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Preface

Numerous books have been written on Radar Systems and Radar Applica-
tions. A limited set of these books provides companion software. There is
need for a comprehensive reference book that can provide the reader with
hands-on-like experience. The ideal radar book, in my opinion, should serve as
a conclusive, detailed, and useful reference for working engineers as well as a
textbook for students learning radar systems analysis and design. This book
must assume few prerequisites and must stand on its own as a complete presen-
tation of the subject. Examples and exercise problems must be included. User
friendly software that demonstrates the theory needs to be included. This soft-
ware should be reconfigurable to allow different users to vary the inputs in
order to better analyze their relevant and unique requirements, and enhance
understanding of the subject.

Radar Systems Analysis and Design Using MATLAB® concentrates on radar
fundamentals, principles, and rigorous mathematical derivations. It also pro-

vides the user with a comprehensive set of MATLAB! 5.0 software that can be
used for radar analysis and/or radar system design. All programs will accept
user inputs or execute using the default set of parameters. This book will serve
as a valuable reference to students and radar engineers in analyzing and under-
standing the many issues associated with radar systems analysis and design. It
is written at the graduate level. Each chapter provides all the necessary mathe-
matical and analytical coverage required for good understanding of radar the-
ory. Additionally, dedicated MATLAB functions/programs have been
developed for each chapter to further enhance the understanding of the theory,
and provide a source for establishing radar system design requirements. This
book includes over 1190 equations and over 230 illustrations and plots. There
are over 200 examples and end-of-chapter problems. A solutions manual will
be made available to professors using the book as a text. The philosophy
behind Radar Systems Analysis and Design Using MATLAB is that radar sys-
tems should not be complicated to understand nor difficult to analyze and
design.

All MATLAB programs and functions provided in this book can be down-
loaded from the CRC Press Web site (www.crcpress.com). For this purpose,
create the following directory in your C-drive: C:\RSA. Copy all programs into
this directory. The path tree should be as in Fig. F.1 in Appendix F. Users can
execute a certain function/program GUI by typing: file_name_driver, where

1. All MATLAB functions and programs provided in this book were developed using
MATLAB 5.0 - R11 with the Signal Processing Toolbox, on a PC with Windows 98
operating system.
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file names are as indicated in Appendix F. The MATLAB functions and pro-
grams developed in this book include all forms of the radar equation: pulse
compression, stretch processing, matched filter, probability of detection calcu-
lations with all Swerling models, High Range Resolution (HRR), stepped fre-
quency waveform analysis, ghk tracking filter, Kalman filter, phased array
antennas, and many more.

The first part of Chapter 1 describes the most common terms used in radar
systems, such as range, range resolution, Doppler frequency, and coherency.
The second part of this chapter develops the radar range equation in many of
its forms. This presentation includes the low PRF, high PRF, search, bistatic
radar, and radar equation with jamming. Radar losses are briefly addressed in
this chapter. Chapter 2 discusses the Radar Cross Section (RCS). RCS depen-
dency on aspect angle, frequency, and polarization are discussed. Target scat-
tering matrix is developed. RCS formulas for many simple objects are
presented. Complex object RCS is discussed, and target fluctuation models are
introduced. Continuous wave radars and pulsed radars are discussed in Chapter
3. The CW radar equation is derived in this chapter. Resolving range and Dop-
pler ambiguities is also discussed in detail.

Chapter 4 is intended to provide an overview of the radar probability of
detection calculations and related topics. Detection of fluctuating targets
including Swerling I, II, III, and IV models is presented and analyzed. Coher-
ent and non-coherent integrations are also introduced. Cumulative probability
of detecting analysis is in this chapter. Chapter 5 reviews radar waveforms,
including CW, pulsed, and LFM. High Range Resolution (HRR) waveforms
and stepped frequency waveforms are also analyzed.

The concept of the matched filter, and the radar ambiguity function consti-
tute the topics of Chapter 6. Detailed derivations of many major results are pre-
sented in this chapter, including the coherent pulse train ambiguity function.
Pulse compression is in Chapter 7. Analog and digital pulse compressions are
also discussed in detail. This includes fast convolution and stretch processors.
Binary phase codes and frequency codes are discussed.

Chapter 8 presents the phenomenology of radar wave propagation. Topics
like multipath, refraction, diffraction, divergence, and atmospheric attenuation
are included. Chapter 9 contains the concepts of clutter and Moving Target
Indicator (MTI). Surface and volume clutter are defined and the relevant radar
equations are derived. Delay line cancelers implementation to mitigate the
effects of clutter is analyzed.

Chapter 10 has a brief discussion of radar antennas. The discussion includes
linear and planar phased arrays. Conventional beamforming is in this chapter.
Chapter 11 discusses target tracking radar systems. The first part of this chapter
covers the subject of single target tracking. Topics such as sequential lobing,
conical scan, monopulse, and range tracking are discussed in detail. The
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second part of this chapter introduces multiple target tracking techniques.
Fixed gain tracking filters such as the o.f and the ofy filters are presented in
detail. The concept of the Kalman filter is introduced. Special cases of the Kal-
man filter are analyzed in depth.

Synthetic Aperture Radar (SAR) is the subject of Chapter 12. The topics of
this chapter include: SAR signal processing, SAR design considerations, and
the SAR radar equation. Arrays operated in sequential mode are discussed in
this chapter. Chapter 13 presents an overview of signal processing. Finally, six
appendices present discussion on the following: noise figure, decibel arith-
metic, tables of the Fourier transform and Z-transform pairs, common proba-
bility density functions, and the MATLAB program and function name list.

MATLAB is a registered trademark
of The MathWorks, Inc.
For product information, please contact:
The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001

E-mail: info@mathworks.com

Web: www.mathworks.com

Bassem R. Mahafza
Huntsville, Alabama
January, 2000
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Chapter 1 Radar Fundamentals

1.1. Radar Classifications

The word radar is an abbreviation for RAdio Detection And Ranging. In
general, radar systems use modulated waveforms and directive antennas to
transmit electromagnetic energy into a specific volume in space to search for
targets. Objects (targets) within a search volume will reflect portions of this
energy (radar returns or echoes) back to the radar. These echoes are then pro-
cessed by the radar receiver to extract target information such as range, veloc-
ity, angular position, and other target identifying characteristics.

Radars can be classified as ground based, airborne, spaceborne, or ship
based radar systems. They can also be classified into numerous categories
based on the specific radar characteristics, such as the frequency band, antenna
type, and waveforms utilized. Another classification is concerned with the
mission and/or the functionality of the radar. This includes: weather, acquisi-
tion and search, tracking, track-while-scan, fire control, early warning, over
the horizon, terrain following, and terrain avoidance radars. Phased array
radars utilize phased array antennas, and are often called multifunction (multi-
mode) radars. A phased array is a composite antenna formed from two or more
basic radiators. Array antennas synthesize narrow directive beams that may be
steered, mechanically or electronically. Electronic steering is achieved by con-
trolling the phase of the electric current feeding the array elements, and thus
the name phased arrays is adopted.

Radars are most often classified by the types of waveforms they use, or by
their operating frequency. Considering the waveforms first, radars can be
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Continuous Wave (CW) or Pulsed Radars (PR). CW radars are those that con-
tinuously emit electromagnetic energy, and use separate transmit and receive
antennas. Unmodulated CW radars can accurately measure target radial veloc-
ity (Doppler shift) and angular position. Target range information cannot be
extracted without utilizing some form of modulation. The primary use of
unmodulated CW radars is in target velocity search and track, and in missile
guidance. Pulsed radars use a train of pulsed waveforms (mainly with modula-
tion). In this category, radar systems can be classified on the basis of the Pulse
Repetition Frequency (PRF), as low PRF, medium PRF, and high PRF radars.
Low PREF radars are primarily used for ranging where target velocity (Doppler
shift) is not of interest. High PRF radars are mainly used to measure target
velocity. Continuous wave as well as pulsed radars can measure both target
range and radial velocity by utilizing different modulation schemes.

Table 1.1 has the radar classifications based on the operating frequency.

TABLE 1.1. Radar frequency bands.

Letter New band designation
designation Frequency (GHz) (GHz)
HF 0.003 - 0.03 A
VHF 0.03-0.3 A<0.25; B>0.25
UHF 03-1.0 B<0.5; C>0.5
L-band 1.0-2.0 D
S-band 2.0-4.0 E<3.0; F>3.0
C-band 4.0-8.0 G<6.0; H>6.0
X-band 80-12.5 1<10.0; J>10.0
Ku-band 12.5-18.0 J
K-band 18.0-26.5 J<20.0; K>20.0
Ka-band 26.5-40.0 K
MMW Normally >34.0 L<60.0; M>60.0

High Frequency (HF) radars utilize the electromagnetic waves’ reflection off
the ionosphere to detect targets beyond the horizon. Some examples include
the United States Over The Horizon Backscatter (U.S. OTH/B) radar which
operates in the frequency range of 5—-28MHZ, the U.S. Navy Relocatable
Over The Horizon Radar (ROTHR), see Fig. 1.1, and the Russian Woodpecker
radar. Very High Frequency (VHF) and Ultra High Frequency (UHF) bands are
used for very long range Early Warning Radars (EWR). Some examples
include the Ballistic Missile Early Warning System (BMEWS) search and
track monopulse radar which operates at 245MHz (Fig. 1.2), the Perimeter
and Acquisition Radar (PAR) which is a very long range multifunction phased
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array radar, and the early warning PAVE PAWS multifunction UHF phased
array radar. Because of the very large wavelength and the sensitivity require-
ments for very long range measurements, large apertures are needed in such
radar systems.

U.S. Navy ROTHR
2.6-km Receiving Array

Figure 1.1. U. S. Navy Over The Horizon Radar. Photograph obtained
via the Internet.

Figure 1.2. Fylingdales BMEWS - United Kingdom. Photograph
obtained via the Internet.
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Radars in the L-band are primarily ground based and ship based systems that
are used in long range military and air traffic control search operations. Most
ground and ship based medium range radars operate in the S-band. For exam-
ple, the Airport Surveillance Radar (ASR) used for air traffic control, and the
ship based U.S. Navy AEGIS (Fig. 1.3) multifunction phased array are S-band
radars. The Airborne Warning And Control System (AWACS) shown in Fig.
1.4 and the National Weather Service Next Generation Doppler Weather Radar
(NEXRAD) are also S-band radars. However, most weather detection radar
systems are C-band radars. Medium range search and fire control military
radars and metric instrumentation radars are also C-band.

Figure 1.3. U. S. Navy AEGIS. Photograph obtained via the Internet.

Figure 1.4. U. S. Air Force AWACS. Photograph obtained via the Internet.
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The X-band is used for radar systems where the size of the antenna consti-
tutes a physical limitation; this includes most military multimode airborne
radars. Radar systems that require fine target detection capabilities and yet can-
not tolerate the atmospheric attenuation of higher frequency bands may also be
X-band. The higher frequency bands (Ku, K, and Ka) suffer severe weather
and atmospheric attenuation. Therefore, radars utilizing these frequency bands
are limited to short range applications, such as the police traffic radars, short
range terrain avoidance, and terrain following radars. Milli-Meter Wave
(MMW) radars are mainly limited to very short range Radio Frequency (RF)
seekers and experimental radar systems.

1.2. Range

Figure 1.5 shows a simplified pulsed radar block diagram. The time control
box generates the synchronization timing signals required throughout the sys-
tem. A modulated signal is generated and sent to the antenna by the modulator/
transmitter block. Switching the antenna between the transmitting and receiv-
ing modes is controlled by the duplexer. The duplexer allows one antenna to be
used to both transmit and receive. During transmission it directs the radar elec-
tromagnetic energy towards the antenna. Alternatively, on reception, it directs
the received radar echoes to the receiver. The receiver amplifies the radar
returns and prepares them for signal processing. Extraction of target informa-
tion is performed by the signal processor block. The target’s range, R, is com-
puted by measuring the time delay, At; it takes a pulse to travel the two-way
path between the radar and the target. Since electromagnetic waves travel at
the speed of light, ¢ = 3 x 108m/ sec, then

=9

Transmitter/ @4—&
Time Modulator
Control
Signal Y
processor Receiver
A

Figure 1.5. A simplified pulsed radar block diagram.
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cAt

R=2

(1.1)

.. .. 1.
where R is in meters and Az is in seconds. The factor of 3 is needed to
account for the two-way time delay.

In general, a pulsed radar transmits and receives a train of pulses, as illus-
trated by Fig. 1.6. The Inter Pulse Period (IPP) is T, and the pulse width is 7.
The IPP is often referred to as the Pulse Repetition Interval (PRI). The inverse
of the PRI is the PRF, which is denoted by f,,

(1.2)

transmitted pulses L—J
IPP
pulse 1|‘l7| |_| pulse 2 |_| pulse 3 |_| time
>

-

At |T| pu];e 1 |_| pulse 2 |_|pulse 3 e
; ses echo . echo 1
received pulses echo >

Figure 1.6. Train of transmitted and received pulses.

During each PRI the radar radiates energy only for T seconds and listens for
target returns for the rest of the PRI. The radar transmitting duty cycle (factor)
d, is defined as the ratio d, = 1/T . The radar average transmitted power is

P, =P, xd, (1.3)

where P, denotes the radar peak transmitted power. The pulse energy is
E, =Pt =P, T=P,/f.

The range corresponding to the two-way time delay 7 is known as the radar
unambiguous range, R, . Consider the case shown in Fig. 1.7. Echo 1 repre-
sents the radar return from a target at range R, = cAz/2 due to pulse 1. Echo
2 could be interpreted as the return from the same target due to pulse 2, or it
may be the return from a faraway target at range R, due to pulse 1 again. In
this case,

cAt c(T+ Ar)

Ry, = — or R, = > (1.4)
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t=20

=| t=1/f,
- -
' PRI '
transmitted pulses H pulse 1 |_| pulse 2 time or range
At )
echol echo2 time orrange
received pulses
P R = cAt’
) “ar
RM
- Rz >

Figure 1.7. lllustrating range ambiguity.

Clearly, range ambiguity is associated with echo 2. Therefore, once a pulse is
transmitted the radar must wait a sufficient length of time so that returns from
targets at maximum range are back before the next pulse is emitted. It follows
that the maximum unambiguous range must correspond to half of the PRI,

R, =c¢5 =7 (1.5)

MATLAB Function “pulse_train.m”

The MATLAB function “pulse_train.m” computes the duty cycle, average
transmitted power, pulse energy, and the pulse repetition frequency. It is given
in Listing 1.1 in Section 1.8; its syntax is as follows:

[dt pav ep prfru] = pulse_train(tau,pri,p_peak)

where

Symbol Description Units Status

tau pulse width seconds input

pri PRI seconds input

p_peak peak power Watts input

dt duty cycle none output

pav average transmitted power Watts output

ep pulse energy Joules output

prf PRF Hz output

ru unambiguous range Km output
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Example 1.1: A certain airborne pulsed radar has peak power P, = 10KW,
and uses two PRFs, f., = 10KHz and f,, = 30KHz. What are the required
pulse widths for each PRF so that the average transmitted power is constant
and is equal to 1500Watts ? Compute the pulse energy in each case.

Solution: Since P, is constant, then both PRFs have the same duty cycle.
More precisely,

d = =22 _o1s
10x 10
The pulse repetition intervals are
1
T, = 3 = 0.lms
10x 10
) = —— = 0.0333ms
30x10

It follows that

T, = 015x T, = 15us
T, = 015X T, = Sus

E, = P71 =10x10°x15x 107 = 0.15Joules

p

E,, = Py1y = 10x10°x 5% 10°° = 0.05Joules .

1.3. Range Resolution

Range resolution, denoted as AR, is a radar metric that describes its ability
to detect targets in close proximity to each other as distinct objects. Radar sys-
tems are normally designed to operate between a minimum range R,,;,, and
maximum range R,,,.. The distance between R,;, and R, . is divided into
M range bins (gates), each of width AR,

R R

M = max ~ "‘min

R (1.6)

Targets separated by at least AR will be completely resolved in range, as illus-

trated in Fig. 1.8. Targets within the same range bin can be resolved in cross
range (azimuth) utilizing signal processing techniques.
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Consider two targets located at ranges R, and R,, corresponding to time
delays ¢, and #,, respectively. Denote the difference between those two ranges
as AR:

t,—t
AR = R,-R, = c(—22 D _ c%t (.7)
R | | | | CluslerZ I;v;l I
Ccross range lﬁ | | | | | ‘Pl | |
L 1
| . v |
| | Cluster 1 |‘U7| |
I L1 @
| | | | | | |

R . Cluster 3
- UL g
- Rmax -

Figure 1.8. Resolving targets in range and cross range.

Now, try to answer the following question: What is the minimum &z such
that target 1 at R, and target 2 at R, will appear completely resolved in range
(different range bins)? In other words, what is the minimum AR?

First, assume that the two targets are separated by ¢t/4, T is the pulse
width. In this case, when the pulse trailing edge strikes target 2 the leading
edge would have traveled backwards a distance cT, and the returned pulse
would be composed of returns from both targets (i.e., unresolved return), as
shown in Fig. 1.9a. However, if the two targets are at least ¢T/2 apart, then as
the pulse trailing edge strikes the first target the leading edge will start to return
from target 2, and two distinct returned pulses will be produced, as illustrated
by Fig. 1.9b. Thus, AR should be greater or equal to ¢T/2 . And since the radar
bandwidth B is equal to 1/7, then

AR = = = — (1.8)

In general, radar users and designers alike seek to minimize AR in order to
enhance the radar performance. As suggested by Eq. (1.8), in order to achieve
fine range resolution one must minimize the pulse width. However, this will
reduce the average transmitted power and increase the operating bandwidth.
Achieving fine range resolution while maintaining adequate average transmit-
ted power can be accomplished by using pulse compression techniques.
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reflected pulse return return
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2
reflected pulses return return
tgtl tgt2
‘ cT cT
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R, R,
cT
7 (a)
il tg2  shaded area has returns
. from both targets :
R, R,
cT
2 (b)
tgtl  tgt2

Figure 1.9. (a) Two unresolved targets. (b) Two resolved targets.
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MATLAB Function “range_resolution.m”

The MATLAB function “range_resolution.m” computes range resolution. It
is given in Listing 1.2 in Section 1.8; its syntax is as follows:

[delta_R] = range_resolution(var, indicator)

where
Symbol Description Units Status
var, indicator bandwidth, ‘hz’ Hz, none inputs
var, indicator pulse width, ‘s’ seconds, none inputs
delta_R range resolution meters output

Example 1.2: A radar system with an unambiguous range of 100 Km, and a
bandwidth 0.5 MHz. Compute the required PRF, PRI, AR, and T.

Solution:
8
prF = 55 = 2X10 4500 p;
2R, 2x10
PRI = —— = L = 06667 ms
~ PRF 1500
Using the function “range_resolution” yields
8
AR = & = X0 390,
2B 2x05x%10
2AR _ 2x300 2
= —— = 3 = Hs_
¢ 3x10
1.4. Doppler Frequency

Radars use Doppler frequency to extract target radial velocity (range rate), as
well as to distinguish between moving and stationary targets or objects such as
clutter. The Doppler phenomenon describes the shift in the center frequency of
an incident waveform due to the target motion with respect to the source of
radiation. Depending on the direction of the target’s motion this frequency shift
may be positive or negative. A waveform incident on a target has equiphase
wavefronts separated by A, the wavelength. A closing target will cause the
reflected equiphase wavefronts to get closer to each other (smaller wave-
length). Alternatively, an opening or receding target (moving away from the
radar) will cause the reflected equiphase wavefronts to expand (larger wave-
length), as illustrated in Fig. 1.10.
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radar \ \

—— » incident
reflected - — — —

Figure 1.10. Effect of target motion on the reflected equiphase waveforms.

Consider a pulse of width T (seconds) incident on a target which is moving
towards the radar at velocity v, as shown in Fig. 1.11. Define d as the distance
(in meters) that the target moves into the pulse during the interval Az,

d = vAt (1.9)

where At is equal to the time span between the pulse leading edge striking the
target and the trailing edge striking the target. Since the pulse is moving at the
speed of light and the trailing edge has moved distance ¢t —d, then

Ar = mc_d (1.10)

Combining Eq. (1.9) and Eq. (1.10) yields

d=-"21 (1.11)
v+

Now, in Az seconds the pulse leading edge has moved in the direction of the
radar a distance s,

s = cAt (1.12)
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trailing leading

edge edge
'g gv at time
incident pulse | s =ct > =
t=t
—
d .
|[«—»-
i ' at time
reflected pulse | L=ct <R t = ty+ At
I E— .
leading trailing
edge edge

Figure 1.11. Illustrating the impact of target velocity on a single pulse.

Therefore, the reflected pulse width is now t” seconds, or L meters,

L=ct =s-d (1.13)
Substituting Eq. (1.11) and Eq. (1.12) into Eq. (1.13) yields

, vc
ct = CAI—T’C (1.14)
v C
C2 vc C2—VC

et = T— T = T (1.15)

v+c v+c¢ v+c
T = %r (1.16)

C 1%

In practice, the factor (¢ —v)/(c + v) is often referred to as the time dilation
factor. Notice that if v = 0, then ©° = T. In a similar fashion, one can com-
pute T° for an opening target. In this case,

T =—1 (1.17)

To derive an expression for Doppler frequency, consider the illustration
shown in Fig. 1.12. It takes the leading edge of pulse 2 At seconds to travel a
distance (c/f,)—d to strike the target. Over the same time interval, the leading

edge of pulse 1 travels the same distance cAz. More precisely,

d = vAt (1.18)
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Figure 1.12. Illustration of target motion effects on the radar pulses.
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C

——d = cAt (1.19)
fr
solving for At yields
/
At = < (1.20)
c+v
/
d = v/l (1.21)
c+v

The reflected pulse spacing is now s —d and the new PRF is f,”, where

cv/f,
s—d = — = cAt- (1.22)
i c+v
It follows that the new PRF is related to the original PRF by
, _Ctv
= — 1.23
fr C _ v fr ( )

However, since the number of cycles does not change, the frequency of the
reflected signal will go up by the same factor. Denoting the new frequency by
fo - it follows

ff ==— fo (1.24)

where f, is the carrier frequency of the incident signal. The Doppler frequency
f, is defined as the difference f,,” — f,, . More precisely,

, c+v 2v
fa=1"—fo = c—v fo—fo = P fo (1.25)
but since v « ¢ and ¢ = Af}, then
2v . 2v
fa== Jo = X (1.26)

Eq. (1.26) indicates that the Doppler shift is proportional to the target velocity,
and thus, one can extract f,; from range rate and vice versa.

The result in Eq. (1.26) can also be derived using the following approach:
Fig. 1.13 shows a closing target with velocity v. Let R refer to the range at
time ¢, (time reference), then the range to the target at any time ¢ is

R(t) = Ry—v(t—1ty) (1.27)
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Figure 1.13. Closing target with velocity v.
The signal received by the radar is then given by
x,(1) = x(t-y(1)
where x(t) is the transmitted signal, and
2
y(r) = E(RO —vt+vt)

Substituting Eq. (1.29) into Eq. (1.28) and collecting terms yield
x (1) = x((l N %V);—wo)

the constant phase y, is

2R, 2y
Vo= ——"+—T" 1

c Cc

Define the compression or scaling factor y by

Yy=1+—
C

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

Note that for a receding target the scaling factoris y = 1 —(2v/c) . Using Eq.

(1.32) we can rewrite Eq. (1.30) as

x,(1) = x(yt =)

(1.33)

Eq. (1.33) is a time-compressed version of the returned signal from a stationary
target (v = 0). Hence, based on the scaling property of the Fourier transform,
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the spectrum of the received signal will be expanded in frequency by a factor
of y.

Consider the special case when

x(t) = y(t)coswyt (1.34)
where ®, is the radar center frequency in radians per second. The received
signal x,(¢) is then given by

x,.(t) = y(yt—yy)cos (YOt — ) (1.35)
The Fourier transform of Eq. (1.35) is

X, (o) = %{(Y((i; - wo) + Y(%) + wo)) (1.36)

where for simplicity the effects of the constant phase y, have been ignored in
Eq. (1.36). Therefore, the band pass spectrum of the received signal is now
centered at ym,, instead of . The difference between the two values corre-
sponds to the amount of Doppler shift incurred due to the target motion,

W,; = 0)— Y0, (1.37)
, is the Doppler frequency in radians per second. Substituting the value of y
in Eq. (1.37) and using 2nf = ® yield
2y 2v
== fi== 1.38
fa - fo 2 (1.38)

which is the same as Eq. (1.26). It can be shown that for a receding target the
Doppler shift is f;, = —2v/A . This is illustrated in Fig. 1.14.

-
!
-
!

amplitude
amplitude

-

fd|<; ‘>|fd
fo . iz y

frequency frequency

closing target receding target

Figure 1.14. Spectra of radar received signal.
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In both Eq. (1.38) and Eq. (1.26) the target radial velocity with respect to the
radar is equal to v, but this is not always the case. In fact, the amount of Dop-
pler frequency depends on the target velocity component in the direction of the
radar (radial velocity). Fig. 1.15 shows three targets all having velocity v : tar-
get 1 has zero Doppler shift; target 2 has maximum Doppler frequency as
defined in Eq. (1.38). The amount of Doppler frequency due to target 3 is
f, = 2vcos0/A, where vcosO is the radial velocity; and 0 is the total angle
between the radar line of sight and the target.

A A
| NV
v -« N
jt @%@ o E?g
tgtl tgt2 tgt3

Figure 1.15. Target 1 generates zero Doppler. Target 2 generates
maximum Doppler. Target 3 is in-between.

Thus, a more general expression for f, that accounts for the total angle
between the radar and the target is

fa= 2Tvcose (1.39)
and for an opening target
fa= %cose (1.40)

where cos® = cosO, cosO,. The angles 8, and 6, are, respectively, the ele-
vation and azimuth angles; see Fig. 1.16.

Example 1.3: Compute the Doppler frequency measured by the radar shown
in the figure below.

Viarger = 175 m/sec
-

R target

Vyadar = 250 m/sec
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\

Figure 1.16. Radial velocity is proportional to the azimuth and elevation angles.

Solution: The relative radial velocity between the radar and the target is

Viadar ¥ Viarger - Thus using Eq. (1.38), we get

) = 2% = 283KHz

Similarly, if the target were opening the Doppler frequency is

250 - 175

0.03 = 5KHz?.

fd=2

MATLAB Function “doppler_freq.m”

The function “doppler_freq.m” computes Doppler frequency. It is given in

Listing 1.3 in Section 1.8; its syntax is as follows:

[fd, tdr] = doppler_freq(freq, ang, tv, indicator)

where

Symbol Description Units Status

freq radar operating frequency Hz input

ang aspect angle degrees input

tv target velocity m/sec input
indicator 1 for closing target, 0 otherwise none input

fd Doppler frequency Hz output

tdr time dilation factor ratio T/ T none output
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1.5. Coherence

A radar is said to be coherent if the phase of any two transmitted pulses is
consistent, i.e., there is a continuity in the signal phase from one pulse to the
next, as illustrated in Fig. 1.17a. One can view coherence as the radar’s ability
to maintain an integer multiple of wavelengths between the equiphase wave-
front from the end of one pulse to the equiphase wavefront at the beginning of
the next pulse, as illustrated by Fig. 1.17b. Coherency can be achieved by
using a STAble Local Oscillator (STALO). A radar is said to be coherent-on-
receive or quasi-coherent if it stores in its memory a record of the phases of all
transmitted pulses. In this case, the receiver phase reference is normally the
phase of the most recent transmitted pulse.

Coherence also refers to the radar’s ability to accurately measure (extract)
the received signal phase. Since Doppler represents a frequency shift in the
received signal, then only coherent or coherent-on-receive radars can extract
Doppler information. This is because the instantaneous frequency of a signal is
proportional to the time derivative of the signal phase. More precisely,

- L d
fi = 55 790 (1.41)

where f; is the instantaneous frequency, and ¢(¢) is the signal phase.

For example, consider the following signal:

x(t) = cos(Yout— V) (1.42)

where the scaling factor v is defined in Eq. (1.32), and ,, is a constant phase.
It follows that the instantaneous frequency of x(z) is

A —

(a)

pulse n+1 pulse n

distance

(b)
Figure 1.17. (a) Phase continuity between consecutive pulses. (b) M aintaining an
integer multiple of wavelengths between the equiphase wavefronts
of any two successive pulses guarantees coherency.
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fi =" (1.43)
where o, = 2mnf,. Substituting Eq. (1.32) into Eq. (1.43) yields

2 2
fi = fo(l + ?v) =fo+t Tv (1.44)

where the relation ¢ = Af is utilized. Note that the second term of the most
right-hand side of Eq. (1.44) is a Doppler shift.

1.6. The Radar Equation

Consider a radar with an omni directional antenna (one that radiates energy
equally in all directions). Since these kinds of antennas have a spherical radia-
tion pattern, we can define the peak power density (power per unit area) at any
point in space as

P = Peak transmitted power watts
b area of a sphere m’

(1.45)

The power density at range R away from the radar (assuming a lossless propa-
gation medium) is

Pp = (1.46)

where P, is the peak transmitted power and 4mR’ is the surface area of a
sphere of radius R. Radar systems utilize directional antennas in order to
increase the power density in a certain direction. Directional antennas are usu-
ally characterized by the antenna gain G and the antenna effective aperture
A, . They are related by

_ GV

Ac = 4w

(1.47)
where A is the wavelength. The relationship between the antenna’s effective
aperture A, and the physical aperture A is

A, = pA (1.48)
0<p<l1

p is referred to as the aperture efficiency, and good antennas require p — 1.
In this book we will assume, unless otherwise noted, that A and A, are the
same. We will also assume that antennas have the same gain in the transmitting
and receiving modes. In practice, p = 0.7 is widely accepted.
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The power density at a distance R away from a radar using a directive
antenna of gain G is then given by

P, = —L (1.49)

When the radar radiated energy impinges on a target, the induced surface cur-
rents on that target radiate electromagnetic energy in all directions. The amount
of the radiated energy is proportional to the target size, orientation, physical
shape, and material, which are all lumped together in one target-specific
parameter called the Radar Cross Section (RCS) and is denoted by G .

The radar cross section is defined as the ratio of the power reflected back to
the radar to the power density incident on the target,
p r 2
C=—m 1.50
P, (1.50)
where P, is the power reflected from the target. Thus, the total power deliv-
ered to the radar signal processor by the antenna is

P,Go
P, = = (1.51)
(4mR")
substituting the value of A, from Eq. (1.47) into Eq. (1.51) yields
P.G'\'o
= Lo (1.52)
(4m) R

Let S,,;, denote the minimum detectable signal power. It follows that the
maximum radar range R, ,, is

242 1/4
R - M 1.53
max (41‘[)3S (1.53)

min

Eq. (1.53) suggests that in order to double the radar maximum range, one must
increase the peak transmitted power P, sixteen times; or equivalently, one
must increase the effective aperture four times.

In practical situations the returned signals received by the radar will be cor-
rupted with noise, which introduces unwanted voltages at all radar frequencies.
Noise is random in nature and can be described by its Power Spectral Density
(PSD) function. The noise power N is a function of the radar operating band-
width, B . More precisely
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N = Noise PSDXB (1.54)

The input noise power to a lossless antenna is

N, = kT,B (1.55)

where k = 1.38x 107> joule/degree Kelvin is Boltzman’s constant, and
T, is the effective noise temperature in degree Kelvin. It is always desirable
that the minimum detectable signal (S,,;, ) be greater than the noise power. The
fidelity of a radar receiver is normally described by a figure of merit called the
noise figure F (see Appendix A for details). The noise figure is defined as

_ (SNR), _ S/N,

F = =
(SNR), ~ S,/N,

(1.56)

(SNR); and (SNR), are, respectively, the Signal to Noise Ratios (SNR) at the
input and output of the receiver. S; is the input signal power, N, is the input
noise power, S, and N, are, respectively, the output signal and noise power.
Substituting Eq. (1.55) into Eq. (1.56) and rearranging terms yield

S; = kT,BF(SNR), (1.57)
Thus, the minimum detectable signal power can be written as
Sin = kKT,BF(SNR),, (1.58)

The radar detection threshold is set equal to the minimum output SNR,
(SNR), . Substituting Eq. (1.58) in Eq. (1.53) gives

PtGZKZG 1/4
Riax = 3 (1.59)
(4m) kT,BF(SNR),
or equivalently,
P,GZKZG
(SNR), = ————; (1.60)
(4n) kT ,BFR

Radar losses denoted as L reduce the overall SNR, and hence

PG\

(SNR), = —
(4nt) kT ,BFLR

(1.61)

Although it may take on many different forms, Eq. (1.61) is what is widely
known as the Radar Equation. It is a common practice to perform calculations
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associated with the radar equation using decibel (dB) arithmetic. A review is
presented in Appendix B.

MATLAB Function “radar_eq.m”

The function “radar_eq.m” implements Eq. (1.61); it is given in Listing 1.4
in Section 1.8. The outputs are either SNR in dB or range in Km where a dif-
ferent input setting is used for each case. The syntax is as follows:

[out_par] = radar_eq (pt, freq, g, sigma, te, b, nf, loss, input_par, option,
res_deltal, res_delta2, pt_percentl, pt_percent2)

Symbol Description Units Status
pt peak power Kw input
freq [frequency Hz input
g antenna gain dB input
sigma target cross section m? input
te effective temperature Kelvin input

b bandwidth Hz input

nf noise figure dB input
loss radar losses dB input
input_par SNR, or R dB, or Km input
option 1 means input_par = SNR none input

2 means input_par = R

res_deltal res deltal (sigma - deltal) dB input
res_delta2 res delta? (sigma + delta2) dB input
pt_percentl pt * pt_percentl% none input
pt_percent2 pt * pt_percent2% none input
out_par R for option = 1 Km, or dB output

SNR for option = 2

If some of the inputs are not available in the proper format, the functions
“dB_to_basel0.m” and / or “basel0_to_dB.m” can be used first. Plots of SNR
versus range (or range versus SNR) for several choices of RCS and peak power
are also generated by the function “radar_eq.m”. Typical plots utilizing Exam-
ple 1.4 parameters are shown in Fig. 1.18. In this case, the default values are
those listed in the example. Observation of these plots shows how doubling the
peak power (3 dB) has little effect on improving the SNR. One should consider
varying other radar parameters such as antenna gain to improve SNR, or detec-
tion range.
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Detection range - Km

Figure 1.18. Typical outputs generated by the function “radar_eq.m”.

Plots correspond to parameters from Example 1.4.
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Example 1.4: A certain C-band radar with the following parameters: Peak
power P, = 1.5MW, operating frequency f, = 5.6GHz, antenna gain
G = 45dB, effective temperature T, = 290K, pulse width T = 0.2usec.
The radar threshold is (SNR),,;, = 20dB. Assume target cross section
6 =0.1m. Compute the maximum range.

Solution: The radar bandwidth is

ple 1 sy
T 02x10°
the wavelength is
c _ 3x10°
A=—-=——=005m
fo 56x%10

From Eq. (1.59) we have

(RY)ap = (P,+ G + 1’ + 6~ (4m)’ ~kT,B~F - (SNR), ),
where, before summing, the dB calculations are carried out for each of the
individual parameters on the right-hand side. We can now construct the fol-
lowing table with all parameters computed in dB:

Pt 7\'2 G2 kTeB (475)3 F (SNR)UWM (¢}
61.761| -25.421| 90dB | -136.987| 32.976| 3dB 20dB -10
It follows

R* = 61.761 +90 —25.352 - 10— 32.976 + 136.987 — 3 - 20 = 197.420dB

197.420

0~ 55208 x 10" "

R = 4/55.208 x 10" = 86.199Km

Thus, the maximum detection range is 86.2Km .

R* = 10

1.6.1. Low PRF Radar Equation

Consider a pulsed radar with pulse width T, PRI T, and peak transmitted
power P,. The average transmitted power is P,, = P,d,, where d, = ©/T is
the transmission duty factor. We can define the receiving duty factor d, as
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g o T=1

. = = 1-1f. (1.62)

Thus, for low PRF radars (7 » T) the receiving duty factor is d, = 1.

Define the “time on target” 7; (the time that a target is illuminated by the
beam) as

n
T,=t=n,=Tf (1.63)

7,

where n, is the total number of pulses that strikes the target, and f, is the radar

PRF. Assuming low PREF, the single pulse radar equation is given by

P,GZKZG
(SNR); = —5—F—— (1.64)
(4m)’R*kT,BFL

and for n, coherently integrated pulses we get

PtGZXZO' n
(SNR), = ———P (1.65)
* (4n)’R*kT,BFL

Now by using Eq. (1.63) and using B = 1/7 the low PRF radar equation can
be written as

PG\ oTft
(SNR), = —— 4

) — (1.66)
» (4n)’R'KT,FL

MATLAB Function “Iprf_req.m”

The function “Iprf_req.m” implements the low PRF radar equation; it is
given in Listing 1.5 in Section 1.8. Again when necessary the functions
“dB_to_basel0.m” and/or “basel0_to_dB.m” can be used first. For a given
set of input parameters, the function “Iprf_req.m” computes (SNR),,.. Plots of
SNR versus range for three sets of coherently integrated pulses are generated;
see Fig. 1.19. Also, plots of SNR versus number of coherently integrated
pulses for two choices of the default RCS and peak power are generated. Typi-
cal plots utilizing Example 1.4 parameters are shown in Fig. 1.20. As indicated
by Fig. 1.20, integrating a limited number of pulses can significantly enhance
the SNR; however, integrating large amount of pulses does not provide any
further major improvement.

The syntax for function “Iprf_req.m” is as follows:

[snr_out] = Iprf_req (pt, freq, g, sigma, te, b, nf, loss, range, prf, np, rcs_delta,
pt_percent, npl, np2)
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Symbol Description Units Status
pt peak power KW input
freq frequency Hz input
g antenna gain dB input
sigma target cross section m? input
te effective temperature Kelvin input
b bandwidth Hz input
nf noise figure dB input
loss radar losses dB input
range target range Km input
prf PRF Hz input
np number of pulses none input
npl choice 1 for np none input
np2 choice 2 for np none input
res_delta res deltal (sigma - delta) dB input
pt_percent pt * pt_percent% none input
snr_out SNR dB output
50 ;
. —p
N — npi
40 - L np2 |7
\
30 | . i
20 |
« 10
=4
12

-30

50

.
200
Range - Km

I I
100 150

I
250

I
300

I
350

400

Figure 1.19. Typical output generated by the function “Iprf_req.m”. Plots
correspond to parameters from Example 1.4.
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Figure 1.20. Typical outputs generated by the function “Iprf_req.m”. Plots
correspond to parameters from Example 1.4.

1.6.2. High PRF Radar Equation

Now, consider the high PRF radar case. The transmitted signal is a periodic
train of pulses. The pulse width is T and the period is 7. This pulse train can
be represented using an exponential Fourier series. The central power spectrum
line (DC component) for this series contains most of the signal’s power. Its
value is (t/ T)2 , and it is equal to the square of the transmit duty factor. Thus,
the single pulse radar equation for a high PRF radar (in terms of the DC spec-
tral power line) is

P.G'\od,
(4n)’R*kT,BFLd,

SNR = (1.67)

where, in this case, we can no longer ignore the receive duty factor, since its
value is comparable to the transmit duty factor. In fact, d,=d, = 1f,. Addi-
tionally, the operating radar bandwidth is now matched to the radar integration
time (time on target), B = 1/7;. It follows that
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PAf TG\

SNR = ————— (1.68)
(4m)’R'kT,FL
and finally,
P, T.G'No
SNR = —“——— (1.69)
(4n)"R kT ,FL

where P, was substituted for P,tf,. Note that the product P, T; is a “kind of
energy” product, which indicates that high PRF radars can enhance detection

performance by using relatively low power and longer integration time.
MATLAB Function “hprf _req.m”

The function “hprf_req.m” implements the high PRF radar equation; it is
given in Listing 1.6 in Section 1.8. Plots of SNR versus range for three duty
cycle choices are generated. Figure 1.21 shows typical outputs generated by
the function “hprf_req.m”. Its syntax is as follows:

[snr_out] = hprf_req (pt, freq, g, sigma, dt, ti, range, te, nf, loss, prf, tau, dtl,

dr2)
where

Symbol Description Units Status
pt peak power KwW input
freq frequency Hz input
g antenna gain dB input
sigma target cross section m? input
dt duty cycle none input
ti time on target seconds input
range target range Km input
te effective temperature Kelvin input
nf noise figure dB input
loss radar losses dB input
prf PRF Hz input
tau pulse width seconds input
dtl duty cycle choice 1 none input
ar2 duty cycle choice 2 none input
snr_out SNR dB output

© 2000 by Chapman & Hall/CRC



Note that either d, or the combination of f. and T are needed. One should
enter zero for d, when f,. and T are known and vice versa.

dt = 1, dt1 = 10, dt2 = 100

40

SNR - dB

. . . . . .
10 20 30 40 50 60 70
Range - Km

. .
80 90 100

Figure 1.21. Typical output generated by the function “hprf_req.m”.
Plots correspond to parameters from Example 1.5.

Example 1.5: Compute the single pulse SNR for a high PRF radar with the
following parameters: peak power P, = 100KW, antenna gain G = 20dB,
operating frequency f, = 5.6GHz, losses L = 8dB, noise figure F = 5dB,
effective temperature T, = 400K, dwell interval T, = 2s, duty factor
d, = 03. The range of interest is R = 50Km. Assume target RCS

6 = 001m’.
Solution: From Eq. (1.69) we have
2,42 34
(SNR),p = (P, +G + A" +0+T,—(4n) =R —kT—-F—L)

The following table gives all parameters in dB:

Pav 7\,2 Ti kTe (47[)3 R4 Y

44771 | -25.421| 3.01 —202.581| 32.976 | 187.959| -20

(SNR) ;5 = 44771 +40-25.421-20 + 3.01 - 32.976 +
202.581 - 187.959 -5 -8 = 11.006dB
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1.6.3. Surveillance Radar Equation

Surveillance or search radars continuously scan a specified volume in space
searching for targets. They are normally used to extract target information such
as range, angular position, and possibly target velocity. Depending on the radar
design and antenna, different search patterns can be adopted. A two-dimen-
sional (2-D) fan beam search pattern is shown in Fig.1.22a. In this case, the
beam width is wide enough in elevation to cover the desired search volume
along that coordinate; however, it has to be steered in azimuth. Figure 1.22b
shows a stacked beam search pattern; here the beam has to be steered in azi-
muth and elevation. This latter kind of search pattern is normally employed by
phased array radars.

Search volumes are normally specified by a search solid angle € in steradi-
ans. The antenna 3dB beam width can be expressed in terms of its azimuth
and elevation beam widths 8, and 6, , respectively. It follows that the antenna
solid angle coverage is 6,0, . In this book we will assume symmetrical anten-

nas (circular apertures) so that 6, = 0,. Furthermore, when we refer to the
antenna beam width we will always assume the 3dB beam width, 6;,;.

The number of antenna beam positions ny required to cover a solid angle Q
is (see Fig. 1.23)

ng = Q _ Q2 (1.70)

8 GE eidB

a

For a circular aperture of diameter D, the 05,5 is

A
93dB = l_) (1.71)
elevation

azimuth

Figure 1.22. (a) 2-D fan search pattern; (b) stacked search pattern.
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antenna
beam width

N

Figure 1.23. A cut in space showing the antenna beam width
and the search volume.

and when aperture tapering is used, 65,, = 1.25A/D . Substituting Eq. (1.71)
into Eq. (1.70) yields

D2
2

ng = Q (1.72)
As arule of thumb, the 05,, antenna beam width for a rectangular aperture of
length a is 05,5, =2A/a.

Define the time it takes radar to search a volume defined by the solid angle
€ as the scan time T, . The time on target can then be expressed in terms of
T, as

T. T\
T, = —==—— (1.73)
g D°Q

In order to define the search radar equation, start with Eq. (1.69) and use Eq.
(1.73). More precisely,

P, G'\Mo T, N

SNR = 3 4 2
(4n)’R*kT,FL D*Q

(1.74)

and by using Eq. (1.47) in Eq. (1.74) we can define the search radar equation as

P, Ac T,

SNR = —* e
16R*KT,LF Q

(1.75)

where the relation A = TEDZ/ 4 (aperture area) was used.
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The quantity P, A in Eq. (1.75) is known as the power aperture product. In
practice, the power aperture product is widely used to categorize the radar abil-
ity to fulfill its search mission. Normally, a power aperture product is com-
puted to meet predetermined SNR and radar cross section for a given search
volume defined by Q.

Example 1.6: Compute the power aperture product for an X-band radar with
the following parameters: signal-to-noise ratio SNR = 15dB; losses
L = 8dB; effective noise temperature T, = 900 degree Kelvin; search vol-
ume Q = 2°; scan time T,, = 2.5 seconds; noise figure F = 5dB. Assume a
—10dBsm target cross section, and range R = 250Km. Also, compute the
peak transmitted power corresponding to 30% duty factor, if the antenna gain

is 45 dB.

Solution: The angular coverage is 2° in both azimuth and elevation. It fol-
lows that the solid angle coverage is

O = 2x2

- ~ = -29.132dB
(57.23)

Note that the factor 360/2n = 57.23 converts angles into solid angles. From
Eq. (1.75), we have

(SNR)3 = (P,,+A+G+T,.—16—R' kT, L—F-Q)

(o) T 16 R4 kT

sc e

-10 3.979 12.041 215.918 —-199.059

It follows that
15 =P, +A-10+3.979-12.041 - 215918 + 199.054 — 5 -8 +29.133

Then the power aperture product is

P, +A = 33.793dB

Now, assume the radar wavelength to be A = 0.03m, then

2
A= % = 3550dB; P, = —A+33.793 = 30.2434B
p,, = 1077 = 1057.548W
p = Dav 1057548 _ 5 o5y kw
T d, 03 7 '
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MATLAB Function “power_aperture_eq.m”

The function “power_aperture_req.m” implements the search radar equa-
tion given in Eq. (1.75); it is given in Listing 1.7 in Section 1.8. Plots of peak
power versus aperture area and the power aperture product versus range for
three range choices are generated. Figure 1.24 shows typical output using the
parameters given in Example 1.6. The syntax is as follows:

[p_a_p, aperture, pt, pav] = power_aperture_req (snr, freq, tsc, sigma, dt,
range, te, nf, loss, az_angle, el_angle, g, rcs_deltal, rcs_delta2)

where

Symbol Description Units Status
snr sensitivity snr dB input
freq frequency Hz input
tsc scan time seconds input
sigma target cross section m? input
dt duty cycle none input
range target range Km input

te effective temperature Kelvin input

nf noise figure dB input
loss radar losses dB input
az_angle search volume azimuth extent degrees input
el_angle search volume elevation extent degrees input
g antenna gain dB input
res_deltal res delta 1 (sigma - deltal) dB input
res_delta2 res delta2 (sigma + delta2) dB input
p_a_p power aperture product dB output
aperture antenna aperture m? output
pt peak power KW output
pav average power Kw output

1.6.4. Radar Equation with Jamming

Any deliberate electronic effort intended to disturb normal radar operation is
usually referred to as an Electronic Countermeasure (ECM). This may also
include chaff, radar decoys, radar RCS alterations (e.g., radio frequency
absorbing materials), and of course, radar jamming. Jammers can be catego-
rized into two general types: (1) barrage jammers; and (2) deceptive jammers
(repeaters).
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RCS = -10dBsm, deltal = 10dBsm, delta2 = 10dBsm
60 T

40|

-dB

30 -
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Power aperture product

. —— default RCS
Aor — RCS-deltat
- - RCS+delta2

-20 I I I I I I I I I
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Range - Km

Peak power - Kw

Aperture in squared meters

Figure 1.24. Typical outputs generated by the function “power_aperture_req.m”.
Plots correspond to parameters from Example 1.6.
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When strong jamming is present, detection capability is determined by
receiver signal-to-noise plus interference ratio rather than SNR. And in most
cases, detection is established based on the signal-to-interference ratio alone.

Barrage jammers attempt to increase the noise level across the entire radar
operating bandwidth. Consequently, this lowers the receiver SNR, and, in turn,
makes it difficult to detect the desired targets. This is the reason why barrage
jammers are often called maskers (since they mask the target returns). Barrage
jammers can be deployed in the main beam or in the side lobes of the radar
antenna. If a barrage jammer is located in the radar main beam, it can take
advantage of the antenna maximum gain to amplify the broadcasted noise sig-
nal. Alternatively, side lobe barrage jammers must either use more power, or
operate at a much shorter range than main beam jammers. Main beam barrage
jammers can be deployed either on-board the attacking vehicle, or act as an
escort to the target. Side lobe jammers are often deployed to interfere with a
specific radar, and since they do not stay close to the target, they have a wide
variety of stand-off deployment options.

Repeater jammers carry receiving devices on board in order to analyze the
radar’s transmission, and then send back false target-like signals in order to
confuse the radar. There are two common types of repeater jammers: spot noise
repeaters and deceptive repeaters. The spot noise repeater measures the trans-
mitted radar signal bandwidth and then jams only a specific range of frequen-
cies. The deceptive repeater sends back altered signals that make the target
appear in some false position (ghosts). These ghosts may appear at different
ranges or angles than the actual target. Furthermore, there may be several
ghosts created by a single jammer. By not having to jam the entire radar band-
width, repeater jammers are able to make more efficient use of their jamming
power. Radar frequency agility may be the only way possible to defeat spot
noise repeaters.

