online version) indicates a phase of 01. (f) Semblance S (calculated from Eq. (8), with n ¼ 1). White

(bright red in online version) corresponds to a semblance of +1, 50% grey (green in online version) to a semblance of zero, and black

(dark blue in online version) to a semblance of �1. (g) Dot product D (calculated from Eq. (9)). White (bright red in online version)

corresponds to large-amplitude signals with positive semblance, while black (dark blue in online version) corresponds to large-amplitude

signals with negative semblance. 50% grey (green in online version) corresponds either to low amplitude signals or those with a semblance

close to zero.
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Fig. 2f. When amplitude information is used simulta-
neously, the clarity of the plot improves (Fig. 2g);
however, if the phase relationship of smaller amplitude
components is of interest, then this plot would not be
the best way of displaying them. The plot of y (Fig. 2e)
is not as clear as those of S or D, and the phase
relationships are harder to see. The spatial resolving
limits of the method are wavelength dependant, i.e.
visible spatial changes in semblance are sharper at
short wavelengths than at long wavelengths. This is
due to the nature of the wavelet transform.

Fig. 3 shows the effect of increasing the parameter
n on the plots of S and D. As n is increased to 3
(Figs. 3a and b), and then to 9 (Figs. 3c and d) the
smearing of the regions of strong positive and
negative correlation is successively reduced. The use
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Fig. 3. (a) Semblance of datasets shown in Fig. 2 calculated with n ¼ 3. (b) Dot product of datasets shown in Fig. 2 calculated with n ¼ 3.

(c) Semblance of datasets shown in Fig. 2 calculated with n ¼ 9. (d) Dot product of datasets shown in Fig. 2 calculated with n ¼ 9.
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of very large values of n however tends to erode the
extent of these regions excessively, particularly at
longer wavelengths, making the choice of an
optimum value dependant on the dataset.
4. Application to time and spatial datasets

Fig. 4 shows an analysis of EW gravity and
pseudogravity profiles over the Vredefort dome
impact structure and the Witwatersrand basin,
South Africa. The Vredefort Dome, the 80 km wide
central uplift of a very large 2Ga meteorite impact,
consists of a core of Archaean crystalline rocks,
surrounded by an upturned collar of Archaean-
Palaeoproterozoic supracrustals. The aeromagnetic
data show a complex picture with clear evidence of
remanent magnetisation. The gravity response is
also complex. The Archaean core consists of a
central gravity high due to granulites surrounded by
an annular gravity low due to amphibolite facies
basement gneisses. The supracrustals show multi-
ring gravity anomalies.

Pseudogravity converts the magnetic field into the
gravity field that would be observed if the magne-
tisation distribution were to be replaced with an
equivalent density distribution (Blakely, 1995, p.
344). It involves two steps; the magnetic data are
first reduced to the pole, then their 1st vertical
integral is computed. Because the pole reduction
step produces incorrect results if remanent magne-
tisation is present, a correlation analysis between
pseudogravity and gravity shows both where and on
what scales remanent magnetisation exists, and also
where gravity anomalies do not have associated
magnetic anomalies. Visually, the CWT analyses
(Figs. 4b and d) appear to correlate well at
wavelengths of 125–150 km, and this is shown
clearly in the broad red patch (indicating strong
positive correlation) in the semblance plot (Fig. 4e).
On smaller scales, the relationship between the two
datasets is more difficult to see, and the correlation
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Fig. 5. (a) Price per ounce for Gold since 1968, measured monthly. (b) Real part of complex CWT of the dataset in (a). White (bright red

in online version) indicates a large positive amplitude and black (dark blue in online version) indicates a large negative amplitude. (c) Price

per barrel for oil since 1968, measured monthly. (d) Real part of complex CWT of the dataset in (c). White (bright red in online version)

indicates a large positive amplitude and black (dark blue in online version) indicates a large negative amplitude. (e) Semblance S

(calculated from Eq. (8), with n ¼ 1). White (bright red in online version) corresponds to a semblance of +1, 50% grey (green in online

version) to a semblance of zero, and black (dark blue in online version) to a semblance of �1.
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varies depending on the magnetisation of the
geological units on the profile.

As an example of the generality of the method,
the gold price and the oil price since 1968 are
compared in Fig. 5. The data are sampled monthly
and were obtained from www.forecasts.org. As can
be seen, the datasets are strongly correlated on all
scales and at all times, except for the period
1985–1995, when they appear anticorrelated on
scales of 5–10 years.
Fig. 4. (a) Gravity profile EW across the Vredefort dome structure, Sout

the complex CWT of the dataset in (a). White (bright red in online ver

online version) indicates a large negative amplitude. (c) Pseudogravity p

mean of the data has been removed. (d) Real part of the complex CWT o

large positive amplitude and black (dark blue in online version) indicate

(8), with n ¼ 1). White (bright red in online version) corresponds to a se

of zero, and black (dark blue in online version) to a semblance of –1. (

showing location of data profiles used in (a)–(e).
5. Conclusions

Wavelets can be used to perform semblance
analysis of time and spatial data series to display
their correlations as a function of both scale
(wavelength) and time (or position). The calcula-
tions involved are not computer intensive, and the
visual nature of the results aids in their interpreta-
tion. The method has application to a wide range of
problems both inside and outside the geosciences.
h Africa. The mean of the data has been removed. (b) Real part of

sion) indicates a large positive amplitude and black (dark blue in

rofile EW across the Vredefort dome structure, South Africa. The

f the dataset in (c). White (bright red in online version) indicates a

s a large negative amplitude. (e) Semblance S (calculated from Eq.

mblance of +1, 50% grey (green in online version) to a semblance

f) Geology of Vredefort dome area (Henkel and Reimold, 1998),

http://www.forecasts.org
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