Self-Screening Jammers (SSJ)

Self-screening jammers, also known as self-protecting jammers, are a class
of ECM systems carried on the vehicle they are protecting. Escort jammers
(carried on vehicles that accompany the attacking vehicles) can also be treated
as SSJs if they appear at the same range as that of the target(s).

Assume a radar with an antenna gain G, wavelength A, aperture A, band-
width B, receiver losses L, and peak power P,. The single pulse power
received by the radar from a target of RCS o, at range R, is

B P,szzc

.= (1.76)
4 ’R'L
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The power received by the radar from an SSJ jammer at the same range is

P;G;, AB
Py, = —5 —— (1.77)
SSJ 47‘CR2 B]LJ
where P;, G, B, L, are, respectively, the jammer’s peak power, antenna gain,
operating bandwidth, and losses. Substituting Eq. (1.47) into Eq. (1.77) yields

P,G, \’G B
Pggy = i’ 4m BL, (1.78)
The factor (B/B;) (a ratio less than unity) is needed in order to compensate
for the fact that the jammer bandwidth is usually larger than the operating
bandwidth of the radar. This is because jammers are normally designed to
operate against a wide variety of radar systems with different bandwidths.
Thus, the radar equation for a SSJ case is obtained from Eqs. (1.76) and (1.78),

S P,GoB,L, (1.79)
Sssi 47rPJGJR2BL

where G, is the radar processing gain.

The jamming power reaches the radar on a one-way transmission basis,
whereas the target echoes involve two-way transmission. Thus, the jamming
power is generally greater than the target signal power. In other words, the ratio
S/ Sgs; 18 less than unity. However, as the target becomes closer to the radar,
there will be a certain range such that the ratio S/ S, is equal to unity. This
range is known as the crossover or burn-through range. The range window
where the ratio S/ Sy, is sufficiently larger than unity is denoted as the detec-
tion range. In order to compute the crossover range R, , set S/ Sgg; to unity in
Eq. (1.79) and solve for range. It follows that

co’

P,GGB,L,)V2

(Reolsss = (4nP,G,BL (1-80)

MATLAB Program “ssj_req.m”

The program “ssj_req.m” implements Eqs. (1.76) through (1.80); it is given
in Listing 1.8 in Section 1.8. This program calculates the crossover range and
generates plots of relative § and Sgg; versus range normalized to the cross-
over range, as illustrated in Fig. 1.25. In this example, the following parame-
ters were utilized in producing this figure: radar peak power p, = 50KW,
jammer peak power P, = 200W, radar operating bandwidth B = 667KHz,
jammer  bandwidth B, = 50MHz, radar and jammer losses
L =L, = 0.10dB, target cross section G = lO.m2 , radar antenna gain

G = 35dB, jammer antenna gain G; = 104B.
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The synatx is as follows:

[BR_range] = ssj_req (pt, g, freq, sigma, b, loss, pj, bj, gj, lossj)

where

Symbol Description Units Status
pt radar peak power KW input

g radar antenna gain dB input
sigma target cross section m? input
freq radar operating frequency Hz input

b radar operating bandwidth Hz input

loss radar losses dB input

pj Jjammer peak power Kw input

bj Jjammer bandwidth Hz input

gj Jjammer antenna gain dB input
lossj Jjammer losses dB input
BR_range burn-through range Km output

40 ——
| — Target echo

Relative signal or jamming amplitude - dB

10 10 10 10° 10
Range normalized to crossover range

Figure 1.25. Target and jammer echo signals. Plots were generated using
the program “ssj_req.m”.
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Stand-Off Jammers (SOJ)

Stand-off jammers (SOJ) emit ECM signals from long ranges which are
beyond the defense’s lethal capability. The power received by the radar from
an SOJ jammer at range R; is

P;G,; 7\.2G' B
4TER3 4t B,L,

Psoy = (1.81)

where all terms in Eq. (1.81) are the same as those for the SSJ case except for
G’ . The gain term G’ represents the radar antenna gain in the direction of the
jammer and is normally considered to be the side lobe gain.

The SOJ radar equation is then computed from Eqgs. (1.81) and (1.76) as

2.2
s _ PGROBL, 182
Ssos  4nP,G,G'R'BL

Again, the crossover range is that corresponding to § = Sy, ; it is given by

2 2 1/4
(R _(P.G'R;0B,L, (1.89)
co’sol — | 4nP,G,G'BL ’
and the detection range is
(R.,)
R, = —2%— (1.84)

410878507 min

where (§/S50,),,;, 1 the minimum value of the signal-to-jammer power ratio
such that target detection can occur.

Note that in practice, the ratio S/ S, is normally computed after pulse com-
pression, and thus Eqs. (1.82) and (1.83) must be modified by multiplication
with the compression gain G, . Plots in Figs. 1.25 and 1.26 were produced
without regard to pulse compression gain.

MATLAB Program “soj_req.m”

The program “soj_req.m” implements Eqs. (1.82) and (1.83); it is given in
Listing 1.9 in Section 1.8. The inputs to the program “soj_req.m” are the same
as in the SSJ case, with two additional inputs: they are the radar antenna gain
on the jammer G’ and radar to jammer range R,. This program generates the
same type of plots as in the case of the SSJ. Typical output is in Fig. 1.26 utiliz-
ing the same parameters as those in the SSJ case, with jammer peak power
P, = 5000W, jammer antenna gain G, = 30dB, radar antenna gain on the
jammer G* = 10dB, and radar to jammer range R, = 22.2Km.
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Figure 1.26. Target and jammer echo signals. Plots were generated using
the program “soj_req.m”.

Range Reduction Factor
Consider a radar system whose detection range R in the absence of jamming
is governed by Eq. (1.61), which is repeated here as Eq. (1.85):
P,GZKZG

(SNR), = —
(4n) kT,BFLR

(1.85)

The term Range Reduction Factor (RRF) refers to the reduction in the radar
detection range due to jamming. More precisely, in the presence of jamming
the effective radar detection range is

R, =R x RRF (1.86)

In order to compute RRF, consider a radar characterized by Eq. (1.85), and a
barrage jammer whose output power spectral density is J,,. Then, the amount
of jammer power in the radar receiver is

P, =J,B = kT,B (1.87)

where k is Boltzman’s constant and 7' is the jammer effective temperature. It
follows that the total jammer plus noise power in the radar receiver is given by
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N,+P, = kT,B+kT,B (1.88)

In this case, the radar detection range is now limited by the receiver signal-to-
noise plus interference ratio rather than SNR. More precisely,

24 2
PG\
(P ) ) ! ° (1.89)

ssstN) - (4m)y’k(T, + T,)BFLR®
The amount of reduction in the signal-to-noise plus interference ratio because

of the jammer effect can be computed from the difference between Egs. (1.85)
and (1.89). It is expressed (in dBs) by

T,
T = 10.0 % log(l + ?) (1.90)
Consequently, the RRF is
=X
RRF = 10" (1.91)

MATLAB Function “range_red_fac.m”

The function “range_red_factorm” implements Eqgs. (1.90) and (1.91); it is
given in Listing 1.10 in Section 1.8. This function generates plots of RRF ver-
sus: (1) the radar operating frequency; (2) radar to jammer range; and (3) jam-
mer power. Its syntax is as follows:

range_red_factor (te, pj, gj, &, freq, bj, rangej, lossj)

where
Symbol Description Units Status
te radar effective temperature K input
Dj Jjammer peak power Kw input
gj jammer antenna gain dB input
g radar antenna gain on jammer daB input
freq radar operating frequency Hz input
bj Jjammer bandwidth Hz input
rangej radar to jammer range Km input
lossj Jjammer losses dB input

The following values were used to produce Figs. 1.27 through 1.29.

le pi g g freq bj rangej lossj
730K | I150KW 3dB 40dB 10GHz IMHz 400Km 1dB

© 2000 by Chapman & Hall/CRC



Range reduction factor
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W avelength in meters

Figure 1.27. Range reduction factor versus radar operating wavelength. This
plot was generated using the function “range_red_factor.m”.
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Figure 1.28. Range reduction factor versus radar to jammer range. This
plot was generated using the function “range_red_factor.m”.
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Figure 1.29. Range reduction factor versus jammer peak power. This plot was
generated using the function “range_red_factor.m”.

1.6.5. Bistatic Radar Equation

Radar systems that use the same antenna for both transmitting and receiving
are called monostatic radars. Bistatic radars use transmit and receive antennas
that are placed in different locations. Under this definition CW radars, although
they use separate transmit and receive antennas, are not considered bistatic
radars unless the distance between the two antennas is considerable. Figure
1.30 shows the geometry associated with bistatic radars. The angle, B, is
called the bistatic angle. A synchronization link between the transmitter and
receiver is necessary in order to maximize the receiver’s knowledge of the
transmitted signal so that it can extract maximum target information.

The synchronization link may provide the receiver with the following infor-
mation: (1) the transmitted frequency in order to compute the Doppler shift;
and (2) the transmit time or phase reference in order to measure the total scat-
tered path (R, + R,). Frequency and phase reference synchronization can be
maintained through line-of-sight communications between the transmitter and
receiver. However, if this is not possible, the receiver may use a stable refer-
ence oscillator for synchronization.
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' synchronization '

Figure 1.30. Bistatic radar geometry.

One major distinction between monostatic and bistatic radar operations has
to do with the measured bistatic target RCS, denoted by 6. In the case of a
small bistatic angle, the bistatic RCS is similar to the monostatic RCS: but, as
the bistatic angle approaches 180°, the bistatic RCS becomes very large and
can be approximated by

ATA

oy (1.92)

where A is the wavelength and A, is the target projected area.

The bistatic radar equation can be derived in a similar fashion to the mono-
static radar equation. Referring to Fig. 1.30, the power density at the target is

PG
Py = —— (1.93)
4nR

t

where P, is the peak transmitted power, G, is the gain of the transmitting
antenna, and R, is the range from the radar transmitter to the target.

The effective power scattered off a target with bistatic RCS ¢ is
P’ = P,0y, (1.94)
and the power density at the receiver antenna is
P’ PpCy

Poy=—= (1.95)

4an 4an
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where R, is the range from the target to the receiver. Substituting Eq. (1.93)
into Eq. (1.95) yields

P,G,Gy

25252

= (1.96)
(4m)°R;R,

Preﬂ

The total power delivered to the signal processor by a receiver antenna with
aperture A, is

P, = PGop, 1.97
Dr — 2.2.2 (1.97)
(41)’R’R;

Substituting (G,A’/4m) for A, yields

2
_ P,G,G,\o,

Dr = T 3 5 95
(4m)’RR;

(1.98)

where G, is gain of the receive antenna. Finally, when transmitter and receiver
losses, L, and L,, are taken into consideration, the bistatic radar equation can
be written as

2
P,G,G G,

35252

Pp, = —5 55— —
(4n)’R;R,L,L,L,

(1.99)

where L, is the medium propagation loss.

1.7. Radar Losses

As indicated by the radar equation, the receiver SNR is inversely propor-
tional to the radar losses. Hence, any increase in radar losses causes a drop in
the SNR, thus decreasing the probability of detection, since it is a function of
the SNR. Often, the principal difference between a good radar design and a
poor radar design is the radar losses. Radar losses include ohmic (resistance)
losses and statistical losses. In this section we will briefly summarize radar
losses.

1.7.1. Transmit and Receive Losses

Transmit and receive losses occur between the radar transmitter and antenna
input port, and between the antenna output port and the receiver front end,
respectively. Such losses are often called plumbing losses. Typically, plumbing
losses are on the order of 1 to 2 dBs.
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1.7.2. Antenna Pattern Loss and Scan Loss

So far, when we used the radar equation we assumed maximum antenna
gain. This is true only if the target is located along the antenna’s boresight axis.
However, as the radar scans across a target the antenna gain in the direction of
the target is less than maximum, as defined by the antenna’s radiation pattern.
The loss in the SNR due to not having maximum antenna gain on the target at
all times is called the antenna pattern (shape) loss. Once an antenna has been
selected for a given radar, the amount of antenna pattern loss can be mathemat-
ically computed.

For example, consider a sinx/x antenna radiation pattern as shown in Fig.
1.31. It follows that the average antenna gain over an angular region of +6/2
about the boresight axis is

nr\20°
Gav~ 1 _(T) %

where r is the aperture radius and A is the wavelength. In practice, Gaussian
antenna patterns are often adopted. In this case, if 05,, denotes the antenna
3dB beam width, then the antenna gain can be approximated by

(1.100)

(1.101)

2
G(o) - eXp[_msz

3dB

Normalized antenna pattern -dB

-70 I I I I I I I

Aangle - radians

Figure 1.31. Normalized (sin x / x) antenna pattern.
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If the antenna scanning rate is so fast that the gain on receive is not the same
as on transmit, additional scan loss has to be calculated and added to the beam
shape loss. Scan loss can be computed in a similar fashion to beam shape loss.
Phased array radars are often prime candidates for both beam shape and scan
losses.

1.7.3. Atmospheric Loss

Detailed discussion of atmospheric loss and propagation effects is in a later
chapter. Atmospheric attenuation is a function of the radar operating frequency,
target range, and elevation angle. Atmospheric attenuation can be as high as a
few dBs.

1.7.4. Collapsing Loss

When the number of integrated returned noise pulses is larger than the target
returned pulses, a drop in the SNR occurs. This is called collapsing loss. The
collapsing loss factor is defined as

n+m

p. = (1.102)

n
where n is the number of pulses containing both signal and noise, while m is
the number of pulses containing noise only. Radars detect targets in azimuth,
range, and Doppler. When target returns are displayed in one coordinate, such
as range, noise sources from azimuth cells adjacent to the actual target return
converge in the target vicinity and cause a drop in the SNR. This is illustrated
in Fig. 1.32.

Figure 1.32. Illustration of collapsing loss. Noise sources in cells 1, 2, 4, and 5
converge to increase the noise level in cell 3.
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1.7.5. Processing Losses
a. Detector Approximation:

The output voltage signal of a radar receiver that utilizes a linear detector is

V(1) = Jvi (1) +vplt)

where (v, v,) are the in-phase %nd quadgature cg)mponents. For a radar using
a square law detector, we have v™(r) = v; (1) + vy (7).

Since in real hardware the operations of squares and square roots are time
consuming, many algorithms have been developed for detector approximation.
This approximation results in a loss of the signal power, typically 0.5 to 1 dB.

b. Constant False Alarm Rate (CFAR) Loss:

In many cases the radar detection threshold is constantly adjusted as a func-
tion of the receiver noise level in order to maintain a constant false alarm rate.
For this purpose, Constant False Alarm Rate (CFAR) processors are utilized in
order to keep the number of false alarms under control in a changing and
unknown background of interference. CFAR processing can cause a loss in the
SNR level on the order of 1 dB.

Three different types of CFAR processors are primarily used. They are adap-
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques.
Adaptive CFAR assumes that the interference distribution is known and
approximates the unknown parameters associated with these distributions.
Nonparametric CFAR processors tend to accommodate unknown interference
distributions. Nonlinear receiver techniques attempt to normalize the root
mean square amplitude of the interference.

c. Quantization Loss:

Finite word length (number of bits) and quantization noise cause an increase
in the noise power density at the output of the Analog to Digital (A/D) con-
verter. The A/D noise level is qz/ 12, where ¢ is the quantization level.

d. Range Gate Straddle:

The radar receiver is normally mechanized as a series of contiguous range
gates (bins). Each range bin is implemented as an integrator matched to the
transmitted pulse width. Since the radar receiver acts as a filter that smears
(smooths), the received target echoes. The smoothed target return envelope is
normally straddled to cover more than one range gate.

Typically, three gates are affected; they are called the early, on, and late
gates. If a point target is located exactly at the center of a range gate, then the

© 2000 by Chapman & Hall/CRC



early and late samples are equal. However, as the target starts to move into the
next gate, the late sample becomes larger while the early sample gets smaller.
In any case, the amplitudes of all three samples should always roughly add up
to the same value. Fig. 1.33 illustrates the concept of range straddling. The
envelope of the smoothed target echo is likely to be Gaussian shape. In prac-
tice, triangular shaped envelopes may be easier and faster to implement.

echo envelope

on target sample /

late sample

»

range gates
on target range
bin

(a) Target on the center of a range gate.

echo envelope

on target sample late sample

early sample

»
-

range gates

-«
on target range

bin

(b) Target on the boundary between two range gates.

Figure 1.33. Illustration of range gate straddling.

Since the target is likely to fall anywhere between two adjacent range bins, a
loss in the SNR occurs (per range gate). More specifically, a target’s returned
energy is split between three range bins. Typically, straddle loss of about 2 to 3
dBs is not unusual.

Example 1.7: Consider the smoothed target echo voltage shown below.
Assume 1Q resistance. Find the power loss due to range gate straddling over
the interval {0,717} .
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v(t)

Solution: The smoothed voltage can be written as

K+(K:1)t <0
v(t) =
(K1) azo

The power loss due to straddle over the interval {0, 1} is

2 2
v K+1 K+1Y 2
L= Y _ g _ofAt! A+
5T 2 (Kr)”(l(r)t

The average power loss is then
/2
- 2 K+1 K+1Y\ 2
Ls = = J (1—2(—)t+(—) t ) dt
T Kt Kt
0
2
K+l (K+1)

=1
2K 12K°

and, for example, if K = 15, then ix = 2.5dB.
e. Doppler Filter Straddle:

Doppler filter straddle is similar to range gate straddle. However, in this case
the Doppler filter spectrum is spread (widened) due to weighting functions.
Weighting functions are normally used to reduce the side lobe levels. Since the
target Doppler frequency can fall anywhere between two Doppler filters, signal
loss occurs. This is illustrated in Fig. 1.34, where due to weighting, the cross-
over frequency f,, is smaller than the filter cutoff frequency f, which nor-

mally corresponds to the 3dB power point.
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Doppler filters after windowing

Figure 1.34. Due to windowing, the crossover frequency may become smaller
than the cutoff frequency.

1.7.6. Other Losses

Other losses may include equipment losses due to aging radar hardware,
matched filter loss, and antenna efficiency loss. Tracking radars suffer from
crossover (squint) loss (see Chapter 11).

1.8. MATLAB Program and Function Listings

This section presents listings for all MATLAB functions and programs used
in this chapter. Users are encouraged to vary the input parameters and rerun
these programs in order to enhance their understanding of the theory presented
in the text. All selected parameters and variables follow the same naming nota-
tion used in the text, thus, understanding the structure and hierarchy of the pre-
sented code should be an easy task once the user has read the theory.

For almost each MATLAB function or program provided in this book, there
is a companion file designated as “filename_driverm”. These “driver” files
utilize MATLAB-based Graphical User Interface (GUI). For example, the
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companion “driver” file for the function “Iprf_req.m” is “Iprf_req_driverm”.
When a “driver” file is executed, it opens a GUI work space which can be
used by the user to enter values to parameters and produce the relevant plots.
Figure 1.35 shows the GUI work space for the function “Iprf_req_driverm”.
Note that all MATLAB programs and functions developed in this book can be
downloaded from CRC Press Web Site “www.crcpress.com”.

40 T T T T T T T

30r

20

1]

Cluit
10F

SMR - dB

_20 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Range - Km

Bt - K I 1.0e6 Te - Kelvin 400 R -Km 2a0.
frequency - Hzl 5.6e3 E-Hz Geb FRF - Hz 100

G - & 40, F-dB 3 e — 10

RCS -m2 0.1 L-dB 1.

Figure 1.35 GUI work space related to the function “Iprf _req.m”. Note
that this GUI was designed on a Windows 98 Personal
Computer (PC) using MATLAB 5 - Release 11 and thus, it
may appear different on Apple or Unix based machines,
or PC systems using earlier versions of MATLAB.
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Listing 1.1. MATLAB Function “pulse_train.m”

function [dt, prf, pav, ep, ru] = pulse_train(tau, pri, p_peak)
% This function is described in Section 1.2.

¢ =3.0e+8;
dt = tau / pri;
prf = 1./ pri;

pav = p_peak * dt;

ep = p_peak * tau;
ru=1.0e-3 * ¢ * pri/ 2.0;
return

Listing 1.2. MATLAB Function “range_resolutio.m”

function [delta_R] = range_resolution(bandwidth,indicator)
% This function computes radar range resolution in meters
% the bandwidth must be in Hz ==> indicator = Hz.
% Bandwidth may be equal to (1/pulse width)==> indicator = seconds
c=3.e+8;
if(indicator == 'hz")

delta_R = c /(2.0 * bandwidth);
else

delta_R = ¢ * bandwidth / 2.0;
end
return

Listing 1.3. MATLAB Function “doppler_freq.m”

function [fd, tdr] = doppler_freq(freq, ang, tv, indicator)
% This function computes Doppler frequency and time dilation factor ratio
% tau_prime / tau
format long
¢ =3.0e+8;
ang_rad = ang * pi /180.;
lambda = c / freq;
if (indicator == 1)
fd =2.0 * tv * cos(ang_rad) / lambda;
tdr=(c-tv)/ (c +tv);
else
fd =-2.0 * ¢ * tv * cos(and_rad) / lambda;
tdr=(c +tv)/(c -tv);
end
return

Listing 1.4. MATLAB Function “radar_eq.m”

function [out_par] = radar_eq(pt, freq, g, sigma, te, b, nf, loss, input_par, option,
rcs_deltal, rcs_delta2, pt_percentl, pt_percent2)
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% This function implements Eq. (1.161). Parameters description is in Section 1.6.
¢ =3.0e+8;
lambda = c / freq;
p_peak = base10_to_dB(pt);
lambda_sq = lambda”2;
lambda_sqdb = base10_to_dB(lambda_sq);
sigmadb = base10_to_dB(sigma);
for_pi_cub = base10_to_dB((4.0 * pi)*3);
k_db =basel0_to_dB(1.38e-23);
te_db = base10_to_dB(te)
b_db = basel0_to_dB(b);
if (option == 1)
temp = p_peak + 2. * g + lambda_sqdb + sigmadb - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - input_par;
out_par = dB_to_basel0(temp)*(1/4)
% calculate sigma(+-)10dB (rcs +- rcs_deltal,2)
sigmap = rcs_deltal + sigmadb;
sigmam = sigmadb - rcs_delta2.;
% calculate.pt_percentl * pt and pt_percent2% * pt
ptOS = p_peak + base10_to_dB(pt_percentl);
pt200 = p_peak + base10_to_dB(pt_percent2);
index = 0;
% vary snr from.5 to 1.5 of default value
for snrvar = input_par*.5: 1: input_par*1.5
index = index + 1;
rangel (index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ...
sigmam - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
~(1/4) 1 1000.0;
range2(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ....
sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
~(1/4) /1 1000.0;
range3(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ...
sigmap - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
~(1/4) 1 1000.0;
end
index = 0;
for snrvar = input_par*.5: 1: input_par*1.5;
index = index + 1;
rangpl(index) = dB_to_basel0(pt05 + 2. * g + lambda_sqdb + ...
sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
~(1/4) 1 1000.0;
rangp2(index) = dB_to_basel0(p_peak + 2. * g + lambda_sqdb + ...
sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
~(1/4) /1 1000.0;
rangp3(index) = dB_to_base10(pt200 + 2. * g + lambda_sqdb + ...
sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
~(1/4) 1 1000.0;
end
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snrvar = input_par*.5: 1: input_par*1.5;
figure (1)
subplot (2,1,1)
plot (snrvar,range2,snrvar,rangel,snrvar,range3)
legend ('default RCS','RCS-rcs_deltal','RCS+rcs_delta2")
xlabel (‘Minimum SNR required for detection - dB');
ylabel ('Detection range - Km');
%title ('Plots correspond to input parameters from example 1.4');
subplot (2,1,2)
plot (snrvar,rangp2,snrvar,rangpl,snrvar,rangp3)
legend ('default power',".pt_percent1*pt', 'pt_percent2*pt')
xlabel (‘Minimum SNR required for detection - dB');
ylabel ('Detection range - Km")
else
range_db = base10_to_dB(input_par * 1000.0);
out_par = p_peak + 2. * g + lambda_sqdb + sigmadb - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db
% calculate sigma -- rcs_deltal,2 dB
sigma5 = sigmadb - rcs_deltal;
sigmalO = sigmadb - rcs_delta2;
% calculate pt_percentl % * pt and pt_percent2*pt
ptOS = p_peak + base10_to_dB(pt_percentl);
pt200 = p_peak + base10_to_dB(pt_percent2);
index = 0;
% vary snr from .5 to 1.5 of default value
for rangvar = input_par*.5 : 1 : input_par*1.5
index =index + 1;
var = 4.0 * base10_to_dB(rangvar * 1000.0);
snrl(index) = p_peak + 2. * g + lambda_sqdb + sigmadb - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - var;
snr2(index) = p_peak + 2. * g + lambda_sqdb + sigma5 - ...
for_pi_cub - k_db-te_db - b_db - nf - loss - var;
snr3(index) = p_peak + 2. * g + lambda_sqdb + sigmalO - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - var;
end
index = 0;
for rangvar = input_par*.5 : 1 : input_par*1.5;
index = index + 1;
var = 4.0 * base10_to_dB(rangvar * 1000.0);
snrpl(index) = pt05 + 2. * g + lambda_sqdb + sigmadb - ...
for_pi_cub - k_db-te_db - b_db - nf - loss - var;
snrp2(index) = p_peak + 2. * g + lambda_sqdb + sigmadb - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - var;
snrp3(index) = pt200 + 2. * g + lambda_sqdb + sigmadb - ...
for_pi_cub - k_db-te_db - b_db - nf - loss - var;
end
end
rangvar = input_par*.5 : 1 : input_par*1.5;
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figure (2)

subplot (2,1,1)

plot (rangvar,snrl,rangvar,snr2,rangvar,snr3)

legend ('default RCS','RCS-rcs_deltal','RCS-rcs_delta2')
xlabel ('‘Detection range - Km');

ylabel ('SNR - dB');

%title ("Plots correspond to input parameters from example 1.4');
subplot (2,1,2)

plot (rangvar,snrp2,rangvar,snrpl,rangvar,snrp3)

legend ('default power',".pt_percent]*pt','pt_percent2*pt')
xlabel ('‘Detection range - Km');

ylabel ('SNR - dB');

Input file “radar_reqi.m”

% Use this input file to reproduce Fig. 1.18

clear all

pt = 1.5e+6; % peak power in Watts

freq = 5.6e+9; % radar operating frequency in Hz

g=45.0; % antenna gain in dB

sigma =0.1; % radar cross section in m square

te = 290.0; % effective noise temperature in Kelvins

b =5.0e+6; % radar operating bandwidth in Hz

nf = 3.0; % noise figure in dB

loss = 0.0; % radar losses in dB

option = 1; % 1 ===> input_par = SNR in dB
% 2 ===> input_par = Range in Km

input_par = 20;

rcs_deltal =5.0; % rcs variation choice 1
res_delta2 =10.0; % rcs variation choice2
pt_percentl = 0.5; % peak power variation choice 1
pt_percent2 =2.0; % peak power variation choice 2

Listing 1.5. MATLAB Function “lprf req.m”

function [snr_out] = Iprf_req (pt, freq, g, sigma, te, b, nf, loss, range, prf, np, rcs_delta,
pt_percent, npl, np2)

% This program implements the LOW PRF radar equation.

¢ =3.0e+8;

lambda = c / freq;

p_peak = base10_to_dB(pt);

lambda_sq = lambda”?2;

lambda_sqdb = base10_to_dB(lambda_sq);

sigmadb = base10_to_dB(sigma);

for_pi_cub = base10_to_dB((4.0 * pi)*3);

k_db = basel0_to_dB(1.38e-23);

te_db = base10_to_dB(te)

b_db = basel10_to_dB(b);
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np_db = base10_to_dB(np);
range_db = base10_to_dB(range * 1000.0);
% Implement Eq. (1.65)
snr_out = p_peak + 2. * g + lambda_sqdb + sigmadb + np_db - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db
% Generate plots in Fig. 1.19
index = 0;
nl =np_db;
n2 = basel0_to_dB(np1);
n3 = basel0_to_dB(np2)
for range_var = 25:5:400 % 25 - 400 Km
index = index + 1;
rangevar_db = base10_to_dB(range_var * 1000.0);
snrl(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + nl - ...
for_pi_cub - k_db -te_db - b_db - nf - loss - 4.0 * rangevar_db;
snr2(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + n2 - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * rangevar_db;
snr3(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + n3 - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * rangevar_db;
end
figure(1)
var = 25:5:400;
plot(var,snrl,'’k',var,snr2,'k--',var,snr3,'k--.")
legend('np = 1','np1','np2")
xlabel ('Range - Km');
ylabel ('SNR - dB');
%title (mp = 1, npl = 10, np2 =100");
% Generate plots in Fig. 1.20
sigma5 = sigmadb - rcs_delta.;
pt05 = p_peak + base10_to_dB(pt_percent);
index = 0;
for nvar =1:10:500 % 500 pulses
index = index + 1;
ndb = base10_to_dB(nvar);
snrs(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + ndb - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
snrs5(index) = p_peak + 2. * g + lambda_sqdb + sigma5 + ndb - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
end
index = 0;
for nvar =1:10:500 % 500 pulses
index = index + 1;
ndb = basel0_to_dB(nvar);
snrp(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + ndb - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
snrpS(index) = pt05 + 2. * g + lambda_sqdb + sigmadb + ndb - ...
for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
end
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nvar =1:10:500;

figure (2)

subplot (2,1,1)

plot (nvar,snrs,'k',nvar,snrs5,'’k --')

legend ('default RCS','RCS-delta")

xlabel (‘'Number of coherently integrated pulses');
ylabel ('SNR - dB');

%title ('delta = 10, percent = 2');

subplot (2,1,2)

plot (nvar,snrp,'k',nvar,snrp3,'k --')

legend ('default power','pt * percent'’)

xlabel (‘'Number of coherently integrated pulses');
ylabel ('SNR - dB');

Input file “Iprf_reqi.m”
% Use this input file to reproduce Fig.s 1.19 and 1.20

pt = 1.5e+6; % peak power in Watts

freq = 5.6e+9; % radar operating frequency in Hz
g=45.0; % antenna gain in dB

sigma =0.1; % radar cross section in m square

te = 290.0; % effective noise temperature in Kelvins
b =5.0e+6; % radar operating bandwidth in Hz

nf = 3.0; % noise figure in dB

loss = 0.0; % radar losses in dB

np=1; % 1 number of coherently integrated pulses
prf =100 ; % PRF in Hz

range = 250.0; % target range in Km

npl =10; % choice 1 of np

np2 = 100; % choice 2 of np

rcs_delta=10.0; % rcs variation
pt_percent =2.0; % pt variation

Listing 1.6. MATLAB Function “hprf_req.m”

function [snr_out] = hprf_req (pt, freq, g, sigma, dt, ti, range, te, nf, loss, prf, tau, dtl,
dt2)

% This program implements the High PRF radar equation.

¢ =3.0e+8;

lambda = c / freq;

% Compute the duty cycle

if (dt==0)
dt = tau * prf;
end

pav_db = basel0_to_dB(pt * dt);
lambda_sqdb = base10_to_dB(lambda’2);
sigmadb = base10_to_dB(sigma);
for_pi_cub = base10_to_dB((4.0 * pi)*3);
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k_db =basel0_to_dB(1.38e-23);
te_db = base10_to_dB(te);
ti_db = base10_to_dB(ti);
range_db = base10_to_dB(range * 1000.0);
% Implement Eq. (1.69)
snr_out = pav_db + 2. * g + lambda_sqdb + sigmadb + ti_db - ...
for_pi_cub - k_db - te_db - nf - loss - 4.0 * range_db
% Generate Plots in Figure 1.21
index = 0;
pav10 = base10_to_dB(pt *dtl);
pav20 = base10_to_dB(pt * dt2);
for range_var = 10:1:100
index = index + 1;
rangevar_db = base10_to_dB(range_var * 1000.0);
snrl(index) = pav_db + 2. * g + lambda_sqdb + sigmadb + ti_db - ...
for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db;
snr2(index) = pav10 + 2. * g + lambda_sqdb + sigmadb + ti_db - ...
for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db;
snr3(index) = pav20 + 2. * g + lambda_sqdb + sigmadb + ti_db - ...
for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db;
end
figure (1)
var = 10:1:100;
plot (var,snrl,'k',var,snr2,'k--',var,snr3,'k:")
grid
legend ('dt','dt1,'dt2")
xlabel ('Range - Km');
ylabel ('SNR - dB');
%title ('dt = 30%, dtl = 5%, dt2 =20%");

Input file “hprf reqi.m”
% Use this input file to reproduce Fig. 1.21

clear all

pt = 100.0e+3; % peak power in Watts

freq = 5.6e+9; % radar operating frequency in Hz

g =20.0; % antenna gain in dB

sigma = 0.01; % radar cross section in m square

ti =2.0; % time on target in seconds

dt=0.3; % radar duty cycle

0% Y0 To %o % %o %o %o % %% enter dt =0 when PRF and Tau are given %% % %%
prf = 0.0; % PRF

o0 To To %o %o % %o % % %% enter fr = 0 when duty cycle is known % % % %
tau = 0.0; % pulse width in seconds

0% %o Po To %0 Jo %o % % %o % enter tau = 0 when duty cycle is known %% % %
te = 400.0; % effective noise temperature in Kelvins

nf =5.0; % noise figure in dB

loss = 8.0; % radar losses in dB
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range =50.0; % target range in Km
dtl =0.05;
dt2=0.2;

Listing 1.7. MATLAB Function “power_aperture_req.m’”

function [p_a_p, aperture, pt, pav] = power_aperture_req (snr, freq, tsc, sigma, dt,
range, te, nf, loss, az_angle, el_angle, g, rcs_deltal, rcs_delta2)
% This program implements the search radar equation.
¢ =3.0e+8;
% Compute Omega in steraradians
omega = (az_angle / 57.23) * (el_angle /57.23);
omega_db = basel10_to_dB(omega);
lambda = c / freq;
lambda_sqdb = base10_to_dB(lambda’2);
sigmadb = base10_to_dB(sigma);
k_db = basel0_to_dB(1.38e-23);
te_db = base10_to_dB(te);
tsc_db = base10_to_dB(tsc);
factor = base10_to_dB(16.0);
range_db = base10_to_dB(range * 1000.);
p_a_p = snr - sigmadb - tsc_db + factor + 4.0 * range_db + ...
k_db + te_db + nf + loss + omega_db
aperture = g + lambda_sqdb - base10_to_dB(4.0 * pi)
pav =p_a_p - aperture;
pav = dB_to_base10(pav) / 1000.0
pt =pav/dt
% Calculate sigma(+-) rcs_deltal,2 dB
sigmap = rcs_deltal + sigmadb;
sigmam = sigmadb - rcs_delta2.;
index = 0;
% vary range from 10% to 200% of input range
for rangevar = range*.1 : 1 : range*2.0
index = index + 1;
rangedb = base10_to_dB(rangevar * 1000.0);
papl(index) = snr - sigmadb - tsc_db + factor + 4.0 * rangedb + ...
k_db + te_db + nf + loss + omega_db;
papm(index) = snr - sigmam - tsc_db + factor + 4.0 * rangedb + ...
k_db + te_db + nf + loss + omega_db;
papp(index) = snr - sigmap - tsc_db + factor + 4.0 * rangedb + ...
k_db + te_db + nf + loss + omega_db;

end
var =range*.1 : 1 : range*2.0;
figure (1)

plot (var,papl,'k',var,papm,'’k --',var,papp,'’k:")
legend (‘default RCS',RCS-deltal',RCS+1delta2")
xlabel ('Range - Km');

ylabel ("Power aperture product - dB');
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%title (‘deltal = 10dBsm, delta2 = 10dBsm');
index = 0;
% Vary aperture from 2 msq to 50 msq
for apervar = 2:1:50
aperdb = base10_to_dB(apervar);
index = index +1;
pav=p_a_p - aperdb;
pav = dB_to_base10(pav) / 1000.0;
pt(index) = pav / dt;
end
figure (2)
apervar = 2:1:50;
plot (apervar, pt,'k")
grid
xlabel ('Aperture in squared meters')
ylabel ('Peak power - Kw')

Input file “power_aperture_reqi.m”

% Use this input file to reproduce plots in Fig. 1.24
clear all

snr = 15.0; % sensitivity SNR in dB

freq = 10.0e+9; % radar operating frequency in Hz

tsc =2.5; % antenna scan time in seconds

sigma =0.1; % radar cross section in m square

dt=0.3; % radar duty cycle

range = 250.0; % sensitivity range in Km

te = 900.0; % effective noise temperature in Kelvins
nf =5.0; % noise figure in dB

loss = 8.0; % radar losses in dB

az_angle =2.0; % search volume azimuth extent in degrees
el_angle =2.0; % search volume elevation extent in degrees
g=45.0; % antenna gain in dB

rcs_deltal = 10.0;
rcs_delta2 = 10.0;

Listing 1.8. MATLAB Program “ssj_req.m”
function [BR_range] = ssj_req (pt, g, freq, sigma, b, loss, ...
pj, bj, gj, lossj)
% This function implements Eq.s (1.76) through (1.80)
¢ =3.0e+8;
lambda = c / freq;
lambda_db = base10_to_dB(lambda’2);
if (loss ==0.0)
loss = 0.000001;
end
if (lossj ==0.0)
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lossj = 0.000001;
end
% Compute Omega in steraradians
sigmadb = base10_to_dB(sigma);
pt_db = basel0_to_dB(pt);
b_db =basel0_to_dB(b);
bj_db = basel0_to_dB(bj);
pj_db = basel0_to_dB(pj);
factor = base10_to_dB(4.0 *pi);
BR_range = sqrt((pt * (dB_to_basel0(g)) * sigma * bj * (dB_to_basel0(lossj))) / ...
(4.0 * pi * pj * (dB_to_base10(gj)) * b * ...
(dB_to_base10(loss)))) / 1000.0
s_at_br=pt_db + 2.0 * g + lambda_db + sigmadb - ...
3.0 * factor - 4.* base10_to_dB(BR_range) - loss
% prepare to plot Figure 1.25
index =0;
for ran_var = .1:10:10000
index = index + 1;
ran_db = base10_to_dB(ran_var * 1000.0);
ssj(index) = pj_db + gj + lambda_db + g + b_db - 2.0 * factor - ...
2.0 * ran_db - bj_db - lossj + s_at_br ;
s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...
3.0 * factor - 4.* ran_db - loss + s_at_br ;
end
ranvar = .1:10:10000;
ranvar = ranvar ./ BR_range;
semilogx (ranvar,s,'k',ranvar,ssj,'k-.");
% axis([.1 1000 -90 40]); % This line is specific to Fig. 1.25
xlabel (‘'Range normalized to cross-over range');
legend ('Target echo','SSJ")
ylabel ('Relative signal or jamming amplitude - dB');
grid

Input file “ssj_reqi.m”

% Use this input file to reproduce Fig. 1.25

clear all

pt = 50.0e+3; % peak power in Watts

g=135.0; % antenna gain in dB

freq = 3.2e+49; % radar operating frequency in Hz
sigma=10.0; % radar cross section in m square
b =667.0e+3; % radar operating bandwidth in Hz
loss = 0.000; % radar losses in dB

pj = 200.0; % jammer peak power in Watts

bj = 50.0e+6; % jammer operating bandwidth in Hz
gj =10.0; % jammer antenna gain in dB

lossj = 0.0; % jammer losses in dB
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Listing 1.9. MATLAB Program “soj_req.m”

function [BR_range] = soj_req (pt, g, sigma, b, freq, loss, range, ...
pj» bj.gj, lossj, gprime, rangej)

% This function implements equations for SOJs

¢ =3.0e+8;

lambda = c / freq;

lambda_db = base10_to_dB(lambda”2)

if (loss == 0.0)
loss = 0.000001;

end

if (lossj == 0.0)
lossj =0.000001;

end

% Compute Omega in steraradians

sigmadb = base10_to_dB(sigma);

range_db = base10_to_dB(range * 1000.);

range_db = base10_to_dB(rangej * 1000.);

pt_db = basel0_to_dB(pt);

b_db = basel0_to_dB(b);

bj_db = basel0_to_dB(bj);

pj_db = base10_to_dB(pj);

factor = base10_to_dB(4.0 *pi);

BR_range = ((pt * dB_to_base10(2.0%g) * sigma * bj * dB_to_base10(lossj) * ...
(rangej)*2) / (4.0 * pi * pj * dB_to_base10(gj) * dB_to_base10(gprime) * ...
b * dB_to_base10(loss)))*.25 / 1000.

%* (dB_to_basel10(16)".25)

s_at_br=pt_db+ 2.0 * g + lambda_db + sigmadb - ...
3.0 * factor - 4.0 * base10_to_dB(BR_range) - loss

% prepare to plot Figure 1.27

index =0;

for ran_var = .1:1:1000;
index = index + 1;
ran_db = base10_to_dB(ran_var * 1000.0);
s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...

3.0 * factor - 4.0 * ran_db - loss + s_at_br;
soj(index) = s_at_br - s_at_br;

end

ranvar = .1:1:1000;

Yoranvar = ranvar ./BR_range;

semilogx (ranvar,s,'k',ranvar,soj,'k-.");

xlabel ('Range normalized to cross-over range');

legend ('Target echo','SOJ")

ylabel ('Relative signal or jamming amplitude - dB');
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Input file “soj_reqi.m”

% Use this input file to reproduce Fig. 1.26

clear all

pt = 50.0e+3; % peak power in Watts

g=35.0; % antenna gain in dB

freq = 3.6e+9; % radar operating frequency in Hz
sigma=10; % radar cross section in m square
b =667.0e+3; % radar operating bandwidth in Hz
range = 20%1852; % radar to target range

gprime = 10.0; % radar antenna gain on jammer
loss = 0.01; % radar losses in dB

rangej = 12*1852; % range to jammer in Km

pj =5.0e+3; % jammer peak power in Watts

bj = 50.0e+6; % jammer operating bandwidth in Hz
gj =30.0; % jammer antenna gain in dB

lossj = 0.01; % jammer losses in dB

rangej = 12*%1852; % range to jammer in Km

Listing 1.10. MATLAB Function “range_red_factor.m”

function RRF = range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)
% This function computes the range reduction factor and produce
% plots of RRF versus wavelength, radar to jammer range, and jammer power
¢ =3.0e+8;
k =1.38e-23;
lambda = c / freq;
gj_10 = dB_to_base10(gj);
g 10 =dB_to_basel0(g);
lossj_10 = dB_to_base10(lossj);
index = 0;
for wavelength = .01:.001:1

index = index +1;

jamer_temp = (pj * gj_10 * g_10 *wavelength"2) / ...

(4.072 * pir2 * k * bj * lossj_10 * (rangej * 1000.0)*2);

delta = 10.0 * 1og10(1.0 + (jamer_temp / te));

rrf(index) = 107 (-delta /40.0);
end
w =0.01:.001:1;
figure (1)
semilogx (w,rrf,'k")
grid
xlabel ("Wavelength in meters')
ylabel (‘Range reduction factor')
index = 0;
for ran =rangej*.3:1:rangej*2

index = index + 1;

jamer_temp = (pj * gj_10 * g_10 *wavelength"2) / ...
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(4.072 * pi*2 * k * bj * lossj_10 * (ran * 1000.0)*2);
delta = 10.0 * 1og10(1.0 + (jamer_temp / te));
rrfl(index) = 10°(-delta /40.0);

end
figure(2)
ranvar = rangej*.3:1:rangej*?2 ;
plot (ranvar,rrf1,'k")
grid
xlabel ('Radar to jammer range - Km')
ylabel ('Range reduction factor')
index = 0;
for pjvar = pj*.01:1:pj*2
index = index + 1;
jamer_temp = (pjvar * gj_10 * g_10 *wavelength2) / ...

(4.072 * pir2 * k * bj * lossj_10 * (rangej * 1000.0)*2);
delta = 10.0 * 1og10(1.0 + (jamer_temp / te));
rrf2(index) = 10”(-delta /40.0);

end

figure(3)

pjvar = pj*.01:1:pj*2;

plot (pjvar,rrf2,'k")

grid

xlabel ('Jammer peak power - Watts')
ylabel (‘'Range reduction factor')

Input file “range_red_factori.m”

% Use this input file to reproduce Fig.s 1.27 through 1.29
clear all

te = 500.0; % radar effective temperature in Kelvin
pj = 500; % jammer peak power in W

gj=3.0; % jammer antenna gain in dB

g=45.0; % radar antenna gain

freq = 10.0e+9; % radar operating frequency in Hz

bj = 10.0e+6; % radar operating bandwidth in Hz
rangej = 750.0; % radar to jammer range in Km

lossj = 1.0; % jammer losses in dB

Problems

1.1. (a)Calculate the maximum unambiguous range for a pulsed radar with
PRF of 200Hz and 750Hz; (b) What are the corresponding PRIs?
1.2. For the same radar in Problem 1.1, assume a duty cycle of 30% and

peak power of 5SKW. Compute the average power and the amount of radiated

energy during the first 20ms .
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1.3. A certain pulsed radar uses pulse width T = 1ps. Compute the corre-
sponding range resolution.

1.4. An X-band radar uses PRF of 3KHz . Compute the unambiguous
range, and the required bandwidth so that the range resolution is 30m . What is
the duty cycle?

1.5. Compute the Doppler shift associated with a closing target with veloc-
ity 100, 200, and 350 meters per second. In each case compute the time dilation

factor. Assume that A = 0.3m.
1.6. A certain L-band radar has center frequency 1.5GHZ, and PRF
f, = 10KHz . What is the maximum Doppler shift that can be measured by

this radar?

1.7. Starting with a modified version of Eq. (1.27), derive an expression for
the Doppler shift associated with a receding target.

1.8. Inreference to Fig. 1.16, compute the Doppler frequency for

v = 150m/s, 0, = 30°,and 6, = 15°. Assume that A = 0.1m.

1.9. A pulsed radar system has a range resolution of 30cm . Assuming sinu-

soid pulses at 45KHz, determine the pulse width and the corresponding band-
width.

1.10. (a)Develop an expression for the minimum PRF of a pulsed radar; (b)
compute f, for a closing target whose velocity is 400m /s ; (c) what is the

unambiguous range? Assume that A = 0.2m.

1.11. An L-band pulsed radar is designed to have an unambiguous range of
100Km and range resolution AR < 100m . The maximum resolvable Doppler
frequency corresponds to v, ., < 350m/ sec. Compute the maximum required

pulse width, the PRF, and the average transmitted power if P, = 500W.
1.12. Compute the aperture size for an X-band antenna at f, = 9GHz.

Assume antenna gain G = 10, 20,30 dB.

1.13. An L-band radar (1500 MHz) uses an antenna whose gain is

G = 30dB . Compute the aperture size. If the radar duty cycleis d, = 0.2
and the average power is 25KW, compute the power density at range

R = 50Km.

1.14. For the radar described in Problem 1.13, assume the minimum detect-
able signal is 5dBm . Compute the radar maximum range for

6 = 1.0, 10.0, 20.0m> .
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1.15. Consider an L-band radar with the following specifications: operating
frequency f, = 1500MHz, bandwidth B = SMHz, and antenna gain

G = 5000 . Compute the peak power, the pulse width, and the minimum

detectable signal for this radar. Assume target RCS ¢ = 10m” , the single
pulse SNR is 15.4dB , noise figure F' = 5dB , temperature 7, = 290K, and

maximum range R, . = 150Km.

1.16. Repeat Example 1.4 with P, = 1MW, G = 40dB ,and ¢ = 0.5m".

1.17. Show that the DC component is the dominant spectral line for high
PRF waveforms.

1.18. Repeat Example 1.5 with L = 5dB, F = 10dB, T = 500K,
T, =15s,d, = 025,and R = 75Km .

1.19. Consider alow PRF C-band radar operating at f;, = 5S000MHz . The

antenna has a circular aperture with radius 2m . The peak power is
P, = 1MW and the pulse widthis T = 2us. The PRFis f, = 250Hz, and

the effective temperature is 7, = 600K . Assume radar losses L = 15dB and

target RCS ¢ = lOm2 . (a) Calculate the radar’s unambiguous range; (b) cal-

culate the range R,, that corresponds to SNR = 0dB ; (c) calculate the SNR at
R = 0.75R,.

1.20. The atmospheric attenuation can be included in the radar equation as
another loss term. Consider an X-band radar whose detection range at 20Km

includes a 0.25dB/ Km atmospheric loss. Calculate the corresponding detec-
tion range with no atmospheric attenuation.

1.21. Let the maximum unambiguous range for a low PRF radar be R, . .

(a) Calculate the SNR at (1/2)R and (3/4)R (b) If a target with

max max *

6 = 10m” existsat R = (1/2)R
R = (3/4)R
gets.

1.22. A Milli-Meter Wave (MMW) radar has the following specifications:
operating frequency f, = 94GHz, PRF f. = 15KHz, pulse width

what should the target RCS be at

max >

max SO that the radar has the same signal strength from both tar-

T = 0.05ms, peak power P, = 10W, noise figure F = 5dB, circular
antenna with diameter D = 0.254m , antenna gain G = 30dB, target RCS

c = lmz, system losses L = 8dB, radar scan time 7. = 3, radar angular
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coverage 200°, and atmospheric attenuation 3dB/ Km . Compute the follow-
ing: (a) wavelength A ; (b) range resolution AR ; (c) bandwidth B ; (d) the SNR

as a function of range; (e) the range for which SNR = 15dB; (f) antenna
beam width; (g) antenna scan rate; (h) time on target; (i) the effective maxi-
mum range when atmospheric attenuation is considered.

1.23. Repeat Example 1.5 with Q = 4° ¢ = lm2 ,and R = 400Km .
1.24. Using Eq. (1.80), compute (as a function of B;/B) the crossover
range for the radar in Problem 1.22. Assume P; = 100W, G, = 10dB, and
L, = 2dB.

1.25. Using Eq. (1.80), compute (as a function of B;/B) the crossover
range for the radar in Problem 1.22. Assume P, = 200W, G, = 15dB, and
L, = 2dB. Assume G* = 12dB and R, = 25Km .

1.26. A certainradar is subject to interference from an SSJ jammer. Assume
the following parameters: radar peak power P, = 55KW, radar antenna gain
G = 30dB, radar pulse width T = 2us, radar losses L = 10dB , jammer
power P; = 150W, jammer antenna gain G; = 12dB, jammer bandwidth

B, = 50MHz, and jammer losses L, = 1dB. Compute the crossover range

fora Sm’ target.
1.27. A radar with antenna gain G is subject to a repeater jammer whose
antenna gain is G, . The repeater illuminates the radar with three fourths of the

incident power on the jammer. (a) Find an expression for the ratio between the
power received by the jammer and the power received by the radar; (b) what is

this ratio when G = G, = 200 and R/A = 10°2
1.28. Using Fig. 1.30 derive an expression for R, . Assume 100% synchro-

nization between the transmitter and receiver.

1.29. An X-band airborne radar transmitter and an air-to-air missile receiver
act as a bistatic radar system. The transmitter guides the missile toward its tar-
get by continuously illuminating the target with a CW signal. The transmitter

has the following specifications: peak power P, = 4KW; antenna gain

G, = 25dB ; operating frequency f, = 9.5GHz . The missile receiver has the

following characteristics: aperture A, = O.Olm2 ; bandwidth B = 750Hz;
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noise figure F = 7dB ;andlosses L, = 2dB . Assume that the bistatic RCS is

Cp = 3m” . Assume R, = 35Km; R, = 17Km . Compute the SNR at the
missile.

1.30. Repeat the previous problem when there is 0.1dB/ Km atmospheric
attenuation.

1.31. Consider an antenna with a sinx/x pattern. Let x = (7rsin®)/A,
where r is the antenna radius, A is the wavelength, and 0 is the off-boresight
angle. Derive Eq. (1.100). Hint: Assume small x, and expand sinx/x as an
infinite series.

1.32. Compute the amount of antenna pattern loss for a phased array
antenna whose two-way pattern is approximated by

) = [exp(-2In2(y/05,5)))]"

where 05, is the 3dB beam width. Assume circular symmetry.

1.33. A certain radar has a range gate size of 30m . Due to range gate strad-
dle, the envelope of a received pulse can be approximated by a triangular
spread over three range bins. A target is detected in range bin 90. You need to
find the exact target position with respect to the center of the range cell. (a)
Develop an algorithm to determine the position of a target with respect to the
center of the cell; (b) assuming that the early, on, and late measurements are,
respectively, equal to 4/6, 5/6, and 1/6, compute the exact target position.
1.34. Compute the amount of Doppler filter straddle loss for the filter
defined by

1

1+ azfz

Assume half-power frequency f;,; = 500Hz and crossover frequency
f. = 350Hz.

H(f) =
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Chapter 2 Radar Cross Section
(RCS)

In Chapter 1, the term Radar Cross Section (RCS) was used to describe the
amount of scattered power from a target towards the radar, when the target is
illuminated by RF energy. At that time, RCS was referred to as a target-spe-
cific constant. This was only a simplification and, in practice, it is rarely the
case. In this chapter, the phenomenon of target scattering and methods of RCS
calculation are examined. Target RCS fluctuations due to aspect angle, fre-
quency, and polarization are presented. Radar cross section characteristics of
some simple and complex targets are also introduced. The analysis of extended
RCS due to volume and surface clutter will be explored in a later chapter.

2.1. RCS Definition

Electromagnetic waves, with any specified polarization, are normally dif-
fracted or scattered in all directions when incident on a target. These scattered
waves are broken down into two parts. The first part is made of waves that
have the same polarization as the receiving antenna. The other portion of the
scattered waves will have a different polarization to which the receiving
antenna does not respond. The two polarizations are orthogonal and are
referred to as the Principle Polarization (PP) and Orthogonal Polarization
(OP), respectively. The intensity of the backscattered energy that has the same
polarization as the radar’s receiving antenna is used to define the target RCS.
When a target is illuminated by RF energy, it acts like an antenna, and will
have near and far fields. Waves reflected and measured in the near field are, in
general, spherical. Alternatively, in the far field the wavefronts are decom-
posed into a linear combination of plane waves.
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Assume the power density of a wave incident on a target located at range R
away from the radar is P ;. The amount of reflected power from the target is

P, = oP), (2.1)

r

o denotes the target cross section. Define P, as the power density of the
scattered waves at the receiving antenna. It follows that

P, = P,/(4TR%) 2.2)
Equating Egs. (2.1) and (2.2) yields

P

c = 4nR2(—Dr) (2.3)
Pp;

and in order to ensure that the radar receiving antenna is in the far field (i.e.,

scattered waves received by the antenna are planar), Eq. (2.3) is modified

P

6 = 4nR’ lim (—D’) (2.4)
R— e Di

The RCS defined by Eq. (2.4) is often referred to as either the monostatic RCS,

the backscattered RCS, or simply target RCS.

The backscattered RCS is measured from all waves scattered in the direction
of the radar and has the same polarization as the receiving antenna. It repre-
sents a portion of the total scattered target RCS ©,, where 6,> 0. Assuming
spherical coordinate system defined by (p, 0, @), then at range p the target
scattered cross section is a function of (6, @ ). Let the angles (0,, @, ) define the
direction of propagation of the incident waves. Also, let the angles (0, ¢,)
define the direction of propagation of the scattered waves. The special case,
when 6, = 0, and @, = @,, defines the monostatic RCS. The RCS measured
by the radar at angles 0, # 0, and @, # @, is called the bistatic RCS.

The total target scattered RCS is given by

2n n

1 .
S = 11 _[ J G(6,, ¢,)sinb, db do, (2.5)

The amount of backscattered waves from a target is proportional to the ratio
of the target extent (size) to the wavelength, A, of the incident waves. In fact, a
radar will not be able to detect targets much smaller than its operating wave-
length. For example, if weather radars use L-band frequency, rain drops
become nearly invisible to the radar since they are much smaller than the
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wavelength. RCS measurements in the frequency region, where the target
extent and the wavelength are comparable, are referred to as the Rayleigh
region. Alternatively, the frequency region where the target extent is much
larger than the radar operating wavelength is referred to as the optical region.
In practice, the majority of radar applications falls within the optical region.

The analysis presented in this book assumes far field monostatic RCS mea-
surements in the optical region. Near field RCS, bistatic RCS, and RCS mea-
surements in the Rayleigh region will not be considered since their treatment
falls beyond this book’s intended scope. Additionally, RCS treatment in this
chapter is mainly concerned with Narrow Band (NB) cases. In other words, the
extent of the target under consideration falls within a single range bin of the
radar. Wide Band (WB) RCS measurements will be briefly addressed in a later
section. Wide band radar range bins are small (typically 10 - 50 cm), hence, the
target under consideration may cover many range bins. The RCS value in an
individual range bin corresponds to the portion of the target falling within that
bin.

2.2. RCS Prediction Methods

Before presenting the different RCS calculation methods, it is important to
understand the significance of RCS prediction. Most radar systems use RCS as
a means of discrimination. Therefore, accurate prediction of target RCS is crit-
ical in order to design and develop robust discrimination algorithms. Addition-
ally, measuring and identifying the scattering centers (sources) for a given
target aid in developing RCS reduction techniques. Another reason of lesser
importance is that RCS calculations require broad and extensive technical
knowledge, thus many scientists and scholars find the subject challenging and
intellectually motivating. Two categories of RCS prediction methods are avail-
able: exact and approximate.

Exact methods of RCS prediction are very complex even for simple shape
objects. This is because they require solving either differential or integral equa-
tions that describe the scattered waves from an object under the proper set of
boundary conditions. Such boundary conditions are governed by Maxwell’s
equations. Even when exact solutions are achievable, they are often difficult to
interpret and to program using digital computers.

Due to the difficulties associated with the exact RCS prediction, approxi-
mate methods become the viable alternative. The majority of the approximate
methods are valid in the optical region, and each has its own strengths and lim-
itations. Most approximate methods can predict RCS within few dBs of the
truth. In general, such a variation is quite acceptable by radar engineers and
designers. Approximate methods are usually the main source for predicting
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RCS of complex and extended targets such as aircrafts, ships, and missiles.
When experimental results are available, they can be used to validate and ver-
ify the approximations.

Some of the most commonly used approximate methods are Geometrical
Optics (GO), Physical Optics (PO), Geometrical Theory of Diffraction (GTD),
Physical Theory of Diffraction (PTD), and Method of Equivalent Currents
(MEC). Interested readers may consult Knott or Ruck (see bibliography) for
more details on these and other approximate methods.

2.3. RCS Dependency on Aspect Angle and Frequency

Radar cross section fluctuates as a function of radar aspect angle and fre-
quency. For the purpose of illustration, isotropic point scatterers are consid-
ered. An isotropic scatterer is one that scatters incident waves equally in all
directions. Consider the geometry shown in Fig. 2.1. In this case, two unity
(lmz) isotropic scatterers are aligned and placed along the radar line of sight
(zero aspect angle) at a far field range R . The spacing between the two scatter-
ers is 1 meter. The radar aspect angle is then changed from zero to 180 degrees,
and the composite RCS of the two scatterers measured by the radar is com-
puted.

This composite RCS consists of the superposition of the two individual radar
cross sections. At zero aspect angle, the composite RCS is 2m” . Taking scat-
terer-1 as a phase reference, when the aspect angle is varied, the composite
RCS is modified by the phase that corresponds to the electrical spacing
between the two scatterers. For example, at aspect angle 10°, the electrical
spacing between the two scatterers is

e radar line of sight scatl scat2
@ - — — —T— - @-------- ®
radar "T’
21
b) ‘,._ radar line of sight _ __ _.* 0707m
radar ® v

Figure 2.1. RCS dependency on aspect angle. (a) Zero aspect angle, zero
electrical spacing. (b) 45° aspect angle, 1.414A electrical
spacing.
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2 x (1.0 x cos(10))
A

elec—spacing = (2.6)

A is the radar operating wavelength.

Fig. 2.2 shows the composite RCS corresponding to this experiment. This
plot can be reproduced using MATLAB function “rcs_aspect.m” given in List-
ing 2.1 in Section 2.8. As indicated by Fig. 2.1, RCS is dependent on the radar
aspect angle. Knowledge of this constructive and destructive interference
between the individual scatterers can be very critical when a radar tries to
extract RCS of complex or maneuvering targets. This is true because of two
reasons. First, the aspect angle may be continuously changing. Second, com-
plex target RCS can be viewed to be made up from contributions of many indi-
vidual scattering points distributed on the target surface. These scattering
points are often called scattering centers. Many approximate RCS prediction
methods generate a set of scattering centers that define the back-scattering
characteristics of such complex targets.

Frequency is 3GHz; scatterrer spacing is 0.5m
10 T T T

RCS in dBsm

L e T | B T e L i e B

B e e e a oo e e - - R

-60 I I I I I I I I
0 20 40 60 80 100 120 140 160 180

aspect angle - degrees

Figure 2.2. llustration of RCS dependency on aspect angle.

MATLAB Function “rcs_aspect.m”

The function “rcs_aspect.m” computes and plots the RCS dependency on
aspect angle. Its syntax is as follows:

[res] = res_aspect (scat_spacing, freq)
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Symbol Description Units Status

scat_spacing scatterer spacing meters input

freq radar frequency Hz input

rcs array of RCS versus dBsm output
aspect angle

Next, to demonstrate RCS dependency on frequency, consider the experi-
ment shown in Fig. 2.3. In this case, two far field unity isotropic scatterers are
aligned with radar line of sight, and the composite RCS is measured by the
radar as the frequency is varied from 8 GHz to 12.5 GHz (X-band). Figs. 2.4
and 2.5 show the composite RCS versus frequency for scatterer spacing of 0.1
and 0.7 meters.

scat2

Figure 2.3. Experiment setup which demonstrates RCS
dependency on frequency; dist = 0.1, or 0.7 m.

X=Band; scatterer spacing is 0.1m
10 T T T T

-40

RCS in dBsm

-50

-60

-70

-80

I I
10 10.5 11

Frequency - GHz

Figure 2.4. Illustration of RCS dependency on frequency.
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X=Band; scatterer spacing is 0.7m
10 T

30 | -

7 I [P S oo - A

RCS in dBsm

60 - |- - - - - v - - - T [ T

2ol Lo ]

-80 I I I I I
8 8.5 9 9.5 10 10.5 11 11.5 12 12.5

Frequency - GHz

Figure 2.5. Illustration of RCS dependency on frequency.

The plots shown in Figs. 2.4 and 2.5 can be reproduced using MATLAB
function “res_frequency.m” given in Listing 2.2 in Section 2.8. From those
two figures, RCS fluctuation as a function of frequency is evident. Little fre-
quency change can cause serious RCS fluctuation when the scatterer spacing is
large. Alternatively, when scattering centers are relatively close, it requires
more frequency variation to produce significant RCS fluctuation.

MATLAB Function “rcs_frequency.m”

The function “rcs_frequency.m” computes and plots the RCS dependency
on frequency. Its syntax is as follows:

[res] = res_frequency (scat_spacing, frequ, freql)

where
Symbol Description Units Status
scat_spacing scatterer spacing meters input
freql start of frequency band Hz input
frequ end of frequency band Hz input
res array of RCS versus dBsm output
aspect angle
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2.4. RCS Dependency on Polarization

The material in this section covers two topics. First, a review of polarization
fundamentals is presented. Second, the concept of target scattering matrix is
introduced.

2.4.1. Polarization

The x and y electric field components for a wave traveling along the positive
z direction are given by

E. = E;sin(or—kz) 2.7)

E, = Epsin(wf—kz + 4) (2.8)

where k = 2n/A, o is the wave frequency, the angle O is the time phase
angle which E| leads E, and finally, E, and E, are, respectively, the wave
amplitudes along the x and y directions. When two or more electromagnetic
waves combine, their electric fields are integrated vectorially at each point in
space for any specified time. In general, the combined vector traces an ellipse
when observed in the x-y plane. This is illustrated in Fig. 2.6.

eV

Figure 2.6. Electric field components along the x and y directions.
The positive z direction is out of the page.
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The ratio of the major to the minor axes of the polarization ellipse is called
the Axial Ratio (AR). When AR is unity, the polarization ellipse becomes a cir-
cle, and the resultant wave is then called circularly polarized. Alternatively,
when E; = 0 and AR = oo the wave becomes linearly polarized.

Egs. (2.7) and (2.8) can be combined to give the instantaneous total electric
field,

> . R
E = a.Esin(0t - kz) + ayE,sin(of — kz + 3) (2.9)

where a, and a, are unit vectors along the x and y directions, respectively. At
z=0, E, = Esin(owr) and E, = E,sin(wt+8), then by replacing
sin(wt) by the ratio E /E, and by using trigonometry properties Eq. (2.9)
can be rewritten as

E. 2EE,cosd E,

. 2
= (sind) (2.10)
g EE g

Note that Eq. (2.10) has no dependency on ®f.

In the most general case, the polarization ellipse may have any orientation,
as illustrated in Fig. 2.7. The angle & is called the tilt angle of the ellipse. In
this case, AR is given by

AR (1<AR< ) (2.11)

" oB

Figure 2.7. Polarization ellipse in the general case.
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When E| = 0, the wave is said to be linearly polarized in the y direction,
while if £, = 0 the wave is said to be linearly polarized in the x direction.
Polarization can also be linear at an angle of 45° when E, = E, and
& = 45°. When E,; = E, and & = 90°, the wave is said to be Left Circu-
larly Polarized (LCP), while if 8§ = —90° the wave is said to Right Circularly
Polarized (RCP). It is a common notation to call the linear polarizations along
the x and y directions by the names horizontal and vertical polarizations,
respectively.

In general, an arbitrarily polarized electric field may be written as the sum of
two circularly polarized fields. More precisely,

> - -
E = Ex+E, (212)
ﬁ % . . . .
where E, and E; are the RCP and LCP fields, respectively. Similarly, the
RCP and LCP waves can be written as

- -

ﬁ
Eg = Ey+JjEy (2.13)

e I
E;, = Ey—jEy (2.14)

— —
where E, and E, are the fields with vertical and horizontal polarizations,
respectively. Combining Egs. (2.13) and (2.14) yields

E, —jE

E, = ”TJV (2.15)
E, +jE

E, = #4717V (2.16)

2

Using matrix notation Egs. (2.15) and (2.16) can be rewritten as

Eel _ [t ||Ea| _ o |En
S R
Ey| _ 1|1 1||ER| _ (71| En
BRI R

For many targets the scattered waves will have different polarization than the
incident waves. This phenomenon is known as depolarization or cross-polar-
ization. However, perfect reflectors reflect waves in such a fashion that an inci-
dent wave with horizontal polarization remains horizontal, and an incident
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wave with vertical polarization remains vertical but is phase shifted 180°.
Additionally, an incident wave which is RCP becomes LCP when reflected,
and a wave which is LCP becomes RCP after reflection from a perfect reflec-
tor. Therefore, when a radar uses LCP waves for transmission, the receiving
antenna needs to be RCP polarized in order to capture the PP RCS, and LCR to
measure the OP RCS.

2.4.2. Target Scattering Matrix

Target backscattered RCS is commonly described by a matrix known as the
scattering matrix, and is denoted by [S]. When an arbitrarily linearly polarized
wave is incident on a target, the backscattered field is then given by

EA1 = [S] El1 _ \511 512] El1 (2.19)
E, E, $21 52| | E}

The superscripts i and s denote incident and scattered fields. The quantities
s;; are in general complex and the subscripts 1 and 2 represent any combina-
tion of orthogonal polarizations. More precisely, 1 = H,R, and 2 = V, L.
From Eq. (2.3), the backscattered RCS is related to the scattering matrix com-
ponents by the following relation:

2 2
\G” 012} = ang?| 0l el (2.20)
Oy O ]521]2 ]522]2

It follows that once a scattering matrix is specified, the target backscattered
RCS can be computed for any combination of transmitting and receiving polar-
izations. The reader is advised to see Ruck for ways to calculate the scattering
matrix [S].

Rewriting Eq. (2.20) in terms of the different possible orthogonal polariza-
tions yields

Ey _ \SHH SHV] Ey

: (2.21)
Ey Svi Svv| | Ey,
E; Spp S Ei

N e (2.22)
E, SLr SiL| |E;
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By using the transformation matrix [7] in Eq. (2.17), the circular scattering

elements can be computed from the linear scattering elements

SRR SRL| _ [T] SHH SHV {1 O}[T]l

SLR SLL Sva Svy

and the individual components are

= Syy*+Sup—J(Syy + Syy)
SRR = )

_ Syy S i Sy — Syr)
SRL = )

_ Syv ¥ Sy —Jj(Spy—Sypy)
SLR = )

_ Syy+ Sy +J(Spy + Syy)
SpL = )

Similarly, the linear scattering elements are given by

SHH SHY| _ [T]fl SRR SRL |:1 O}[T]
Sva Svv Sir Ser| 10 —

and the individual components are

TSR SpLt SRS
SHH = )

_ J(SRr= SR+ Spp—S11)
Sy = )

_ J(Spr+ S = SpL—511)
Spgv = )

SRR SpL Y ISRLt Sir
Syy = )

(2.23)

(2.24)

(2.25)

(2.26)

2.5. RCS of Simple Objects

This section presents examples of backscattered radar cross section for a
number of simple shape objects. In all cases, except for the perfectly conduct-
ing sphere, only optical region approximations are presented. Radar designers
and RCS engineers consider the perfectly conducting sphere to be the simplest
target to examine. Even in this case, the complexity of the exact solution, when
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compared to the optical region approximation, is overwhelming. Most formu-
las presented are Physical Optics (PO) approximation for the backscattered
RCS measured by a far field radar in the direction (6, ¢ ), as illustrated in Fig.
2.8.

Direction to
' receiving radar

Figure 2.8. Direction of antenna receiving backscattered waves.

2.5.1. Sphere

Due to symmetry, waves scattered from a perfectly conducting sphere are
co-polarized (have the same polarization) with the incident waves. This means
that the cross-polarized backscattered waves are practically zero. For example,
if the incident waves were Left Circularly Polarized (LCP), then the backscat-
tered waves will also be LCP. However, because of the opposite direction of
propagation of the backscattered waves, they are considered to be Right Circu-
larly Polarized (RCP) by the receiving antenna. Therefore, the PP backscat-
tered waves from a sphere are LCP, while the OP backscattered waves are
negligible.

The normalized exact backscattered RCS for a perfectly conducting sphere
is a Mie series given by

i = L 1\ k"Jn_l(kr)—an(kr)
TCr2 (kr)Z( 1)y 2n+ l)l:(eril_)l(kr)—anll)(kr) (2.27)
n=1
J, (kr) :|
H, (kr)
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where r is the radius of the sphere, k = 2n/A, A is the wavelength, J, is the
spherical Bessel of the first kind of order n, and Hil) is the Hankel function of
order n, and is given by

H (kr) = J,kr) +Y,(kr) (2.28)

Y, is the spherical Bessel function of the second kind of order n. Plots of the

normalized perfectly conducting sphere RCS as a function of its circumference
in wavelength units are shown in Figs. 2.9a and 2.9b. These plots can be repro-
duced using the function “res_sphere.m” given in Listing 2.3 in Section 2.8.

In Fig. 2.9, three regions are identified. First is the optical region (corre-
sponds to a large sphere). In this case,

6 =nr r» A\ (2.29)

Second is the Rayleigh region (small sphere). In this case,

c= 9nr2(kr)4 r«h (2.30)

The region between the optical and Rayleigh regions is oscillatory in nature
and is called the Mie or resonance region.

Figure 2.9a. Normalized backscattered RCS for a perfectly conducting sphere.
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Rayleigh

' optical region
region

Mie region

Normalized sphere RCS - dB
>
T

-20 |

-25 L L L
10° 10" 10° 10’ 10
Sphere circumference in wavelengths

Figure 2.9b. Normalized backscattered RCS for a perfectly
conducting sphere using semi-log scale.

The backscattered RCS for a perfectly conducting sphere is constant in the
optical region. For this reason, radar designers typically use spheres of known
cross sections to experimentally calibrate radar systems. For this purpose,
spheres are flown attached to balloons. In order to obtain Doppler shift,
spheres of known RCS are dropped out of an airplane and towed behind the
airplane whose velocity is known to the radar.

2.5.2. Ellipsoid
An ellipsoid centered at (0,0,0) is shown in Fig. 2.10. It is defined by the fol-

lowing equation:
2 2 2
(?_C) +(Z) +(§) -1 (2.31)
a b c

One widely accepted approximation for the ellipsoid backscattered RCS is
given by

2,22
na b’c

o =
(a*(5in0)(cos0)* + b2(5in0) (sing)” + (cos0)%)’

(2.32)
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Direction to
receiving radar

Figure 2.10. Ellipsoid.

When a = b, the ellipsoid becomes roll symmetric. Thus, the RCS is inde-
pendent of @, and Eq. (2.32) is reduced to

4 2
G = nb ¢ - (2.33)
(a’(sin®)” + ¢*(cos 0)%)

and for the case when a = b = ¢,

2
O = Tc (2.34)

Note that Eq. (2.34) defines the backscattered RCS of a sphere. This should be
expected, since under the condition a = b = ¢ the ellipsoid becomes a
sphere. Fig. 2.11 shows the backscattered RCS for an ellipsoid versus 6 for
¢ = 45°. This plot can be generated using MATLAB function
“rcs_ellipsoid.m” given in Listing 2.4 in Section 2.8. Note that at normal inci-
dence (8 = 90°) the RCS corresponds to that of a sphere of radius ¢, and is
often referred to as the broadside specular RCS value.

MATLAB Function “rcs_ellipsoid.m”

The function “res_ellipsoid.m” computes and plots the RCS of an ellipsoid
versus aspect angle. It utilizes Eq. (2.32) and its syntax is as follows:

[res] = res_ellipsoid (a, b, ¢, phi)

where
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Symbol Description Units Status
a ellipsoid a-radius meters input

b ellipsoid b-radius meters input

c ellipsoid c-radius meters input
phi ellipsoid roll angle degrees input
res array of RCS versus dBsm output

aspect angle
phi = 45 deg, (a,b,c) = (.15,.20,.95) meter

RCS - dBsm

-30

I
40 60 80

I
100

I
120

Aspect angle - degrees

I
140

I
160 180

Figure 2.11. Ellipsoid backscattered RCS versus aspect angle, ¢ = 45°.

2.5.3. Circular Flat Plate

Fig. 2.12 shows a circular flat plate of radius r, centered at the origin. Due to
the circular symmetry, the backscattered RCS of a circular flat plate has no
dependency on ¢. The RCS is only aspect angle dependent. For normal inci-
dence (i.e., zero aspect angle) the backscattered RCS for a circular flat plate is

3 4
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Direction to
Z A receiving radar

Figure 2.12. Circular flat plate.

For non-normal incidence, two approximations for the circular flat plate
backscattered RCS for any linearly polarized incident wave are

o = Lz (2.36)
8msinB(tan(0))
_ 2 4 2]1(2krsme) 2 2
c =mnkr (W) (cosB) (2.37)

where k = 2n/A, and J,(PB) is the first order spherical Bessel function evalu-
ated at . The RCS corresponding to Egs. (2.35) through (2.37) is shown in
Fig. 2.13. These plots can be reproduced using MATLAB function
“rcs_circ_plate.m” given in Listing 2.5 in Section 2.8.

MATLAB Function “rcs_circ_plate.m”

The function “res_circ_plate.m” calculates and plots the backscattered RCS
from a circular plate. Its syntax is as follows:

[res] = res_cire_plate (v, freq)

where
Symbol Description Units Status
r radius of circular plate meters input
freq frequency Hz input
res array of RCS versus aspect angle dBsm output
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Frequency = X-Band, radius = 0.25 m
60

7 75 A S

200 - - -i- - -4 - - - e e 4o o e oo e o e -

RCS -dBsm

20 T S A A

40 -] - [HL H i Sl L

-60 |
0 20 40 60 80 100 120 140 160 180

Aspect angle - degrees

Figure 2.13. Backscattered RCS for a circular flat plate. Solid line
corresponds to Eq. (2.37). Dashed line corresponds to Eq. (2.36).

2.5.4. Truncated Cone (Frustum)

Figs. 2.14 and 2.15 show the geometry associated with a frustum. The half
cone angle o is given by

(ra—ry) _ r

tanol = = 2.38
I 7 (2-38)

Define the aspect angle at normal incidence (broadside) as 0, . Thus, when a
frustum is illuminated by a radar located at the same side as the cone’s small
end, the angle 6, is

6, =90°-a (2.39)
Alternatively, normal incidence occurs at
6, = 90°+a (2.40)

At normal incidence, one approximation for the backscattered RCS of a trun-
cated cone due to a linearly polarized incident wave is

87r(Z3/2 Z3/2)2

2 1 . 2

0y = ——————tano(sin® — cosH tano 2.41
8, 9)sin®, (sinf, ntanc) @41)
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Figure 2.14. Truncated cone (frustum).

?}'

T/

Figure 2.15. Definition of half cone angle.
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where A is the wavelength, and z,, z, are defined in Fig. 2.14. Using trigono-
metric identities, Eq. (2.41) can be reduced to

3/2  3/22 .
_875(22 -2z1 ) sino

%o, 9N

2 (2.42)
(cosa)

For non-normal incidence, the backscattered RCS due to a linearly polarized
incident wave is

(2.43)

_ Kztanoc( sinf — cosetanoc)2
" 8msin®\sinOtano + cosO

where z is equal to either z; or z, depending on whether the RCS contribu-
tion is from the small or the large end of the cone. Again, using trigonometric
identities Eq. (2.43) (assuming the radar illuminates the frustum starting from
the large end) is reduced to

_ Aztano

2
= S7sinb (tan(6—)) (2.44)

When the radar illuminates the frustum starting from the small end (i.e., the
radar is in the negative z direction in Fig. (2.14)), Eq. (2.44) should be modi-
fied to

_ Aztano

2
= Zrsin® (tan(6 + o)) (2.45)

For example, consider a frustum defined by H = 20.945c¢m,
ry = 2.057cm, ry = 5.753cm . It follows that the half cone angle is 10°.
Fig. 2.16 (top) shows a plot of its RCS when illuminated by a radar in the pos-
itive z direction. Fig. 2.16 (bottom) shows the same thing, except in this case,
the radar is in the negative z direction. Note that for the first case, normal inci-
dence occur at 100°, while for the second case it occurs at 80°. These plots
can be reproduced using MATLAB function “rcs_frustum.m” given in Listing
2.6 in Section 2.8.

MATLAB Function “rcs_frustum.m”

The function “res_frustum.m” computes and plots the backscattered RCS of
a truncated conic section. The syntax is as follows:

[res] = res_frustum (v, r2, freq, indicator)

where
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Symbol Description Units Status

rl small end radius meters input
r2 large end radius meters input
freq frequency Hz input
indicator indicator = 1 when viewing from none input
large end
indicator = 0 when viewing from
small end
rcs array of RCS versus aspect angle dBsm output

Wawelength = 0.861 cm
0 T

RCS - dBsm

-60 L L L L L L L L
0 20 40 60 80 100 120 140 160 180
Apsect angle - degrees

_60 | | | | | | |
0 20 40 60 80 100 120 140 160 180
Apsect angle - degrees

Figure 2.16. Backscattered RCS for a frustum.

2.5.5. Cylinder

Fig. 2.17 shows the geometry associated with a cylinder. Two cases are pre-
sented: first, the general case of an elliptical cylinder; second, the case of a cir-
cular cylinder. The normal and non-normal incidence backscattered RCS for an
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elliptical cylinder due a linearly polarized incident wave are, respectively,
given by

ZTI:Hzrér%
6 o 2 2 2 2. 1.5 (2.46)
A(ri(cos@)” + ry(sing)”)
Xrir?sin@
c = (2.47)

87t(cose)2(r%( cos<p)2 + ri( sin(p)z)l'5

For a circular cylinder of radius r, then due to roll symmetry, Eqs. (2.46)
and (2.47), respectively, reduce to

Oy = 2nTm (2.48)
_ _Arsin® . (2.49)
8m(cosO)
N
Y
H
\ e T
(a) (b)

Figure 2.17. (a) Elliptical cylinder; (b) circular cylinder.
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Fig. 2.18 shows a plot of the cylinder backscattered RCS using Eqgs. (2.48)
and (2.49). This plot can be reproduced using MATLAB function
“rcs_cylinderm” given in Listing 2.7 in Section 2.8. Note that the broadside

specular occurs at aspect angle of 90°.

Frequency = 9.5 GHz

20

RCS - dBsm

0 20 40 60 80 100 120 140 160 180
Aspect angle - degrees

Figure 2.18. Backscattered RCS for a cylinder, r = 0.125m and H = 1m.

MATLAB Function “rcs_cylinder.m”

The function “rcs_cylinder.m” computes and plots the backscattered RCS of
a cylinder. The syntax is as follows:

[res] = res_cylinder (v, h, freq)

where
Symbol Description Units Status
r radius meters input
h length of cylinder meters input
freq frequency Hz input
rcs array of RCS versus aspect angle dBsm output
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2.5.6. Rectangular Flat Plate

Consider a perfectly conducting rectangular thin flat plate in the x-y plane as
shown in Fig. 2.19. The two sides of the plate are denoted by 2a and 2b . For
a linearly polarized incident wave in the x-z plane, the horizontal and vertical

backscattered RCS are, respectively, given by

i 1
Oy = —|0;y— 0,y —=
14 T 1v 2V|:COS9
2
Oy = —|0;y—OC [L—%(G +0 )}0_'
H T 1H 2H COSG 4 3H 4H 5H

where k = 21/A and

_ . .sin(kasin®)
Oy = cos(kasme)—J—Sine
ka4
Goy = 32
J2m(ka)
E: sinG)e_jkZlSine
O3y = 2
(1-sinB)
_ (1 =sing) ™"
G4V - B 2
(1 + sinB)
7 A

Figure 2.19. Rectangular flat plate.
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(2.51)

(2.52)

(2.53)

(2.54)

(2.55)



i(2ka-m/2
el( a )

Osy = | - ——— (2.56)
8n(ka)’
4g/‘(ka+n/4)
Gy = e (2.57)
H m(ka)l/z
5 ~ e—jkasine (2.5
37 1 _sin® :
jkasin®
4
= ; 2.59
O4 = T3 56 (2:59)
ei(Zka +(n/2))
(¢} =1-—F 2.60
SH 2n(ka) (2-60)

Egs. (2.50) and (2.51) are valid and quite accurate for aspect angles
0° <6 <80. For aspect angles near 90°, Ross! obtained by extensive fitting
of measured data an empirical expression for the RCS. It is given by

oy;,—0

ab’ n n 3n (2.61)
o, = & [1 + —2} + [1 - —Jcos(ﬂca— —)
A 22a/0) 22a/A) 5

The backscattered RCS for a perfectly conducting thin rectangular plate for
incident waves at any 6, ¢ can be approximated by

o = 4Tca2b2(sin(aksinﬂcoscp) sin(bksinOsin @)
T2 aksin®cos @ bksin@sin@

Eq. (2.62) is independent of the polarization, and is only valid for aspect angles
0 < 20°. Fig. 2.20, shows an example for the backscattered RCS of a rectangu-
lar flat plate, for both vertical (Fig. 2.20a) and horizontal (Fig. 2.20b) polariza-
tions, using Egs. (2.50), (2.51) and (2.62). In this example, a = b = 10.16cm
and wavelength A = 3.25¢m . This plot can be reproduced using MATLAB
function “res_rect_plate” given in Listing 2.8 in Section 2.8.

2 2
) (cosB) (2.62)

MATLAB Function “rcs_rect_plate.m”

The function “res_rect_plate.m” calculates and plots the backscattered RCS
of a rectangular flat plate. Its syntax is as follows:

1. Ross, R. A. Radar Cross Section of Rectangular Flat Plate as a Function of Aspect
Angle, IEEE Trans. AP-14:320, 1966.
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[res] = res_rect_plate (a, b, freq)

where
Symbol Description Units Status
a short side of plate meters input
b long side of plate meters input
freq frequency Hz input
rcs array of RCS versus aspect angle dBsm output
Vertical polarization
10 : : :
E i
1
[as]
?
[}
O 30 , i
Q ‘
40 | " 4
-50 [ ,
!
i
-60 I L I i I I I I

10 20 30 40 50
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Figure 2.20a. Backscattered RCS for a rectangular flat plate.

2.5.7. Triangular Flat Plate

Consider the triangular flat plate defined by the isosceles triangle as oriented
in Fig. 2.21. The backscattered RCS can be approximated for small aspect

angles (less than 30°) by

_ 47A’

7\’2

(c0s6)2(50
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_ [(sina)’ = (sin(B/2))1" + oy

(2.64)
o’ - (B/2)°

0

Gy = 0.25(sin(p)z[(Za/b)cosq)sinB— sin(psin2oc]2 (2.65)

Horizontal polarization
10 :

— Eq.(2.51)
_ . Eq.(2.62)

RCS -dBsm
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Figure 2.20b. Backscattered RCS for a rectangular flat plate.

7 radar

Figure 2.21. Coordinates for a perfectly conducting isosceles triangular plate.
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where o = kasinBcos@, B = kbsinBsin@, and A = ab/2 . For waves inci-
dent in the plane ¢ = 0, the RCS reduces to

2 . 4 . 2
o 4n,;\ (cos0)? (smix) +(Sm20‘—42°°) (2.66)
7\‘ o 4
and for incidence in the plane ¢ = ©/2
2 . 4
o - 4n2\ (c038)’ M (2.67)
A (B/2)

Fig. 2.22 shows a plot for the normalized backscattered RCS from a per-
fectly conducting isosceles triangular flat plate. In this example a = 0.2m,
b = 0.75m, and @ = 0, /2. This plot can be reproduced using MATLAB
function “res_isosceles.m” given in Listing 2.9 in Section 2.8.

freq = 9.5GHz, phi = pi/2
T T

RCS - dBsm

-160

L L L L L L L L
0 10 20 30 40 50 60 70 80 90
Aspect angle - degrees

Figure 2.22. Backscattered RCS for a perfectly conducting triangular
flat plate, ¢ = 20cm and b = 75cm.

MATLAB Function “rcs_isosceles.m”

The function “res_isosceles.m” calculates and plots the backscattered RCS
of a triangular flat plate. Its syntax is as follows:

[res] = res_isosceles (a, b, freq, phi)

© 2000 by Chapman & Hall/CRC



where

Symbol Description Units Status
a height of plate meters input

b base of plate meters input
freq frequency Hz input
phi roll angle degrees input
res array of RCS versus aspect angle dBsm output

2.6. RCS of Complex Objects

A complex target RCS is normally computed by coherently combining the
cross sections of the simple shapes that make that target. In general, a complex
target RCS can be modeled as a group of individual scattering centers distrib-
uted over the target. The scattering centers can be modeled as isotropic point
scatterers (N-point model) or as simple shape scatterers (N-shape model). In
any case, knowledge of the scattering centers’ locations and strengths is critical
in determining complex target RCS. This is true, because as seen in Section
2.3, relative spacing and aspect angles of the individual scattering centers dras-
tically influence the overall target RCS. Complex targets that can be modeled
by many equal scattering centers are often called Swerling 1 or 2 targets. Alter-
natively, targets that have one dominant scattering center and many other
smaller scattering centers are known as Swerling 3 or 4 targets.

In NB radar applications, contributions from all scattering centers combine
coherently to produce a single value for the target RCS at every aspect angle.
However, in WB applications, a target may straddle over many range bins. For
each range bin, the average RCS extracted by the radar represents the contribu-
tions from all scattering centers that fall within that bin.

As an example, consider a circular cylinder with two perfectly conducting
circular flat plates on both ends. Assume linear polarization and let H = 1m
and r = 0.125m . The backscattered RCS for this object versus aspect angle is
shown in Fig. 2.23. Note that at aspect angles close to 0° and 180° the RCS is
mainly dominated by the circular plate, while at aspect angles close to normal
incidence, the RCS is dominated by the cylinder broadside specular return.
This plot can be  reproduced using MATLAB  program
“rcs_cyliner_complex.m” given in Listing 2.10 in Section 2.8.
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Figure 2.23. Backscattered RCS for a cylinder with flat plates.

2.7. RCS Fluctuations and Statistical Models

In most practical radar systems there is relative motion between the radar
and an observed target. Therefore, the RCS measured by the radar fluctuates
over a period of time as a function of frequency and the target aspect angle.
This observed RCS is referred to as the radar dynamic cross section. Up to this
point, all RCS formulas discussed in this chapter assumed stationary target,
where in this case, the backscattered RCS is often called static RCS.

Dynamic RCS may fluctuate in amplitude and/or in phase. Phase fluctuation
is called glint, while amplitude fluctuation is called scintillation. Glint causes
the far field backscattered wavefronts from a target to be non-planar. For most
radar applications, glint introduces linear errors in the radar measurements, and
thus it is not of a major concern. However, cases where high precision and
accuracy are required, glint can be detrimental. Examples include precision
instrumentation tracking radar systems, missile seekers, and automated aircraft
landing systems. For more details on glint, the reader is advised to visit cited
references listed in the bibliography.

Radar cross-section scintillation can vary slowly or rapidly depending on the
target size, shape, dynamics, and its relative motion with respect to the radar.
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Thus, due to the wide variety of RCS scintillation sources changes in the radar
cross section are modeled statistically as random processes. The value of an
RCS random process at any given time defines a random variable at that time.
Many of the RCS scintillation models were developed and verified by experi-
mental measurements.

2.7.1. RCS Statistical Models - Scintillation Models

This section presents the most commonly used RCS statistical models. Sta-
tistical models that apply to sea, land, and volume clutter, such as the Weibull
and Log-normal distributions, will be discussed in a later chapter. The choice
of a particular model depends heavily on the nature of the target under exami-
nation.

Chi-Square of Degree 2m

The Chi-square distribution applies to a wide range of targets; its pdf is given
by

flo) =

o\*-1 -moso,,
n (m ) e " >0 (2.68)

T(m)o,,\0,,

where I'(m) is the gamma function with argument m, and ¢, is the average
value. As the degree gets larger the distribution corresponds to constrained
RCS values (narrow range of values). The limit m — e corresponds to a con-
stant RCS target (steady-target case).

Swerling I and II (Chi-Square of Degree 2)

In Swerling I, the RCS samples measured by the radar are correlated
throughout an entire scan, but are uncorrelated from scan to scan (slow fluctu-
ation). In this case, the pdfis

1 o
flo) = (Twexp(— (?”) 620 (2.69)

where 6, denotes the average RCS overall target fluctuation. Swerling II tar-
get fluctuation is more rapid than Swerling I, but the measurements are pulse to
pulse uncorrelated. This is illustrated in Fig. 2.24. Swerling II RCS distribution
is also defined by Eq. (2.69). Swerlings I and II apply to targets consisting of
many independent fluctuating point scatterers of approximately equal physical

dimensions.

Swerling III and IV (Chi-Square of Degree 4)

Swerlings III and IV have the same pdyf, and it is given by
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flo) = 4—206xp(— 2—0) 620 (2.70)
Gav Gav

The fluctuations in Swerling III are similar to Swerling I; while in Swerling
IV they are similar to Swerling II fluctuations (see Fig. 2.24). Swerlings III and
IV are more applicable to targets that can be represented by one dominant scat-
terer and many other small reflectors. Fig. 2.25 shows a typical plot of the pdfs
for Swerling cases. This plot can be reproduced using MATLAB program
“Swerling_models.m” given in Listing 2.11 in Section 2.8.

il =0

Swerling 1 Swerling II

Swerling III Swerling IV

Swerling V

Figure 2.24. Radar returns from targets with different Swerling fluctuations.
Swerling V corresponds to a steady RCS target case.

2.8. MATLAB Program/Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters. All functions have companion MATLAB “filename_driver.m”
files that utilize MATLAB Graphical User Interface (GUI). Figure 2.26 shows
a typical GUI screen capture associated with the cylinder case.
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Figure 2.25. Probability densities for Swerling targets.
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Figure 2.26. GUI work space associated with the function “res_cylinder.m”.
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Listing 2.1. MATLAB Function “rcs_aspect.m”

function [rcs] = rcs_aspect (scat_spacing, freq)
% This function demonstrates the effect of aspect angle on RCS.
% Poit scatterers separated by scat_spacing meter. Initially the two scatterers
% are aligned with radar line of sight. The aspect angle is changed from
% 0 degrees to 180 degrees and the equivalent RCS is computed.
% Plot of RCS versus aspect is generated.
eps = 0.00001;
wavelength = 3.0e+8 / freq;
% Compute aspect angle vector
aspect_degrees = 0.:.05:180.;
aspect_radians = (pi/180) .* aspect_degrees;
% Compute electrical scatterer spacing vector in wavelength units
elec_spacing = (2.0 * scat_spacing / wavelength) .* cos(aspect_radians);
9% Compute RCS (rcs = RCS_scatl + RCS_scat2)
% Scatl is taken as phase reference point
rcs = abs(1.0 + cos((2.0 * pi) .* elec_spacing) ...
+1 *sin((2.0 * pi) .* elec_spacing));
ICS = ICS + eps;
rcs = 20.0*1log10(rcs); % RCS in dBsm
% Plot RCS versus aspect angle
figure (1);
plot (aspect_degrees,rcs,'k');
grid;
xlabel (‘aspect angle - degrees');
ylabel (RCS in dBsm');
%title (" Frequency is 3GHz; scatterer spacing is 0.5m");

Listing 2.2. MATLAB Function “rcs_frequency.m”

function [rcs] = res_frequency (scat_spacing, frequ, freql)
% This program demonstrates the dependency of RCS on wavelength
eps = 0.0001;
freq_band = frequ - freql;
delfreq = freq_band / 500.;
index = 0;
for freq = freql: delfreq: frequ

index = index +1;

wavelength(index) = 3.0e+8 / freq;
end
elec_spacing = 2.0 * scat_spacing ./ wavelength;
rcs = abs (1 + cos((2.0 * pi) .* elec_spacing) ...

+1 * sin((2.0 * pi) .* elec_spacing));

Ics = rcs + eps;
rcs = 20.0*log10(rcs); % RCS ins dBsm
% Plot RCS versus frequency
freq = freql:delfreq:frequ;
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plot(freq,rcs);

grid;
xlabel('Frequency');
ylabel('RCS in dBsm');

Listing 2.3. MATLAB Program “rcs_sphere.m”.

% This program calculates the back-scattered RCS for a perfectly
% conducting sphere using Eq.(2.7), and produce plots similar to Fig.2.9
% Spherical Bessel functions are computed using series approximation and recursion.
clear all
eps =0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300 points
for kr = 0.05:0.05:15
index = index + 1;
sphere_rcs = 0. + 0.%i;

fl =0.+ 1.%;
2 =1.+0.%;
m =1
n =0;
q =-1;

% initially set del to huge value
del =100000+100000%i;

while(abs(del) > eps)
q =-q;
n =n+1;
m =m+2;
del = (2.*n-1) * {2 / kr-f1;
fl =12;
f2 =del,

del =q * m /(f2 * (kr * f1 - n * £2));
sphere_rcs = sphere_rcs + del;
end
rcs(index) = abs(sphere_rcs);
sphere_rcsdb(index) = 10. * log10(rcs(index));
end
figure(1);
n=0.05:.05:15;
plot (n,rcs,'k");
set (gca,'xtick',[1234567891011 12 13 14 15]);
%xlabel ('Sphere circumference in wavelengths');
%ylabel (‘Normalized sphere RCS");
grid;
figure (2);
plot (n,sphere_rcsdb,'k');
set (geca,'xtick',[1234567891011 12 13 14 15]);
xlabel ('Sphere circumference in wavelengths');
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ylabel ('Normalized sphere RCS - dB");

grid;

figure (3);

semilogx (n,sphere_rcsdb,'k');

xlabel ('Sphere circumference in wavelengths');
ylabel ('Normalized sphere RCS - dB");

Listing 2.4. MATLAB Function “rcs_ellipsoid.m”

function [rcs] = res_ellipsoid (a, b, ¢, phi)
% This function computes and plots the ellipsoid RCS versus aspect angle.
% The roll angle angle phi is fixed,
eps = 0.00001;
sin_phi_s = sin(phi)"2;
cos_phi_s = cos(phi)"2;
% Generate aspect angle vector
theta = 0.:.05:180.0;
theta = (theta .* pi) ./ 180.;
ifa~=b&a~=c)
rcs = (pi * a2 * b2 * ¢A2) ./ (a2 * cos_phi_s .* (sin(theta)."2) + ...
b2 * sin_phi_s .* (sin(theta)."2) + ...
c2 * (cos(theta).”2))."2 ;
else
ifa==b& a~=¢)
rcs = (pi * b * ¢A2) ./ (b2 ¥ (sin(theta).~2) + ...
c2 .* (cos(theta).”2))."2 ;
else
if (a==b & a==c)
rcs = pi * ¢"2;
end
end
end
rcs_db = 10.0 * log10(rcs);
figure (1);
plot ((theta * 180.0 / pi),rcs_db,'k");
xlabel (‘Aspect angle - degrees');
ylabel (RCS - dBsm');
%title ('phi = 45 deg, (a,b,c) = (.15,.20,.95) meter')
grid;

Listing 2.5. MATLAB Function “rcs_circ_plate.m”

function [rcs] = res_circ_plate (r, freq)

% This function calculates and plots the RCS of a circular flat plate of radius r.
eps = 0.000001;

% Compute wavelength

lambda = 3.e+8 / freq; % X-Band

index = 0;
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for aspect_deg = 0.:.1:180
index = index +1;
aspect = (pi /180.) * aspect_deg;
% Compute RCS using Eq. (2.35)
if (aspect == 0 | aspect == pi)
rcs_po(index) = (4.0 * pi*3 * "4 / lambda’2) + eps;
rcs_mu(index) = rcs_po(1);
else
% Compute RCS using Eq. (2.36)
X = (4. * pi * r / lambda) * sin(aspect);
vall = 4. * pi*3 * r* / lambda’2;
val2 = 2. * besselj(1,x) / x;
rcs_po(index) = vall * (val2 * cos(aspect))"2 + eps;
% Compute RCS using Eq. (2.36)
vallm = lambda * r;
val2m = 8. * pi * sin(aspect) * (tan(aspect)"2);
rcs_mu(index) = vallm / val2m + eps;
end
end
resdb_po = 10. * log10(rcs_po);
resdb_mu = 10 * log10(rcs_mu);
angle = 0:.1:180;
plot(angle,rcsdb_po,'k',angle,rcsdb_mu,'k--")
grid;
xlabel (‘Aspect angle - degrees');
ylabel (RCS - dBsm');
%title ('Frequency = X-Band, radius = 0.25 m');

Listing 2.6. MATLAB Function “rcs_frustum.m”

function [rcs] = res_frustum (r1, r2, h, freq, indicator)
% This program computes the monostatic RCS for a frustum.
% Incident linear Polarization is assumed. To compute RCP or LCP RCS
% one must use Eq. (2.24)
% Normal incidence is according to Eq.s (2.39) and (2.40)
index = 0;
eps = 0.000001;
lambda = 3.0e+8 / freq;
% Comput half cone angle, alpha
alpha = atan(( 2 - r1)/h);
% Compute z1 and z2
72 =12 / tan(alpha);
z1 =rl / tan(alpha);
delta = (z2271.5 - z1*1.5)"2;
factor = (8. * pi * delta) / (9. * lambda);
large_small_end = indicator;
if (large_small_end == 1)
% Compute normal incidence, large end
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normal_incidence = (180./pi) * ((pi /2) + alpha)
% Compute RCS from zero aspect to normal incidence
for theta = 0.001:.1:normal_incidence-.5
index = index +1;
theta = theta * pi /180.;
rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta - alpha))*2) / ...
(8. * pi *sin(theta)) + eps;
end
%Compute broadside RCS
index = index +1;
rcs_normal = factor * sin(alpha) / ((cos(alpha))*4) + eps;
res(index) = rcs_normal;
% Compute RCS from broad side to 180 degrees
for theta = normal_incidence+.5:.1:180
index =index + 1;
theta = theta * pi/ 180. ;
rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta - alpha))*2) / ...
(8. * pi *sin(theta)) + eps;
end
else
% Compute normal incidence, small end
normal_incidence = (180./pi) * ((pi /2) - alpha)
% Compute RCS from zero aspect to normal incidence (large end)
for theta = 0.001:.1:normal_incidence-.5
index = index +1;
theta = theta * pi /180.;
res(index) = (lambda * z1 * tan(alpha) *(tan(theta + alpha))*2) / ...
(8. * pi *sin(theta)) + eps;
end
%Compute broadside RCS
index = index +1;
rcs_normal = factor * sin(alpha) / ((cos(alpha))*4) + eps;
rcs(index) = rcs_normal;
% Compute RCS from broad side to 180 degrees (small end of frustum)
for theta = normal_incidence+.5:.1:180
index = index + 1;
theta = theta * pi/ 180. ;
rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta + alpha))*2) / ...
(8. * pi *sin(theta)) + eps;
end
end
% Plot RCS versus aspect angle
delta = 180 /index;
angle = 0.001:delta:180;
plot (angle,10*log10(rcs), k");
grid;
xlabel ('Apsect angle - degrees');
ylabel (RCS - dBsm');
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%title (‘Wavelength = .861 cm');

Listing 2.7. MATLAB Function “rcs_cylinder.m”

function [rcs] = rcs_cylinder (1, h, freq)
% This program computes RCS for a cylinder. Circular symmetry is assumed.
% Plot of RCS versus aspect angle is produced
index = 0;
eps =0.00001;
% Compute wavelength
lambda = 3.0e+8 / freq;
% Compute RCS from zero aspect to broadside
for theta = 0.0:.1:90-.5

index = index +1;

theta = theta * pi /180.;

rcs(index) = (lambda * r * sin(theta) / ...

(8. * pi * (cos(theta))"2)) + eps;

end
% Compute RCS for broadside specular
theta = pi/2;
index = index +1;
res(index) = (2. * pi * h"2 * r / lambda )+ eps;
% Compute RCS from 90 to 180 degrees
for theta = 90+.5:.1:180.

index = index + 1;

theta = theta * pi/ 180.;

rcs(index) = (lambda * r * sin(theta) / ...

(8. * pi * (cos(theta))*2)) + eps;

end
% Plot results
delta= 180/(index-1)
angle = 0:delta:180;
plot(angle,10*1og10(rcs),'k');
grid;
xlabel (‘Aspect angle - degrees');
ylabel (RCS - dBsm');
%title (‘'Frequency = 9.5 GHz');

Listing 2.8. MATLAB Function “rcs_rect_plate.m”

function [rcs] = rcs_rect_plate (a, b, freq)

% This function computes the backscattered RCS for a rectangular flat plate.
% The RCS is computed for vertical and horizontal polarization based on

% Eq.s(2.50)through (2.60). Also Physical Optics approximation Eq.(2.62)
% is computed.

eps = 0.000001;

lambda = 3.0e+8 / freq;

ka=2.* pi * a/lambda;
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% Compute aspect angle vector

theta_deg = 0.05:0.1:85;

theta = (pi/180.) .* theta_deg;

sigmalv = cos(ka .*sin(theta)) - i .* sin(ka .*sin(theta)) ./ sin(theta);

sigma2v = exp(i * ka - (pi /4)) / (sqrt(2 * pi) *(ka)*1.5);

sigma3v = (1. + sin(theta)) .* exp(-i * ka .* sin(theta)) ./ ...
(1. - sin(theta))."2;

sigmadv = (1. - sin(theta)) .* exp(i * ka .* sin(theta)) ./ ...
(1. + sin(theta)).A2;

sigmaSv = 1. - (exp(i * 2. *ka - (pi/2))/ (8. * pi * (ka)*3));

sigmalh = cos(ka .*sin(theta)) + i .* sin(ka .*sin(theta)) ./ sin(theta);

sigma2h = 4. * exp(i * ka * (pi/4.)) / (sqrt(2 * pi * ka));

sigma3h = exp(-i * ka .* sin(theta)) ./ (1. - sin(theta));

sigma4h = exp(i * ka * sin(theta)) ./ (1. + sin(theta));

sigmaSh = 1. - (exp(j * 2. *ka + (pi/4.))/ 2. * pi * ka);

% Compute vertical polarization RCS

rcs_v = (b"2 / pi) .* (abs(sigmalv - sigma2v .*((1. ./ cos(theta)) ...
+ .25 * sigma2v .* (sigma3v + sigmadv)) .* (sigma5v).”A-1)).A2 + eps;

% compute horizontal polarization RCS

rcs_h = (b*2 / pi) .* (abs(sigmalh - sigma2h .*((1. ./ cos(theta)) ...
- .25 * sigma2h .* (sigma3h + sigma4h)) .* (sigmaSh).?-1))."2 + eps;

% Compute RCS from Physical Optics, Eq.(2.62)

angle = ka .* sin(theta);

rcs_po = (4. * pi* a2 * b2 / lambda™2 ).* (cos(theta)).2 .* ...
((sin(angle) ./ angle).A2) + eps;

resdb_v = 10. .*log10(rcs_v);

resdb_h = 10. .*log10(rcs_h);

resdb_po = 10. .*log10(rcs_po);

subplot(1,2,1)

plot (theta_deg, rcsdb_v,'k',theta_deg,rcsdb_po,'k --');

set(gea,'xtick’,[10:10:85]);

title ('Vertical polarization');

ylabel (RCS -dBsm');

xlabel (‘aspect angle - deg');

legend('Solid Eq.(2.51)','Dashed Eq.(2.62)");

subplot(1,2,2)

plot (theta_deg, rcsdb_h,'k',theta_deg,rcsdb_po,'k --');

set(gca,'xtick’,[10:10:85]);

title (‘'Horizontal polarization');

ylabel (RCS -dBsm');

xlabel (‘aspect angle - deg');

xlabel (‘aspect angle - deg');

legend('Solid eq.(2.50)','Dashed eq.(2.62)");

Listing 2.9. MATLAB Function “rcs_isosceles.m”

function [rcs] = rcs_isosceles (a, b, freq, phi)
% This program calculates the backscattered RCS for a perfectly
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% conducting triangular flat plate, using Eq.s (2.63) through (2.65)
% The default case is to assume phi = pi/2. These equations are
% valid for aspect angles less than 30 degrees
% compute area of plate
A=a*b/2,;
lambda = 3.e+8 / 9.5e+8,;
phi=pi/2;
ka =2. * pi/lambda;
kb =2. *pi / lambda;
% Compute theta vector
theta_deg = 0.01:.05:89;
theta = (pi /180.) .* theta_deg;
alpha = ka * cos(phi) .* sin(theta);
beta = kb * sin(phi) .* sin(theta);
if (phi ==pi/2)
rcs = (4. * pi * A2 /lambda”2) .* cos(theta). 2 .* (sin(beta ./ 2))." ...
./ (beta./2)."4 + eps;
end
if (phi == 0)
rcs = (4. * pi ¥ AM2 /lambda”2) .* cos(theta).*2 .* ...
((sin(alpha).”4 ./ alpha.”4) + (sin(2 .* alpha) - 2.*alpha).”2 ...
J/ (4 * alpha.™4)) + eps;
end
if (phi ~= 0 & phi ~= pi/2)
sigmaol = 0.25 *sin(phi)*2 .* ((2. * a/b) * cos(phi) .* ...
sin(beta) - sin(phi) .* sin(2. .* alpha))."2;
factl = (alpha).”2 - (.5 .* beta).*2;
fact2 = (sin(alpha).”2 - sin(.5 .* beta)."2)./2;
sigmao = (fact2 + sigmaol) ./ factl;
rcs = (4. * pi * AM2 /lambda”2) .* cos(theta)."2 .* sigmao + eps;
end
resdb = 10. *log10(rcs);
plot(theta_deg,rcsdb,'k’)
xlabel ('Aspect angle - degrees');
ylabel (RCS - dBsm")
%title (‘freq = 9.5GHz, phi = pi/2');
grid;

Listing 2.10. MATLAB Program “rcs_cylinder_complex.m”

% This program computes the backscattered RCS for a cylinder
% with flat plates.

clear all
index = 0;

eps =0.00001;
al =.125;
h=1;
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lambda = 3.0e+8 /9.5¢+9;
lambda = 0.00861;
index = 0;
for theta = 0.0:.1:90-.1
index = index +1;
theta = theta * pi /180.;
rcs(index) = (lambda * al * sin(theta) / ...
(8 * pi * (cos(theta))"2)) + eps;
end
theta*180/pi;
theta = pi/2;
index = index +1;
res(index) = (2 * pi * h"2 * al /lambda )+ eps;
for theta = 90+.1:.1:180.
index = index + 1;
theta = theta * pi/ 180.;
rcs(index) = (lambda * al * sin(theta) / ...
(8 * pi * (cos(theta))"2)) + eps;
end
r=al;
index = 0;
for aspect_deg = 0.:.1:180
index = index +1;
aspect = (pi /180.) * aspect_deg;
% Compute RCS using Eq. (2.37)
if (aspect == 0 | aspect == pi)
rcs_po(index) = (4.0 * pi*3 * r" / lambda’2) + eps;
rcs_mu(index) = rcs_po(1);
else
X = (4. * pi * r / lambda) * sin(aspect);
vall = 4. * pi*3 * r* / lambda’2;
val2 = 2. * besselj(1,x) / x;
res_po(index) = vall * (val2 * cos(aspect))*2 + eps;
end
end
res_t =(res_po + rcs);
angle = 0:.1:180;
plot(angle,10*log10(rcs_t(1:1801)),'k");
grid;
xlabel ('Aspect angle -degrees');
ylabel (RCS -dBsm');

Listing 2.11. MATLAB Program “Swerling_models.m”

% This program computes and plots Swerling statistical models
% sigma_bar = 1.5;
clear all
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sigma = 0:0.001:6;

sigma_bar = 1.5;

swer_3_4 = (4. / sigma_bar"2) .* sigma .* ...
exp(-2. * (sigma ./ sigma_bar));

ot *exp(-(t.12)./2.

swer_1_2 = (1. /sigma_bar) .* exp( -sigma ./ sigma_bar);

plot(sigma,swer_1_2,'k',sigma,swer_3_4,'k");

grid;

gtext ('Swerling LII');

gtext ('Swerling IILIV');

xlabel ('sigma’);

ylabel ('Probability density');

title ('sigma-bar = 1.5");

Problems

2.1. Design a cylindrical RCS calibration target such that its broadside RCS
(cylinder) and end (flat plate) RCS are equal to 10m> at f=95GHz. The
RCS for a flat plate of area A is 6, = 4th2A2/c2 .

2.2. The following table is constructed from a radar cross-section measure-
ment experiment. Calculate the mean and standard deviation of the radar cross
section.

Number of samples RCS, m?
2 55
6 67
12 73
16 90

20 98
24 110
26 117
19 126
13 133
139
144
150
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2.3. Develop a MATLAB simulation to compute and plot the backscattered
RCS for the following objects. Utilize the simple shape MATLAB functions
developed in this chapter. Assume that the radar is located on the left side of
the page and that its line of sight is aligned with the target body axis. Assume
an X-band radar.

] frustum
flat plate ~ cylinder ¢ flat plate
L ! !
I I
| | | |
| ' I '1<5_>| |
: 70cm ! ; ! - cm. !
| | 30cm
: 90cm ! top view
side view
frustum flat olat
i at plate
half ellipsoid cylinder P
i
10cm :<+| .
: | T0cm ' :
I :< >
[ 90cm '
side view
-—
: 50cm R ——
|
I
15¢m I 45¢m
flatplate ' | T~ __Y¥ __

frustum  f1at plate
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2.4 . The backscattered RCS for a corner reflector is given by

2

2
167a" 4a’ Sin(z%lsme)
9 (sin@)* + |4 0° <9 <45°
kz kz 2Ta .
TSIHG

This RCS is symmetric about the angle 6 = 45°. Develop a MATLAB pro-
gram to compute and plot the RCS for a corner reflector. The RCS at the
0 = 45°is

_ 8ma’h’
= =5

7

corner reflector

© 2000 by Chapman & Hall/CRC



Chapter 3 Continuous Wave and
Pulsed Radars

Continuous Wave (CW) radars utilize CW waveforms, which may be con-
sidered to be a pure sinewave of the form cos2mf,¢. Spectra of the radar echo
from stationary targets and clutter will be concentrated at f,. The center fre-
quency for the echoes from moving targets will be shifted by f;, the Doppler
frequency. Thus by measuring this frequency difference CW radars can very
accurately extract target radial velocity. Because of the continuous nature of
CW emission, range measurement is not possible without some modifications
to the radar operations and waveforms, which will be discussed later.

3.1. Functional Block Diagram

In order to avoid interruption of the continuous radar energy emission, two
antennas are used in CW radars, one for transmission and one for reception.
Fig. 3.1 shows a simplified CW radar block diagram. The appropriate values
of the signal frequency at different locations are noted on the diagram. The
individual Narrow Band Filters (NBF) must be as narrow as possible in band-
width in order to allow accurate Doppler measurements and minimize the
amount of noise power.

In theory, the operating bandwidth of a CW radar is infinitesimal (since it
corresponds to an infinite duration continuous sinewave). However, systems
with infinitesimal bandwidths cannot physically exist, and thus the bandwidth
of CW radars is assumed to correspond to that of a gated CW waveform (see
Chapter 5).
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Figure 3.1. CW radar block diagram.

The NBF bank (Doppler filter bank) can be implemented using a Fast Fou-
rier Transform (FFT). If the Doppler filter bank is implemented using an FFT
of size Nypy, and if the individual NBF bandwidth (FFT bin) is Af, then the
effective radar Doppler bandwidth is Npp;Af/2 . The reason for the one-half
factor is to account for both negative and positive Doppler shifts.

Since range is computed from the radar echoes by measuring a two-way time
delay, then single frequency CW radars cannot measure target range. In order
for CW radars to be able to measure target range, the transmit and receive
waveforms must have some sort of timing marks. By comparing the timing
marks at transmit and receive, CW radars can extract target range.
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The timing mark can be implemented by modulating the transmit waveform,
and one commonly used technique is Linear Frequency Modulation (LFM).
Before we discuss LFM signals, we will first introduce the CW radar equation
and briefly address the general Frequency Modulated (FM) waveforms using
sinusoidal modulating signals.

3.2. CW Radar Equation

As indicated by Fig. 3.1, the CW radar receiver declares detection at the out-
put of a particular Doppler bin if that output value passes the detection thresh-
old within the detector box. Since the NBF bank is inplemented by an FFT,
only finite length data sets can be processed at a time. The length of such
blocks is normally referred to as the dwell time or dwell interval. The dwell
interval determines the frequency resolution or the bandwidth of the individual
NBFs. More precisely,

Af = 1/Tpen (3.1)
Tp,en 18 the dwell interval. Therefore, once the maximum resolvable fre-
quency by the NBF bank is chosen the size of the NBF bank is computed as

Nppr = 2B/Af (3.2)
B is the maximum resolvable frequency by the FFT. The factor 2 is needed to
account for both positive and negative Doppler shifts. It follows that

Tpyen = Nppr/2B (3.3)

The CW radar equation can now be derived from the high PRF radar equa-
tion given in Eq. (1.69) and repeated here as Eq. (3.4)

P, T,G\'c
SNR = — 5 (3.4)
(41)’R*kT,FL

In the case of CW radars, P,, is replaced by the CW average transmitted

power over the dwell interval Py, , and T; must be replaced by T, . Thus,

the CW radar equation can be written as

PCWTD welleGr%’QG
(4m)’R*kT,FLL

SNR = (3.5
win

where G, and G, are the transmit and receive antenna gains, respectively. The
factor L, ;, is a loss term associated with the type of window (weighting) used

in computing the FFT. Other terms in Eq. (3.5) have been defined earlier.
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3.3. Frequency Modulation

The discussion presented in this section will be restricted to sinusoidal mod-
ulating signals. In this case, the general formula for an FM waveform can be
expressed by

t
s(t) = Acos 2nf0t+kfjc052nfmudu (3.6)
0

fo 1s the radar operating frequency (carrier frequency), cos2xf, ¢ isthe mod-
ulating signal, A is a constant, and k, = 2wAf,,,,, where Af . is the peak
frequency deviation. The phase is given by

t
y(t) = 2nf0t+27tAfpwa.0052nfmudu = 2mfyt + Psin2nf, ¢ (3.7)
0

where [ is the FM modulation index given by

A
p = —eeak 3.8)

I

Let s,(¢) be the received radar signal from a target at range R. It follows
that

s,(1) = A,cos(2mfy(t— At) + Bsin2nf, (1 — At)) (3.9)
where the delay At is

At = 2R (3.10)
¢
¢ is the speed of light. CW radar receivers utilize phase detectors in order to
extract target range from the instantaneous frequency, as illustrated in Fig. 3.2.
A good measurement of the phase detector output o(#) implies a good mea-
surement of Az, and hence range.

s5,.(1)

o(t) = K,cosm, At

g

phase
detector

Y

Figure 3.2. Extracting range from an FM signal return.
K, is a constant.
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Consider the FM waveform s(¢) given by
s(t) = Acos(2mfyt + Bsin2nf, 1) (3.11)
which can be written as

j2nfot  jBsin2nf,t
e

s(t) = ARe{¢€ 1 (3.12)

where Re{ - } denotes the real part. Since the signal exp(jpsin2mf, ) is
periodic with period T = 1/f,,, it can be expressed using the complex expo-
nential Fourier series as

iBsin2wf,, t jn2mf,,t
Pt _ z c,é"™ (3.13)

n=—oo

where the Fourier series coefficients C, are given by

T
1 jBsin2nf,t  —jn2mf,t
e e

C, = o dt (3.14)

-7

Make the change of variable u = 2xf, ¢, and recognize that the Bessel func-
tion of the first kind of order n is

T
J,B) = %tje’(ﬁsm“‘"“) du (3.15)
-7

Thus, the Fourier series coefficients are C, = J,(B), and consequently Eq.
(3.13) can now be written as

JBsin2nf, ¢ jn2nf, ¢
¢ = z J,(B)e (3.16)
R

which is known as the Bessel-Jacobi equation. Fig. 3.3 shows a plot of Bessel
functions of the first kind for n = 0, 1, 2, 3.

The total power in the signal s(¢) is

_ 1. 2 _ 1.0
P=3A"N LB =34 (3.17)

Substituting Eq. (3.16) into Eq. (3.12) yields
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Jn(z

Figure 3.3. Plot of Bessel functions of order 0, 1, 2, and 3.

s(1) = ARe] "™ D 7By (3.18)
Expanding Eq. (3.18) yields
s(t) = A Z J,(B)cos(2nf, + n2nf, )t (3.19)

n = —oo

Finally, since J,(B) = J_,(B) for n oddand J,(B) = —J_,(B) for n even we
can rewrite Eq. (3.19) as

s(1) = A{Jy(B)cos2mfyt + (3.20)
J,(B)[cos(2nf, + 2nf,, )t — cos (2mfy—2mf,, )]
+J,(B)[cos(2mf, + 4nf,, )t + cos (2mfy—4nf,, )]
+ J5(B)[cos (2nf, + 6Tf,, )t — cos(2nf,—6Omf, )]
+ J4(B)[cos((2nf, + 8nf,, )t + cos (2nfy—8nf,)H)] + ...}

The spectrum of s(¢) is composed of pairs of spectral lines centered at f;,, as
sketched in Fig. 3.4. The spacing between adjacent spectral lines is f,,. The
central spectral line has an amplitude equal to AJ,(3) , while the amplitude of
the nth spectral line is AJ,(B).
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Figure 3.4. Amplitude line spectra sketch for FM signal.

As indicated by Eq. (3.20) the bandwidth of FM signals is infinite. However,
the magnitudes of spectral lines of the higher orders are small, and thus the
bandwidth can be approximated using Carson’s rule,

B=2(B+1)f, (3.21)

When B is small, only J,(B) and J,(B) have significant values. Thus, we
may approximate Eq. (3.20) by

s(1) = A{Jy(B)cos2mfyr + J,(B) (3.22)
[cos(2mfy + 2xf,, )t — cos (2mf—2mf, )]}

Finally, for small 3, the Bessel functions can be approximated by
Jo(B) =1 (3-23)
1
J,(B)=5B (3.24)
Thus, Eq. (3.22) may be approximated by
s(t) = A{cos2nfot + %B[cos(2nf0 +2nf,)t - cos(2nf0—2nfm)t]} (3.25)
Example 3.1: If the modulation index is B = 0.5, give an expression for the

signal s(t).

Solution: From Bessel function tables we get J,(0.5) = 09385 and
J1(0.5) = 0.2423 ; then using Eq. (3.17) we get
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s(1) = A{(0.9385) cos2nf,t + (0.2423)
[cos (2mf, + 2nf,, )t — cos (2mf—2xf,,)t]}

Example 3.2: Consider an FM transmitter with output signal
s(t) = 100cos(2000mt + @(t)). The frequency deviation is 4Hz, and the
modulating waveform is x(t) = 10cos16mt. Determine the FM signal band-
width. How many spectral lines will pass through a band pass filter whose
bandwidth is 58Hz centered at 1000Hz ?

Solution: The peak frequency deviation is Af,,,, = 4% 10 = 40Hz. It fol-
lows that

=A_fpeak=4_0=5

= T
Using Eq. (3.16) we get
B=2(B+1)f,, = 2x(5+1)x8 = 96Hz

However, only seven spectral lines pass through the band pass filter as illus-
trated in the figure shown below.

—
amplitude/100 “ 2
= el
----------- T - -t
. = .
' % .
. .
. = 2|
' < '
. .
: | | >
NS %o X
SEHEELT frgueno
~~N N~

3.4. Linear FM (LFM) CW Radar

CW radars may use LFM waveforms so that both range and Doppler infor-
mation can be measured. In practical CW radars, the LFM waveform cannot be
continually changed in one direction, and thus periodicity in the modulation is
normally utilized. Fig. 3.5 shows a sketch of a triangular LFM waveform. The
modulation does not need to be triangular; it may be sinusoidal, saw-tooth, or
some other form. The dashed line in Fig 3.5 represents the return waveform
from a stationary target at range R . The beat frequency f; is also sketched in
Fig. 3.5. It is defined as the difference (due to heterodyning) between the trans-
mitted and received signals. The time delay Ar is a measure of target range, as
defined in Eq. (3.10).
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Figure 3.5. Transmitted and received triangular LFM signals and beat
frequency for stationary target.

In practice, the modulating frequency f,, is selected such that

1
= — 3.26
TS (3.26)
The rate of frequency change, f, is
. Af Af
== = —~— =2f A 3.27
VT e 20

where Af is the peak frequency deviation. The beat frequency f,, is given by

. 2R .
fo = Atf === f (3.28)

Eq. (3.28) can be rewritten as

. c
f= >R s (3.29)
Equating Eqs. (3.27) and (3.29) and solving for f, yield

Rf, A
fp = —J; / (3.30)

Now consider the case when Doppler is present (i.e., non-stationary target).
The corresponding triangular LFM transmitted and received waveforms are
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sketched in Fig. 3.6, along with the corresponding beat frequency. As before
the beat frequency is defined as

fb = freceived_ftransmitted (3-31)

When the target is not stationary the received signal will contain a Doppler
shift term in addition to the frequency shift due to the time delay Ar. In this
case, the Doppler shift term subtracts from the beat frequency during the posi-
tive portion of the slope. Alternatively, the two terms add up during the nega-
tive portion of the slope. Denote the beat frequency during the positive (up)
and negative (down) portions of the slope, respectively, as f,,, and f, ;.

It follows that

_ 2R; 2R

Tou - f % (3.32)

where R is the range rate or the target radial velocity as seen by the radar. The
first term of the right-hand side of Eq. (3.32) is due to the range delay defined
by Eq. (3.28), while the second term is due to the target Doppler. Similarly,

2R, 2R
foa = I+ 5 (3.33)
frequency A
N N
Jo+t AL /X TN N
70NN / AN
/ ! ! \ / \ 4
7 N/ N/
7 T v v
fo L — >
o - _
o v time
beat ol Lo
frequency A o -
N Lo F_ = = = = -
o - | solid: transmitted signal
o : Lo dashed: received signal
. .o L e 4
Spa o : ,
ol =T N .

Figure 3.6. Transmited and received LFM signals and beat frequency, for a
moving target.
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Range is computed by adding Eq. (3.32) and Eq. (3.33). More precisely,

c
R = =(fy,+ 3.34
4f(fbu Joa) (3-34)

The range rate is computed by subtracting Eq. (3.33) from Eq. (3.32),

. A
R = Z(fbd —fou) (3-35)

As indicated by Eq. (3.34) and Eq. (3.35), CW radars utilizing triangular
LEM can extract both range and range rate information. In practice, the maxi-

mum time delay Az, . is normally selected as

At = 011, (3.36)

Thus, the maximum range is given by

_ O.ICIO _ Olc

Rux > =g, (3.37)

and the maximum unambiguous range will correspond to a shift equal to 21, .

3.5. Multiple Frequency CW Radar

CW radars do not have to use LFM waveforms in order to obtain good range
measurements. Multiple frequency schemes allow CW radars to compute very
adequate range measurements, without using frequency modulation. In order
to illustrate this concept, first consider a CW radar with the following wave-
form:

s(t) = Asin2mfyt (3.38)
The received signal from a target at range R is
s, (t)= A, sin(2wfyt — @) (3.39)

where the phase ¢ is equal to

¢ = 27tf02TR (3.40)
Solving for R we obtain

_ <9 _ A

"~ 4nf, an® (341)
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Clearly, the maximum unambiguous range occurs when ¢ is maximum, i.e.,
¢ = 2n. Therefore, even for relatively large radar wavelengths, R is limited
to impractical small values.

Next, consider a radar with two CW signals, denoted by s,(#) and s,(7).
More precisely,

s,(t) = A sin2nf;t (3.42)
s,(t) = A,sin2mnf,t (3.43)
The received signals from a moving target are
s1,(t) = A, sin(2nf1—¢,) (3.44)
and
55,(1) = A,,sin(2nf,1-¢,) (3.45)

where @, = (4nf\R)/c and @, = (4nf,R)/c. After heterodyning (mixing)
with the carrier frequency, the phase difference between the two received sig-
nals is

4R 4R
0, -0, = Ap = 7(fz—f|) = 7Af (3.46)

Again R is maximum when A¢ = 2m; it follows that the maximum unambig-
uous range is now

- <
R = 347 (3.47)
and since Af « ¢, the range computed by Eq. (3.47) is much greater than that

computed by Eq. (3.41).

3.6. Pulsed Radar

Pulsed radars transmit and receive a train of modulated pulses. Range is
extracted from the two-way time delay between a transmitted and received
pulse. Doppler measurements can be made in two ways. If accurate range mea-
surements are available between consecutive pulses, then Doppler frequency
can be extracted from the range rate R = AR/At. This approach works fine as
long as the range is not changing drastically over the interval A¢. Otherwise,
pulsed radars utilize a Doppler filter bank.

Pulsed radar waveforms can be completely defined by the following: (1) car-
rier frequency which may vary depending on the design requirements and
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radar mission; (2) pulse width, which is closely related to the bandwidth and
defines the range resolution; (3) modulation; and finally (4) the pulse repetition
frequency. Different modulation techniques are usually utilized to enhance the
radar performance, or to add more capabilities to the radar that otherwise
would not have been possible. The PRF must be chosen to avoid Doppler and
range ambiguities as well as maximize the average transmitted power.

Radar systems employ low, medium, and high PRF schemes. Low PRF
waveforms can provide accurate, long, unambiguous range measurements, but
exert severe Doppler ambiguities. Medium PRF waveforms must resolve both
range and Doppler ambiguities; however, they provide adequate average trans-
mitted power as compared to low PRFs. High PRF waveforms can provide
superior average transmitted power and excellent clutter rejection capabilities.
Alternatively, high PRF waveforms are extremely ambiguous in range. Radar
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR).
Range and Doppler ambiguities for different PRFs are summarized in Table
3.1.

Distinction of a certain PRF as low, medium, or high PRF is almost arbitrary
and depends on the radar mode of operations. For example, a 3KHz PRF is
considered low if the maximum detection range is less than 30Km . However,
the same PRF would be considered medium if the maximum detection range is
well beyond 30Km .

Radars can utilize constant and varying (agile) PRFs. For example, Moving
Target Indicator (MTI) radars use PRF agility to avoid blind speeds. This kind
of agility is known as PRF staggering. PRF agility is also used to avoid range
and Doppler ambiguities, as will be explained in the next three sections. Addi-
tionally, PRF agility is also used to prevent jammers from locking onto the
radar’s PRF. These two latter forms of PRF agility are sometimes referred to as
PREF jitter.

TABLE 3.1. PRF ambiguities.

PRF Range Ambiguous | Doppler Ambiguous
Low PRF No Yes
Medium PRF Yes Yes
High PRF Yes No

Fig. 3.7 shows a simplified pulsed radar block diagram. The range gates can
be implemented as filters that open and close at time intervals that correspond
to the detection range. The width of such an interval corresponds to the desired
range resolution. The radar receiver is often implemented as a series of contig-
uous (in time) range gates, where the width of each gate is matched to the radar
pulse width. The NBF bank is normally implemented using an FFT, where
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bandwidth of the individual filters corresponds to the FFT frequency resolu-
tion.

pulse train
generator

RF source

()
mixer | mixer —v
o o)t o —
IF f IF Amp
LO |

see

detectors detectors

Y Y

threshold detection ’

Figure 3.7. Pulsed radar block diagram.

3.7. Range and Doppler Ambiguities

As explained earlier, a pulsed radar can be range ambiguous if a second
pulse is transmitted prior to the return of the first pulse. In general, the radar
PRF is chosen such that the unambiguous range is large enough to meet the
radar’s operational requirements. Therefore, long-range search (surveillance)
radars would require relatively low PRFs.

The line spectrum of a train of pulses has sinx/x envelope, and the line
spectra are separated by the PRF, f,, as illustrated in Fig. 3.8. The Doppler fil-
ter bank is capable of resolving target Doppler as long as the anticipated Dop-
pler shift is less than one half the bandwidth of the individual filters (i.e., one
half the width of an FFT bin). Thus, pulsed radars are designed such that
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2’Vrma)c
fr = zfdmax = T (3.48)

where f,,,,, 1s the maximum anticipated target Doppler frequency, v is

rmax

the maximum anticipated target radial velocity, and A is the radar wavelength.

If the Doppler frequency of the target is high enough to make an adjacent spec-
tral line move inside the Doppler band of interest, the radar can be Doppler
ambiguous. Therefore, in order to avoid Doppler ambiguities, radar systems
require high PRF rates when detecting high speed targets. When a long-range
radar is required to detect a high speed target, it may not be possible to be both
range and Doppler unambiguous. This problem can be resolved by using multi-
ple PRFs. Multiple PRF schemes can be incorporated sequentially within each
dwell interval (scan or integration frame) or the radar can use a single PRF in
one scan and resolve ambiguity in the next. The latter technique, however, may
have problems due to changing target dynamics from one scan to the next.

1IN :**: Z1N
I
/( 1\, /( 1\
i , NP N
2 fo: 2 2 4 Jo
IR LIS
| i
s N /P 1\
/{ ‘( : I T\ ’{ : T\ -
_Ll::<_ —>:fd!<—
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|72 | 1 |f0 |1 | , |D0pp1erbank| 72| |f0| | |
(a) (b)

Figure 3.8. Spectra of transmitted and received waveforms, and Doppler
bank. (a) Doppler is resolved. (b) Spectral lines have moved
into the next Doppler filter. This results in an ambiguous
Doppler measurement.

3.8. Resolving Range Ambiguity

Consider a radar that uses two PRFs, f,, and f,,, on transmit to resolve
range ambiguity, as shown in Fig. 3.9. Denote R,; and R, as the unambigu-
ous ranges for the two PRFs, respectively. Normally, these unambiguous
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ranges are relatively small and are short of the desired radar unambiguous
range R, (where R,» R, ,R, ). Denote the radar desired PRF that corre-
sponds to R, as f, .

ul>

We choose f,; and f,, such that they are relatively prime with respect to one
another. One choice is to select f,;, = Nf,;, and f,, = (N+1)f,, for some
integer N . Within one period of the desired PRI (T, = 1/f,,) the two PRFs
f.1 and f,, coincide only at one location, which is the true unambiguous target
position. The time delay T, establishes the desired unambiguous range. The
time delays ¢, and ¢, correspond to the time between the transmit of a pulse
on each PRF and receipt of a target return due to the same pulse.

Let M, be the number of PRFI intervals between transmit of a pulse and
receipt of the true target return. The quantity M, is similar to M, except it is
for PRF2. It follows that, over the interval 0 to T,, the only possible results
are M, = M, = M or M, +1 = M,. The radar needs only to measure ¢,
and t, . First, consider the case when ¢, <1, . In this case,

- M _ fy+ M (3.49)

frl fr2

’4—» .
transmitted

| pulses, PRF1
I
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| | |
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Fgure 3.9. Resolving range ambiguity.
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for which we get

L—h

M =
T,-T,

(3.50)

where T, = 1/f,, and T, = 1/f,,. It follows that the round trip time to the
true target location is

t, = MT, +1,
(3.51)
tr o MT2 + t2
and the true target range is
R = ct,/2 (3.52)
Now if ¢, > t,, then
e Mooy Ml (3.53)
frl fr2
Solving for M we get
(-t +T,
M=————" 3.54
T, - T, (3.54)
and the round-trip time to the true target location is
t, = MT, +1t, (3.55)
and in this case, the true target range is
R= 3.56
=5 (3.56)

Finally, if t; = t,, then the target is in the first ambiguity. It follows that
t, =1 =1 (3.57)
and
R = ct,,/2 (3.58)

Since a pulse cannot be received while the following pulse is being transmit-
ted, these times correspond to blind ranges. This problem can be resolved by
using a third PRF. In this case, once an integer N is selected, then in order to
guarantee that the three PRFs are relatively prime with respect to one another,
we may choose f,, = N(N+1)f,;,. fio=NWN+2),,, and
fz = (N+D(N+2)f,,.
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3.9. Resolving Doppler Ambiguity

The Doppler ambiguity problem is analogous to that of range ambiguity.
Therefore, the same methodology can be used to resolve Doppler ambiguity. In
this case, we measure the Doppler frequencies f,;, and f,, instead of #; and

ty.

If £, > f, , then we have

_ Faa=far) + 1

M (3.59)
frl _fr2
And if £y <fy2,
Jar —far
M === (3.60)
frl _fr2
and the true Doppler is
fa = Mf +fa
(3.61)
Ja = Mfa+ o
Finally, if f;; = f;,, then
fa=Ta = a2 (3.62)

Again, blind Dopplers can occur, which can be resolved using a third PRF.

Example 3.3: A certain radar uses two PRFs to resolve range ambiguities.
The desired unambiguous range is R, = 100Km. Choose N = 59. Compute

frl’ fr2’ Rul’ and Ru2'

Solution: First let us compute the desired PRE, f,,

8
frg = ZLRM = ﬁ = 1.5KHz
It follows that
fi1 = Nf,;, = (59)(1500) = 88.5KHz
fin = (N+1)f,, = (59 + 1)(1500) = 90KHz
c _ 3x10°

R, = =—— =
Y26 2x885x%10°

= 1.695Km
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¢ 3% 10®

= — = — = 1667Km-
2fn 2%x90%x10°

u2

Example 3.4: Consider a radar with three PRFs; f., = 15KHz,
frn = 18KHz, and f., = 21KHz. Assume f, = 9GHz. Calculate the fre-
quency position of each PRF for a target whose velocity is 550m/s. Calculate
fa (Doppler frequency) for another target appearing at 8KHz, 2KHz, and
17KHz for each PRF.

Solution: The Doppler frequency is

o _ 2x550x9x 10

3 = 33KH?
¢ 3x 10

fa=2

Then by using Eq. (3.61) nf,;+f;; = f; where i = 1,2,3, we can write
mfp tfa = 150+ fy = 33

33

Nofpa+fan = 18ny+fyn
nafys t ey = 2lny+fy5 = 33

We will show here how to compute n,, and leave the computations of n, and
ns to the reader. First, if we choose n; = 0, that means f;; = 33KHz, which
cannot be true since f,;, cannot be greater than f,,. Choosing n; = 1 is also
invalid since f; = 18KHz cannot be true either. Finally, if we choose
n, = 2 we get f;; = 3KHz, which is an acceptable value. It follows that the
minimum n,, n,, ny that may satisfy the above three relations are n; = 2,
n, =1, and ny = 1. Thus, the apparent Doppler frequencies are
fnn = 2KHz, f;, = 15KHz, and f;; = 12KHz.

fdl frl

35 10 15 20 25 30 35

© 2000 by Chapman & Hall/CRC



fd2 fr2

KHz
5 10 15 18 20 25 30 35
A
fd3 fr3
KHz
5 10 12 15 20 25 30 35

Now for the second part of the problem. Again by using Eq. (3.61) we have
nifp+fa =f, = 15n,+8
Nofpa+fan = fa = 18ny,+2
nifs+faz = fq = 2lny + 17

We can now solve for the smallest integers n,, n,, ny that satisfy the above
three relations. See the table below.

n 0 1 2 3 4

f fomf, |8 23 38 53 68
d

fa from f,, 2 20 a 36

fy fromfy | 17 3 39

Thus, n, =2 =n,, and ny; =1, and the true target Doppler is
f. = 38KHz. It follows that
0.0333 = 63271

v, = 38000 x
2 sec
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3.10. MATLAB Program ‘“‘range_calc.m”

The program “range_calc.m” solves the radar range equation of the form

1
PIfT.G.GAo
R = ( tfr it J (3.63)

(47)’kT,FL(SNR),

where P, is peak transmitted power, T is pulse width, f, is PRF, G, is trans-
mitting antenna gain, G, receiving antenna gain, A is wavelength, G is target
cross section, k is Boltzman’s constant, T, effective noise temperature, F is
system noise figure, L is total system losses, and (SNR), is the minimum
SNR required for detection. This equation applies for both CW and pulsed
radars. In the case of CW radars, the terms P,Tf, must be replaced by the aver-
age CW power P.y,. Additionally, the term 7 refers to the dwell interval;
alternatively, in the case of pulse radars T; denotes the time on target. MAT-
LAB-based GUI is utilized in inputting and editing all input parameters. The
outputs include the maximum detection range versus minimum SNR plots.
This program can be executed by typing “range_calc_driver” which is
included in this book’s companion software. This software can be downloaded
from CRC Press Web site “www.crcpress.com”. The related MATLAB GUI
workspace associated with this program is illustrated in Fig. 3.10.

Problems
3.1. Prove that

Z J,(2) = 1.

3.2. Showthat J_,(z) = (-1 )"Jn(z) . Hint: You may utilize the relation
T

J,(z) = %J‘cos(z siny —ny)dy.
0
3.3. Inamultiple frequency CW radar, the transmitted waveform consists of
two continuous sinewaves of frequencies f; = 105KHz and f, = 115KHz.

Compute the maximum unambiguous detection range.
3.4. Consider a radar system using linear frequency modulation. Compute

the range that corresponds to f = 20, IOMHz. Assume a beat frequency
f, = 1200Hz.
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Figure 3.10. GUI work space associated with the program
“range_calc.m”.

3.5. A certain radar using linear frequency modulation has a modulation fre-
quency f,, = 300Hz, and frequency sweep Af = 50MHz. Calculate the

average beat frequency differences that correspond to range increments of 10

and 15 meters.

3.6. A CW radar uses linear frequency modulation to determine both range
and range rate. The radar wavelength is A = 3c¢m, and the frequency sweep is
Af = 200KHz. Let t, = 20ms . (a) Calculate the mean Doppler shift; (b)

compute f,, and f,;, corresponding to a target at range R = 350Km , which is

approaching the radar with radial velocity of 250m /s .
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3.7. In Chapter 1 we developed an expression for the Doppler shift associ-
ated with a CW radar (i.e., f, = £2v/A, where the plus sign is used for clos-

ing targets and the negative sign is used for receding targets). CW radars can
use the system shown below to determine whether the target is closing or

receding. Assuming that the emitted signal is Acos®,¢ and the received signal
is kAcos((®y+ )t + @), show that the direction of the target can be deter-

mined by checking the phase shift difference in the outputs y,(#) and y,(7).

é’= CW.
Nd transmitter
transmitting
antenna \i
90°
phase
shift
Y
receiving .| mixer yi(1)
antenna
— ;
»| MiXEr Y2(1)
B

3.8. Consider a medium PRF radar on board an aircraft moving at a speed of
350 m/s with PRFs f,; = 10KHz, f,, = 15KHz, and f,; = 20KHz; the
radar operating frequency is 9.5GHz. Calculate the frequency position of a
nose-on target with a speed of 300 m/s. Also calculate the closing rate of a
target appearing at 6, 5, and 18KHz away from the center line of PRF 10,
15, and 20K Hz, respectively.

3.9. Repeat Problem 3.8 when the target is 15° off the radar line of sight.
3.10. A certain radar operates at two PRFs, f,, and f,,, where
T.,=(/f,) =T/5 and T,, = (1/f,,) = T/6. Show that this multiple
PRF scheme will give the same range ambiguity as that of a single PRF with
PRI T.
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3.11. Consider an X-band radar with wavelength A = 3c¢m and bandwidth
B = 10MHz. The radar uses two PRFs, f.;, = 50KHz and f,, = 55.55KHz.
A target is detected at range bin 46 for f,, and at bin 12 for f,, . Determine

the actual target range.
3.12. A certain radar uses two PRFs to resolve range ambiguities. The

desired unambiguous range is R, = 150Km . Select a reasonable value for N.
Compute the corresponding f,;, f,», R,;,and R,

3.13. A certain radar uses three PRFs to resolve range ambiguities. The
desired unambiguous range is R, = 250Km. Select N = 43. Compute the

corresponding f,;, f,2, fi3» R, 1> R,5,and R 5.
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Chapter 4 Radar Detection

4.1. Detection in the Presence of Noise

A simplified block diagram of a radar receiver that employs an envelope
detector followed by a threshold decision is shown in Fig. 4.1. The input signal
to the receiver is composed of the radar echo signal s(¢#) and additive zero
mean white Gaussian noise n(t), with variance \|12. The input noise is
assumed to be spatially incoherent and uncorrelated with the signal.

The output of the band pass IF filter is the signal v(¢), which can be written
as
v(t) = v(1)cos®yt +vy(1)sinm, = r(t)cos(wyr — (1))
v,(t) = r(t)cosp(r) 4.1)
vo(t) = r(t)sin@(z)

where ®, = 27f, is the radar operating frequency, r(¢) is the envelope of
v(1) , the phase is @(7) = atan(v,/v,), and the subscripts /, O, respectively,
refer to the in-phase and quadrature components.

A target is detected when r(t) exceeds the threshold value V., where the
decision hypotheses are

s(t)y+n(r)>Vy Detection
n(t) >V, False alarm
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o display
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— devices

Threshold V.

Figure 4.1. Simpliﬁed block diagram of an envelope detector and threshold
receiver.

The case when the noise subtracts from the signal (while a target is present) to
make r(¢) smaller than the threshold is called a miss. Radar designers seek to
maximize the probability of detection for a given probability of false alarm.

The IF filter output is a complex random variable that is composed of either
noise alone or noise plus target return signal (sine wave of amplitude A ). The
quadrature components corresponding to the first case are

v (1) = n, (1) (4.2)
VQ(t) = nQ(t)

and for the second case,

v (1) =A+n,(t) =r(t)cos@(t) = n,(t) = r(t)cosp(t)—A

. (4.3)
vQ(t) = nQ(t) = r(t)sinQ(¢)

where the noise quadrature components n,(7) and n,(z) are uncorrelated zero
mean low pass Gaussian noise with equal variances, ¥~ . The joint Probability
Density Function (pdf) of the two random variables njn, is

2, 2
1 ny+n
flnpng) = ——exp —’—2Q (4.4)
2y 2y

2 . 2
_ _exp _(rcoso—A) 2+(rsm(p)
2y 2y

The pdfs of the random variables r(z) and @(t), respectively, represent the
modulus and phase of v(¢). The joint pdf for the two random variables
r(1);p(t) is given by

f(r, @) = fn;, ny)J| (4.5)

where [J] is a matrix of derivatives defined by
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on; dn,

[J] = or 99| _ l:Cf)S(p —rsin(p:| (a.6)
anQ anQ sing rcos@
or 0

The determinant of the matrix of derivatives is called the Jacobian, and in this
case it is equal to

|/l = r(1) 4.7)
Substituting Egs. (4.4) and (4.7) into Eq. (4.5) and collecting terms yield

r PP A rAcos @
fr,e) = ZCXP( ) JGXP(—Q) 4.8)
2y 2y v

The pdf for r alone is obtained by integrating Eq. (4.8) over ¢

2n 2n

1 = [ 9)dg = ;exp[ : *2‘) ﬁjexp(“‘;‘“‘")dcp @9)

2y
0

where the integral inside Eq. (4.9) is known as the modified Bessel function of
zero order,

2n
_ L Bcosd

I,B) = 2n.[e do (4.10)

0

Thus,
2 2
f(r) = %IO(%)exp[—r J“;‘ ) @.11)
Yooy 2y

which is the Rice probability density function. If A/ \|12 = 0 (noise alone),
then Eq. (4.11) becomes the Rayleigh probability density function

2
f(r) = Lzexp[—zr—zJ @.12)
v v

Also, when (A/y ) is very large, Eq. (4. 11) becomes a Gaussian probability
density function of mean A and variance \|I
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2
f(r) = ! exp[—(r_A)J (4.13)

2
A/ZTE\VZ 2y
Fig. 4.2 shows plots for the Rayleigh and Gaussian densities.

The density function for the random variable ¢ is obtained from

f9) = [fr. ) ar @.19)

0
While the detailed derivation is left as an exercise, the result of Eq. (4.14) is

2 .2
1 -A A -(A A
flo) = n exp(2—2)+LS(p exp[ ( smz(p)) F( COS(P) (4.15)

v I\/ZTCWZ 2y v

where

F(x) = L2 dE (4.16)

1
— e
J- 2T
The function F(x) can be found tabulated in most mathematical formulas and

tables reference books. Note that for the case of noise alone (A = 0), Eq.
(4.15) collapses to a uniform pdf over the interval {0, 2w} .

'
, Rayleigh

0.5 F - - /- - veo. F Yo - - - - S, eoo - - - 4
' ' '
0.4 F - <f- =« cie o o N e ke e e e e -5 5 st s e e e eae - - - - A

' ' ' ' '
0.3 F - f- - - - [ U2 [ o T 0T

Probability density

' f ' ' '
0.2 F 4 - - - - - - - - B N
' ' ' ' '

Figure 4.2. Gaussian and Rayleigh probability densities.

© 2000 by Chapman & Hall/CRC



One excellent approximation for the function F(x) is

2
F(x) = 1—[ L JLe“ 2 x20 @)
0.661x +0.339./x* + 5.51 )21

and for negative values of x
F(—x) = 1-F(x) (4.18)
MATLAB Function “que_func.m”

The function “que_func.m” computes F(x) using Eqgs. (4.17) and (4.18) and
is given in Listing 4.1 in Section 4.10. The syntax is as follows:

fofx = que_func (x)

4.2. Probability of False Alarm

The probability of false alarm Py, is defined as the probability that a sample
R of the signal r(#) will exceed the threshold voltage V, when noise alone is
present in the radar,

oo

r 2 _Vz
P, = J_zeXP _V_z dr = exp| — (4.19a)
\j 2y 2y

VT
2 1
Ve= 2y ln(—) (4.19b)
N Py

Fig. 4.3 shows a plot of the normalized threshold versus the probability of false
alarm. It is evident from this figure that Py, is very sensitive to small changes
in the threshold value.

The false alarm time T, is related to the probability of false alarm by
Ty, = o~ (4.20)
where t;,, represents the radar integration time, or the average time that the
output of the envelope detector will pass the threshold voltage. Since the radar

operating bandwidth B is the inverse of ¢, ., then by substituting Eq. (4.19)
into Eq. (4.20) we can write Ty, as

int?

1 (v
Ty, = Eexp[z—TzJ (4.21)
1
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Figure 4.3. Normalized detection threshold versus probability of false alarm.

Minimizing 7;, means increasing the threshold value, and as a result the
radar maximum detection range is decreased. Therefore, the choice of an
acceptable value for 7, becomes a compromise depending on the radar mode
of operation. The false alarm number n;, was defined by Marcum (see bibliog-
raphy) as the reciprocal of P, . Using Marcum’s definition of the false alarm
number, the probability of false alarm is given by Py, = 1n(2)(np/ ng), where
n,>1 is the number of pulses and P, <0.007.

4.3. Probability of Detection

The probability of detection P, is the probability that a sample R of r(r)
will exceed the threshold voltage in the case of noise plus signal,

oo

2 2
Py = | \fl 10(\%) exp[—r +A) dr (4.22)

2\|/2

Vr

If we assume that the radar signal is a sine waveform with amplitude A, then its
power is A*/2. Now, by using SNR = A2/2\|12 (single-pulse SNR) and
(V2T/2\p2) = In(1/Py,), then Eq. (4.22) can be rewritten as
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o

P, = J. —IO(rAZ) exp(—rz-h?z}lr = Q{

Yooy 2y

[2¢* In(1/p,,)

2
A_ ZIn( ! )} (4.23)
v’ Pra

Q[a, B] = J. CIO((XC)e*(C2+a2)/2 dC (4.24)

Q is called Marcum’s Q-function. When P, is small and P, is relatively
large so that the threshold is also large, Eq. (4 24) can be approximated by

A 1
P zF(— _ Zln(—)) (4.25)
b W Pfa

where F(x) is given by Eq. (4.16).

Many approximations for computing Eq. (4.23) can be found throughout the
literature. One very accurate approximation presented by North (see bibliogra-
phy) is given by

Py =0.5xerfc(J-InP;,— JSNR +0.5) (4.26)

where the complementary error function is

2 [ 72
erfc(z) = 1- —JJ e dv (4.27)
i

Table 4.1 gives samples of the single pulse SNR corresponding to few values
of P, and P, using Eq. (4.26). For example, if P, = 0.99 and
Py, =10 10 , then the minimum single pulse SNR required to accomplish this
combination of Pp and P, is SNR = 16.12dB.

MATLAB Function “marcumsq.m”

The integral given in Eq. (4.23) is complicated and can be computed using
numerical integration techniques. Parl! developed an excellent algorithm to
numerically compute this integral. It is summarized as follows:

2
;—B"exp((a _zb) ) a<b
Ola, b] = " (4.28)

1- (ZB exp((a Zb)) azb)

1. Parl, S., A New Method of Calculating the Generalized Q Function, /EEE Trans.
Information Theory, Vol. IT-26, No. 1, January 1980, pp. 121-124.
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TABLE 4.1. Single pulse SNR (dB).

P/'a

Pp 107 10 107 10° 107 10 10° 101 jott 0’2

1 4.00 6.19 7.85 8.95 9.94 1044  11.12 11.62 12.16  12.65
2 5.57 7.35 875 9.81 10.50 11.19 11.87 12.31 12.85 13.25
3 6.75 825 9.50 10.44 11.10 11.75 12.37 1281 13.25 13.65
4 7.87 8.85 10.18 10.87  11.56 12.18 12.75 13.25 13.65 14.00
5 8.44 9.45 10.62  11.25 11.95 12.60  13.11 1352  14.00  14.35
6 8.75 9.95 11.00 11.75 12.37 1288 1350 1387 1425  14.62
7 9.56 10.50  11.50 12.31 12.75 1331 13.87 1420 1459  14.95
8 10.18 11.12 12.05 12.62 13.25 13.75 14.25 14.55 14.87 1525
9 10.95 11.85 12.65 13.31 13.85 14.25 14.62 15.00 15.45 15.75

95 11.50 12.40 13.12 13.65 14.25 14.64 15.10 15.45 15.75 16.12
.98 12.18  13.00 13.62 14.25  14.62 15.12 1547 1585 1625  16.50
.99 12.62 13.37  14.05 14.50 15.00 15.38 15.75 16.12 16.47  16.75

995 12.85  13.65  14.31 14.75 1525 1571 16.06  16.37  16.65  17.00
998 13.31 14.05 14.62 15.06 15.53 16.05 16.37  16.7 16.89 17.25
999 13.62 14.25 14.88 15.25 15.85 16.13 16.50 16.85 17.12 17.44
19995 13.84 14.50 15.06 15.55 15.99 16.35 16.70 16.98 17.35 17.55
9999 | 14.38 14.94 1544 1612 1650 1687 1712  17.35 17.62  17.87

2n
o, =d,+ Ean—l +0,_, (4.29)
2n
B, =1+ a_bB’HJr B, 2 (4.30)
dn+ 1= dndl (431)
1 a<b (4.32)
o, = .
"o a>b
a/b a<b
d, = (4.33)
b/a a=b

o, = 0.0, B, = 0.5,and B_; = 0. The recursive Egs. (4.29) through (4.31)
are computed continuously until B, > 10 for some value p > 3. The accuracy
of the algorithm is enhanced as the value of p is increased. The MATLAB
function “marcumsq.m” given in Listing 4.2 in Section 4.10 implements Parl’s
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algorithm to compute the probability of detection defined in Eq. (4.23). The
syntax is as follows:

Pd = marcumsq (alpha, beta)

where alpha and beta are from Eq. (4.24). Fig. 4.4 shows plots of the probabil-
ity of detection, P, , versus the single pulse SNR, with the P, as a parameter.
This figure can be reproduced using the MATLAB program “prob_snrl.m”
given in Listing 4.3 in Section 4.10. This program uses the function “mar-
cumsq.m’.

Example 4.1: A pulsed radar has the following specification: time of false
alarm T;, = 16.67 minutes; probability of detection P, = 0.9 and band-
width B = 1 GHz. Find the radar integration time t, ,, the probability of
false alarm Py,, and the SNR of a single pulse.

int?

Solution:

-

1 TB 107 x 16,67 x 60
and from Table 4.1 or from Fig. 4.4, we read
(SNR), = 15.75dB.

4.4. Pulse Integration

When a target is illuminated by the radar beam it normally reflects numerous
pulses. The radar probability of detection is normally enhanced by summing all
(or most) of the returned pulses. The process of adding radar echoes from
many pulses is called radar pulse integration. Pulse integration can be per-
formed on the quadrature components prior to the envelope detector. This is
called coherent integration or pre-detection integration. Coherent integration
preserves the phase relationship between the received pulses, thus a build up in
the signal amplitude is achieved. Alternatively, pulse integration performed
after the envelope detector (where the phase relation is destroyed) is called
non-coherent or post-detection integration.

4.4.1. Coherent Integration

In coherent integration, if a perfect integrator is used (100% efficiency), then
integrating n, pulses would improve the SNR by the same factor. Otherwise,
integration loss occurs which is always the case for non-coherent integration.
In order to demonstrate this signal buildup, consider the case where the radar

. . . .- . th .
return signal contains both signal plus additive noise. The m = pulse is
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Figure 4.4. Probability of detection versus single pulse SNR, for several

values of Pfa .

V(1) = 5(1) +n,, (1)

(4.34)

where s(¢) is the radar return of interest and n,,(¢) is white uncorrelated addi-
tive noise signal. Coherent integration of n, pulses yields

l’lp

() = = 3 30 = Y s+, (0] =
P P

m=1 m=1

l’lp

s(t) + Z ninm(t) (4.35)
P

m=1

The total noise power in z(#) is equal to the variance. More precisely,
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n, n, *

1 1
Voo = E|| Y, =m0 || Y () (4.36)
p

p
m=1 =1

where E[ ] is the expected value operator. It follows that

p

2 _ 1 x(n)] = L 25 L2
Vi = Y, Eln, (0] = . D Wb = _e (4.37)

pm,l=1 ml=1

where wiv is the single pulse noise power and §,,; is equal to zero for m # [
and unity for m = [. Observation of Eqgs. (4.35) and (4.37) shows that the
desired signal power after coherent integration is unchanged, while the noise
power is reduced by the factor 1/n,. Thus, the SNR after coherent integration
is improved by n,, .

Denote the single pulse SNR required to produce a given probability of
detection as (SNR), . Also, denote (SNR), as the SNR required to produce
the same probability of detection when n, pﬁlses are integrated. It follows that

1
(SNR), = n—(SNR)l (4.38)
»
14
The requirements of remembering the phase of each transmitted pulse as well
as maintaining coherency during propagation is very costly and challenging to
achieve. In practice, most radar systems utilize non-coherent integration.

4.4.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector,
also known as the quadratic detector. A block diagram of radar receiver utiliz-
ing a square law detector and non-coherent integration is illustrated in Fig. 4.5.
In practice, the square law detector is normally used as an approximation to the
optimum receiver.

The pdf for the signal r(¢t) was derived earlier and it is given in Eq. (4.11).
Define a new dimensionless variable y as

Yy = 1,/ (4.39)

and also define

b

R = = = 2SNR (4.40)

<
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Figure 4.5. Simplified block diagram of a square law detector and
non-coherent integration.

It follows that the pdf for the new variable is then given by

fyn) = fr,)

2
- R
(y, + ,,)) @.41)

d 7i —
Gl = 3y 10 fRy) exp( =5

"n
Yn

The output of a square law detector for the n" pulse is proportional to the
square of its input, which, after the change of variable in Eq. (4.39), is propor-
tional to y, . Thus, it is convenient to define a new change variable,

12

X, = 5 Y, (4.42)

The pdf for the variable at the output of the square law detector is given by

R
= exp(—(xn + 7”))10( /2xn9ip) (4.43)

Non-coherent integration of n,, pulses is implemented as

dy,

fx,) = fy,) ax

np

z = an (4.44)

n=1

Since the random variables x,, are independent, the pdf for the variable z is

fz2) = flx)) o flxy) @ ... o flx, ) (4.45)

the operator e symbolically indicates convolution. The characteristic func-
tions for the individual pdfs can then be used to compute the joint pdf in Eq.
(4.45). The details of this development are left as an exercise. The result is

2 (n,—1)/2 1
o) = (F5)" en(-a= 3, (0 e

p-p
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where Inp_1 is the modified Bessel function of order n,— 1. Therefore, the
probability of detection is obtained by integrating f(z) from the threshold
value to infinity. Alternatively, the probability of false alarm is obtained by let-
ting EKP be zero and integrating the pdf from the threshold value to infinity.
Closed form solutions to these integrals are not easily available. Therefore,
numerical techniques are often utilized to generate tables for the probability of
detection.

The non-coherent integration efficiency E(n,) is defined as

ECLL T

= < 4.47
n,(SNK), @an

The integration improvement factor I(n,) for a specific P, is defined as the
ratio of (SNR), to (SNR),
P

(SNR),
(SNR),,

I(n,) = = n,E(n,)<n, (4.48)
Note that (SNR), corresponds to the SNR needed to produce the same P, as

in the case of a single pulse when n, pulses are used. It follows that
(SNR), <(SNR),.
)

An empirically derived expression for the improvement factor that is accu-
rate within 0.8dB is reported in Peebles! as

log(1/P;,)
[1(n,)], = 6.79(1 + 0.235PD)(1 + WL)log(np) (4.49)

(1-0.140log(n,) +0.018310(logn,)*)

Fig. 4.6 shows plots of the integration improvement factor as a function of the
number of integrated pulses with P, and Py, as parameters, using Eq. (4.49).
This plot can be reproduced using the MATLAB program “fig4_5.m” given in
Listing 4.4 in Section 4.10.

Example 4.2: Consider the same radar defined in Example 4.1. Assume non-
coherent integration of 10 pulses. Find the reduction in the SNR.

Solution: The integration improvement factor is calculated using the func-
tion “improv_fac.m”. Itis 1(10) = 9.20dB, and from Eq. (4.48) we get

(SNR),
(SNR),, = ———— = (SNR),, = 15.75-9.20 = 6.55dB
» [(np) »

1. Peebles Jr., P. Z., Radar Principles, John Wiley & Sons, Inc., 1998.
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Thus, non-coherent integration of 10 pulses where (SNR),, = 6.55dB pro-
vides the same detection performance as (SNR), = 15.75dB of a single pulse
and no integration.

18 LI
16}
L
141 - ~ |
- ~

Improvement factor | - dB
[oe)
T

—— pd=.5, nfa=2
pd=.8, nfa=6
pd=.95, nfa=10 | |
pd=.999, nfa=13

L L L L L L L L L L L
1 2 3 4 5678 10 20 30 50 70 100
Number of pulses

Figure 4.6. Improvement factor versus number of pulses (non-
coherent integration). These plots were generated using
the empirical approximation in Eq. (4.49).

MATLAB Function “improv_fac.m”

The function “improv_fac.m” calculates the improvement factor using Eq.
(4.49). It is given in Listing 4.5 in Section 4.10. The syntax is as follows:

[impr_of_np] = improv_fac (np, pfa, pd)

where
Symbol Description Units Status
np number of integrated pulses none input
pfa probability of false alarm none input
pd probability of detection none input
impr_of_np improvement factor output dB
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4.5. Detection of Fluctuating Targets

So far when we addressed the probability of detection, we assumed a con-
stant target cross section (non-fluctuating target). However, when target scintil-
lation is present, the probability of detection decreases, or equivalently the
SNR is reduced.

4.5.1. Detection Probability Density Function

The probability density functions for fluctuating targets were given in Chap-
ter 2. And for convenience, they are repeated here as Eqs. (4.50) and (4.51):

f(A) = Ai exp(—lﬁ) A>0 (4.50)
for Swerling I and II type targets, and
fla) = 4—?exp(—2—A) A=20 (4.51)
A Agy

av

for Swerling III and IV type targets, where A, denotes the average RCS over
all target fluctuations.

The probability of detection for a scintillating target is computed in a similar
fashion to Eq. (4.22), except in this case f(r) is replaced by the conditional pdf
f(r/A) . Performing the analysis for the general case (i.e., using Eq. (4.46))
yields

(n,-1)/2 2 2

flz/A) = (%) exp[—z—ln A—Jz _1[ 2n zA—J (4.52)
2% 2 |'n, P2
n,A~/y v v

To obtain f(z) use the relations
f(z,A) = f(z/A)f(A) (4.53)
f2) = [fzA)aa @s4)

Finally, using Eq. (4.54) in Eq. (4.53) produces

fz) = Jf(z/A)f(A)dA (4.55)

where f(z/A) is defined in Eq. (4.52) and f(A) is in either Eq. (4.50) or
(4.51). The probability of detection is obtained by integrating the pdf derived
from Eq. (4.55) from the threshold value to infinity. Performing the integration
in Eq. (4.55) leads to the incomplete Gamma function.
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4.5.2. Threshold Selection

In practice, the detection threshold, V., is found from the probability of
false alarm P, . DiFranco and Rubin' give a general form relating the thresh-
old and P, for any number of pulses and non-coherent integration,

P 1-T Vi 1 (4.56)
a = - N, -
S 1 /—np ;

where I'; is used to denote the incomplete Gamma function, and it is given by

Vi/ Jn
! np—l—l

Vr _ e’ Y
r,(Jn_p, np—lJ - _[ ER— &y (4.57)
0

For our purposes, the incomplete Gamma function can be approximated by

n,—1 -V
\%4 vy e -1 -1 -2
r|—=, n,—1f=1- L =1+ By 1y )(zn” ) +  (4.58)
o (n,~ 1)! vy V2

.. +—(n”_ 1)!}

n, = 1
VT

The threshold value V. can then be approximated by the recursive formula
used in the Newton-Raphson method. More precisely,

;m=1,2,3, ... (4.59)

The iteration is terminated when |V, -V, 4| <V;, _,/10000.0. The
functions G and G’ are

np/ng,

GV, = (05) -,V np) (4.60)
-Vr n,— 1
G(V, y=— T (4.61)
T.m (n,— 1! '
The initial value for the recursion is
Vio = n,—Jn,+23 [-logP, (./-logP,+ .[n, —1) (4.62)

1. DiFranco, J. V. and Rubin, W. L., Radar Detection. Artech House, 1980.
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MATLAB Function “incomplete_gamma.m”

In general, the incomplete Gamma function for some integer N is

-v N-1
e v

F,(x, N) = de\l (4.63)

0

The function “incomplete_gamma.m” implements Eq. (4.63). It is given in
Listing 4.6 in Section 4.10. The syntax for this function is as follows:

[value] = incomplete_gamma ( x, N)

where
Symbol Description Units Status
X variable input to I ;(x, N) units of x input
N variable input to I ;(x, N) none / integer input
value T',(x, N) none output

Fig. 4.7 shows the incomplete Gamma function for N = 1, 3, 10. Note that
the limiting values for the incomplete Gamma function are

IO,N) =20 (o, N) = 1 (4.64)

Incomplete Gamma function (x,N)

zzzz
[l

Figure 4.7. The incomplete Gamma function for four values of N.
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MATLAB Function “threshold.m”

The function “threshold.m” calculates the threshold using the recursive for-
mula used in the Newton-Raphson method. It is given in Listing 4.7 in Section
4.10. The syntax is as follows:

[pfa, vt] = threshold ( nfa, np)

where
Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
pfa probability of false alarm none output
vt threshold value none output

Fig. 4.8 shows plots for the threshold value versus the number of integrated
pulses for several values of ng, ; remember that P, =~ In(2)(n,/n,) .

Threshold

—— nfa=1000
— nfa=10000
_ nfa=500000
100 1 1
10° 10' 10°

Number of pulses

Figure 4.8. Threshold V. versus n » for several values of Ny s
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4.6. Probability of Detection Calculation

Denote the range at which the single pulse SNR is unity (0 dB) as R, and
refer to it as the reference range. Then, for a specific radar, the single pulse
SNR at R, is defined by the radar equation and is given by

P.G'\'o
(SNR)g, = —————— =1 (4.65)
(4m) kT,BFLR,
The single pulse SNR at any range R is
P.G\No
SNR = ——— (4.66)
(4n) kT,BFLR
Dividing Eq. (4.66) by Eq. (4.65) yields
R 4
SNR_ (—0) (4.67)
(SNR), R

Therefore, if the range R, is known then the SNR at any other range R is

Ry
(SNR) 5 = 4010g(;) (4.68)

Also, define the range Rs, as the range at which the probability of detection is
P, = 0.5 = Ps,. Normally, the radar unambiguous range R, is set equal to
2Rs, .

4.6.1. Detection of Swerling V Targets

Marcum defined the probability of false alarm for the case when n,>1 as

n,/ngy,
P = 1= (Ps)" " = n(2)(n,/n;,) (4.69)

The single pulse probability of detection for non-fluctuating targets is given in
Eq. (4.23). When n,>1, the probability of detection is computed using the
Gram-Charlier series. In this case, the probability of detection is

erfc(V/ﬁ) e_vz/2 2 2
- [Cy;(V =1)+C,V(3-V (4.70)
2 m 3( ) 4 ( )

— CV(V =10V +15)]

Py=
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where the constants C;, C4, and C4 are the Gram-Charlier series coefficients,
and the variable V is

_ Vy—n,(1+SNR)
- o

1% 4.711)

In general, values for C;, C,, C4, and ® vary depending on the target fluctu-
ation type. In the case of Swerling V targets, they are

.- __ SNR+1/3 w2
P 2SNR+ 1)
c, - SNR+1/4_ .
n,(2SNR +1)
Co = C3/2 4.74)

@ = .[n,(2SNR+1) (4.75)

MATLAB Function “pd_swerling5.m”

The function “pd_swerling5.m” calculates the probability of detection for
Swerling V targets using Eq. (4.70). It is given in Listing 4.8 in Section 4.10.
The syntax is as follows:

[pd] = pd_swerling5 (inputl, indicator, np, snr)

where
Symbol Description Units Status
inputl Py, orng, none input
indicator I when inputl = Py, none input
2 when inputl = ng,

np number of integrated pulses none input

snr SNR dB input

pd probability of detection none output

Fig. 4.9 shows a plot for the probability of detection versus SNR for cases
n, = 1,10. Note that it requires less SNR, with ten pulses integrated non-
coherently, to achieve the same probability of detection as in the case of a sin-
gle pulse. Hence, for any given P, the SNR improvement can be read from
the plot. Equivalently, using the function “improv_fac.m” leads to about the
same result. For example, when P, = 0.8 the function “improv_fac.m” gives
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an SNR improvement factor of 1(10) = 8.55dB . Observation of Fig. 4.9 shows
that the ten pulse SNR is about 5.03dB . Therefore, the single pulse SNR is
about (from Eq. (4.48)) 14.5dB, which can be read from the figure. This fig-
ure can be reproduced using MATLAB program “fig4_9.m”, which is part of
the companion software of this book.

0.9] /'
0.8l
07f
0.6]
05)

0.4+

Probability of detection

0.2+ /

0.1+ /

Figure 4.9. Probability of detection versus SNR, P, = 107 , and
non-coherent integration.
4.6.2. Detection of Swerling I Targets

The exact formula for the probability of detection for Swerling I type targets
was derived by Swerling. It is

-V,/(1+SNR)
Pyp=ce sn, = 1 (4.76)
1 V! Vr
P, = l—F,(VT,np—l)+(l+n SNR) , —.n,=1| @7
14
n,SNR
-V /(1+n
Vy/(1+n,SNR) : ”p>1
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MATLAB Function “pd_swerlingl.m”

The function “pd_swerlingl.m” calculates the probability of detection for
Swerling I type targets. It is given in Listing 4.9 in Section 4.10. The syntax is
as follows:

[pd] = pd_swerlingl (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability of detection none output

Fig. 4.10 shows a plot of the probability of detection as a function of SNR
forn, = 1 and P, = 10™ for both Swerling I and V type fluctuating. Note
that it requires more SNR, with fluctuation, to achieve the same P, as in the
case with no fluctuation. Fig. 4.11a shows a plot of the probability of detection
versus SNR for n, = 1, 10, 50, 10(_)1,2where Py = 10°. Fig. 4.11b is similar
to Fig. 4.11a; in this case Pfa =10 .

0.9+

0.8 -

0.7 -

0.6 -

0.5+

0.4 -

Probability of detection

0.2 -

0.1} —— Swerling V||

- Swerling |

18 20 22

Figure 4.10. Probability of detection versus SNR, single pulse. Pfa = 10_9
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Figure 4.11a. Probability of detection versus SNR. Swerling I. Pfa =10
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Figure 4.11b. Probability of detection versus SNR. Swerling I. Pfa =10
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4.6.3. Detection of Swerling II Targets

In the case of Swerling II targets, the probability of detection is given by

‘T
= _ - - . <
P,=1 I’((1+SN ) ,np) ; np_SO (4.78)

For the case when np,>50 Eq. (4.70) is used to compute the probability of
detection. In this case,

1 Cs
C; = 3 . Co=5 (4.79)
n!7
c, = (4.80)
4 4n, )
® = Jn, (1+SNR) (4.81)

MATLAB Function “pd_swerling2.m”

The function “pd_swerling2.m” calculates P, for Swerling II type targets.
Itis given in Listing 4.10 in Section 4.10. The syntax is as follows:

[pd] = pd_swerling2 (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability of detection none output

Fig. 4.12 shows a plot of the probability of detection as a function of SNR
forn, = 1, 10, 50, 100, where Py, = 107,

4.6.4. Detection of Swerling III Targets

The exact formula, developed by Marcum, for the probability of detection
for Swerling III type targets when n, = 1, 2is

—Vr 2 Yv?
= 1 .
Po eXp(l +npSNR/2)( +npSNR) 8 @62
VT 2
1 - ) =
( * T3, SNR/2 " mSNR" )) Ko
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Figure 4.12. Probability of detection versus SNR. Swerling II. P,, = 107

For n,>?2 the expression is
n,—1 -V
Vr

Po =07 n,SNR/2)(n, - 2)!

+1-T,(Vyy n,— 1) + K, (4.83)

r Vr 1
1(1 +2/n,SNR "7~ )
MATLAB Function “pd_swerling3.m”

The function “pd_swerling3.m” calculates P, for Swerling II type targets.
Itis given in Listing 4.11 in Section 4.10. The syntax is as follows:

[pd] = pd_swerling3 (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability of detection none output
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Figure 4.13. Probability of detection versus SNR. Swerling I1I. P;, = 107,
Fig. 4.13 shows a plot of the probability of detection as a function of SNR
for n, = 1,10, 50, 100, where P;, = 10~ .

4.6.5. Detection of Swerling IV Targets

The expression for the probability of detection for Swerling IV targets for
n, <50 is

SNR SNR\?n,(n,—1)
PD =1- |:YO + (T)np'yl + (T) %’YZ + ...+ (4.84)

SNRY" SNRY™
() (1 +557)

where

VT .
v = rms ) e

By using the recursive formula

i

T(x,i+1) = T,(x,i) (4.86)

T exp(x)

then only Y, needs to be calculated using Eq. (4.85) and the rest of v, are cal-
culated from the following recursion:
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Yo=Y -A, >0 (4.87)

4 Y/ (L (SNR)/2)

i

— A i1 (4.88)
4

(V,/(1+(SNR)/2))"

1= texp(V,/(1+ (SNR)/2)) (4-89)

VT
Yo = Fz(—(l T (SNR)/2) ,n,,) (4.90)

For the case when n, > 50, the Gram-Charlier series and Eq. (4.70) can be
used to calculate the probability of detection. In this case,

2
1 2p°-1 C;
Cy = ———— ; Co=—= (4.91)
3n,27- )" 2
4
C = LZB—_I (492)
47 4n 2 2
P(2B"-1)
o = A/np(2|32— 1) (4.93)
B = 1+S%e (4.94)

MATLAB Function “pd_swerling4.m”

The function “pd_swerling4.m” calculates P, for Swerling II type targets.
It is given in Listing 4.12 in Section 4.10. The syntax is as follows:

[pd] = pd_swerling4 (nfa, np, snr)

where
Symbol Description Units Status
nfa Marcum’s false alarm number none input
np number of integrated pulses none input
snr SNR dB input
pd probability of detection none output

Fig. 4.14 shows a plot of the probability of detection as a function of SNR
for n, = 1,10, 50, 100, where P;, = 10~ .
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Figure 4.14. Probability of detection versus SNR. Swerling IV. Pfa = 1079

4.7. Cumulative Probability of Detection

The cumulative probability of detection refers to detecting the target at least
once by the time it is range R. More precisely, consider a target closing on a
scanning radar, where the target is illuminated only during a scan (frame). As
the target gets closer to the radar, its probability of detection increases since the
SNR is also increased. Suppose that the probability of detection during the nth
frame is P, ; then, the cumulative probability of detecting the target at least
once during the nth frame (see Fig. 4.15) is given by

Pe = 1—H(1 -Pp) (4.95)
i=1
P, is usually selected to be very small. Clearly, the probability of not detect-

ing the target during the nth frame is 1 — P . The probability of detection for
the ith frame, P , is computed as discussed in the previous section.

Example 4.3: A radar detects a closing target at R = 10Km, with probability
of detection equal to 0.5. Assume P, = 107, Compute and sketch the single
look probability of detection as a function of normalized range (with respect to
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R = 10Km ), over the interval (2 —20)Km. If the range between two succes-
sive frames is 1Km, what is the cumulative probability of detection at
R =8Km?

nth frame frame 1

(n+1)th frame

Figure 4.15. Detecting a target in many frames.

Solution: From the function “marcumsg.m” or from Table 4.1 the SNR cor-
responding to Pp, = 0.5 and Py, = 10 " is approximately 12dB. By using a
similar analysis to that which led to Eq. (4.68), we can express the SNR at any
range R as

(SNR)g = (SNR),+40 log%) = 52-40 logR

Then with the help of the function “marcumsq.m” we can construct the follow-
ing table:

R Km (SNR) dB Pp

2 39.09 0.999
4 279 0.999
6 20.9 0.999
8 15.9 0.999
9 13.8 0.9
10 12.0 0.5
11 10.3 0.25
12 8.8 0.07
14 6.1 0.01
16 38 e

20 0.01 e

© 2000 by Chapman & Hall/CRC



where € is very small. Below is a sketch of P, versus normalized range.

APp

] ™R/10

The cumulative probability of detection is given in Eq. (4.95), where the
probability of detection of the first frame is selected to be very small. Thus, we
can arbitrarily choose frame I to be at R = 16Km . Note that selecting a dif-
ferent starting point for frame 1 would have a negligible effect on the cumula-
tive probability (we only need P, to be very small). Below is a range listing
for frames I through 9, where frame 9 correspondsto R = 8Km .

frame‘123456789
range in Km ‘ 16 15 14 13 12 11 10 9 8

The cumulative probability of detection at 8 Km is then

Pe, = 1-(1-0.999)(1-0.9)(1-0.5)(1-0.25)(1~0.07)(1 - 0.01)(1 ~¢)
~0.9998

4.8. Solving the Radar Equation

The radar equation was developed in Chapter 1. It is given by

=

PAf.T.G.G\
R =( tTfr iGN O J (4.96)

(41)’kT,FL(SNR),

where P, is peak transmitted power, T is pulse width, f, is PRF, T, is dwell
interval, G, is transmitting antenna gain, G, is receiving antenna gain, A is
wavelength, o is target cross section, k is Boltzman’s constant, T, is effective
noise temperature, F is system noise figure, L is total system losses, and
(SNR), is the minimum SNR required for detection.
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Assuming that the radar parameters such as power, antenna gain, wave-
length, losses, bandwidth, effective temperature, and noise figure are known,
the steps one should follow to solve for range are shown in Fig. 4.16. Note that
both sides of the bottom half of Fig. 4.16 are identical. Nevertheless, we pur-
posely show two paths so that a distinction between scintillating and non-fluc-
tuating targets is made.

compute the probability
of false alarm Pfa

\i
find the single pulse SNR
using Eq. (4.24)

Y

compute additional SNR due to
scintillation. Use Fig. 4.10 or
equivalent for other Swerlings

~coherent
integration

_coherent
integratio

| Y Y A
compute compute (SNR) compute (SNR)I compute
improvement (SNR) = 1 (SNR)n = improvement
factor I(n,,) " n 14 s factor I(n,,)

A

solve the radar equation

Figure 4.16. Solving the radar equation.
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4.9. Constant False Alarm Rate (CFAR)

The detection threshold is computed so that the radar receiver maintains a
constant pre-determined probability of false alarm. Eq. (4.19b) gives the rela-
tionship between the threshold value V; and the probability of false alarm
Py, , and for convenience is repeated here as Eq. (4.97):

V= fzwzln(L) (4.97)
Pfa

If the noise power \yz is assumed to be constant, then a fixed threshold can sat-
isfy Eq. (4.97). However, due to many reasons this condition is rarely true.
Thus, in order to maintain a constant probability of false alarm the threshold
value must be continuously updated based on the estimates of the noise vari-
ance. The process of continuously changing the threshold value to maintain a
constant probability of false alarm is known as Constant False Alarm Rate
(CFAR).

Three different types of CFAR processors are primarily used. They are adap-
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques.
Adaptive CFAR assumes that the interference distribution is known and
approximates the unknown parameters associated with these distributions.
Nonparametric CFAR processors tend to accommodate unknown interference
distributions. Nonlinear receiver techniques attempt to normalize the root
mean square amplitude of the interference.

In this book only analog Cell-Averaging CFAR (CA-CFAR) technique is
examined. The analysis presented in this section closely follows Urkowitz'.

4.9.1. Cell-Averaging CFAR (Single Pulse)

The CA-CFAR processor is shown in Fig. 4.17. Cell averaging is performed
on a series of range and/or Doppler bins (cells). The echo return for each pulse
is detected by a square law detector. In analog implementation these cells are
obtained from a tapped delay line. The Cell Under Test (CUT) is the central
cell. The immediate neighbors of the CUT are excluded from the averaging
process due to possible spillover from the CUT. The output of M reference
cells (M/2 on each side of the CUT) is averaged. The threshold value is
obtained by multiplying the averaged estimate from all reference cells by a
constant K, (used for scaling). A detection is declared in the CUT if

Y, 2K,Z (4.98)

1. Urkowitz, H., Decision and Detection Theory, unpublished lecture notes. Lockheed
Martin Co., Moorestown, NJ.
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Figure 4.17. Conventional CA-CFAR.

Cell-averaging CFAR assumes that the target of interest is in the CUT and all
reference cells contain zero mean independent Gaussian noise of variance \u2 .
Therefore, the output of the reference cells, Z, represents a random variable
with gamma probability density function (special case of the Chi-square) with
2M degrees of freedom. In this case, the gamma pdfis

QU le(—z/sz)
flz) = ; 2>0 (4.99)
2" MM /2)

The probability of false alarm corresponding to a fixed threshold was
derived earlier. When CA-CFAR is implemented, then the probability of false
alarm can be derived from the conditional false alarm probability, which is
averaged over all possible values of the threshold in order to achieve an uncon-
ditional false alarm probability. The conditional probability of false alarm
when y = V. can be written as

/2y
P (Vp=y) =" (4.100)

It follows that the unconditional probability of false alarm is

Pra = [ PrVe=ndy @.101)
0
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where f(y) is the pdf of the threshold, which except for the constant K, is the
same as that defined in Eq. (4.99). Therefore,

M—1 (*,V/ZKOWZ)
e

) = y7 7 y20 (4.102)
2Koy) ' T(M)
Substituting Egs. (4.102) and (4.100) into Eq. (4.101) yields
1
P, = ——— (4.103)
T A k)"

Observation of Eq. (4.103) shows that the probability of false alarm is now
independent of the noise power, which is the objective of CFAR processing.

4.9.2. Cell-Averaging CFAR with Non-Coherent Integration

In practice, CFAR averaging is often implemented after non-coherent inte-
gration, as illustrated in Fig. 4.18. Now, the output of each reference cell is the
sum of n, squared envelopes. It follows that the total number of summed ref-
erence samples is Mn, . The output Y, is also the sum of n, squared enve-
lopes. When noise alone is present in the CUT, Y, is random variable whose
pdf is a gamma distribution with 2np degrees of freedom. Additionally, the
summed output of the reference cells is the sum of Mn, squared envelopes.
Thus, Z is also a random variable who has a gamma pdf with 2Mn,, degrees of
freedom.

The probability of false alarm is then equal to the probability that the ratio
Y,/ Z exceeds the threshold. More precisely,

Py, = Prob{Y,/Z>K,} (4.104)

Eq. (4.104) implies that one must first find the joint pdf for the ratio Y,/Z.
However, this can be avoided if Py, is first computed for a fixed threshold
value V., then averaged over all possible value of the threshold. Therefore, let
the conditional probability of false when y = Vi be P, (V=) . It follows
that the unconditional false alarm probability is given by

Pry = [ PrVe=idy (@.105)
0

where f(y) is the pdf of the threshold. In view of this, the probability density
function describing the random variable K,Z is given by

M —1 (/2K
O/K) " e

1) ; y20 (4.106)

an
2y*) 'K, T(Mn,)
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Figure 4.18. Conventional CA-CFAR with non-coherent integration.

It can be shown (see problems) that in this case the probability of false alarm
is independent of the noise power and is given by

np—l
1 lF(M”pJ“k)( K, )k
(1 +K1)an k! F(an) 1+K|
k=0

P, = (4.107)

which is identical to Eq. (4.103) when K| = K, and n, = 1.

4.10. MATLAB Function and Program Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters. All functions have companion MATLAB “filename_driverm”
files that utilize MATLAB Graphical User Interface (GUI).

Listing 4.1. MATLAB Function “que_func.m”

function fofx = que_func(x)

% This function computes the value of the Q-function

% listed in Eq.(4.16). It uses the approximation in Eq.s (4.17) and (4.18)
if (x>=0)

denom = 0.661 * x + 0.339 * sqrt(x"2 + 5.51);
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expo = exp(-x"2 /2.0);

fofx = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
else

denom = 0.661 * x + 0.339 * sqrt(x"2 + 5.51);

expo = exp(-x"2 /2.0);

value = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;

fofx = 1.0 - value;
end

Listing 4.2. MATLAB Function “marcumsq.m”

function PD = marcumsq (a,b)
% This function uses Parl's method to compute PD
max_test_value = 1000.; % increase to more than 1000 for better results
if (a<b)
alphan0 = 1.0;
dn=a/b;
else
alphan0 = 0.;
dn=b/a;
end
alphan_1 =0.;
betan0 = 0.5;
betan_1 =0.;
dl =dn;
n=0;
ratio =2.0/ (a * b);
rl =0.0;
betan = 0.0;
alphan = 0.0;
while betan < max_test_value,
n=n+1;
alphan = dn + ratio * n * alphan0 + alphan;
betan = 1.0 + ratio * n * betan0 + betan;
alphan_1 = alphan0;
alphan( = alphan;
betan_1 = betanO;
betan0 = betan;

dn=dn *DI;
end
PD = (alphan0 / (2.0 * betan0)) * exp( -(a-b)*2 / 2.0);
if (a>=Db)
PD=1.0-PD;
end
return
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Listing 4.3. MATLAB Program “prob_snrl.m”

% This program is used to produce Fig. 4.3
clear all
for nfa =2:2:12
b = sqrt(-2.0 * log(10"(-nfa)));
index = 0;
hold on
for snr=0:.1:18
index = index +1;
a =sqrt(2.0 * 10~(.1*snr));
pro(index) = marcumsq(a,b);
end
x =0:1:18;
set(gca,'ytick',[.1 .2.3.4.5.6 .7.75 .8 .85.9 .95 .9999])
set(gea,'xtick',[1234567891011 1213 141516 17 18])

loglog(x, pro,'k");
end
hold off
xlabel ('Single pulse SNR - dB')
ylabel ('Probability of detection')
grid

Listing 4.4. MATLAB Program “fig4_5.m”

% This program is used to produce Fig. 4.5

% 1t uses the function "improv_fac"

pfal = 1.0e-2;

pfa2 = 1.0e-6;

pfa3 = 1.0e-10;

pfad = 1.0e-13;

pdl =.5;

pd2 =.8;

pd3 =.95;

pd4 =.999;

index = 0;

for np = 1:1:100
index = index + 1;
I1(index) = improv_fac (np, pfal, pdl);
12(index) = improv_fac (np, pfa2, pd2);
I3(index) = improv_fac (np, pfa3, pd3);
I4(index) = improv_fac (np, pfa4, pd4);

end

np = 1:1:100;

semilogx (np, 11, k', np, 12, 'k--', np, 13, 'k-.", np, 14, 'k:")

set (gca,'xtick',[1234 5678 102030 5070 100]);

xlabel ('Number of pulses');
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ylabel ('Improvement factor I - dB')
legend ('pd=.5, nfa=2",'pd=.8, nfa=6','pd=.95, nfa=10",'pd=.999, nfa=13");

Listing 4.5. MATLAB Function “improv_fac.m”

function impr_of_np = improv_fac (np, pfa, pd)

% This function computes the non-coherent integration improvement
% factor using the empirical formula defined in Eq. (4.49)

factl = 1.0 + log10( 1.0/ pfa) / 46.6;

fact2 = 6.79 * (1.0 + 0.253 * pd);

fact3 = 1.0 - 0.14 * log10(np) + 0.0183 * (log10(np)"2);

impr_of_np = factl * fact2 * fact3 * log10(np);

return

Listing 4.6. MATLAB Function “incomplete_gamma.m”

function [value] = incomplete_gamma ( vt, np)
% This function implements Eq. (4.63) to compute the Incomplete Gamma Function
format long
eps = 1.000000001;
% Test to see if np = 1
if (np==1)
valuel = vt * exp(-vt);
value = 1.0 - exp(-vt);

return
end
sumold = 1.0;
sumnew =1.0;
calcl =1.0;
calc2 = np;

xx = np * log(vt) - vt - factor(calc2);
templ = exp(xx);
temp2 =np / vt;

diff = .0;
ratio = 1000.0;
if (vt >=np)

while (ratio >= eps)
diff = diff + 1.0;
calcl = calcl * (calc2 - diff) / vt ;
sumnew = sumold + calcl;
ratio = sumnew / sumold;
sumold = sumnew;

end

value = 1.0 - temp1 * sumnew * temp2;

return

else
diff = 0.;
sumold =1.;
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ratio = 1000.;

calcl =1,

while(ratio >= eps)
diff = diff + 1.0;
calcl = calcl * vt / (calc2 + diff);
sumnew = sumold + calcl;
ratio = sumnew / sumold;
sumold = sumnew;

end

value = temp1 * sumnew;

end

Listing 4.7. MATLAB Function “threshold.m”

function [pfa, vt] = threshold (nfa, np)
% This function calculates the threshold value from nfa and np.
% The newton-Raphson recursive formula is used (Eq. (4.59)
% This function uses "incomplete_gamma.m".
delmax = .00001;
eps = 0.000000001;
delta =10000.;
pfa =np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vt0,np);
num = 0.5"(np/nfa) - igf;
temp = (np-1) * log(vtO+eps) - vt0 - factor(np-1);
deno = exp(temp);
vt = vt0 + (num / deno);
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end

Listing 4.8. MATLAB Function “pd_swerling5.m”

function pd = pd_swerling5 (inputl, indicator, np, snrbar)
% This function is used to calculate the probability of
% for Swerling 5 or O targets for np>1.
if(np ==1)
'Stop, np must be greater than 1'
return
end
format long
snrbar = 10.0”(snrbar/10.);
eps = 0.00000001;
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delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
if (indicator ~=1)
nfa = inputl;
pfa = np * log(2) / nfa;
else
pfa =inputl;
nfa =np * log(2) / pfa;
end
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vtO,np);
num = 0.5"(np/nfa) - igf;
temp = (np-1) * log(vtO+eps) - vt0 - factor(np-1);
deno = exp(temp);
vt = vt0 + (num / (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
% Calculate the Gram-Chrlier coefficients
templ = 2.0 * snrbar + 1.0;
omegabar = sqrt(np * templ);
c3 = -(snrbar + 1.0/ 3.0) / (sqrt(np) * temp1~1.5);
c4 = (snrbar + 0.25) / (np * temp1/2.);
c6=c3 *c3/2.0;
V = (vt-np * (1.0 + 2.*snrbar)) / omegabar;
Vsqr =V *V;
vall = exp(-Vsqr/2.0) / sqrt( 2.0 * pi);
val2=c3* (VM2 -1.0)+c4 *V *(3.0-V2)-...
c6 * V* (VM -10. * VA2 + 15.0);
q = 0.5 * erfc (V/sqrt(2.0));
pd= q-vall *val2;

Listing 4.9. MATLAB Function “pd_swerlingl.m”

function pd = pd_swerling1 (nfa, np, snrbar)

% This function is used to calculate the probability of
% for Swerling 1 targets.

format long

snrbar = 10.0~(snrbar/10.);

eps = 0.00000001;

delmax = .00001;

delta =10000.;

% Calculate the threshold Vt
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pfa= np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vt0,np);
num = 0.5(np/nfa) - igf;
temp = (np-1) * log(vtO+eps) - vt0 - factor(np-1);
deno = exp(temp);
vt = vt0 + (num / (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
if(np==1)
temp = -vt/ (1.0 + snrbar);
pd = exp(temp);
return
end
templ = 1.0 + np * snrbar;
temp2 = 1.0/ (np *snrbar);
temp = 1.0 + temp2;
vall = temp”(np-1.);
igfl = incomplete_gamma(vt,np-1);
igf2 = incomplete_gamma(vt/temp,np-1);
pd = 1.0 - igfl + vall * igf2 * exp(-vt/templ);

Listing 4.10. MATLAB Function “pd_swerling2.m”

function pd = pd_swerling2 (nfa, np, snrbar)
% This function is used to calculate the probability of
% for Swerling 2 targets.
format long
snrbar = 10.0”(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa= np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vtO,np);
num = 0.5(np/nfa) - igf;
temp = (np-1) * log(vtO+eps) - vt0 - factor(np-1);
deno = exp(temp);
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vt = vt0 + (num / (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
if (np <= 50)
temp = vt/ (1.0 + snrbar);
pd = 1.0 - incomplete_gamma(temp,np);
return
else
templ = snrbar + 1.0;
omegabar = sqrt(np) * templ;
c3=-1.0/sqrt(9.0 * np);
c4=0.25/np;
c6=c3 *c3/2.0;
V = (vt-np * templ) / omegabar;
Vsqr =V *V;
vall = exp(-Vsqr/2.0) / sqrt( 2.0 * pi);
val2=c3 * (VM2 -1.0)+c4 *V *(3.0-VA2) - ...
c6 ¥V * (VM -10. * VA2 + 15.0);
q = 0.5 * erfc (V/sqrt(2.0));
pd = q- vall * val2;
end

Listing 4.11. MATLAB Function “pd_swerling3.m”

function pd = pd_swerling3 (nfa, np, snrbar)
% This function is used to calculate the probability of
% for Swerling 2 targets.
format long
snrbar = 10.0”(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa = np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vt0,np);
num = 0.5"(np/nfa) - igf;
temp = (np-1) * log(vtO+eps) - vt0 - factor(np-1);
deno = exp(temp);
vt = vt0 + (num / (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
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templ = vt/ (1.0 + 0.5 * np *snrbar);
temp2 = 1.0 + 2.0/ (np * snrbar);
temp3 =2.0 * (np - 2.0) / (np * snrbar);
ko = exp(-temp1) * temp2”*(np-2.) * (1.0 + temp1 - temp3);
if (np <=2)
pd =ko;
return
else
temp4 = vtN(np-1.) * exp(-vt) / (templ * exp(factor(np-2.)));
tempS = vt/ (1.0 + 2.0/ (np *snrbar));
pd = temp4 + 1.0 - incomplete_gamma(vt,np-1.) + ko * ...
incomplete_gamma(temp5,np-1.);
end

Listing 4.12. MATLAB Function “pd_swerling4d.m”

function pd = pd_swerling4 (nfa, np, snrbar)
% This function is used to calculate the probability of
% for Swerling 2 targets.
format long
snrbar = 10.0~(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa= np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np);
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
igf = incomplete_gamma(vtO,np);
num = 0.5(np/nfa) - igf;
temp = (np-1) * log(vtO+eps) - vt0 - factor(np-1);
deno = exp(temp);
vt = vt0 + (num / (deno+eps));
delta = abs(vt - vt0) * 10000.0;
vt0 = vt;
end
h8 = snrbar /2.0;
beta = 1.0 + hS;
beta2 = 2.0 * beta2 - 1.0;
beta3 = 2.0 * beta’\3;
if (np >=50)
templ =2.0 * beta -1;
omegabar = sqrt(np * templ);
c3 =(beta3 - 1.) / 3.0 / beta2 / omegabar;
c4 = (beta3 * beta3 - 1.0) / 4. / np /beta2 /beta2;;
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c6=c3 *c3/2.0;
V = (vt-np * (1.0 + snrbar)) / omegabar;
Vsqr =V *V;
vall =exp(-Vsqr/2.0) / sqrt( 2.0 * pi);
val2=c3 * (VM2 -1.0)+c4 *V *(3.0-VA2) - ...

c6 *V * (VA4 -10. * VA2 + 15.0);
q = 0.5 * erfc (V/sqrt(2.0));
pd = q- vall * val2;
return

else

snr = 1.0;
gamma0 = incomplete_gamma(vt/beta,np);
al = (vt / beta) np / (exp(factor(np)) * exp(vt/beta));
sum = gammaO;
fori=1:1:np

templ =1;

if(i==1)

ai=al;
else
ai=(vt/beta) *al /(np+1i-1);

end

al = ai;

gammai = gammaO0 - ai;

gamma0 = gammai;

al = ai;
forii = 1:1:1

templ = templ * (np + 1 - ii);
end

term = (snrbar /2.0)"i * gammai * temp1 / exp(factor(i));
sum = sum + term;
end
pd = 1.0 - sum / beta’np;
end
pd = max(pd,0.);

Problems
4.1. In the case of noise alone, the quadrature components of a radar return

. . . . . 2
are independent Gaussian random variables with zero mean and variance y~.
Assume that the radar processing consists of envelope detection followed by
threshold decision. (a) Write an expression for the pdf of the envelope; (b)

determine the threshold V, as a function of y that ensures a probability of

false alarm P, < 107%,
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4.2. (a)Derive Eq. (4.13); (b) derive Eq. (4.15).

4.3. A pulsed radar has the following specifications: time of false alarm
Ty, = 10 minutes, probability of detection P, = 0.95, operating bandwidth
B = 1MHz. (a) What is the probability of false alarm Py, ? (b) What is the
single pulse SNR? (c) Assuming non-coherent integration of 100 pulses, what
is the SNR reduction so that P, and P, remain unchanged?

4.4. An L-band radar has the following specifications: operating frequency
fo = 1.5GHz, operating bandwidth B = 2MHz, noise figure F = 8dB,
system losses L = 4dB, time of false alarm Tfa = 12 minutes, detection

range R = 12Km, probability of detection P, = 0.5, antenna gain

G = 5000, and target RCS ¢ = 1m”. (a) Determine the PRF f,, the pulse
width T, the peak power P,, the probability of false alarm Py, , and the mini-

mum detectable signal level S,,;, . (b) How can you reduce the transmitter

power to achieve the same performance when 10 pulses are integrated non-
coherently? (c) If the radar operates at a shorter range in the single pulse mode,

find the new probability of detection when the range decreases to 9Km .
4.5. (a) Show how you can use the radar equation to determine the PRF f,,
the pulse width 7, the peak power P,, the probability of false alarm Py, , and

the minimum detectable signal level S Assume the following specifica-

tions: operating frequency f, = 1.5MHz, operating bandwidth B = 1MHz,
noise figure F = 10dB, system losses L = 5dB, time of false alarm
Ty, = 20 minutes, detection range R = 12Km, probability of detection
P, = 0.5 (three pulses). (b) If post detection integration is assumed, deter-

mine the SNR.

4.6 . Show that when computing the probability of detection at the output of
an envelope detector, it is possible to use Gaussian probability approximation
when the SNR is very large.

4.7. A radar system uses a threshold detection criterion. The probability of

false alarm P, = 1077, (a) What must be the average SNR at the input of a

linear detector so that the probability of miss is P,, = 0.15? Assume large

SNR approximation (see Problem 4.6). (b) Write an expression for the pdf at
the output of the envelope detector.
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4.8. An X-band radar has the following specifications: received peak power
10710W, probability of detection P, = 0.95, time of false alarm
Ty, = 8 minutes, pulse width T = 2us, operating bandwidth B = 2MHz,
operating frequency f, = 10GHz, and detection range R = 100Km. Assume
single pulse processing. (a) Compute the probability of false alarm P, . (b)
Determine the SNR at the output of the IF amplifier. (c) At what SNR would
the probability of detection drop to 0.9 (P, does not change)? (d) What is the
increase in range that corresponds to this drop in the probability of detection?
4.9. A certain radar utilizes 10 pulses for non-coherent integration. The sin-
gle pulse SNR is 15dB and the probability of miss is P,, = 0.15. (a) Com-
pute the probability of false alarm P, . (b) Find the threshold voltage V.
4.10. Consider a scanning low PRF radar. The antenna half-power beam
width is 1.5°, and the antenna scan rate is 35° per second. The pulse width is
T = 2us, and the PRF is f, = 400Hz . (a) Compute the radar operating band-

width. (b) Calculate the number of returned pulses from each target illumina-
tion. (c) Compute the SNR improvement due to post-detection integration
(assume 100% efficiency). (d) Find the number of false alarms per minute for a

probability of false alarm P, = 10°°.
4.11. Using the equation

1
Py =1-¢""F J Io(J=4SNRInu)du

Pr,

calculate P, when SNR = 10dB and P;, = 0.01. Perform the integration
numerically.

4.12. Repeat Example 4.3 with P, = 0.8 and P, = 107

4.13. Derive Eq. (4.107).

4.14. Write a MATLAB program to compute the CA-CFAR threshold
value. Use similar approach to that used in the case of a fixed threshold.
4.15. A certain radar has the following specifications: single pulse SNR
corresponding to a reference range R, = 200Km is 10dB . The probability of

detection at this range is P, = 0.95. Assume a Swerling I type target. Use the
radar equation to compute the required pulse widths at ranges
R = 220Km, 250Km, 175Km so that the probability of detection is main-
tained.
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4.16. Repeat Problem 4.15 for swerling IV type target.

4.17. Utilizing the MATLAB functions presented in this chapter, plot the
actual value for the improvement factor versus the number of integrated pulses.
Pick three different values for the probability of false alarm.

4.18. Reproduce Fig. 4.10 for Swerling II, III, and IV type targets.

4.19. Develop a MATLAB program to calculate the cumulative probability
of detection.
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Chapter 5 Radar Waveforms
Analysis

Choosing a particular waveform type and a signal processing technique in a
radar system depends heavily on the radar’s specific mission and role. The cost
and complexity associated with a certain type of waveform hardware and soft-
ware implementation constitute a major factor in the decision process. Radar
systems can use Continuous Waveforms (CW) or pulsed waveforms with or
without modulation. Modulation techniques can be either analog or digital.
Range and Doppler resolutions are directly related to the specific waveform
frequency characteristics. Thus, knowledge of the power spectrum density of a
waveform is very critical. In general, signals or waveforms can be analyzed
using time domain or frequency domain techniques. This chapter introduces
many of the most commonly used radar waveforms. Relevant uses of a spe-
cific waveform will be addressed in the context of its time and frequency
domain characteristics. In this book, the terms waveform and signal are being
used interchangeably to mean the same thing.

5.1. Low Pass, Band Pass Signals and Quadrature
Components

Signals that contain significant frequency composition at a low frequency
band that includes DC are called Low Pass (LP) signals. Signals that have sig-
nificant frequency composition around some frequency away from the origin
are called Band Pass (BP) signals. A real BP signal x(#) can be represented
mathematically by

x(t) = r(t)cos(2mfyt + Y, (1)) (5.1)
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where r(t) is the amplitude modulation or envelope, y,(¢) is the phase modu-
lation, f, is the carrier frequency, and both r(#) and Wy (¢) have frequency
components significantly smaller than f, . The frequency modulation is

S
Ful®) = 5= 20 52)

and the instantaneous frequency is

fi(r) = %E %(2nf0t+\|lx(t)) = fo+f.(0) (5.3)

If the signal bandwidth is B, and if f;, is very large compared to B, the signal
x(t) is referred to as a narrow band pass signal.

Band pass signals can also be represented by two low pass signals known as
the quadrature components; in this case Eq. (5.1) can be rewritten as

x(t) = x,(1)cos2mfyt — x (1) sin27ft (5.4)

where x,(#) and x,(7) are real LP signals referred to as the quadrature compo-
nents and are given, respectively, by

x,(1)
xQ(t)

r(1)cosy, (1)

) (5.5)
F()siny, ()

Fig. 5.1 shows how the quadrature components are extracted.

2cos2mft

x,(1)

mixer]| LP Filter |—>

x(t) = x,(t)cos2nfyt
—x (1) sin27tfyt

mixer| LP Filter I—>

|

—2sin2mfyt

Figure 5.1. Extraction of quadrature components.

© 2000 by Chapman & Hall/CRC



5.2. CW and Pulsed Waveforms

The spectrum of a given signal describes the spread of its energy in the fre-
quency domain. An energy signal (finite energy) can be characterized by its
Energy Spectrum Density (ESD) function, while a power signal (finite power)
is characterized by the Power Spectrum Density (PSD) function. The units of
the ESD are Joules per Hertz, while the PSD has units Watts per Hertz.

The signal bandwidth is the range of frequency over which the signal has a
nonzero spectrum. In general, any signal can be defined using its duration
(time domain) and bandwidth (frequency domain). A signal is said to be band-
limited if it has finite bandwidth. Signals that have finite durations (time-lim-
ited) will have infinite bandwidths, while band-limited signals have infinite
durations. The extreme case is being a continuous sine wave, whose bandwidth
is infinitesimal.

A time domain signal f(¢) has a Fourier Transform (FT) F(®) given by

F(o) = j A)e ™ ar (5.6)

—oo

where the Inverse FT (IFT) is

1) = 5= [ F)d® do 6

—oco

The signal autocorrelation function Rf(‘t) is

Rf(‘t) = Jj*(t)f(t+r) dt (5.8)

—oco

The asterisk indicates complex conjugate. The signal amplitude spectrum is
|F(w)|.If f(t) were an energy signal, then its ESD is |F(oo)|2 ; and if it were a
power signal, then its PSD is S/ ®) which is the FT of the autocorrelation
function,

oo

Sw) = [ R an (5.9)

—oo

First, consider a CW waveform given by
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frequency
>

o 0 fo
Figure 5.2. Amplitude spectrum for a continuous sine wave.
fi(t) = Acoswt (5.10)
The FT of f(¢) is

Fi(®0) = AT[8(® — my) + 8(® + ©y)] (5.11)

where 8( - ) is the Dirac delta function, and ®, = 27f,. As indicated by
the amplitude spectrum shown in Fig. 5.2, the signal f;(¢#) has infinitesimal
bandwidth, located at %f;, .

Next consider the time domain signal f,(¢) given by

T T
A —<t<=
(1) = ARectG:) = 2 2 (5.12)
0 otherwise
It follows that the FT is
Fy(0) = ArSinc(%T) (5.13)
where
Sinc(x) = %;Ex) (5.14)

The amplitude spectrum of f,(#) is shown in Fig. 5.3. In this case, the band-
width is infinite. Since infinite bandwidths cannot be physically implemented,
the signal bandwidth is approximated by 2m/7 radians per second or 1/7
Hertz. In practice, this approximation is widely accepted since it accounts for
most of the signal energy.
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Figure 5.3. Amplitude spectrum for a single pulse, or a train of

non-coherent pulses.

Now consider the coherent gated CW waveform f;(¢) given by

oo

fi(1) = Y flt=nT)

n=—oco

(5.15)

Clearly f;(¢) is periodic, where T is the period (recall that f, = 1/T is the
PRF). Using the complex exponential Fourier series we can rewrite f;(¢) as

Jj2nnt

T

f3(t) = Z Fn

where the Fourier series coefficients F, are given by

F, = A7T Sinc(’%t)
It follows that the FT of f5(¢) is

oo

Fy(w) = 21 Z F,5(w-2nnf,)

n=—oco
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Figure 5.4. Amplitude spectrum for a coherent pulse train of infinite length.

The amplitude spectrum of f;(¢) is shown in Fig. 5.4. In this case, the spec-
trum has a sinx/x envelope that corresponds to F, . The spacing between the
spectral lines is equal to the radar PREF, f,.

Finally, define the function f,(¢) as

N
fut) = Zfz(t—nT) (5.19)
n=0
Note that f,(¢) is a limited duration f;(¢) . The FT of f,(¢) is
. NT .
F,(w) = ANt Smc(wT) . Z Sinc(nntf,)d(w - 2nmf,) (5.20)

where the operator ( e ) indicates convolution. The spectrum in this case is
shown in Fig. 5.5. The envelope is still a sinx/x which corresponds to the
pulse width. But the spectral lines are replaced by sinx/x spectra that corre-
spond to the duration NT .

© 2000 by Chapman & Hall/CRC



frequency

—>||-~7

Figure 5.5. Amplitude spectrum for a coherent pulse train of finite length.

5.3. Linear Frequency Modulation Waveforms

Frequency or phase modulated waveforms can be used to achieve much
wider operating bandwidths. Linear Frequency Modulation (LFM) is com-
monly used. In this case, the frequency is swept linearly across the pulse width,
either upward (up-chirp) or downward (down-chirp). The matched filter band-
width is proportional to the sweep bandwidth, and is independent of the pulse
width. Fig. 5.6 shows a typical example of an LFM waveform. The pulse width
is T, and the bandwidth is B.

The LFM up-chirp instantaneous phase can be expressed by

- b2 P
y(1) 2n(f0t+ 2[ ) > <t < > (5.21)
where f;, is the radar center frequency, and L = (2%nB)/7 is the LFM coeffi-
cient. Thus, the instantaneous frequency is

14

=5 @

(5.22)

NiAa

WD) = formr - 3Si<

Similarly, the down-chirp instantaneous phase and frequency are given, respec-
tively, by
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Figure 5.6. Typical LFM waveforms. (a) up-chirp; (b) down-chirp.

() = Zn(fot -~ %3) - %Stsg (5.23)
1
fr) = o %w(t) =fo — W - %Stﬁg (5.24)

A typical LFM waveform can be expressed in complex notation by

‘ j2n(f0t+%t2)
s,(1) = Rect(%)e (5.25)

where Rect(t/T) denotes a rectangular pulse of width T. Eq. (5.25) can be

written as

J27fot
e N

si(1) = (1) (5.26)

where
s(t) = Rect(é)ej e (5.27)

is the complex envelope function of s, (7).

The spectrum of the signal s,(¢) is determined from its complex envelope
s(t) . The complex exponential term in Eq. (5.26) introduces a frequency shift
about the center frequency f, . Taking the FT of s(#) yields
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oo

S(w) = JRect( )ejnwz 7t =

t j2nut2 jor
L Jeivl —J O
. exp( > ) e’ dt

— A

—oo

Nia

Let W' = 2np = 2nB/ 7T, and perform the change of variable

X = }u—(t—g,) ; dx = /& dt
T u i
Thus, Eq. (5.28) can be written as

X2

.2 ’ 2
S(w) = JHE G PAEP

—X;

X2 X
S(w) = A/ui eI je”“’” dx - Je”“'“ dx
0 0

where

X1

Bes)- B0+
B - -5

The Fresnel integrals, denoted by C(x) and S(x), are defined by

X2

2

C(x) = Jicos(%)du

0

S(x) = fsin(T%z)dD

0

Fresnel integrals are approximated by

1 1 . (m2 .
C(x) = §+nxsm(2x) ;o a»l
1 1 T 2 .
S(x) = E_TE_)CCOS(EX) |
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(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)



Note that, C(—x) = —C(x) and S(-x) = —S(x). Fig. 5.7 shows a plot for
both C(x) and S(x) for 0<x<10. This figure can be reproduced using
MATLAB function “fresnel_int.m” given in Listing 5.1 in Section 5.6.

Using Egs. (5.34) and (5.35) into (5.31) and performing the integration yield,

_ [ etans | [C0n) + Clx)] +7IS(x)) + S(xy)]
S(w) = TJ; e { ﬁ (5.38)

Fig. 5.8 shows a typical plot for the amplitude spectrum of an LFM waveform.
The square-like spectrum is widely known as the Fresnel spectrum.

(x)
~

S
o
o

Fresnel integrals: C(x);

Figure 5.7. Fresnel integrals.

5.4. High Range Resolution

An expression for range resolution AR in terms of the pulse width T was
derived in Chapter 1. When pulse compression is not used, the instantaneous
bandwidth B of radar receiver is normally matched to the pulse bandwidth,
and in most radar applications this is done by setting B = 1/7. Therefore,
range resolution is given by

AR = = = — (5.39)
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Figure 5.8. Typical spectrum for an LFM waveform.

Radar users and designers alike seek to accomplish High Range Resolution
(HRR) by minimizing AR. However, as suggested by Eq. (5.39) in order to
achieve HRR one must use very short pulses and consequently reduce the aver-
age transmitted power, and impose severe operating bandwidth requirements.

Achieving fine range resolution while maintaining adequate average trans-
mitted power can be accomplished by using pulse compression techniques,
which will be discussed in Chapter 7. By means of frequency or phase modula-
tion, pulse compression allows us to achieve the average transmitted power of
a relatively long pulse, while obtaining the range resolution corresponding to a
very short pulse. As an example, consider an LFM waveform whose band-
width is B and uncompressed pulse width (transmitted) is T . After pulse com-
pression the compressed pulse width is denoted by t”, where T’ « T, and the
HRR is

AR = > « ) (5.40)

Linear frequency modulation and Frequency-Modulated (FM) CW wave-
forms are commonly used to achieve HRR. High range resolution can also be
synthesized using a class of waveforms known as the “Stepped Frequency
Waveforms (SFW).” Stepped frequency waveforms require more complex
hardware implementation as compared to LFM or FM-CW; however, the radar
operating bandwidth requirements are less restrictive. This is true, because the
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receiver instantaneous bandwidth is matched to the SFW sub-pulse bandwidth
which is much smaller than an LFM or FM-CW bandwidth. A brief discussion
of SFW waveforms is presented in the following section.

5.5. Stepped Frequency Waveforms

Stepped Frequency Waveforms (SFW) produce Synthetic HRR target pro-
files because the target range profile is computed by means of Inverse Discrete
Fourier Transformation (IDFT) of frequency domain samples of the actual tar-
get range profile. The process of generating a synthetic HRR profile is
described in Wehner!. It is summarized as follows:

1. A series of n narrow-band pulses are transmitted. The frequency from
pulse to pulse is stepped by a fixed frequency step Af. Each group of n
pulses is referred to as a burst.

2. The received signal is sampled at a rate that coincides to the center of each
pulse.

3. The quadrature components for each burst are collected and stored.

4. Spectral weighting (to reduce the range sidelobe levels) is applied on the
quadrature components. Corrections for target velocity, phase, and ampli-
tude variations are applied.

5. The IDFT of the weighted quadrature components of each burst is calcu-
lated to synthesize a range profile for that burst. The process is repeated for
N bursts to obtain consecutive synthetic HRR profiles.

Fig. 5.9 shows a typical SFW burst. The Pulse Repetition Interval (PRI) is
T, and the pulse width is t'. Each pulse can have its own LFM, or other type
of modulation; in this book LFM is assumed. The center frequency for the i"
step is

fi = fo+iAf ;i=0,n-1 (5.41)

Within a burst, the transmitted waveform for the i step can be described as

C;cos2mfit + 0, iT<t<iT+7
s;i(1) = ( ; ) (5.42)

0 " elsewhere

where 0, are the relative phases and C; are constants. The received signal
from a target located at range R, at time ¢ = O is then given by

$,/(t) = C/cos(2mf;(t—(2)) +6,)  iT+T() <t <iT+ 7T +71(¢) (5.43)

1. Wehner, D. R., High Resolution Radar, second edition. Artech House, 1995.
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Figure 5.9. Stepped frequency waveform burst.

where C,” are constant and the round trip delay t(#) is given by

Ry—vt

) = c/2

(5.44)

c is the speed of light and v is the target radial velocity.

The received signal is down converted to base-band in order to extract the
quadrature components. More precisely, s,.(f) is mixed with the signal

v;(t) = Ccos(2mf;t+6,) ; iIT<t<iT+7T (5.45)

After low pass filtering, the quadrature components are given by

x,(1) A;cosy(1)
= . (5.46)
xo(1) A;siny;(1)
where A; are constants, and

2R 2—”) (5.47)

c C

V(1) = _2nfi(
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where now f; = Af. For each pulse, the quadrature components are then sam-
pled at

. 2R0
t;, = IT+TV+T (5.48)

. 1s the time delay associated with range that corresponds to the start of the
range profile.

The quadrature components can then be expressed in complex form as

X, = A" (5.49)

Eq. (5.49) represents samples of the target reflectivity, due to a single burst, in
the frequency domain. This information can then be transformed into a series
of range delay reflectivity (i.e., range profile) values by using the IDFT. It fol-
lows that

ZX ex ( nl’) s 0<i<n—1 (5.50)

Substituting Eqs. (5.49) and (5.47) into (5.50) and collecting terms yield

n-1
2R, 2vt;
H, = }ZZAI. ex {(anl—z f( 0_ Z’))} (5.51)
i=0

By normalizing with respect to n and by assuming that A, = 1 and that the
target is stationary (i.e., v = 0), then Eq. (5.51) can be written as

n—1

2R
H, = ZeXp{ (27”’—2 f—o)} (5.52)

i=0

Using f; = iAf inside Eq. (5.52) yields

i 2nR,A
H, = Zexp{j%(— nco f”)} (5.53)

which can be simplified to (see problems)
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H, = SInTx exp('n—gl 2ﬂ) (5.54)

sin X "
n
where
-2nRyA
_ 2R +1 (5.55)
c
Finally, the synthesized range profile is
|H)| = |SinTx (5.56)
sin T4
n

5.5.1. Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth.
Assuming a SFW with n steps, and step size Af, then the corresponding range
resolution is equal to

__¢
2nAf

AR (5.57)

Range ambiguity associated with a SFW can be determined by examining

the phase term that corresponds to a point scatterer located range R,. More
precisely,

yi(1) = 27tf,-7 (5.58)

It follows that

Ay 47r(fi+1—f,.)&) _ 4mR,

AY _ (5.59)
Af (fi+ 1 —f,) ¢ ¢
or equivalently,
- Avc
R, = Afin (5.60)

It is clear from Eq. (5.60) that range ambiguity exists for Ay = Ay +2nmw.
Therefore,

_Ay+2am ¢ _ c
R, = A an s R°+"(2Af) (5.61)
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and the unambiguous range window is

C

R, = 357 (5.62)

Hence, a range profile synthesized using a particular SFW represents the rel-
ative range reflectivity for all scatterers within the unambiguous range win-
dow, with respect to the absolute range that corresponds to the burst time delay.
Additionally, if a specific target extent is larger than R, , then all scatterers fall-
ing outside the unambiguous range window will fold over and appear in the
synthesized profile. This foldover problem is identical to the spectral foldover
that occurs when using a Fourier Transform (FFT) to resolve certain signal fre-
quency contents. For example, consider an FFT with frequency resolution
Af = 50Hz, and size NFFT = 64. In this case, this FFT can resolve fre-
quency tones between —1600Hz and 1600Hz. When this FFT is used to
resolve the frequency content of a sine-wave tone equal to 1800Hz, foldover
occurs and a spectral line at the fourth FFT bin (i.e., 200Hz ) appears. There-
fore, in order to avoid foldover in the synthesized range profile, the frequency
step Af must be (from Eq. (5.62))

Af< (5.63)

£
2F
where E is the target extent in meters.

Additionally, the pulse width must also be large enough to contain the whole
target extent. Thus,

A< (5.64)
and in practice,
Af< L (5.65)
2T |

This is necessary in order to reduce the amount of contamination of the synthe-
sized range profile caused by the clutter surrounding the target under consider-
ation.

MATLAB Function “hrr_profile.m”

The function “hrr_profile.m” computes and plots the synthetic HRR profile
for a specific SFW. It is given in Listing 5.2 in Section 5.6. This function uti-
lizes an IDFT of size equal to twice the number of steps. Hamming window of
the same size is also assumed. The syntax is as follows:
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[hl] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote)

where
Symbol Description Units Status
nscat number of scatterers that none input
make up the target
scat_range | vector containing range to meters input
individual scatterers
scat_rcs vector containing RCS of | meter square input

individual scatterers

n number of steps none input
deltaf frequency step Hz input
prf PRF of SFW Hz input
v target velocity meter/second input
rnote profile starting range meters input
hl range profile dB output

For example, assume that the range profile starts at R, = 900m and that

nscat tau n deltaf prf v
3 100 sec 64 10MHz | 10KHz 0.0
In this case,
8
AR = —3X10 o535y,
2x64x10x 10
8
R, = 3x 10 - 15m
2x10x10

Thus, scatterers that are more than 0.235 meters apart will appear as distinct
peaks in the synthesized range profile. Assume two cases, where in the first
case,

[scat_range] = [908, 910, 912] meters
and in the second case,
[scat_range] = [908, 910, 910.4] meters
In both cases, let

[scat_rcs] = [ 100, 10, 1] meter square
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Fig. 5.10 shows the synthesized range profiles generated using the function
“hrr_profile.m” and the first case when the Hamming window is not used. Fig.
5.11 is similar to Fig. 5.10, except in this case the Hamming window is used.

Fig. 5.12 shows the synthesized range profile that corresponds to the second
case (Hamming window is used). Note that all three scatterers were resolved in
Figs. 5.10 and 5.11; however, the last two yesteryears are not resolved in Fig.
5.12, since they are separated by less than AR .

Next, consider another case where
[scat_range] = [908, 912, 916] meters

Fig. 5.13 shows the corresponding range profile. In this case, foldover occurs,
and the last Scatterer appears at the lower portion of the synthesized range pro-
file. Also, consider the case where

[scat_range] = [908, 912, 923 ] meters

Fig. 5.14 shows the corresponding range profile. In this case, ambiguity is
associated with the first and third scatterers since they are separated by 15m .
Both appear at the same FFT bin.

60

500 - - - oo . e
ol | ]
]y | T PO O | R

20L - - - - T L -

Range profile - dB

0 20 40 60 80 100 120 140
FFT bin

Figure 5.10. Synthetic range profile for three resolved scatterers. No window.
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Figure 5.11. Synthetic range profile for three scatterers. Hamming window.
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Figure 5.12. Synthetic range profile for three scatterers. Two are unresolved.
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Figure 5.13. Synthetic range profile for three scatterers. Third scatterer folds
over.
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Figure 5.14. Synthetic range profile for three scatterers. The first and third
scatterers appear at the same FFT bin.
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5.5.2. Effect of Target Velocity

The range profile defined in Eq. (5.56) was obtained by assuming that the
target under examination was stationary. The effect of target velocity on the
synthesized range profile can be determined by substituting Eqgs. (5.47) and
(5.48) into Eq. (5.50), which after normalization yields

n—1

2nli . 2R 2v(.,, "1 2R
H, = Z exp{/% —JZTEfl»|:T - ?V(ZT+ 51 + 7)}} (5.66)
i=0

The additional phase term present in Eq. (5.66) distorts the synthesized range
profile. In order to illustrate this distortion, consider the SFW described in the
previous section, and assume the three scatterers of the first case. Also, assume
that v = 200m/s . Fig. 5.15 shows the synthesized range profile for this case.
Comparisons of Figs. 5.11 and 5.15 clearly show the distortion effects caused
by the uncompensated target velocity.

This distortion can be eliminated by multiplying the complex received data
at each pulse by the phase term

50

Range profile - dB

0 20 40 60 80 100 120 140
FFT bin

Figure 5.15. Illustration of range profile distortion due to target velocity.

© 2000 by Chapman & Hall/CRC



2v T, 2R
b = eXp(—jZTl:fi[?(iT+ 3 + ?)D (5.67)

where v and R are, respectively, estimates of the target velocity and range.
This process of modifying the phase of the quadrature components is often
referred to as “phase rotation.” In practice, when good estimates of v and R
are not available, then the effects of target velocity are reduced by using fre-
quency hopping between the consecutive pulses within the SFW. In this case,
the frequency of each individual pulse is chosen according to a predetermined
code. Waveforms of this type are often called Frequency Coded Waveforms
(FCW). Costas waveforms or signals, which will be discussed in Chapter 7, are
a good example of this type of waveform.

5.6. MATLAB Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters.

Listing 5.1. MATLAB Program “fresnel_int.m”

clear all
n=0;
for x = 0:.05:4
n=n+l;
sx(n) = quad8('fresnels’,.0,x);
cx(n) = quadS('fresnelc’,.0,x);
end
plot(cx)
x=0:.05:4;
plot (x,cx, 'k’ x,sx,'k--")
grid
xlabel ('x')
vlabel ('Fresnel integrals: C(x); S(x)')
%
function cx = fresnelc(x)
cx = cos(pi *.5 . % x."2);
%
function cx = fresnels(x)
cx = sin(pi *.5 . % x."2);
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Listing 5.2. MATLAB Function “hrr_profile.m”

function [hl] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote)
% Range or Time domain Profile
9% Range_Profile returns the Range or Time domain plot of a simulated
9% HRR SFW returning from a predetermined number of targets with a prede-
termined
c=3.0e8; % speed of light (m/s)
num_pulses =n;
SNR_dB = 40;
Yocarrier_freq = 9.5¢9; %Hz (10GHz)
freq_step = deltaf; %Hz (10MHz)
V =v; % radial velocity (m/s) -- (+)=towards radar (-)=away
PRI = 1./ prf; % (s)
Inphase = zeros((2*num_pulses),1);
Quadrature = zeros((2*num_pulses),1);
Inphase_tgt = zeros(num_pulses,1);
Quadrature_tgt = zeros(num_pulses,1);
1Q_freq_domain = zeros((2*num_pulses),1);
Weighted_I_freq_domain = zeros((num_pulses),1);
Weighted_Q_freq_domain = zeros((num_pulses),1);
Weighted_IQ_time_domain = zeros((2*num_pulses),1);
Weighted_IQ_freq_domain = zeros((2*num_pulses),1);
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
dB_abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
taur = 2. * rnote / ¢;
for jscat = 1:nscat

ii=0;

for i = I:num_pulses

i =ii+l;

rec_freq = ((i-1)*freq_step);

Inphase_tgt(ii) = Inphase_tgt(ii) + sqrt(scat_rcs(jscat)) * ...
cos(-2*pi*rec_freq*(2.*scat_range(jscat)/c - 2*(V/c)* ...
((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));

Quadrature_tgt(ii) = Quadrature_tgt(ii) + sqrt(scat_rcs(jscat))* ...
sin(-2*pi*rec_freq*(2*scat_range(jscat)/c - 2*(V/c)* ...

((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));
end
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_I_freq_domain(1:num_pulses) = Inphase(1:num_pulses)...
.¥(hamming(num_pulses));
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1:num_pulses).* ...
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(hamming(num_pulses));
Weighted_IQ_freq_domain(1:num_pulses)= Weighted_I_freq_domain + ...
Weighted_Q_freq_domain*j;
Weighted_IQ_freq_domain(num_pulses:2*num_pulses)=0.+0.i;
Weighted_IQ_time_domain = (ifft(Weighted_IQ_freq_domain)),
abs_Weighted_IQ_time_domain = (abs(Weighted_IQ_time_domain));
dB_abs_Weighted_IQ_time_domain =
20.0*log10(abs_Weighted_IQ_time_domain)+SNR_dB;

plot((0:(2*num_pulses-1)), dB_abs_Weighted_IQ_time_domain,'k')
xlabel ('FFT bin')

vlabel ('Range profile - dB')

grid

Problems

.1. Derive Eq. (5.17).

.2 . Derive Eq. (5.66).

.3. Derive Eq. (5.54).

.4. Write a MATLAB program to perform HRR synthesis for frequency
coded waveforms.

5.5. Reproduce Fig. 5.5 for v = 10, 50, 100, 150, 250 m/s. Compare
your outputs. What are your conclusions?

(5, IS, S, S |
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Chapter 6 Matched Filter and
the Radar Ambiguity
Function

6.1. The Matched Filter SNR

The most unique characteristic of the matched filter is that it produces the
maximum achievable instantaneous SNR at its output when a signal plus addi-
tive white noise are present at the input. The noise does not need to be Gauss-
ian. The peak instantaneous SNR at the receiver output can be achieved by
matching the radar receiver transfer function to the received signal. We will
show that the peak instantaneous signal power divided by the average noise
power at the output of a matched filter is equal to twice the input signal energy
divided by the input noise power, regardless of the waveform used by the
radar. This is the reason why matched filters are often referred to as optimum
filters in the SNR sense. Note that the peak power used in the derivation of the
radar equation (SNR) represents the average signal power over the duration of
the pulse, not the peak instantaneous signal power as in the case of a matched
filter. In practice, it is sometimes difficult to achieve perfect matched filtering.
In such cases, sub-optimum filters may be used. Due to this mismatch, degra-
dation in the output SNR occurs.

Consider a radar system that uses a finite duration energy signal s;(?).
Denote the pulse width as T', and assume that a matched filter receiver is uti-
lized. The main question that we need to answer is: What is the impulse, or fre-
quency, response of the filter that maximizes the instantaneous SNR at the
output of the receiver when a delayed version of the signal s,(¢) plus additive
white noise is at the input?

The matched filter input signal can then be represented by
x(t) = C s;(t—1))+n,t) (6.1)
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where C is a constant, ¢, is an unknown time delay proportional to the target
range, and n,(¢) is input white noise. Since the input noise is white, its corre-
sponding autocorrelation and Power Spectral Density (PSD) functions are
given, respectively, by

- N,

Ru(1) = 70 8(1) (6.2)
- NO
Snl((D) = 7 (63)

where N, is a constant. Denote s,(¢) and n,(¢) as the signal and noise filter
outputs. More precisely, we can define

y()=C s,(t—1t;) +n,(1) (6.4)

where
$,(1) = s;(t) ® h(1) (6.5)
n,(t) = n,(t) ® h(t) (6.6)

The operator ( e ) indicates convolution, and h(z) is the filter impulse
response (the filter is assumed to be linear time invariant).

Let R, (#) denote the filter autocorrelation function. It follows that the output
noise autocorrelation and PSD functions are

- - N, N,
R, (1) = Rn(t) @ R, (1) = 5 d(t) e R, (1) = 5 R, (1) (6.7)

- - N
$n,(0) = Si()H©O)" = 3 |H(w)’ (6.8)

where H(®) is the Fourier transform for the filter impulse response, A(¢) . The
total average output noise power is equal to Rn (¢) evaluated at 1 = 0. More
precisely,

= Ny 2

R (0) = > |7 (u)|” du (6.9)
The output signal power evaluated at time ¢ is ]Cso(t —1) : , and by using Eq.
(6.5) we get
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=

s(t=1) = [si=t=w) h(u) du

—oo

A general expression for the output SNR at time ¢ can be written as

2
SNR(r = [Clt= 0]
Ri,(0)

Substituting Egs. (6.9) and (6.10) into Eq. (6.11) yields

oo 2

c fsi(t—t,—u) h(u) du

SNR(t) = —=

N
5 _[|h(u)|2du

The Schwartz inequality states that

2

[Peowal < [IPwlar [low) dx

—oo —oo —oo

(6.10)

(6.11)

(6.12)

(6.13)

where the equality applies only when P = kQ* , where k is a constant and can
be assumed to be unity. Then by applying Eq. (6.13) on the numerator of Eq.

(6.12), we get

[ ls-n-wl du [ 1) du

—oo

SNR(f) < —== _
N
5 f|h(u)|2du

—oo

2C2J |si(t—1, - u)|2 du

—oo

Ny
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Eq. (6.14) tells us that the peak instantaneous SNR occurs when equality is
achieved (i.e., from Eq. (6.13) h = ks;*). More precisely, if we assume that
equality occurs at ¢ = ¢, and that k = 1, then

h(u) = s*(tg—t;—u) (6.15)

and the maximum instantaneous SNR is

2C2J |s;(tg— 1, — u)]2 du

SNR(ty) = —= N (6.16)
0

Eq. (6.16) can be simplified using Parseval’s theorem,

E = Czj‘si(to—tl —u)]2 du (6.17)

where E denotes the energy of the input signal; consequently we can write the
output peak instantaneous SNR as

2F
SNR(ty)) = — (6.18)
0 N,

Thus, we can draw the conclusion that the peak instantaneous SNR depends
only on the signal energy and input noise power, and is independent of the
waveform utilized by the radar.

Finally, we can define the impulse response for the matched filter from Eq.
(6.15). If we desire the peak to occur at f, = t;, we get the non-causal
matched filter impulse response,

h,.(t) = s*(-t) (6.19)
Alternatively, the causal impulse response is

h.(t) = s*(1—1) (6.20)

where in this case, the peak occurs at ¢, = ¢, + 7. It follows that the Fourier
transforms of £, .(¢) and h.(t) are given, respectively, by

H,(0) = S*(®) (6.21)

nc

H(0) = S#(w)e’" (6.22)

© 2000 by Chapman & Hall/CRC



where S;(®) is the Fourier transform of s;(¢) . Thus, the moduli of H(®) and
S;(®) are identical; however, the phase responses are opposite of each other.

Example 6.1: Compute the maximum instantaneous SNR at the output of a
linear filter whose impulse response is matched to the signal
2
x(t) = exp(-t/2T).

Solution: The signal energy is

2
E = J|x(t)|2dt = J‘e(_’ YTat = JRT Joules

—oo —oo

It follows that the maximum instantaneous SNR is

JnT

SNR = 375

where N,/2 is the input noise power spectrum density.

6.2. The Replica

Again, consider a radar system that uses a finite duration energy signal s,(¢) ,
and assume that a matched filter receiver is utilized. The input signal is given
in Eq. (6.1) and is repeated here as Eq. (6.23),

x(t) = C s;(t—1t))+n,(1) (6.23)

The matched filter output y(#) can be expressed by the convolution integral
between the filter’s impulse response and x(t),

o

(1) = fx(u)h(t—u)du (6.24)

Substituting Eq. (6.20) into Eq. (6.24) yields

y(t) = J.x(u)si*(‘t—t+u)du = I_?xs[(t—’c) (6.25)

where Rys,(t—1T) is a cross-correlation between x(#) and s,;(T —¢t). Therefore,
the matched filter output can be computed from the cross-correlation between
the radar received signal and a delayed replica of the transmitted waveform. If
the input signal is the same as the transmitted signal, the output of the matched
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filter would be the autocorrelation function of the received (or transmitted) sig-
nal. In practice, replicas of the transmitted waveforms are normally computed
and stored in memory for use by the radar signal processor when needed.

6.3. Matched Filter Response to LEFM Waveforms

In order to develop a general expression for the matched filter output when
an LFM waveform is utilized, we will consider the case when the radar is
tracking a closing target with velocity v. The transmitted signal is

; j2n(f01+ %rz)
s1(8) = Rect(?)e (6.26)
The received signal is then given by
s,](t) = s5,(t=A(1)) (6.27)
AW = 12201 19) 628)

where ¢, is the time corresponding to the target initial detection range, and ¢
is the speed of light. Using Eq. (6.28) we can rewrite Eq. (6.27) as

2
5, (1) = s,(l—t0+ ?V(t—to)) = 5,(Y(t—1,)) (6.29)
and
y = 1+2£ (6.30)

is the scaling coefficient. Substituting Eq. (6.26) into Eq. (6.29) yields

s,](t) = Rect|

(t=t)\ j2nfy(r—1)  jruy*(t—1.)°
(Y - O)el foy(1 =1y ej ny 0 (6.31)

which is the analytical signal representation for s,](t). The complex envelope
of the signal srl(t) is obtained by multiplying Eq. (6.31) by exp(—j2mf,?).
Denote the complex envelope by s,(¢), then after some manipulation we get

—2mfy, Y(E =10\ j2nfo(y- V-1 jrpy’(1—1,)°
s(t) = e’ Rect ( p O)el 0 v 0 (6.32)

The Doppler shift due to the target motion is
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2
fa= o (6.33)
and since Y—1 = 2v/c, we get

fa= (=1 (6.34)
Using the approximation Y= 1 and Eq. (6.34), Eq. (6.32) is rewritten as

J2Tfy(t—1)

s (t)y=¢e s(t—tg) (6.35)

where

—j2mfot

s(t—ty) = e s1(t—=1p) (6.36)

s,(t) is given in Eq. (6.26). The matched filter response is given by the convo-
lution integral

5,(0) = [ h)s, (0~ wydu (6.37)

For a non-causal matched filter the impulse response A(u) is equal to s*(—t);
it follows that

oo

5, () = _[s*(—u)s,(t—u)du (6.38)

—oo

Substituting Eq. (6.36) into Eq. (6.38), and performing some algebraic manipu-
lations, we get

oo

J2Tfy(t +u—ty)

s,(1) = Js*(u) e

—oo

s(t+u—ty)du (6.39)

Finally, making the change of variable 7' = ¢+ u yields

oo

Dt
s5,(1) = Js*(t'—t)s(t'—to)él Ml =) (6.40)
It is customary to set #, = O, and it follows that
f
s (tf,) = Js(t')s*(f—t)e" M ap (6.41)

—oo
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where we used the notation s,(¢:f,) to indicate that the output is a function of
both time and Doppler frequency.

The two-dimensional (2-D) correlation function for the signal s(r) is
obtained from the matched filter response by replacing ¢ by —7, then

=

j2mfyt

Xty = [ ()5 + e

—oo

dr (6.42)

6.4. The Radar Ambiguity Function

The radar ambiguity function represents the output of the matched filter, and
it describes the interference caused by range and/or Doppler of a target when
compared to a reference target of equal RCS. The ambiguity function evalu-
ated at (7T, f;) = (0,0) is equal to the matched filter output that is matched
perfectly to the signal reflected from the target of interest. In other words,
returns from the nominal target are located at the origin of the ambiguity func-
tion. Thus, the ambiguity function at nonzero T and f,; represents returns from
some range and Doppler different from those for the nominal target.

The radar ambiguity function is normally used by radar designers as a means
of studying different waveforms. It can provide insight about how different
radar waveforms may be suitable for the various radar applications. It is also
used to determine the range and Doppler resolutions for a specific radar wave-
form. The three-dimensional (3-D) plot of the ambiguity function versus fre-
quency and time delay is called the radar ambiguity diagram. The radar
ambiguity function for the signal s(¢) is defined as the modulus squared of its
2-D correlation function, i.e., X(‘t;fd)]2 . More precisely,

) 2
J2mf,t

!X(T;fd)lz = JS(I)S*(I+‘C)€

—oo

dt (6.43)

In this notation, the target of interest is located at (7, f;) = (0,0), and the
ambiguity diagram is centered at the same point. Note that some authors define
the ambiguity function as | (1if,)| . In this book, |x(Tif,)| is called the uncer-
tainty function. Denote E as the energy of the signal s(z7),

E = J Is(0)|*dt (6.44)

We will now list the properties for the radar ambiguity function:
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1) The maximum value for the ambiguity function occurs at (T, f;) = (0,0)
and is equal to 4E

max{|x(tf)’} = x(0:0)]°> = (2E)° (6.45)

(i) < 7050)]* (6.46)

2) The ambiguity function is symmetric,
)’ = =t~ (6.47)

3) The total volume under the ambiguity function is constant,

[Jicsol av ar, = £y (6.48)

4) If the function S(f) is the Fourier transform of the signal s(¢), then by using
Parseval’s theorem we get

v = US*(f)S(f foe ’zm4 (6.49)

6.5. Examples of the Ambiguity Function

The ideal radar ambiguity function is represented by a spike of infinitesimal
width that peaks at the origin and is zero everywhere else, as illustrated in Fig.
6.1. An ideal ambiguity function provides perfect resolution between neigh-
boring targets regardless of how close they may be with respect to each other.
Unfortunately, an ideal ambiguity function cannot physically exist. This 1s
because the ambiguity function must have finite peak value equal to (2E )
and a finite volume also equal to (2F ) Clearly, the ideal ambiguity function
cannot meet those two requirements.

6.5.1. Single Pulse Ambiguity Function
Consider the normalized rectangular pulse s(¢) defined by
s(t) = —Rect(t) (6.50)
JT
From Eq. (6.42) we have

oo

W(Tf) = Js(t)s*(t+ P

—oo

dt (6.51)
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Figure 6.1. Ideal ambiguity function.

Substituting Eq. (6.50) into Eq. (6.51) and performing the integration yield,

2

_ M) sin(nfy(v' -~ It) <t (6.52)

T nf, (T 1)

MATLAB Function “single_pulse_ambg.m”

v = ‘(1

The function “single_pulse_ambg.m” implements Eq. (6.52). It is given in
Listing 6.1 in Section 6.7. The syntax is as follows:

single_pulse_ambg [taup]

taup is the pulse width. Fig. 6.2 (a-d) shows 3-D and contour plots of single
pulse uncertainty and ambiguity functions. These plots can be reproduced
using MATLAB program “fig6_2.m” given in Listing 6.2 in Section 6.7.

The ambiguity function cut along the time delay axis T is obtained by setting
f1 = 0. More precisely,

2
I (t:0)* = (1 - 'Tﬂ) It <t (6.53)

Note that the time autocorrelation function of the signal s(¢) is equal to
%(7;0). Similarly, the cut along the Doppler axis is

b
|;¢(O;fd)|2 = Smn'rfd (6.54)

Figs. 6.3 and 6.4, respectively, show the plots of the uncertainty function
cuts defined by Egs. (6.53) and (6.54). Since the zero Doppler cut along the
time delay axis extends between —1' and T', then, close targets would be
unambiguous if they are at least T' seconds apart.
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Delay - seconds

Figure 6.2a. Single pulse 3-D uncertainty plot. Pulse width is 2 seconds.

2.5

0.5

Doppler - Hz
o
T
L

2.5 I I I I I I I I I
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Delay - seconds

Figure 6.2b. Contour plot corresponding to Fig. 6.2a.
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Figure 6.2¢. Single pulse 3-D ambiguity plot. Pulse width is 2 seconds.
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Figure 6.2d. Contour plot corresponding to Fig. 6.2c.
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The zero time cut along the Doppler frequency axis has a (sinx/ x)2 shape.
It extends from —eo to eo. The first null occurs at f;, = +1/7'. Hence, it is
possible to detect two targets that are shifted by 1/71', without any ambiguity.

We conclude that a single pulse range and Doppler resolutions are limited by
the pulse width T'. Fine range resolution requires that a very short pulse be
used. Unfortunately, using very short pulses requires very large operating
bandwidths, and may limit the radar average transmitted power to impractical
values.

amplitude

-1 T T

Figure 6.3. Zero Doppler uncertainty function cut along the time delay axis.

0.9 - - «+ - - - O
0.8L - - 1 - - = T

07 - oo s e

- Volts

051 « = v = o w |- T

Uncertainty

Frequency - Hz
Figure 6.4. Uncertainty function of a single frequency pulse (zero delay). This

plot can be reproduced using MATLAB program “Fig6_4.m” given
in Listing 6.3 in Section 6.7.
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6.5.2. LFM Ambiguity Function
Consider the LFM complex envelope signal defined by

1 t e’
s(t) = —Rect(—,) ¢ (6.55)
/\/? T

In order to compute the ambiguity function for the LFM complex envelope, we

will first consider the case when 0 <1< 1’. In this case the integration limits
are from —1t’/2 to (1'/2) — 1. Substituting Eq. (6.55) into Eq. (6.51) yields

1 . 2 . "2
x(Tfy) = ?.[Rect(ri,)Rect(tTL,T)emw e JTp(E+T) dt (6.56)

It follows that

-7

T
2
—jnu‘tz

e J‘ —2m(uT—f))t
- e
T

x(tify) = dt (6.57)

-1

2

We will leave the rest of the integration process to the reader. Finishing the
integration process in Eq. (6.57) yields

sin| Tt (Ut -
jTTf, ( (H +fd)(l '))
1) = ¢ f(l—% - +f)(1—23

d T

0<t<1t  (6.58)

Similar analysis for the case when —1t” <1 <0 can be carried out, where in
this case the integration limits are from (-t"/2) -1 to T'/2. The same result
can be obtained by using the symmetry property of the ambiguity function
(Ix(=7.~fp)| = |x(t.f)])- 1t follows that an expression for x(T:f,) that is
valid for any T is given by

re(ur+f(1- 1)

It <7t (6.59)
T

and the LFM ambiguity function is
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|T]

2
b sin(m'(u”fd)(l_?))
|X(Tzfd)|2 (1 T') m'(w:+fd)( _Li')

1<t (6.60)

Again the time autocorrelation function is equal to (T, 0). The reader can
verify that the ambiguity function for a down-chirp LFM waveform is given by

s 15

. 2 = -
X (T3 (l T nr'(ut—fd)(l_ul'l)

1l <7t (6.61)

MATLAB Function “Ifm_ambg.m”

The function “lfim_ambg.m” implements Eqs. (6.60) and (6.61). It is given
in Listing 6.4 in Section 6.7. The syntax is as follows:

Ifm_ambg [taup, b, up_down]

where
Symbol Description Units Status
taup pulse width seconds input
b bandwidth Hz input
up_down up_down = 1 for up chirp none input
up_down = -1 for down chirp

Fig. 6.5 (a-d) shows 3-D and contour plots for the LFM uncertainty and ambi-
guity functions for

taup b up_down
1 10 1

These plots can be reproduced using MATLAB program “fig6_5.m” given in
Listing 6.5 in Section 6.7.This function generates 3-D and contour plots of an
LFM ambiguity function.

The up-chirp ambiguity function cut along the time delay axis T is

g ot

T |1|
1=+
TC].LT‘C( ’C')

X (T:0)* = (1 - It <7 (6.62)
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Figure 6.5a. Up-chirp LFM 3-D uncertainty plot. Pulse width is 1 second; and
bandwidth is 10 Hz.
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Figure 6.5b. Contour plot corresponding to Fig. 6.5a.
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Figure 6.5c. Up-chirp LFM 3-D ambiguity plot. Pulse width is 1 second; and
bandwidth is 10 Hz.
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Delay - seconds

Figure 6.5d. Contour plot corresponding to Fig. 6.5c¢.
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Fig. 6.6 shows a plot for a cut in the uncertainty function corresponding to
Eq. (6.62). Note that the LFM ambiguity function cut along the Doppler fre-
quency axis is similar to that of the single pulse. This should not be surprising
since the pulse shape has not changed (we only added frequency modulation).
However, the cut along the time delay axis changes significantly. It is now
much narrower compared to the unmodulated pulse cut. In this case, the first
null occurs at

1,,=1/B (6.63)

which indicates that the effective pulse width (compressed pulse width) of the
matched filter output is completely determined by the radar bandwidth. It fol-
lows that the LFM ambiguity function cut along the time delay axis is narrower
than that of the unmodulated pulse by a factor

r

= =1B 6.64

S=am " (6.64)

& is referred to as the compression ratio (also called time-bandwidth product

and compression gain). All three names can be used interchangeably to mean

the same. As indicated by Eq. (6.64) the compression ratio also increases as the
radar bandwidth is increased.

Uncertainty

Delay - seconds

Figure 6.6. Zero Doppler Ambiguity function of an LFM pulse (1° = 1,

b = 20). This plot can be reproduced using MATLAB
program “fig6_6.m” given in Listing 6.6 in Section 6.7.
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Example 6.2: Compute the range resolution before and after pulse compres-
sion corresponding to an LFM waveform with the following specifications:
Bandwidth B = 1GHz; and pulse width T = 10ms.

Solution: The range resolution before pulse compression is

' -3 8
AR _ ¢t _10x10 " x3x10

6
uncomp 7 ) = 1.5x 10" meters

Using Eq. (6.63) yields

1

T %100 b

Tnl

T 8 -9
AR =E=3><10 x1x10

comp 2 2 =15 cm.

6.5.3. Coherent Pulse Train Ambiguity Function

Fig. 6.7 shows a plot of coherent pulse train. The pulse width is denoted as
7' and the PRI is T'. The number of pulses in the train is N ; hence, the train’s
length is (N — 1)T seconds. A normalized individual pulse s(¢) is defined by

s, (1) = iRect(t) (6.65)
T'

/\/_ T'
When coherency is maintained between the consecutive pulses, then an expres-
sion for the normalized train is

N-1

s(r) = %vzsl(t—m (6.66)

i=0
The output of the matched filter is

oo

J2mf,t

1(Tfy) = Js(t)s*(t+ e

—oo

dt (6.67)

Substituting Eq. (6.66) into Eq. (6.67) and interchanging the summations and
integration yield,

N-1 N-1 o

1 . . j2nf,
x(tfy) = NZ z JSI(I—ZT) s,*(t—JT—‘t)e] "t (6.68)

i=0 j=0 —oo
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Figure 6.7. Coherent pulse train. N=5.

Making the change of variable 1, = r—iT yields

N-1 N-1 o

1 J2nfyiT .. J2mft
X(Tf,) = NZel Z J‘Sl(tl) 55 (t = [T=(i=j)T]e " "'dt, (6.69)

i=0

j=0 —eo

The integral inside Eq. (6.69) represents the output of the matched filter for a
single pulse, and is denoted by 7, . It follows that

N-1 N-1
1 j27f,i T ..
() = 5 Y =G =)T] (6.70)
i=0 j=0

When the relation ¢ = i—j is used, then the following relation is true!:

N N 0 N-1-lql N-1 N-1-|q|
22 = X X DD ©71)
i=0 m=0 q=-(N-1) i=0 g, jciq a=1 j=0 g i=jiqg
Using Eq. (6.71) into Eq. (6.70) gives
0 N-1-|ql
1 J2nf,iT
1T =5 n(=qTify) D & (6.72)
q=-(N-1) i=0
N-1 N-1-]ql
1 127feqT . jamfyT
2 1e Tn-aTy) Y e
qg=1 j=0

1. Rihaczek, A. W., Principles of High Resolution Radar, Artech House, 1996.
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Setting z = exp(j2nf,T), and using the relation

N-1-lql
N-lql

z J=lzz ~ (6.73)
j=0

1-z2

yield

N-1- \q|
G2HT N1l Sin [y (N - 1 - lq|T)]
Z B sin(nf,T)

(6.74)
i=0

Using Eq. (6.74) into Eq. (6.72) yields two complementary sums for positive
and negative g . Both sums can be combined as

N-1

o1 o linfv=1+ 71 Sin[f,(N =g T)]
X =5 Y, XiT-aTife @ 67

qg=—(N-1)

Finally, the ambiguity function associated with the coherent pulse train is com-
puted as the modulus square of Eq. (6.75). For t" < T/2, the ambiguity func-
tion reduces to

N-1

1
xX(tfy) = N \XI(T—qT;fd)!

qg=—(N-1)

(6.76)

sin(nf,T)

sin[mf,(N - |4l T)]’

Thus, the ambiguity function for a coherent pulse train is the superposition
of the individual pulse’s ambiguity functions. The ambiguity function cuts
along the time delay and Doppler axes are, respectively, given by

N-1 2
x(t:0)* = Z (1—%)(1—@) s lt-qTl<t”  (6.77)
g=-(N-1)
2 lsin(nfdr’) sin(mf,NT)|2
[ Ofl" = ‘N nf,t’ sin(nf,T) (6.78)

MATLAB Function “train_ambg.m”

The function “train_ambg.m” implements Eq. (6.76). It is given in Listing
6.7 in Section 6.7. The syntax is as follows:

train_ambg [taup, n, pri]
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Figure 6.8b. Contour plot corresponding to Fig. 6.8a.
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Figure 6.8d. Zero delay cut corresponding to Fig. 6.8a.

6.6. Ambiguity Diagram Contours

Plots of the ambiguity function are called ambiguity diagrams. For a given
waveform, the corresponding ambiguity diagram is normally used to determine
the waveform properties such as the target resolution capability, measurements
(time and frequency) accuracy and its response to clutter. Three-dimensional
ambiguity diagrams are difficult to plot and interpret. This is the reason why
contour plots of the 3-D ambiguity diagram are often used to study the charac-
teristics of a waveform. An ambiguity contour is a 2-D plot (frequency/time) of
a plane intersecting the 3-D ambiguity diagram that corresponds to some
threshold value. The resultant plots are ellipses. It is customary to display the
ambiguity contour plots that correspond to one half of the peak autocorrelation
value.

Fig. 6.9 shows a sketch of typical ambiguity contour plots associated with a
gated CW pulse. It indicates that narrow pulses provide better range accuracy
than long pulses. Alternatively, the Doppler accuracy is better for a wider pulse
than it is for a short one. This trade-off between range and Doppler measure-
ments comes from the uncertainty associated with the time-bandwidth product
of a single sinusoidal pulse, where the product of uncertainty in time (range)
and uncertainty in frequency (Doppler) cannot be much smaller than unity.
Note that an exact plot for Fig. 6.9 can be obtained using the function
“single_pulse_ambg.m” and the MATLAB command contour.
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Figure 6.9. Ambiguity contour plot associated with a sinusoid
modulated gated CW pulse. See Fig. 6.2.

Multiple ellipses in an ambiguity contour plot indicate the presence of multi-
ple targets. Thus, it seems that one may improve the radar resolution by
increasing the ambiguity diagram threshold value. This is illustrated in Fig.
6.10. However, in practice this is not possible for two reasons. First, in the
presence of noise we lack knowledge of the peak correlation value; and sec-
ond, targets in general will have different amplitudes.

Now consider the case of a coherent pulse train described in Fig. 6.7. For a
pulse train, range accuracy is still determined by the pulse width, the same way
as in the case of a single pulse, while Doppler accuracy is determined by the
train length. Thus, time and frequency measurements can be made indepen-
dently of each other. However, additional peaks appear in the ambiguity dia-
gram which may cause range and Doppler uncertainties. This is illustrated in
Fig. 6.11.

frequency frequency
A A
time time
> 4£—O—>
low threshold value high threshold value

Figure 6.10. Effect of threshold value on resolution.
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Figure 6.11. Ambiguity contour plot corresponding to Fig. 6.7. For an exact
plot see Fig. 6.8b.

As one would expect, high PRF pulse trains (i.e., small 7") lead to extreme
uncertainty in range, while low PRF pulse trains have extreme ambiguity in
Doppler, as shown in Fig. 6.12. Medium PRF pulse trains have moderate ambi-
guity in both range and Doppler, which can be overcome by using multiple
PRFs, as illustrated in Fig. 6.13 for two medium PRFs. Note that the two dia-
grams (in Fig. 6.13) agree only in one location (center of the plot) which corre-
sponds to the true target location.

It is possible to avoid ambiguities caused by pulse trains and still have rea-
sonable independent control on both range and Doppler accuracies by using a
single modulated pulse with a time-bandwidth product that is much larger than
unity. Figure 6.14 shows the ambiguity contour plot associated with an LFM
waveform. In this case, T’ is the pulse width and B is the pulse bandwidth. In
this case, exact plots can be obtained using the function “Ifin_ambg.m”.
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Figure 6.12. Uncertainty associated with low and high PRFs.
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Figure 6.13. Uncertainty of two medium PRFs.
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Figure 6.14. Ambiguity contour plot associated with an up-chirp LFM
waveform. For an exact plot see Fig. 6.5b.

6.7. MATLAB Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is strongly advised to rerun the MATLAB programs in
order to enhance their understanding of this chapter’s material.

Listing 6.1. MATLAB Function ‘“‘single_pulse_ambg.m”

function x = single_pulse_ambg (taup)
colormap (gray(1))
eps = 0.000001;
i=0;
taumax = 1.1 * taup;
taumin = -taumax;
for tau = taumin:.05:taumax
i=i+1;
i=0;
for fd = -5/taup:.05:5/taup
j=i+h
vall = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup) * fd;
x(j,i) = abs( vall * sin(val2+eps)/(val2+eps));
end
end

Listing 6.2. MATLAB Program “fig6_2.m”

clear all
eps = 0.000001;
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taup = 2.;

taumin = -1.1 * taup;
taumax = -taumin;

x = single_pulse_ambg(taup);
taux = taumin:.05:taumax;
fdy = -5/taup:.05:5/taup;
figure(1)

mesh(taux,fdy,x);

xlabel ('Delay - seconds')
ylabel ('‘Doppler - Hz')
zlabel ('Ambiguity function')
figure(2)
contour(taux,fdy,x);

xlabel ('Delay - seconds')
ylabel ('‘Doppler - Hz')

y =x2;

figure(3)

mesh(taux,fdy,y);

xlabel (‘Delay - seconds')
ylabel (‘Doppler - Hz')
zlabel ('Ambiguity function')
figure(4)
contour(taux,fdy,y);

xlabel (‘Delay - seconds')
ylabel (‘Doppler - Hz')

Listing 6.3. MATLAB Program “fig6_4.m”

clear all

eps = 0.0001;

taup = 2.;

fd =-10./taup:.05:10./taup;
uncer = abs( sinc(taup .* fd));
ambg = uncer."2;

plot(fd, ambg)

xlabel (‘'Frequency - Hz')
ylabel ('Ambiguity - Volts')
grid

figure(2)

plot (fd, uncer);

xlabel (‘'Frequency - Hz')
ylabel ('Uncertainty - Volts')
grid

Listing 6.4. MATLAB Function “lfm_ambg.m”

function x = Ifm_ambg(taup, b, up_down)
eps = 0.000001;
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i=0;
mu = up_down * b/ 2./ taup;
for tau = -1.1*taup:.05:1.1*taup
i=i+1;
i=0;
for fd = -b:.05:b
j=jit+ L
vall = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
x(j,1) = abs( vall * (sin(val+eps)/(val+eps)))."2;
end
end

Listing 6.5. MATLAB Program “fig6_5.m”

clear all

eps = 0.0001;

taup = 1.;

b=10;

up_down =1.;

x = Ifm_ambg(taup, b, up_down);
taux = -1.1%*taup:.05:1.1*taup;
fdy = -b:.05:b;

figure(1)

mesh(taux,fdy,x)

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')

zlabel ('Ambiguity function')
figure(2)

contour(taux,fdy,x)

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')

y = Sqrt(x);

figure(3)

mesh(taux,fdy,y)

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')

zlabel (‘Uncertainty function')
figure(4)

contour(taux,fdy,y)

xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')

Listing 6.6. MATLAB Program “fig6_6.m”

clear all
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taup = 1;
b =20.;
up_down = 1.;
taux = -1.5%taup:.01:1.5%taup;
fd=0.;
mu = up_down * b/ 2./ taup;
i=0.;
for tau = -1.5*taup:.01:1.5*taup
ii=ii+1;
vall = 1. - abs(tau) / taup;
val2 = pi * taup * (1.0 - abs(tau) / taup);
val3 = (fd + mu * tau);
val = val2 * val3;
x(ii) = abs( vall * (sin(val+eps)/(val+eps)));
end
figure(1)
plot(taux,x)
grid
xlabel (‘Delay - seconds')
ylabel (‘Uncertaunty")
figure(2)
plot(taux,x."2)
grid
xlabel (‘Delay - seconds')
ylabel ('Ambiguity')

Listing 6.7. MATLAB Function “train_ambg.m”

function x = train_ambg (taup, n, pri)
if( taup > pri/2.)
'ERROR. Pulse width must be less than the PRI/2.'
break
end
gap = pri - 2.*taup;
eps = 0.000001;
b=1./taup;
i=0.;
for q =-(n-1):1:n-1
tauo =q - taup ;
index = -1.;
for taul = tauo:0.0533:tauo+gap+2.*taup
index = index + 1;
tau = -taup + index*.0533;
ii=ii+1;
i=0;
for fd = -b:.0533:b
j=i+ L
if (abs(tau) <= taup)
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vall = 1. -abs(tau) / taup;
val2 = pi * taup * fd * (1.0 - abs(tau) / taup);
val3 = abs(vall * sin(val2+eps) /(val2+eps));
val4 = abs((sin(pi*fd*(n-abs(q))*pri+eps))/(sin(pi*fd*pri+eps)));
x(j,ii)= val3 * val4 / n;

else
x(j,ii) = 0.;

end

end
end
end

Listing 6.8. MATLAB Program “fig6_8a.m”

clear all

taup =0.2;

pri=1;

n=5;

X = train_ambg (taup, n, pri);
figure(1)

mesh(x)

xlabel (‘Delay - seconds')
ylabel (‘Doppler - Hz')
zlabel ('Ambiguity function')
figure(2)

contour(x);

xlabel ('Delay - seconds')
ylabel (‘Doppler - Hz')

Problems
6.1. Define {x;(n)=1,-1,1} and {x,(n) =1,1,-1}. (a) Compute the

discrete correlations: R, , R, R and L (b) A certain radar transmits

X,XQ 3
the signal s(z) = x,(1) cos2mft — x,(#) sin27fr . Assume that the autocorre-
lation s(7) is equal to y(r) = y,(1)cos2nmfyt — y,(7)sin2nft . Compute and
sketch y,(z) and y,(1) .

6.2. Compute the frequency response for the filter matched to the signal

2
(@) x(1) = exp(;—tT); (b) x(t) = u(tyexp(~ar),

where o is a positive constant.

6.3. Repeat Example 6.1 for x(t) = u(r)exp(—out).
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.4. Derive Eq. (6.43).

.5. Prove the properties of the radar ambiguity function.

. 6. Starting with Eq. (6.61) derive Eq. (6.62).

.7. A radar system uses LFM waveforms. The received signal is of the

QA O Oy O

form s,(¢) = As(t—1) + n(¢), where T is a time delay that depends on range,

s(t) = Rect(t/1")cos(2mfyt —y(r)), and y(r) = —nBf*/7’. Assume that
the radar bandwidth is B = SMHz, and the pulse widthis T° = Sus. (a) Give
the quadrature components of the matched filter response that matched to s(7) .
(b) Write an expression for the output of the matched filter. (c) Compute the
increase in SNR produced by the matched filter.

6.8. (a) Write an expression for the ambiguity function of an LFM wave-
form, where " = 6.4\Ls, and the compression ratio is 32 . (b) Give an expres-
sion for the matched filter impulse response.

6.9. Repeat Example 6.2 for B = 2,5, and 10GHz.

6.10. (a) Write an expression for the ambiguity function of a LFM signal
with bandwidth B = 10MHz, pulse width t" = lus, and wavelength
A = lcm. (b) Plot the zero Doppler cut of the ambiguity function. (c) Assume
a target moving towards the radar with radial velocity v, = 100m/s. What is
the Doppler shift associated with this target? (d) Plot the ambiguity function
for the Doppler cut in part (c). (¢) Assume that three pulses are transmitted
with PRF f, = 2000Hz . Repeat part b.

6.11. (a) Give an expression for the ambiguity function for a pulse train
consisting of 4 pulses, where the pulse width is T/ = 1s and the pulse repeti-
tion interval is 7 = 10us . Assume a wavelength of A = lcm. (b) Sketch the
ambiguity function contour.

6.12. Hyperbolic frequency modulation (HFM) is better than LFM for high
radial velocities. The HFM phase is

2

®o H, 0

) = —ln(l +—)
Vi) Ky ®,

where W, is an HFM coefficient and o is a constant. (a) Give an expression
for the instantaneous frequency of a HFM pulse of duration t’, . (b) Show that
HFM can be approximated by LFM. Express the LFM coefficient [, in terms
of w, andin terms of B and t’.

6.13. Consider a Sonar system with range resolution AR = 4cm. (a) A
sinusoidal pulse at frequency f;, = 100KHz is transmitted. What is the pulse
width, and what is the bandwidth? (b) By using an up-chirp LFM, centered at
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fo» one can increase the pulse width for the same range resolution. If you want

to increase the transmitted energy by a factor of 20, give an expression for the
transmitted pulse. (c) Give an expression for the causal filter matched to the
LEM pulse in part b.

6.14. A pulse train y(¢) is given by

2

y(1) = Y wmx(t—nt)
n=0

where x(¢) = exp (—tz/ 2) is a single pulse of duration t” and the weighting
sequence is {w(n)} = {0.5,1,0.7}. Find and sketch the correlations R,,
R, and R, .

6.15. Repeat the previous problem for x(7) = exp (—t2/2)cos 2nfyt.

”»

6.16. Modify the function “train_ambg.m” to accommodate the case
v =T.

6.17. Using the MATLAB functions presented in this chapter, generate the
exact plots that correspond to Figs. 6.13 and 6.14.

6.18. Using the function “Ifim_ambg.m” reproduce Fig. 6.6b for a down-
chirp LFM pulse.
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Chapter 7 Pulse Compression

Range resolution for a given radar can be significantly improved by using
very short pulses. Unfortunately, utilizing short pulses decreases the average
transmitted power, which can hinder the radar’s normal modes of operation,
particularly for multi-function and surveillance radars. Since the average trans-
mitted power is directly linked to the receiver SNR, it is often desirable to
increase the pulse width (i.e., increase the average transmitted power) while
simultaneously maintaining adequate range resolution. This can be made pos-
sible by using pulse compression techniques. Pulse compression allows us to
achieve the average transmitted power of a relatively long pulse, while obtain-
ing the range resolution corresponding to a short pulse. In this chapter, we will
analyze analog and digital pulse compression techniques.

Two analog pulse compression techniques are discussed in this chapter. The
first technique is known as “correlation processing” which is dominantly used
for narrow band and some medium band radar operations. The second tech-
nique is called “stretch processing” and is normally used for extremely wide
band radar operations. Digital pulse compression will also be briefly pre-
sented.

7.1. Time-Bandwidth Product

Consider a radar system that employs a matched filter receiver. Let the
matched filter receiver bandwidth be denoted as B. Then, the noise power
available within the matched filter bandwidth is given by

N, =2 > B (7.1)
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Figure 7.1. Input noise power.

where the factor of two is used to account for both negative and positive fre-
quency bands, as illustrated in Fig. 7.1. The average input signal power over a
pulse duration T' is

S == (7.2)
E is the signal energy. Consequently, the matched filter input SNR is given by

SNR _Si_ _E
( )i—N‘—NOBT.

1

(7.3)

Using Egs. (6.18) (from Chapter 6) and (7.3), one may compute the output
peak instantaneous SNR to the input SNR ratio as

SNR(1y)

(SNR), = 2B71 (7.4)

The quantity Bt' is referred to as the “time-bandwidth product” for a given
waveform, or its corresponding matched filter. The factor Bt by which the
output SNR is increased over that at the input is called the matched filter gain,
or simply the compression gain.

In general, the time-bandwidth product of an unmodulated pulse approaches
unity. The time-bandwidth product of a pulse can be made much greater than
unity by using frequency or phase modulation. If the radar receiver transfer
function is perfectly matched to that of the input waveform, then the compres-
sion gain is equal to BT'. Clearly, the compression gain becomes smaller than
B7T' as the spectrum of the matched filter deviates from that of the input signal.
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7.2. Radar Equation with Pulse Compression

The radar equation for a pulsed radar can be written as
) 202
PTG Ao

SNR = ——rx——
(4n)’R*kT,FL

(7.5)

where P, is peak power, T is pulse width, G is antenna gain, ¢ is target
RCS, R is range, k is Boltzman’s constant, T, is effective noise temperature,

F is noise figure, and L is total radar losses.

Pulse compression radars transmit relatively long pulses (with modulation)
and process the radar echo into very short pulses (compressed). One can view
the transmitted pulse to be composed of a series of very short subpulses (duty
is 100%), where the width of each subpulse is equal to the desired compressed
pulse width. Denote the compressed pulse width as T, . Thus, for an individual
subpulse, Eq. (7.5) can be written as

P,ICGZXZG
(SNR); = ———F——— (7.6)
< (4n)’R*T,FL

The SNR for the uncompressed pulse is then derived from Eq. (7.6) as

P(t = nTL.)szzc

SNR = —
(41)’R*kT,FL

(7.7)

where n is the number of subpulses. Equation (7.7) is denoted as the radar
equation with pulse compression.

Observation of Egs. (7.5) and (7.7) indicates the following (note that both
equations have the same form): For a given set of radar parameters, and as long
as the transmitted pulse remains unchanged, then the SNR is also unchanged
regardless of the signal bandwidth. More precisely, when pulse compression is
used, the detection range is maintained while the range resolution is drastically
improved by keeping the pulse width unchanged and by increasing the band-
width. Remember that range resolution is proportional to the inverse of the sig-
nal bandwidth,

AR = ¢/2B (7.8)

7.3. Analog Pulse Compression

Correlation and stretch pulse compression techniques are discussed in this
section. Two MATLAB programs which execute digital implementation of
both techniques (using the FFT) are also presented.
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7.3.1. Correlation Processor

In this case, pulse compression is accomplished by adding frequency modu-
lation to a long pulse at transmission, and by using a matched filter receiver in
order to compress the received signal. As an example, we saw in Chapter 6 that
using LFM within a rectangular pulse compresses the matched filter output by
a factor & = BT', which is directly proportional to the pulse width and band-
width. Thus, by using long pulses and wideband LFM modulation we can
achieve large compression ratios. This form of pulse compression is known as
“correlation processing.”

Fig. 7.2 illustrates the advantage of pulse compression. In this example, an
LFM waveform is used. Two targets with RCS ¢, = 1m” and c, = 0.5m"
are detected. The two targets are not separated enough in time to be resolved.
Fig. 7.2a shows the composite echo signal from those targets. Clearly, the tar-
get returns overlap and, thus, they are not resolved. However, after pulse com-
pression the two pulses are completely separated and are resolved as two
targets. In fact, when using LFM, returns from neighboring targets are resolved
as long as they are separated, in time, by 7, ; , the compressed pulse width.

nl>

amplitude

A

time

Figure 7.2a. Composite echo signal for two unresolved targets.
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Figure 7.2b. Composite echo signal corresponding to Fig. 7.2a, after
pulse compression.

Radar operations (search, track, etc.) are usually carried out over a specified
range window, referred to as the receive window and defined by the difference
between the radar maximum and minimum range. Returns from all targets
within the receive window are collected and passed through a matched filter
circuitry to perform pulse compression. One implementation of such analog
processors is the Surface Acoustic Wave (SAW) devices. Because of the recent
advances in digital computer development, the correlation processor is often
performed digitally using the FFT. This digital implementation is called Fast
Convolution Processing (FCP) and can be implemented at base-band. The fast
convolution process is illustrated in Fig. 7.3

Since the matched filter is a linear time invariant system, its output can be
described mathematically by the convolution between its input and its impulse
response,

y(H)= s(t) ® h(1) (7.9)

where s(z) is the input signal, A(z) is the matched filter impulse response
(replica), and the e operator symbolically represents convolution. From the
Fourier transform properties,

FFT{s(t) e h(t)} = S(f) - H(f) (7.10)

And when both signals are sampled properly, the compressed signal y(#) can
be computed from
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Figure 7.3. Computing the matched filter output using an FFT.

y = FFT'{S-H} 7.11)

where FFT™' is the inverse FFT. When using pulse compression, it is desirable
to use modulation schemes that can accomplish a maximum pulse compression
ratio, and can significantly reduce the side lobe levels of the compressed wave-
form. For the LFM case the first side lobe is approximately 13.4dB below the
main peak, and for most radar applications this may not be sufficient. In prac-
tice, high side lobe levels are not preferable because noise and/or jammers
located at the side lobes may interfere with target returns in the main lobe.

Weighting functions (windows) can be used on the compressed pulse spec-
trum in order to reduce the side lobe levels. The cost associated with such an
approach is a loss in the main lobe resolution, and a reduction in the peak value
(i.e., loss in the SNR), as illustrated in Fig. 7.4. Weighting the time domain
transmitted or received signal instead of the compressed pulse spectrum will
theoretically achieve the same goal. However, this approach is rarely used,
since amplitude modulating the transmitted waveform introduces extra bur-
dens on the transmitter.

Consider a radar system that utilizes a correlation processor receiver (i.e.,
matched filter). The receive window in meters is defined by

R,,.=R,,.—R,., (7.12)

rec

where R,,,. and R,,;, , respectively, define the maximum and minimum range

over which the radar performs detection. Typically R, is limited to the extent

rec

of the target complex. The normalized complex transmitted signal has the form

s(r) = eXP(jZn(fot + %tz)) 0<r<t (7.13)

T’ is the pulse width, & = B/1’, and B is the bandwidth. Note that this defi-
nition of the LFM pulse is different from that in Chapter 6. Earlier, f, denoted
the chirp center frequency and in Eq. (7.13) it denotes the chirp start frequency.
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Figure 7.4. Reducing the first sidelobe to -42 dB doubles the main lobe width.

The radar echo signal is similar to the transmitted one with the exception of a
time delay and an amplitude change that correspond to the target RCS. Con-
sider a target at range R, . The echo received by the radar from this target is

s, (1) = alexp(ﬂn(fo(t—rm%(t—rl)z)) (7.14)

where a, is proportional to target RCS, antenna gain, and range attenuation.
The time delay T, is given by

T, = 2R\/c (7.15)

The first step of the processing consists of removing the frequency f;,. This
is accomplished by mixing s,(¢) with a reference signal whose phase is 27f;t.
The phase of the resultant signal, after low pass filtering, is then given by

w(t) = Zn(—foti + %(r—ri)z) (7.16)

and the instantaneous frequency is

_ LAy - _ B, 2R
70 = 3 Sy = we-v = B(1-22) .17

The quadrature components are
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x,(1) cosy(t
! = ( . w )) (7.18)

xo(1) siny(¢)
Sampling the quadrature components is performed next. The number of sam-
ples, N, must be chosen so that foldover (ambiguity) in the spectrum is

avoided. For this purpose, the sampling frequency, f; (based on the Nyquist
sampling rate), must be

f,=22B (7.19)
and the sampling interval is

At<1/2B (7.20)

Using Eq. (7.17) it can be shown that (the proof is left as an exercise) the fre-
quency resolution of the FFT is

Af = 1/7 (7.21)
The minimum required number of samples is

’

1 T

N = Af_At = A_t (7.22)
Equating Egs. (7.20) and (7.22) yields
N>2Bt’ (7.23)

Consequently, a total of 2BT' real samples, or BT’ complex samples, is suf-
ficient to completely describe an LFM waveform of duration T' and bandwidth
B. For example, an LFM signal of duration T =20 ps and bandwidth
B =5 MHZz requires 200 real samples to determine the input signal (100
samples for the I-channel and 100 samples for the Q-channel).

For better implementation of the FFT N is extended by zero padding, to the
next power of two. Thus, the total number of samples, for some positive inte-
ger m, is

Nppp = 2"2N (7.24)

The final steps of the FCP processing include: (1) taking the FFT of the sam-
pled sequence; (2) multiplying the frequency domain sequence of the signal
with the FFT of the matched filter impulse response; and (3) performing the
inverse FFT of the composite frequency domain sequence in order to generate
the time domain compressed pulse (HRR profile). Of course, weighting,
antenna gain, and range attenuation compensation must also be performed.
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Assume that / targets at ranges R, R, , and so forth are within the receive
window. From superposition, the phase of the down converted signal is

1
y(t) = ZZn(—fori + %(z - t,-)z) (7.25)
i=1

The times {1, = (2R,/c); i =1,2,...,1} represent the two-way time delays,
where T, coincides with the start of the receive window.

MATLAB Function “matched_filter.m”

The function “matched_filter.m” performs fast convolution processing. It is
given in Listing 7.1 in Section 7.5. The syntax is as follows:

[y] = matched_filter(nscat, taup, f0, b, rmin, rrec, scat_range, scat_rcs, win)

where
Symbol Description Units Status
nscat number of point scatterers within the none input
received window
rmin minimum range of receive window Km input
rrec receive window size m input
taup uncompressed pulse width seconds input
10 chirp start frequency Hz input
b chirp bandwidth Hz input
scat_range vector of scatterers range Km input
scat_rsc vector of scatterers RCS m? input
win 0 = no window none input
1 = Hamming
2 = Kaiser with parameter pi
3 = Chebychev - sidelobes at -60dB
y compressed output volts output

The user can access this function either by a MATLAB function call, or by exe-
cuting the MATLAB program “matched_filter_driverm” which utilizes MAT-
LAB based GUI. The outputs of this function are the complex array y and
plots of the uncompressed and compressed signal versus relative. This function
utilizes the function “power_integer_2.m” which implements Eq. (7.24):
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function n = power_integer_2 (x)

m=0.;
forj=1:30
m=m+1.;
delta = x - 2."\m;
if(delta < 0.)
n=m
return
else
end
end

As an example, consider the case where

nscat 2 b 16 MHz
rmin 150 Km scat_range rmin in Km + {0, 50} meters
rrec 200 m scat_rsc {1, 1) m?
taup 0.005 ms win 2 (Kaiser)
fo 14 MHz

Note that the compressed pulsed range resolution, without using a window,
is AR = 9.3m. Figs. 7.5 and 7.6, respectively, show the uncompressed and

compressed echo signal corresponding to this example.

0.5

Uncompressed echo
°
T

-0.5 H

2 2.5 3
Relative delay - seconds

Figure 7.5. Uncompressed echo signal. Scatterers are unresolved.
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Figure 7.6. Compressed echo signal. Scatterers are resolved.

7.3.2. Stretch Processor

Stretch processing, also known as “active correlation,” is normally used to
process extremely high bandwidth LFM waveforms. This processing technique
consists of the following steps: First, the radar returns are mixed with a replica
(reference signal) of the transmitted waveform. This is followed by Low Pass
Filtering (LPF) and coherent detection. Next, Analog to Digital (A/D) conver-
sion is performed; and finally, a bank of Narrow Band Filters (NBFs) is used in
order to extract the tones that are proportional to target range, since stretch pro-
cessing effectively converts time delay into frequency. All returns from the
same range bin produce the same constant frequency. Fig. 7.7 shows a block
diagram for a stretch processing receiver. The reference signal is an LFM
waveform that has the same LFM slope as the transmitted LFM signal. It exists
over the duration of the radar “receive-window,” which is computed from the
difference between the radar maximum and minimum range. Denote the start
frequency of the reference chirp as f, .

Consider the case when the radar receives returns from a few close (in time
or range) targets, as illustrated in Fig. 7.7. Mixing with the reference signal and
performing low pass filtering are effectively equivalent to subtracting the
return frequency chirp from the reference signal. Thus, the LPF output consists
of constant tones corresponding to the targets’ positions. The normalized trans-
mitted signal can be expressed by
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Figure 7.7. Stretch processing block diagram.
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s,(t) = cos(2n(f0t + ;—Ltz)) 0<r<t’ (7.26)

where L = B/’ is the LFM coefficient and f, is the chirp start frequency.
Assume a point scatterer at range R . The received signal by the radar is

s.(1) = acos[Zn(fo(t—Ar)+%(r—Ar)2)J (7.27)

where a is proportional to target RCS, antenna gain, and range attenuation.
The time delay AT is

At = 2R/c (7.28)

The reference signal is

Syef(1) = 2cos(2n(f,z + %zz)) 0<<T,, (7.29)
The received window in seconds is

2(R,,.—R,,;
Trec = ( maxc mm) — CVBC (7.30)

It is customary to let f, = f;,. The output of the mixer is made of the product of
the received and reference signals. After low pass filtering the signal is

so(1) = acos(2mfytAT + 2TUATE — nu(Ar)z) (7.31)

Substituting Eq. (7.28) into (7.31) and collecting terms yield

_ 4nB 2R _27nBR
so(t) = a cos|:( o )t+ - (21‘ch o )} (7.32)

and since T’ » 2R/ ¢, Eq. (7.32) is approximated by

4nBR 4mR
~ — |t+ — 7.
so(t) =a cos[( = )t c fo} (7.33)
The instantaneous frequency is
1 d(4xBR . 4¢nR 2BR
o= =2 +—f | = = 7.34
flnst zndl( C’C’ t ¢ f()) CT’ (7.34)

which clearly indicates that target range is proportional to the instantaneous
frequency. Therefore, proper sampling of the LPF output and taking the FFT of
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the sampled sequence lead to the following conclusion: a peak at some fre-
quency f; indicates presence of a target at range

R, = ficv'/2B (7.35)

Assume [ close targets at ranges R, , R,, and so forth (R, <R, < ... <R;).
From superposition, the total signal is

I

s,(1) = Z a,(1)cos [Zn(fo(t —-T,)+ %(z - ’ci)zﬂ (7.36)
i=1
where {a,(7); i=1,2,...,1} are proportional to the targets’ cross sections,
antenna gain, and range. The times {7; = (2R,/¢); i=1,2, ..., I} represent
the two-way time delays, where T, coincides with the start of the receive win-
dow. Using Eq. (7.32) the overall signal at the output of the LPF can then be
described by

1

s,(1) = Zaicos[(“tlj,R) ZR( fy— 21BR, )J (7.37)

ct’

i=1
And hence, target returns appear at constant frequency tones that can be
resolved using the FFT. Consequently, determining the proper sampling rate
and FFT size is very critical. The rest of this section presents a methodology
for computing the proper FFT parameters required for stretch processing.

Assume a radar system using a stretch processor receiver. The pulse width is
7’ and the chirp bandwidth is B. Since stretch processing is normally used in
extreme bandwidth cases (i.e., very large B), the receive window over which
radar returns will be processed is typically limited to few meters to possibly
less than 100 meters. The compressed pulse range resolution is computed from
Eq. (7.8). Declare the FFT size by N and its frequency resolution by Af. The
frequency resolution can be computed using the following procedure: consider
two adjacent point scatterers at range R; and R,. The minimum frequency
separation, Af, between those scatterers so that they are resolved can be com-
puted from Eq. (7.34). More precisely,

2B 2B
Af = fh-fi = C_‘E'(RZ_RI == (7.38)
Substituting Eq. (7.8) into Eq. (7.38) yields
_2B ¢ _1
Af = et 2B T (7-39)
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The maximum resolvable frequency by the FFT is limited to the region
*NAf/2 . Thus, the maximum resolvable frequency is

]V_Af> 2’B(mec_Rmin) 2BRrec

= 7.40
2 ct et (7-40)

Using Egs. (7.30) and (7.39) into Eq. (7.40) and collecting terms yield
N>2BT,,, (7.41)

For better implementation of the FFT, choose an FFT of size

Nppp2N = 2" (7.42)

m is a nonzero positive integer. The sampling interval is then given by
Af = I =T = ! (7.43)

TNppr P AfNppr

MATLAB Function “stretch.m”

The function “stretch.m” presents a digital implementation of stretch pro-
cessing. It is given in Listing 7.2 in Section 7.5. The syntax is as follows:

[y] = stretch (nscat, taup, f0, b, rmin, rrec, scat_range, scat_rcs, win)

where
Symbol Description Units Status
nscat number of point scatterers within the none input
received window
rmin minimum range of receive window Km input
rrec range receive window m input
taup uncompressed pulse width seconds input
f0 chirp start frequency Hz input
b chirp bandwidth Hz input
scat_range vector of scatterers range Km input
scat_rsc vector of scatterers RCS m? input
win 0 = no window none input
1 = Hamming
2 = Kaiser with parameter pi
3 = Chebychev - sidelobes at -60dB
y compressed output volts output
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The user can access this function either by a MATLAB function call or by exe-
cuting the MATLAB program “stretch_driverm” which utilizes MATLAB
based GUI. The outputs of this function are the complex array y and plots of
the uncompressed and compressed echo signal versus time. As an example,
consider the case where

nscat 3
rmin 150 Km
rrec 30m
taup 10 ms
fo 5.6 GHz
b 1 GHz
scat_range rmin in Km+ {1.5, 7.5, 15.5} m
scat_rsc {1, 1,2} m?
win 2 (Kaiser)

Note that the compressed pulse range resolution, without using a window, is
AR = 0.15¢m . Figs. 7.8 and 7.9, respectively, show the uncompressed and

compressed echo signals corresponding to this example.

Uncompressed echo
)

4 I

0 0.001

0.002 0.003

0.004 0.005 0.006 0.007

Relative delay - seconds

0.008 0.009 0.01

Figure 7.8. Uncompressed echo signal. Three targets are unresolved.
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Figure 7.9. Compressed echo signal. Three targets are resolved.

7.3.3. Distortion Due to Target Velocity

Up to this point, we have analyzed pulse compression with no regards to tar-
get velocity. In fact, all analyses provided assumed stationary targets. Uncom-
pensated target radial velocity, or equivalently Doppler shift, degrades the
quality of the HRR profile generated by pulse compression. In Chapter 5, the
effects of radial velocity on SFW were analyzed; similar distortion in the HRR
profile is also present with LFM waveforms when target radial velocity is not
compensated for.

The two effects of target radial velocity (Doppler frequency) on the radar
received pulse were developed in Chapter 1. When the target radial velocity is
not zero, the received pulse width is expanded (or compressed) by the time
dilation factor. Additionally, the received pulse center frequency is shifted by
the amount of Doppler frequency. When these effects are not compensated for,
the pulse compression processor output is distorted. This is illustrated in Fig.
7.10. Fig. 7.10a shows a typical output of the pulse compression processor
with no distortion. Alternatively, Figs. 7.10b, 7.10c, and 7.10d show the output
of the pulse compression processor when 5% shift of the chirp center fre-
quency and 10% time dilation are present.
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Figure 7.10c. Mismatched compressed pulse; 10% time dilation.
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Figure 7.10d. Mismatched compressed pulse; 10% time dilation and 5%
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Correction for the distortion caused by the target radial velocity can be over-
come by using the following approach. Over a period of few pulses, the radar
data processor estimates the radial velocity of the target under track. Then, the
chirp slope and pulse width of the next transmitted pulse are changed to
account for the estimated Doppler frequency and time dilation.

7.3.4. Range Doppler Coupling

Plots and characteristics of the ambiguity function for an LFM waveform
were presented in Chapter 6. However, the distinctive property of range Dop-
pler coupling associated with LFM was not presented. Range Doppler coupling
is a phrase used to describe the shift in the delay/range response of an LFM
ambiguity function due to the presence of a Doppler shift. The nature of range
Doppler coupling can be better understood by analyzing the LFM ambiguity
function. An expression for an LFM ambiguity function was developed in
Chapter 6, and is repeated here as Eq. (7.44):

. . )2
!X(T;fd)lz _ (1_%' sm(nr(ut+fd)(1| r)) e o
m‘(m+fd)( —%')

For this purpose, consider the sketch of an LFM ambiguity function shown in
Fig. 7.11.

ambiguity
Io
y T
b
N, WV =
M MNMN_
~
/ =

fp =-ut

Figure 7.11. Illustration of range Doppler coupling for an LFM pulse.
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The ambiguity surface extends from —t” to T’ in range and from —eco to oo
in Doppler. The response has a maximum at the point (7, f,) = (0,0). Pro-
files parallel to the Doppler axis have maxima above the line f;, = —ut which
passes through the origin. The presence of radial velocity forces the peak of the
ambiguity surface to a point that has a peak value smaller than the maximum
that occurs at the origin. However, as long as the shift is less than the line
fp = 1/1, the ambiguity function response exerts acceptable reduction in
peak values, as illustrated in Fig. 7.11. This is the reason why some times LFM
waveforms are called Doppler invariant.

7.4. Digital Pulse Compression

In this section we will briefly discuss three digital pulse compression tech-
niques. They are frequency codes, binary phase codes, and poly-phase codes.
Costas codes, Barker Codes, and Frank codes will be presented to illustrate,
respectively, frequency, binary phase, and poly-phase coding. We will deter-
mine the pulse compression goodness of a code, based on its autocorrelation
function since in the absence of noise, the output of the matched filter is pro-
portional to the code autocorrelation. Given the autocorrelation function of a
certain code, the main lobe width (compressed pulse width) and the side lobe
levels are the two factors that need to be considered in order to evaluate the
code’s pulse compression characteristics.

7.4.1. Frequency Coding (Costas Codes)

Construction of Costas codes can be understood from the construction pro-
cess of Stepped Frequency Waveforms (SFW) described in Chapter 5. In SFW,
a relatively long pulse of length t° is divided into N subpulses, each of width
T, (1’ = N7,). Each group of N subpulses is called a burst. Within each burst
the frequency is increased by Af from one subpulse to the next. The overall
burst bandwidth is NAf. More precisely,

T, =1/N (7.45)

and the frequency for the ith subpulse is

fi = o+ iAf ii=1,N (7.46)

where f, is a constant frequency and f, » Af. It follows that the time-band-
width product of this waveform is

At = N (7.47)
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Costas signals (or codes) are similar to SFW, except that the frequencies for
the subpulses are selected in a random fashion, according to some predeter-
mined rule or logic. For this purpose, consider the N X N matrix shown in Fig.
7.12. In this case, the rows are indexed from i = 1, 2, ..., N and the columns
are indexed from j = 0,1,2,...,(N—1). The rows are used to denote the
subpulses and the columns are used to denote the frequency. A “dot” indicates
the frequency value assigned to the associated subpulse. In this fashion, Fig.
7.12a shows the frequency assignment associated with a SFW. Alternatively,
the frequency assignments in Fig. 7.12b are chosen randomly. For a matrix of
size N X N, there are a total of N! possible ways of assigning the “dots” (i.e.,
N! possible codes).

The sequences of “dots” assignment for which the corresponding ambiguity
function approaches an ideal or a “thumbtack” response are called Costas
codes. A near thumbtack response was obtained by Costas' by using the fol-
lowing logic: only one frequency per time slot (row) and per frequency slot
(column). Therefore, for an N X N matrix the number of possible Costas codes
is drastically less than N!. For example, there are N, = 4 possible Costas
codes for N = 3, and N, = 40 possible codes for N = 5. It can be shown
that the code density, defined as the ratio N./N!, significantly gets smaller as
N becomes larger.

01 23456 789 0123456 789

1 23456 78910
)

1 23456 78910
.

(a) (b)

Figure 7.12. Frequency assignment for a burst of N subpulses. (a) SFW (stepped
LFM); (b) Costas code of length Nc = 10.

1. Costas, J. P, A study of a Class of Detection Waveforms Having Nearly Ideal
Range-Doppler Ambiguity Properties, Proc. IEEE 72, 1984, pp. 996-1009.
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There are numerous analytical ways to generate Costas codes. In this section
we will describe two of these methods. First, let ¢ be an odd prime number,
and choose the number of subpulses as

N=g-1 (7.48)

Define v as the primitive root of g . A primitive root of ¢ (an odd prime num-
ber) is defined as 'y such that the powers v, Y, v, ..., yqfl modulo ¢ generate
every integer from 1 to g — 1.

In the first method, for an N X N matrix, label the rows and columns, respec-
tively, as

i

J

0,1,2,....(q—2)

(7.49)
1,2,3,...,(g-1)

Place a dot in the location (i, ) corresponding to the frequency f; (from Eq.
(7.46)) if and only if

~

= (y)j (modulo q) (7.50)

In the next method, Costas code is first obtained from the logic described
above; then by deleting the first row and first column from the matrix a new
code is generated. This method produces a Costas code of length N = g—2.

Define the normalized complex envelope of the Costas signal as
N-1

1
INT, Z
1=0

s(t) = s;(t=17)) (7.51)

2 0<t<
5(1) = (exp(] ft) <t<T )

(7.52)
0 elsewhere
Costas showed that the output of the matched filter is
N-1 N-1
1 .
X(Tfp) = 5 ), PRI T Pt fp) + Y @i (T= (1= )T f) (7.59)
=0 g=0
q#l
T \sino a
(T, fp) = (t, - |1:_|)T exp(—jB - j2nf,1) , <ty (7.54)
1
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o

n(fy—fy = fp) (T = It (7.55)

B = n(fi—f,—fo)(t; +11) (7.56)

Three-dimensional plots for the ambiguity function of Costas signals show
the near thumbtack response of the ambiguity function. All sidelobes, except
for few around the origin, have amplitude 1/N . Few sidelobes close to the ori-
gin have amplitude 2/N, which is typical of Costas codes. The compression
ratio of a Costas code is approximately N .

7.4.2. Binary Phase Codes

In this case, a relatively long pulse of width t' is divided into N smaller
pulses; each is of width AT = T'/N. Then, the phase of each sub-pulse is ran-
domly chosen as either O or ® radians relative to some CW reference signal. It
is customary to characterize a sub-pulse that has 0 phase (amplitude of +1
Volt) as either “1” or “+.” Alternatively, a sub-pulse with phase equal to «
(amplitude of -1 Volt) is characterized by either “0” or “-.” The compression
ratio associated with binary phase codes is equal to & = T'/At, and the peak
value is N times larger than that of the long pulse. The goodness of a com-
pressed binary phase code waveform depends heavily on the random sequence
of the phase for the individual sub-pulses.

One family of binary phase codes that produce compressed waveforms with
constant side lobe levels equal to unity is the Barker code. Fig. 7.13 illustrates
this concept for a Barker code of length seven. A Barker code of length n is
denoted as B, . There are only seven known Barker codes that share this
unique property; they are listed in Table 7.1. Note that B, and B, have com-
plementary forms that have the same characteristics. Since there are only seven
Barker codes, they are not used when radar security is an issue.

T

Figure 7.13. Binary phase code of length 7.
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TABLE 7.1. Barker codes.

Code Code Side lode
symbol length Code elements reduction (dB)
B, 2 +- 6.0
++
B, 3 ++- 9.5
B, 4 ++-+ 12.0
+++-
Bs 5 +4+4+-+ 14.0
B, 7 +44--- 16.9
By, 11 4+t 20.8
By 13 ++++t--t-+-+ 22.3

In general, the autocorrelation function (which is an approximation for the
matched filter output) for a B, Barker code will be 2NAT wide. The main
lobe is 2AT wide; the peak value is equal to N. There are (N—1)/2 side
lobes on either side of the main lobe; this is illustrated in Fig. 7.14 for a B,;.
Notice that the main lobe is equal to 13, while all side lobes are unity.

The most side lobe reduction offered by a Barker code is —22.3dB, which
may not be sufficient for the desired radar application. However, Barker codes
can be combined to generate much longer codes. In this case, a B,, code can be
used within a B, code (m within n) to generate a code of length mn . The
compression ratio for the combined B,,, code is equal to mn . As an example,
a combined Bs, is given by

By, = {11101, 11101, 00010, 11101} (7.57)

and is illustrated in Fig. 7.15. Unfortunately, the side lobes of a combined
Barker code autocorrelation function are no longer equal to unity.

Some side lobes of a Barker code autocorrelation function can be reduced to
zero if the matched filter is followed by a linear transversal filter with impulse
response given by

N

h(r) = z B.d(1 - 2kAT) (7.58)

k=-N
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Figure 7.14. Barker code of length 13, and its corresponding
autocorrelation function.
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Figure 7.15. A combined B, Barker code.

© 2000 by Chapman & Hall/CRC



where N is the filter’s order, the coefficients B, (B, = B_,) are to be deter-
mined, 8( - ) is the delta function, and At is the Barker code sub-pulse
width. A filter of order N produces N zero side lobes on either side of the
main lobe. The main lobe amplitude and width do not change. This is illus-
trated in Fig. 7.16.

In order to illustrate this approach further, consider the case where the input
to the matched filter is B, , and assume N = 4. The autocorrelation for a B,
code is

0, = {-1,0,-1,0,-1,0,-1,0,-1,0, 11, (7.59)
O’_l’ 0’_1’ 0’_1’ O’_l’ 0’_1}

The output of the transversal filter is the discrete convolution between its
impulse response and the sequence ¢,. At this point we need to compute the
coefficients 3, that guarantee the desired filter output (i.e., unchanged main
lobe and four zero side lobe levels). Performing the discrete convolution as
defined in Eq. (7.58), and collecting equal terms (3, = B_,) yield the follow-
ing set of five linearly independent equations:

11 -2 -2-222||Po| 11
~110 -2 =2 —1{|Bs 0
12102 -1||By] = |0 (7.60)
1211 -if(gy] |0
~1-1-1-1uf{g| (o

The solution of Eq. (7.60) is left as an exercise. Note that by setting the first
equation equal to 11 and all other equations to O and then solving for [,
guarantees that the main peak remains unchanged, and that the next four side
lobes are zeros. So far we have assumed that coded pulses have rectangular
shapes. Using other pulses of other shapes, such as Gaussian, may produce bet-
ter side lobe reduction and a larger compression ratio.

Bn matched MMMA«MMA transversal »;A—A-
E— . >
filter; order N

filter

Figure 7.16. A linear transversal filter of order N can be used to
produce N zero side lobes in the autocorrelation
function. In this figure, N = 4.
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7.4.3. Frank Codes

Codes that use any harmonically related phases based on a certain funda-
mental phase increment are called poly-phase codes. We will demonstrate this
coding technique using Frank codes. In this case, a single pulse of width T' is
divided into N equal groups; each group is subsequently divided into other N
sub-pulses each of width At. Therefore, the total number of sub-pulses within
each pulse is N , and the compression ratio is & = N As before, the phase
within each sub-pulse is held constant with respect to some CW reference sig-
nal.

A Frank code of N sub-pulses is referred to as an N-phase Frank code. The
first step in computing a Frank code is to divide 360° by N, and define the
result as the fundamental phase increment A¢ . More precisely,

_360°
N

A (7.61)
Note that the size of the fundamental phase increment decreases as the number
of groups is increased, and because of phase stability, this may degrade the per-
formance of very long Frank codes. For N-phase Frank code the phase of each
sub-pulse is computed from

0 0 0 0 .. 0
0 1 2 3 N-1
() 4 6 ...2(N-1)

A@ (7.62)

0 (N=1)2(N=1) 3(N=1) ... (N=1)
where each row represents a group, and a column represents the sub-pulses for

that group. For example, a 4-phase Frank code has N = 4, and the fundamen-
tal phase increment is A@ = (360°/4) = 90°. It follows that

0 0 0 0 1111
0 90° 180°270° |_,f 1 j -1 —j (7.63)
0 180° 0 180° 1-11 -1
0 270° 180° 90° 1 - -1
Therefore, a Frank code of 16 elements is given by
Fe={11111j-1-51-11-11- -1} (7.64)
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The phase increments within each row represent a stepwise approximation
of an up-chirp LFM waveform. The phase increments for subsequent rows
increase linearly versus time. Thus, the corresponding LFM chirp slopes also
increase linearly for subsequent rows. This is illustrated in Fig. 7.17, for F 4.

phase increment
A
3A@ 4
20017 200|/
Aol
00000 o[/ time
= 16AT g

Figure 7.17. Stepwise approximation of an up-chirp waveform,
using a Frank code of 16 elements.

7.4.4. Pseudo-Random (PRN) Codes

Pseudo-random (PRN) codes are also known as Maximal Length Sequences
(MLS) codes. These codes are called pseudo-random because the statistics
associated with their occurrence is similar to that associated with the coin-toss
sequences. Maximum length sequences are periodic with period L and the
code values take on two binary values (+1 and -1). The MLS correlation func-
tion 18

n=0,+L +2L, ... }
(7.65)

L
o) = {—l elsewhere

Fig. 7.18 shows a typical sketch for an MLS autocorrelation function. Clearly
these codes have the advantage that the compression ratio becomes very large
as the period is increased. Additionally, adjacent peaks (grating lobes) become
farther apart.

Maximum length sequences exist for all integer values m, with a period
equal to 2" — 1. They can be generated using shift register circuits with the
proper feedback connections, where the sum is a modulo-2 operation. This is
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illustrated in Fig. 7.19 for m = 4 (i.e., L = 15). Note that the circuit shown
in Fig. 7.19 is not the only one that can produce this code.

In radar applications, long codes are very desirable. However, having very
long codes presents many possibilities for the feedback connections through
the modulo-2 adder. For example, for m = 80, the period is L = 2% ,
which is very huge and may take years to produce the corresponding code.
Therefore, there is a need for a more systematic method for producing MLS
codes.

In practice, typical MLS codes are produced by using the primitive polyno-
mials with the proper degree that corresponds to the code, and the feedback
connections are made according to the chosen polynomial, as illustrated in Fig.
7.19 for m = 4. In this example the primitive polynomial is X +x+1.0f
course the initial loading for the registers must be different from all zeros.
More details on primitive polynomials can be found in many sited references.

g [ o] o

Figure 7.18. Typical autocorrelation of an MLS code of length L.

<« delay |- delay
output

delay delay |-

A

A

z

Figure 7.19. Circuit for generating an MLS sequence of length L = 15.

The primitive polynomial is x4 +x+1.
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7.5. MATLAB Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters.

Listing 7.1. MATLAB Function “matched_filter.m”

function [y] = matched_filter(nscat, taup, f0, b, rmin, rrec, scat_range,
scat_rcs, winid)
%
eps = 1.0e-16;
htau = taup / 2.;
c=3.e8;
n = fix(2. * taup * b);
m = power_integer_2(n);
nfft = 2."m;
x(nscat, 1:nfft) = 0.;
y(1:nfft) = 0.;
replica(1:nfft) = 0.;
ifl winid == 0.)
win(1:nfft) = 1.;
win =win';
else
iffwinid == 1.)
win = hamming(nfft);
else
if{ winid == 2.)
win = kaiser(nfft,pi);
else
if(winid == 3.)
win = chebwin(nfft,60);
end
end
end
end
deltar = c/2./b;
max_rrec = deltar * nfft/ 2.;
maxr = max(scat_range) - rmin;
if(rrec > max_rrec | maxr >= rrec )
'Error. Receive window is too large; or scatterers fall outside window'
break
end
trec = 2. *rrec/c;
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deltat = taup / nfft;

t = 0: deltat:taup-eps;

uplimit = max(size(t));

replica(l:uplimit) = exp(i * 2.%* pi * (.5 * (b/taup) .* t."2));

Jfigure(3)

subplot(2,1,1)

plot(real(replica))

title('Matched filter time domain response’)

subplot(2,1,2)

plot(fftshift(abs(fft(replica))));

title('Matched filter frequency domain response’)

forj = 1:1:nscat
t_tgt = 2. * (scat_range(j) - rmin) / ¢ +htau;
x(j, 1:uplimit) = scat_rcs(j) . * exp(i * 2.* pi * ...

(.5 * (b/taup) . * (t+1t_tgt)."2));

y=y+x(:);

end

figure(1)

plot(t,real(y),’k’)

xlabel ('Relative delay - seconds’)

ylabel ('Uncompressed echo’)

title ('Zero delay coincide with minimum range')

rfft = fft(replica,nfft);

Wit = ffu(y.nift);

out= abs(ifft((rfft .* conj(yfft)) .* win")) ./ (nfft);

Jfigure(2)

time = -htau:deltat:htau-eps;

plot(time,out,’k’)

xlabel ('Relative delay - seconds’)

ylabel ('Compressed echo')

title ('Zero delay coincide with minimum range')

grid

Listing 7.2. MATLAB Function “stretch.m”

function [y] = stretch(nscat,taup,f0,b,rmin,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;

htau = taup / 2.;

c=3e8;

trec = 2. *rrec/c;

n = fix(2. * trec * b);

m = power_integer_2(n);

nfft = 2."m;

x(nscat, 1:nfft) = 0.;
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y(1:nfft) = 0.;

ifft winid == 0.)
win(1:nfft) = 1.;
win =win';

else
iffwinid == 1.)

win = hamming(nfft);
else

if{ winid == 2.)

win = kaiser(nfft,pi);
else
iffwinid == 3.)
win = chebwin(nfft,60),
end

end
end

end

deltar =c/2./b;

max_rrec = deltar * nfft/ 2.;

maxr = max(scat_range) - rmin;

if(rrec > max_rrec | maxr >= rrec )
'Error. Receive window is too large; or scatterers fall outside window'
break

end

deltat = taup / nfft;

t = 0: deltat:taup-eps;

uplimit = max(size(t));

forj = 1:1:nscat
psil = 4. * pi * scat_range(j) *f0/c - ...

4. *pi * b * scat_range(j) * scat_range(j)/ c / ¢/ taup;
psi2 = (4. *pi * b * scat_range(j) / ¢ / taup) . * t;
x(j, 1 :uplimit) = scat_rcs(j) . * exp(i * psil + i.* psi2);
y=y+x(,:);

end

Jfigure(1)

plot(t,real(y),’k’)

xlabel ('Relative delay - seconds’)
ylabel ('Uncompressed echo’)
title ('Zero delay coincide with minimum range')
ywin =y .*win';

Wit = fit(y.nfft) ./ nfft;

out= fftshift(abs(yfft));

figure(2)

time = -htau:deltat:htau-eps;
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plot(time,out,’k’)

xlabel ('Relative delay - seconds’)

ylabel ('Compressed echo')

title ('Zero delay coincide with minimum range')
grid

Listing 7.3. MATLAB Program “fig7_10.m’

clear all

eps = 1.5e-5;

t=0:0.001:.5;

y = chirp(t,0,.25,20);

figure(1)

plot(t,y);

it = fft(»512) ;

ycomp = fftshift(abs(ifft(yfft .* conj(yfft)));
maxval = max (ycomp);

ycomp = eps + ycomp ./ maxval;
figure(1)

del =.5/512.;

tt = 0:del:.5-eps;

plot (tt,ycomp,'k’)

xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid

Yochange center frequency

vl = chirp (1,0,.25,21);

yifft = ffu(y1,512);

ylcomp = ffishift(abs(iffi(y1fft . * conj(yfft))));
maxval = max (ylcomp);

yvlcomp = eps + ylcomp ./ maxval;
figure(2)

plot (tt,ylcomp,'k’)

xlabel ('Relative delay - seconds’);
ylabel('Normalized compressed pulse')
grid

9ochange pulse width

t = 0:0.001:.45;

y2 = chirp (1,0,.225,20);

y2fft = ffu(y2,512);

y2comp = fftshift(abs(iffi(y2fft . * conj(yfft))));
maxval = max (y2comp);

y2comp = eps + y2comp ./ maxval;
figure(3)
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plot (tt,y2comp,'k’)

xlabel ('Relative delay - seconds’);
vlabel('Normalized compressed pulse')
grid

Problems

7.1. Starting with Eq. (7.17), prove Eq. (7.21).
7 .2 . The smallest positive primitive rootof ¢ = 11 isy = 2;for N = 10
generate the corresponding Costas matrix.

7.3 . Develop a MATLAB program to plot the ambiguity function associ-
ated with Costas codes. Use Egs. (7.53) through (7.56). Your program should
generate 3-D plots, contour plots, and zero delay/Doppler cuts. Verify the side
lobe behaviour and the compression ratio of Costas codes.

7.4 . Consider the 7-bit Barker code, designated by the sequence x(n). (a)
Compute and plot the autocorrelation of this code. (b) A radar uses binary
phase coded pulses of the form s(z) = r(f)cos(2mfyt), where
r(t) = x(0), for O<t<At, r(t)=x(n), for nAt<t<(n+1)Ar, and
r(t) = 0, for t>7At. Assume Ar = 0.5us. (a) Give an expression for the
autocorrelation of the signal s(¢), and for the output of the matched filter when

the input is s(¢ — 10A¢) ; (b) compute the time bandwidth product, the increase
in the peak SNR, and the compression ratio.

7.5. (a) Perform the discrete convolution between the sequence ¢,

defined in Eq. (7.59), and the transversal filter impulse response (i.e., derive
Eq. (7.60). (b) Solve Eq. (7.60), and sketch the corresponding transversal filter
output.

7.6. Repeat the previous problem for N = 13 and k = 6. Use Barker
code of length 13.

7.7 . Develop a Barker code of length 35. Consider both Bs and Bs; .

7 .8 . Write a computer program to calculate the discrete correlation between
any two finite length sequences. Verify your code by comparing your results to
the output of the MATLAB function “xcorr”.

7.9 . Compute the discrete autocorrelation for an F |4 Frank code.

7.10. Generate a Frank code of length 8, Fy.
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Chapter 8 Radar Wave Propagation

In the earlier chapters, radar systems were analyzed with the assumption that
the radar waves which traveled to and from targets are in free space. Signal
interference due to the earth and its atmosphere was not considered. Despite
the fact that “free space analysis” may be adequate to provide a general under-
standing of radar systems, it is only an approximation. In order to accurately
predict radar performance, we must modify free space analysis to include the
effects of the earth and its atmosphere. This modification should account for
ground reflections from the surface of the earth, diffraction of electromagnetic
waves, bending or refraction of radar waves due to the earth atmosphere, and
attenuation or absorption of radar energy by the gases constituting the atmo-
sphere.

8.1. Earth Atmosphere

The earth atmosphere is compromised of several layers, as illustrated in Fig.
8.1. The first layer which extends in altitude to about 20 Km is known as the
troposphere. Electromagnetic waves refract (bend downward) as they travel in
the troposphere. The troposphere refractive effect is related to its dielectric
constant which is a function of the pressure, temperature, water vapor, and gas-
eous content. Additionally, due to gases and water vapor in the atmosphere
radar energy suffers a loss. This loss is known as the atmospheric attenuation.
Atmospheric attenuation increases significantly in the presence of rain, fog,
dust, and clouds.

The region above the troposphere (altitude from 20 to 50 Km) behaves like
free space, and thus little refraction occurs in this region. This region is known
as the interference zone.
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Figure 8.1. Earth atmosphere geometry.

The ionosphere extends from about 50 Km to about 600 Km. It has very low
gas density compared to the troposphere. It contains a significant amount of
ionized free electrons. The ionization is primarily caused by the sun’s ultravio-
let and X-rays. This presence of free electrons in the ionosphere affects electro-
magnetic wave propagation in different ways. These effects include refraction,
absorption, noise emission, and polarization rotation. The degree of degrada-
tion depends heavily on the frequency of the incident waves. For example,
frequencies lower than about 4 to 6 MHz are completely reflected from the
lower region of the ionosphere. Frequencies higher than 30 MHz may pene-
trate the ionosphere with some level of attenuation. In general, as the fre-
quency is increased the ionosphere’s effects become less prominent.

The region below the horizon, close to the earth’s surface, is called the dif-
fraction region. Diffraction is a term used to describe the bending of radar
waves around physical objects. Two types of diffraction are common. They are
knife edge and cylinder edge diffraction.

8.2. Refraction

In free space, electromagnetic waves travel in straight lines. However, in the
presence of the earth atmosphere, they bend (refract). Refraction is a term used
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to describe the deviation of radar wave propagation from straight lines. The
deviation from straight line propagation is caused by the variation of the index
of refraction. The index of refraction is defined as

n=c/v (8.1)

where c¢ is the velocity of electromagnetic waves in free space and v is the
wave velocity in the medium. Close to the earth’s surface the index of refrac-
tion is almost unity; however, with increasing altitude the index of refraction
decreases gradually. The discussion presented in this chapter assumes a well
mixed atmosphere, where the index of refraction decreases in a smooth mono-
tonic fashion with height. The rate of change of the earth’s index of refraction
n with altitude % is normally referred to as the refractivity gradient, dn/dh .
As a result of the negative rate of change in dn/dh, electromagnetic waves
travel at slightly higher velocities in the upper troposphere than the lower part.
As a result of this, waves traveling horizontally in the troposphere gradually
bend downward. In general, since the rate of change in the refractivity index is
very slight, waves do not curve downward appreciably unless they travel very
long distances through the troposphere.

Refraction affects radar waves in two different ways depending on height.
For targets that have altitudes, typically above 100 meters, the effect of refrac-
tion is illustrated in Fig. 8.2. In this case, refraction imposes limitations on the
radar’s capability to measure target position. Refraction introduces an error in
measuring the elevation angle.

-
3

<~} apparent
-

refracted / .
,"  target location
radar wave ,

/
/1
N

)/’G true target

1} /4 location
b angular ,/
r error /
va
/
arth’s Surfag, ’
/
/
J to center
of earth

Figure 8.2. Refraction high altitude effect on electromagnetic waves.
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In a well mixed atmosphere, the refractivity gradient close to the earth’s sur-
face is almost constant. However, temperature changes and humidity lapses
close to the earth’s surface may cause serious changes in the refractivity pro-
file. When the refractivity index becomes large enough electromagnetic waves
bend around the curve of the earth. Consequently, the radar’s range to the hori-
zon is extended. This phenomenon is called ducting, and is illustrated in Fig.
8.3. Ducting can be serious over the sea surface, particularly during the hot
summertime.

Using ray tracing (geometric optics) an integral-relating range-to-target
height with the elevation angle as a parameter can be derived and calculated.
However, such computations are complex and numerically intensive. Thus, in
practice, radar systems deal with refraction in two different ways, depending
on height. For altitudes higher than 3 Km, actual target heights are estimated
from look-up tables or from charts of target height versus range for different
elevation angles.

Simpler methods that are valid for altitude less than 3 Km, for calculating
target height, can also be employed. In this case, the most common way of
dealing with refraction is to replace the actual earth with an imaginary earth
whose effective radius is r, = kr,, where r is the actual earth radius, and k
is

1

= T rdnsan 8:2)

When the refractivity gradient is assumed to be constant with altitude and is
equal to 39 x 10”° per meter, then k = 4/3. Using an effective earth radius
r, = (4/3)r, produces what is known as the “four third earth model.” In
general, choosing

r, = ro(1+6.37% 107 (dn/dh)) (8:3)

straight line

radar waves
1

h, refracted
radar waves

€ar, tl] su rfaCe

>

Figure 8.3. Refraction low altitude effect on electromagnetic waves.
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produces a propagation model where waves travel in straight lines. Selecting
the correct value for k& depends heavily on the region’s meteorological condi-
tions. Blake! derives the “height-finding equation” for the 4/3 earth. It is

h = h,+6076Rsin® + 0.6625R"(cos0) (8.4)

where i and £, are in feet and R is nautical miles. All variables are defined in
Fig. 8.4.

The distance to the horizon for a radar located at height 4, can be calculated
with the help of Fig. 8.5. For the right-angle triangle OBA we get

rp = N(rg+ h,)2 - r?) (8.5)

where 7, is the distance to the horizon. By expanding Eq. (8.5) and collecting
terms we can derive the expression for the distance to the horizon as

ri = 2roh, + hf (8.6)
Finally, since r,» h, Eq. (8.6) is approximated by
r,= AJ2roh, (8.7)

and when refraction is accounted for, Eq. (8.7) becomes

r,= J2r,h, (8.8)

Figure 8.4. Measuring target height for 4/3 earth.

1. Blake, L. V., Radar Range-Performance Analysis, Artech House, 1986.
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Figure 8.5. Measuring the distance to the horizon.

8.3. Ground Reflection

When radar waves are reflected from the earth’s surface, they suffer a loss in
amplitude and a change in phase. Three factors that contribute to these changes
that are the overall ground reflection coefficient are the reflection coefficient
for a flat surface, the divergence factor due to earth curvature, and the surface
roughness.

8.3.1. Smooth Surface Reflection Coefficient

The smooth surface reflection coefficient depends on the frequency, on the
surface dielectric coefficient, and on the radar grazing angle. The vertical
polarization and the horizontal polarization reflection coefficients are

. 2
esiny, — /e — (cosy,)

r, = (8.9)
esiny, + JJE— (COS\I/g)2
I - sin\pg—‘/s—(coslpg)2
W= (8.10)

siny, + JJE— (cosqu)2

where V, is the grazing angle (incident angle) and € is the complex dielectric
constant of the surface, and are given by

e =¢—je" (8.11)
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Typical values of €' and €" can be found tabulated in the literature. For exam-
ple, seawater at 28°C has € = 65 and €" = 30.7 at X-band. Fig. 8.6 shows
the corresponding magnitude plots for I, and I',, while Fig. 8.7 shows the
phase plots. The plots shown in those figures show the general typical behavior
of the reflection coefficient.
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Figure 8.6. Reflection coefficient magnitude.
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Figure 8.7. Reflection coefficient phase.
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Note that when y, = 90° we get

T, = I-e _ e-ie _ T, (8.12)
1+ ./ €+ e

while when the grazing angle is very small (y, = 0 ), we have

r,=-1=T, (8.13)

Observation of Figs. 8.6 and 8.7 yield the following conclusions: (1) The
magnitude of the reflection coefficient with horizontal polarization is equal to
unity at very small grazing angles and it decreases monotonically as the angle
is increased. (2) The magnitude of the vertical polarization has a well defined
minimum. The angle that corresponds to this condition is called Brewster’s
polarization angle. For this reason, airborne radars in the look-down mode uti-
lize mainly vertical polarization to significantly reduce the terrain bounce
reflections. (3) For horizontal polarization the phase is almost 7 ; however, for
vertical polarization the phase changes to zero around the Brewster’s angle. (4)
For very small angles (less than 2°) both |I';| and |T',| are nearly one;
ZI'jand £T", are nearly w. Thus, little difference in the propagation of hori-
zontally or vertically polarized waves exists at low grazing angles.

MATLAB Function “ref _coef.m”

The function “ref coef.m” calculates and plots the horizontal and vertical
magnitude and phase response of the reflection coefficient. It is given in Sec-
tion 8.7. The syntax is as follows

[rh,rv,ph,pv] = ref_coef (epsp,epspp)

where

Symbol Description Status
epsp e’ input
epspp e” input
rh vector of ‘Fh’ output
v vector of ‘Fv’ output
ph vector of £, output
vh vector of LT, output
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8.3.2. Divergence

The overall reflection coefficient is also affected by the round earth diver-
gence factor, D. When an electromagnetic wave is incident on a round earth
surface, the reflected wave diverges because of the earth’s curvature. This is
illustrated in Fig. 8.8a. Due to divergence the reflected energy is defocused,
and the radar power density is reduced. The divergence factor can be derived
using geometrical considerations. A widely accepted approximation for the
divergence factor is given by

Dm—1 (8.14)

2r,r
|+ ——2—
A’ rorsiny,

where all variables in Eq. (8.14) are defined in Fig. 8.8b.

flat earth

ry

effective earth

A\ S
et radius is r,

to earth center
(b)

Figure 8.8. Illustration of divergence. (a) Solid line: Ray perimeter for
spherical earth. Dashed line: Ray perimeter for flat earth.
(b) Definition of variables in Eq. (8.14)
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8.3.3. Rough Surface Reflection

In addition to divergence, surface roughness also affects the reflection coef-
ficient. Surface roughness is given by

2nth,,, siny,\?
B rms g
()
S =e (8.15)

r

where h,,, is the rms surface height irregularity. In general, rays reflected
from rough surfaces undergo changes in phase and amplitude, which results in
the diffused (non-coherent) portion of the reflected signal. Combining the

above three factors, we can express the total reflection coefficient I', as
r,=T,,DS, (8.16)

I, ,) is the horizontal or vertical smoothed surface reflection coefficient.

8.4. The Pattern Propagation Factor

In general, the pattern propagation factor is a term used to describe the wave
propagation when free space conditions are not met. This factor is defined sep-
arately for the transmitting and receiving paths. The propagation factor also
accounts for the radar antenna pattern effects. The basic definition of the prop-
agation factor is

F = |E/E| (8.17)

where E is the electric field in the medium and E,, is the free space electric
field.

Near the surface of the earth, multipath propagation effects dominate the for-
mation of the propagation factor. In this section, a general expression for the
propagation factor due to multipath will be developed. In this sense, the propa-
gation factor describes the constructive/destructive interference of the electro-
magnetic waves diffracted from the earth surface (which can be either flat or
curved). The subsequent sections derive the specific forms of the propagation
factor due to flat and curved earth.

Consider the geometry shown in Fig. 8.9. The radar is located at height #, .
The target is at range R, and is located at a height h, . The grazing angle is Wy, .
The radar energy emanating from its antenna will reach the target via two
paths: the “direct path” AB and the “indirect path” ACB. The lengths of the
paths AB and ACB are normally very close to one another and thus, the differ-
ence between the two paths is very small. Denote the direct path as R, the
indirect path as R;, and the difference as AR = R, —R,. It follows that the
phase difference between the two paths is given by
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Figure 8.9. Geometry for multipath propagation.



AD = ZTRAR (8.18)

where A is the radar wavelength.

The indirect signal amplitude arriving at the target is less than the signal
amplitude arriving via the direct path. This is because the antenna gain in the
direction of the indirect path is less than that along the direct path, and because
the signal reflected from the earth surface at point C is modified in amplitude
and phase in accordance to the earth’s reflection coefficient, I'. The earth
reflection coefficient is given by

r=p? (8.19)

where p is less than unity and ¢ describes the phase shift induced on the indi-
rect path signal due to surface roughness.

The direct signal (in volts) arriving at the target via the direct path can be
written as

2n
JOot ITR"{

E,=¢ "¢ (8.20)
where the time harmonic term exp(jw,t) represents the signal’s time depen-
dency, and the exponential term exp(j(2n/A)R,) represents the signal spatial
phase. The indirect signal at the target is

o jOt i
E =pd "¢’ (8.21)
where pexp(j@) is the surface reflection coefficient. Therefore, the overall
signal arriving at the target is

E=E,+E =¢

. 2
e 1 +pe (8.22)

Due to reflections from the earth surface, the overall signal strength is then
modified at the target by the ratio of the signal strength in the presence of earth
to the signal strength at the target in free space. From Eq. (8.17) the modulus of
this ratio is the propagation factor. By using Egs. (8.20) and (8.22) the propa-
gation factor is computed as

(8.23)

which can be rewritten as
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F=|1+p° (8.24)

where o0 = A® + @. Using Euler’s identity (e’u = cosq +jsina ), Eq. (8.24)
can be written as

F = J1+p>+2pcosa (8.25)

It follows that the signal power at the target is modified by the factor F & By
using reciprocity, the signal power at the radar is computed by multiplying the
radar equation by the factor F * In the following two sections we will develop
exact expressions for the propagation factor for flat and curved earth.

The propagation factor for free space and no multipath is F = 1. Denote the
radar detection range in free space (i.e., F = 1) as R. It follows that the

detection range in the presence of the atmosphere and multipath interference is
RF
R = — (8.26)
(L,)

where L, is the two-way atmospheric loss at range R. Atmospheric attenua-
tion will be discussed in a later section. Thus, for the purpose of illustrating the
effect of multipath interference on the propagation factor, assume that L, = 1.
In this case, Eq. (8.26) is modified to

R = R,F (8.27)

Fig. 8.10 shows the general effects of multipath interference on the propaga-
tion factor. Note that, due to the presence of surface reflections, the antenna
elevation coverage is transformed into a lobed pattern structure. The lobe
widths are directly proportional to A, and inversely proportional to 4, . A target
located at a maxima will be detected at twice its free space range. Alterna-
tively, at other angles, the detection range will be less than that in free space.

8.4.1. Flat Earth

Using the geometry of Fig. 8.9, the direct and indirect paths are computed as

R, = JR+(h,—h,) (8.28)
R, = JR*+(h+h) (8.29)

Egs. (8.28) and (8.29) can be approximated using the truncated binomial series
expansion as
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Figure 8.10. Vertical lobe structure due to the reflecting surface as a
function of the elevation angle.

(h,~h,)’
R;,=R+ T (8.30)
2
h +h
R,~R+ % (8.31)

This approximation is valid for low grazing angles, where R » h,, h,.. It follows
that

2h,h,

AR = R;=R;=—

(8.32)

Substituting Eq. (8.32) into Eq. (8.18) yields the phase difference due to multi-
path propagation between the two signals (direct and indirect) arriving at the
target. More precisely,

21T ’Ehth

AD = TAR =R (8.33)

© 2000 by Chapman & Hall/CRC



At this point assume smooth surface with reflection coefficient I" = —1. This
assumption means that waves reflected from the surface suffer no amplitude
loss, and that the induced surface phase shift is equal to 180°. Using Eq. (8.18)
and Eq. (8.25) along with these assumptions yield

F? = 2-2cosA® = 4(sin(AD/2))’ (8.34)
Substituting Eq. (8.33) into Eq. (8.34) yields

(8.35)

2 . 2mh,h,\?
F = 4(sm )

AR

By using reciprocity, the expression for the propagation factor at the radar is
then given by

4 . 2mh,h,\*
F = l6(sm z ) (8.36)

Finally, the signal power at the radar is computed by multiplying the radar
equation by the factor F 4 ,

P.G'Vo _2mh b
P = (sm ) (8.37)

" (4n)’R* AR

Since the sine function varies between 0 and 1, the signal power will then
vary between 0 and 16. Therefore, the fourth power relation between signal
power and the target range results in varying the target range from 0 to twice

the actual range in free space. In addition to that, the field strength at the radar
will now have holes that correspond to the nulls of the propagation factor.

The nulls of the propagation factor occur when the sine is equal to zero.
More precisely,

2h,h,
AR

where n = {0, 1, 2, ... }. The maxima occur at

n (8.38)

4h,h,
AR

=n+1 (8.39)

The target heights that produce nulls in the propagation factor are
{h,=n(AR/2h,);n=0,1,2, ...}, and the peaks are produced from target
heights {h, = n(AR/4h,);n = 1,2, ...}. Therefore, due to the presence of sur-
face reflections, the antenna elevation coverage is transformed into a lobed pat-
tern structure as illustrated by Fig. 8.10. A target located at a maxima will be
detected at twice its free space range. Alternatively, at other angles, the
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detection range will be less than that in free space. At angles defined by Eq.
(8.38) there would be no measurable target returns.

For small angles, Eq. (8.37) can be approximated by

r

P,~—"'— (hh,) (8.40)
R

Thus, the received signal power varies as the eighth power of the range instead
of the fourth power. Also, the factor GA is now replaced by G/\ .

8.4.2. Spherical Earth

In order to model the effects of multipath propagation on radar performance
more accurately, we need to remove the flat earth condition and account for the
earth’s curvature. When considering round earth, electromagnetic waves travel
in curved paths because of the atmospheric refraction. And as mentioned ear-
lier, the most commonly used approach to mitigating the effects of atmospheric
refraction is to replace the actual earth by an imaginary earth such that electro-
magnetic waves travel in straight lines. The effective radius of the imaginary
earth is

r, = kr (8.41)

where k is a constant and r, is the actual earth radius (6371 Km ). Using the
geometry in Fig. 8.11, the direct and indirect path difference is

AR = R +R,-R, (8.42)

The propagation factor is computed by using AR from Eq. (8.42) in Eq. (8.18)

and substituting the result in Eq. (8.25). To compute (R, , R, , and R,) the fol-

lowing cubic equation must first be solved for r, :
2;’?—:’»rr%+(r2—2re(hr+hf))rI +2r,h,r =0 (8.43)

The solution is

-p sin% (8.44)

2
p = % /re(h,+h,)+rz (8.45)

where
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. (2r,r(h,—h,)
E€ = asm(—3) (8.46)
p
Next, we solve for R, R,, and R,. From Fig. 8.11,
o, =r/r, (8.47)
¢2 = rz/re (8-48)

Using the law of cosines to the triangles ABO and BOC yields

Figure 8.11. Geometry associated with multipath propagation
over round earth.
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R, Jr§+(rg+h,)2—2re(re+h,)cos¢, (8.49)

Ry = i+ (r,+h)> = 2r,(r, + h,)cos0, (8.50)

Egs. (8.49) and (8.50) can be written in the following simpler forms:

R, = Jh2+4r,(r, +h,)(sin(0,/2)) (8.51)

Ry = Jh2+4r,(r, + h)(sin(0,/2))’ (8.52)

Using the law of cosines on the triangle AOC yields

A/(h —h) +4(r, +h)(r, +h)(sm(¢1 ¢2)) (8.53)

Substituting Egs. (8.51) through (8.53) directly into Eq. (8.42) may not be
conducive to numerical accuracy. A more suitable form for the computation of
AR is then derived. The detailed derivation is in Blake. The results are listed

below. For better numerical accuracy use the following expression to compute
AR:

4R, Ry(siny,)’
AR = R TR, TR, (8.54)
where
h R 8.55
v, ~asm(RI 2r8) (8.55)
8.5. Diffraction

Diffraction is a term used to describe the phenomenon of electromagnetic
waves bending around obstacles. It is of major importance to radar systems
operating at very low altitudes. Hills and ridges diffract radio energy and make
it possible to perform detection in regions that are physically shadowed. In
practice, experimental data measurements provide the dominant source of
information available on this phenomenon. Some theoretical analyses of dif-
fraction are also available. However, in these cases many assumptions are
made, and perhaps the most important assumption is that obstacles are chosen
to be perfect conductors.

The problem of propagation over a knife edge on a plane can be described
with help of Fig. 8.12. The target and radar heights are denoted, respectively,
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by h, and h,. The edge height is &, . Denote the distance by which the radar
rays clear (or do not clear) the tip of the edge by &. As a matter of notation &
is assumed to be positive when the direct rays clear the edge, and is negative
otherwise. Because of the fact that ground reflection occurs on both sides of
the edge, then the propagation factor is composed of four distinct rays, as illus-
trated in Fig. 8.13. An expression for the propagation factor corresponding to
the four rays is reported in Meeks (see Bibliography).

(a) (b)

Figure 8.12. Diffraction over a knife edge. (a) Positive & . (b) Negative .

Figure 8.13. Four ray formation.

8.6. Atmospheric Attenuation

Electromagnetic waves travel in free space without suffering any energy
loss. Alternatively, due to gases and water vapor in the atmosphere radar
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energy suffers a loss. This loss is known as the atmospheric attenuation. Atmo-
spheric attenuation increases significantly in the presence of rain, fog, dust,
and clouds. Most of the lost radar energy is normally absorbed by gases and
water vapor and transformed into heat, while a small portion of this lost energy
is used in molecular transformation of the atmosphere particles.

The two-way atmospheric attenuation over a range R can be expressed as

Latmosphere =e 2ok (8.56)
where o is the one-way attenuation coefficient. Water vapor attenuation peaks
at about 22.3GHz, while attenuation due to oxygen peaks at between 60 and
118 GHz. Atmospheric attenuation is severe for frequencies higher than
35GHz. This is the reason why ground-based radars rarely use frequencies
higher than 35GHz.

Atmospheric attenuation is a function range, frequency, and elevation angle.
Fig. 8.14 shows a typical two-way atmospheric attenuation plot versus range at
3GHz, with the elevation angle as a parameter. Fig. 8.15 is similar to Fig.
8.14, except it is for I0GHz. For further details on this subject the reader is
advised to visit Blake.

4.5 T T T T T T T T T
' 0.0°
7 i
35F - - Lo oo o e -
0.5°
E< T e o
3 o
. 1.0
_5 25F - - - Lt S e T L B
g
[
% - S 4 < L 4
z 2.0°
=
Q1B - - L T e 4
2
R N /A L L I R R D
5.0°
Ry /. 10.0°
0 L L L L L L L L L

0 50 100 150 200 250 300 350 400 450 500
Range - Km

Figure 8.14. Attenuation versus range; frequency is 3 GHz.
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Figure 8.15. Attenuation versus range; frequency is 10 GHz.

8.7. MATLAB Program “ref_coef.m”

function [rh,rv,ph,pv] = ref_coef (epsp,epspp)
eps = epsp - i * epspp;, %65.0-30.7i;

psi = 0:0.1:90;

psirad = psi. *(pi/180.);

argl = eps-(cos(psirad)."2),

arg?2 = sqrt(argl);

arg3 = sin(psirad);

argd = eps.*arg3;

rv = (arg4-arg2)./(argd+arg2);

rh = (arg3-arg2)./(arg3+arg2);

gamamodv = abs(rv);

gamamodh = abs(rh);

Jfigure(1)

plot(psi,gamamodyv, 'k, psi,gamamodh, 'k -.");
axis tight

grid

xlabel('grazing angle - degrees’);
ylabel('reflection coefficient - amplitude')
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legend ('Vertical Polarization','Horizontal Polarization')
pv = -angle(rv);

ph = angle(rh);

figure(2)

plot(psi,pv,'k',psi,ph, 'k -.");

grid

xlabel('grazing angle - degrees’);

vlabel('reflection coefficient - phase')

legend ('Vertical Polarization','Horizontal Polarization')

Problems

8.1. Using Eq. (8.4), determine 47 when &, = 15m and R = 35Km.

8.2. An exponential expression for the index of refraction is given by
n = 1+315x 10 exp(=0.136h)

where the altitude 4 is in Km. Calculate the index of refraction for a well
mixed atmosphere at 10% and 50% of the troposphere.

8.3 . Rederive Eq. (8.34) assuming vertical polarization.

8.4. Reproduce Figs. 8.6 and 8.7 by using f = 8GHz and (a) ¢" = 2.8
and €” = 0.032 (dry soil); (b) € = 47 and €” = 19 (sea water at 0°C); (c)
g’ = 50.3 and £” = 18 (lake water at 0°C).

8.5. Inreference to Fig. 8.9, assume a radar height of 4, = 100m and a

target height of s, = 500m. The range is R = 20Km. (a) Calculate the

lengths of the direct and indirect paths. (b) Calculate how long it will take a
pulse to reach the target via the direct and indirect paths.

8.6 . In the previous problem, assuming that you may be able to use the
small grazing angle approximation: (a) Calculate the ratio of the direct to the
indirect signal strengths at the target. (b) If the target is closing on the radar

with velocity v = 300m/s, calculate the Doppler shift along the direct and
indirect paths. Assume A = 3cm.

8.7 . Utilizing the plots generated in solving Problem 8.4, derive an emperi-
cal expression for the Brewster’s angle.

8.8. Aradar at altitude 4, = 10m and a target at altitude s, = 300m , and
assuming a spherical earth, calculate r,, r,, and v,.

8.9. Derive an asymptotic form for I', and I", when the grazing angle is

very small.
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8.10. In reference to Fig. 8.8, assume a radar height of 2, = 100m and a

target height of h, = 500m. The range is R = 20Km. (a) Calculate the
lengths of the direct and indirect paths. (b) Calculate how long it will take a
pulse to reach the target via the direct and indirect paths.

8.11. Using the law of cosines, derive Eqgs. (8.51) through (8.53).

8.12. In the previous problem, assuming that you may be able to use the
small grazing angle approximation: (a) Calculate the ratio of the direct to the
indirect signal strengths at the target. (b) If the target is closing on the radar

with velocity v = 300m/s, calculate the Doppler shift along the direct and
indirect paths. Assume A = 3cm.

8.13. In the previous problem, assuming that you may be able to use the
small grazing angle approximation: (a) Calculate the ratio of the direct to the
indirect signal strengths at the target. (b) If the target is closing on the radar

with velocity v = 300m/s, calculate the Doppler shift along the direct and
indirect paths. Assume A = 3cm.

8.14. Calculate the range to the horizon corresponding to a radar at SKm
and 10Km of altitude. Assume 4/3 earth.

8.15. Develop a mathematical expression that can be used to reproduce
Figs. 8.14 and 8.15.
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Chapter 9 Clutter and Moving Target
Indicator (MTI)

9.1. Clutter Definition

Clutter is a term used to describe any object that may generate unwanted
radar returns that may interfere with normal radar operations. Parasitic returns
that enter the radar through the antenna’s main lobe are called main lobe clut-
ter; otherwise they are called side lobe clutter. Clutter can be classified in two
main categories: surface clutter and airborne or volume clutter. Surface clutter
includes trees, vegetation, ground terrain, man-made structures, and sea sur-
face (sea clutter). Volume clutter normally has large extent (size) and includes
chaff, rain, birds, and insects. Chaff consists of a large number of small dipole
reflectors that have large RCS values. It is released by hostile aircaft or mis-
siles as a means of ECM in an attempt to confuse the defense. Surface clutter
changes from one area to another, while volume clutter may be more predict-
able.

Clutter echoes are random and have thermal noise-like characteristics
because the individual clutter components (scatterers) have random phases and
amplitudes. In many cases, the clutter signal level is much higher than the
receiver noise level. Thus, the radar’s ability to detect targets embedded in
high clutter background depends on the Signal-to-Clutter Ratio (SCR) rather
than the SNR.

White noise normally introduces the same amount of noise power across all
radar range bins, while clutter power may vary within a single range bin. And
since clutter returns are target-like echoes, the only way a radar can distinguish
target returns from clutter echoes is based on the target RCS ©,, and the antic-
ipated clutter RCS o, (via clutter map). Clutter RCS can be defined as the
equivalent radar cross section attributed to reflections from a clutter area, A, .
The average clutter RCS is given by
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. = (SOAC 9.1)

c

0, 2, 2 . . .. . .
where 6 (m~/m”) is the clutter scattering coefficient, a dlmen51(())nless quan-
tity that is often expressed in dB. Some radar englneers express G in terms of
squared centimeters per squared meter. In these cases, is 40dB higher than
normal.

The term that describes the constructive/destructive interference of the elec-
tromagnetic waves diffracted from an object (target or clutter) is called the
propagation factor (see Chapter 8 for more details). Since target and clutter
returns have different angles of arrival (different propagation factors), we can
define the SCR as

G FF

SCR = —5* (9.2)
GCFC

where F_ is the clutter propagation factor, F, and F, are, respectively, the

transmit and receive propagation factors for the target. In many cases

F,=F,.

9.2. Surface Clutter

Surface clutter includes both land and sea clutter, and is often called area
clutter. Area clutter manifests itself in airborne radars in the look-down mode.
It is also a major concern for ground-based radars when searching for targets at
low grazing angles. The grazing angle Wy, is the angle from the surface of the
earth to the main axis of the illuminating beam, as illustrated in Fig. 9.1.

Three factors affect the amount of clutter in the radar beam. They are the
grazing angle, surface roughness and the radar wavelength. Typically, the clut-
ter scattering coefficient o is larger for smaller wavelengths. Fig. 9.2 shows a
sketch describing the dependency of o’ on the grazing angle. Three regions
are identified; they are the low grazing angle region, flat or plateau region, and
the high grazing angle region.

The low grazing angle region extends from zero to about the critical angle.
The critical angle is defined by Rayleigh as the angle below which a surface is
considered to be smooth, and above which a surface is considered to be rough.
Denote the root mean square (rms) of a surface height irregularity as 4,,,,
then according to the Rayleigh critera the surface is considered to be smooth if

S Giny < & 9.3
n Ve<3 (9:3)
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Consider a wave incident on a rough surface, as shown in Fig. 9.3. Due to
surface height irregularity (surface roughness), the “rough path” is longer than
the “smooth path” by a distance 2h,,,siny,. This path difference translates
into a phase differential Ay:

2n

Ay = ~ 2h,,,siny, (9.4)

The critical angle . is then computed when Ay = 7 (first null), thus

4TChrms
A

sin\|;ng =T (9.5)

>
v,

\
/

earth surface

Figure 9.1. Definition of grazing angle.

low grazing plateau region
angle region | |

0dB | — — — — - = high grazing

angle region

| grazing angle

critical angle > 60°

Figure 9.2. Clutter regions.
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Figure 9.3. Rough surface definition.

7

or equivalently,

Y, = asin ) hk (9.6)

rms
In the case of sea clutter, for example, the rms surface height irregularity is

1.72
state

h,,.=~0025+0.046 ©9.7)

where S, is the sea state, which is tabulated in several cited references. The
sea state is characterized by the wave height, period, length, particle velocity,
and wind velocity. For example, S,,,,, = 3 refers to a moderate sea state,
where in this case the wave height is approximately equal to between
0.9144 to 1.2192 m, the wave period 3.5 to 4.5 seconds, wave length
1.9812 to 33.528 m, wave velocity 20.372 to 25.928 Km/hr, and wind
velocity 22.224 to 29.632 Km/hr.

Clutter at low grazing angles is often referred to as diffused clutter, where
there are a large number of clutter returns in the radar beam (non-coherent
reflections). In the flat region the dependency of 6" on the grazing angle is
minimal. Clutter in the high grazing angle region is more specular (coherent
reflections) and the diffuse clutter components disappear. In this region the
smooth surfaces have larger o than rough surfaces, opposite of the low graz-
ing angle region.
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9.2.1. Radar Equation for Area Clutter

Consider an airborne radar in the look-down mode shown in Fig. 9.4. The
intersection of the antenna beam with ground defines an elliptically shaped
footprint. The size of the footprint is a function of the grazing angle and the
antenna 3dB beam width 0;,,, as illustrated in Fig. 9.5. The footprint is
divided into many ground range bins each of size (¢1/2)sec Y, , where T is
the pulse width.

Figure 9.4. Airborne radar in the look-down mode.

From Fig. 9.5, the clutter area A, is
cT
AczRGMB?secwg (9.8)

The power received by the radar from a scatterer within A, is given by the
radar equation as
P.G'\o,
Sf =——>=a (9.9)
(4m)"R

where as usual, P, is the peak transmitted power, G is the antenna gain, A is
the wavelength, and ©, is the target RCS. Similarly, the received power from
clutter is

P,G*\'o,
= At (9.10)
(4m)°R

where the subscript A, is used for area clutter. Substituting Eq. (9.1) for o,
into Eq. (9.10), we can then obtain the SCR for area clutter by dividing Eq.
(9.9) by Eq. (9.10). More precisely,
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Figure 9.5. Footprint definition.

20,cosy,

(SCR)p = 54— 9.11)
6 0;,5RcT

Example 9.1: Consider an airborne radar shown in Fig. 9.4. Let the antenna
3dB beam width be 0;,, = 0.02rad, the pulse width T = 2Us, range
R = 20Km, and grazing angle \gg = 20°. Aszsumze target RCS 6, = 1m”,
and clutter reflection coefficient 6 = 0.0136m™/m"~. Compute the SCR.

Solution: The SCR is given by Eq. (9.11) as

20,cos
(SCR),, = 0’#"’&:
G 05 5RcT
(SCR), ¢ = (2)(1)(c0s20) = 248x 107

(0.0136)(0.02)(20000)(3 x 10%)(2 x 10°%)
It follows that

(SCR),, = —36.06dB

Thus, for reliable detection the radar must somehow increase its SCR by at
least (36 + X)dB, where X is on the order of 10dB or better.
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9.3. Volume Clutter

Volume clutter has large extents and includes rain (weather), chaff, birds,
and insects. The volume clutter coefficient is normally expressed in squared
meters (RCS per resolution volume). Birds, insects, and other flying particles
are often referred to as angel clutter or biological clutter. The average RCS for
individual birds or insects as a function of the weight of the bird or insect is
reported in the literature! as

(03) ;ggm =— 46 + 5.8logW, (9-12)

where W, is the individual bird or insect weight in grams. Bird and insect
RCSs are also a function of frequency; for example, a pigeon’s average RCS is
—26dBsm at S-band, and is equal to —27dBsm at X-band.

As mentioned earlier, chaff is used as an ECM technique by hostile forces. It
consists of a large number of dipole reflectors with large RCS values. Histori-
cally, chaff was made of aluminum foil; however, in recent years most chaff is
made of the more rigid fiber glass with conductive coating. The maximum
chaff RCS occurs when the dipole length L is one half the radar wavelength.
The average RCS for a single dipole when viewed broadside is

O pagpt = 0.8817 (9.13)

and for an average aspect angle, it drops to

G = 01547 (9.14)
where the subscript chaff1 is used to indicate a single dipole, and A is the
radar wavelength. The total chaff RCS within a radar resolution volume is

O pagr = 0-15A°N), (9.15)
where N, is the total number of dipoles in the resolution volume.

Weather or rain clutter is easier to suppress than chaff, since rain droplets
can be viewed as perfect small spheres. We can use the Rayleigh approxima-
tion of perfect sphere to estimate the rain droplets’ RCS. The Rayleigh approx-
imation, without regard to the propagation medium index of refraction, is
given in Eq. (2.30) and is repeated here as Eq. (9.16):

o= 97rr2(kr)4 re (9.16)

where k = 2n/\, and r is radius of a rain droplet.

1. Edde, B., Radar - Principles, Technology, Applications, Prentice-Hall, 1993.
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Electromagnetic waves when reflected from a perfect sphere become
strongly co-polarized (have the same polarization as the incident waves). Con-
sequently, if the radar transmits, say, a right-hand-circularly (RHC) polarized
wave, then the received waves are left-hand-circularly (LHC) polarized,
because it is propagating in the opposite direction. Therefore, the back-scat-
tered energy from rain droplets retains the same wave rotation (polarization) as
the incident wave, but has a reversed direction of propagation. It follows that
radars can suppress rain clutter by co-polarizing the radar transmit and receive
antennas.

Defining n as RCS per unit resolution volume Vy,, it is computed as the
sum of all individual scatterers RCS within the volume,

N
n = Z o, (9.17)

i=1
where N is the total number of scatterers within the resolution volume. Thus,
the total RCS of a single resolution volume is

N
oy =Y oVy (9.18)

A resolution volume is shown in Fig. 9.6, and is approximated by

T

Seaeechr (9.19)

VWz

where 0, 0, are, respectively, the antenna beam width in azimuth and eleva-
tion, T is the pulse width in seconds, c is speed of light, and R is range.

AN

Figure 9.6. Definition of a resolution volume.
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Consider a propagation medium with an index of refraction m . The ith rain
droplet RCS approximation in this medium is

o,= “K'D} (9.20)
A
where
2 2
K =|m =1 (9.21)
2
m +2

and D, is the ith droplet diameter. For example, temperatures between 32°F
and 68°F yield

5
=~ 0.93;%Df’ (9.22)

and for ice Eq. (9.20) can be approximated by
6
0,=02=D, (9.23)
A
Substituting Eq. (9.20) into Eq. (9.17) yields
2
n= PK A (9.24)

where the weather clutter coefficient Z is defined as

N
Z = ZDf (9.25)

i=1

In general, a rain droplet diameter is given in millimeters and the radar reso-
lution volume in expressgd iI% cubic meters, thus the units of Z are often
expressed in milliemeter /m’™ .

9.3.1. Radar Equation for Volume Clutter

The radar equation gives the total power received by the radar from a o, tar-
get atrange R as

. P.G*\o,

(9.26)
(4n)’R*
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where all parameters in Eq. (9.26) have been defined earlier. The weather clut-
ter power received by the radar is

_ PGVoy,
(4m)°R*
Using Eq. (9.18) and Eq. (9.19) into Eq. (9.27) and collecting terms yield

w (9.27)

2,2
P.G™A
W= = T—ERzeaeecrz o, (9.28)
(4m)’R* 8 :
The SCR for weather clutter is then computed by dividing Eq. (9.26) by Eq.
(9.28). More precisely,

(SCR), = 5 = 8% (9.29)
Sw N
neaeechzz o,
i=1
where the subscript V is used to denote volume clutter.

Example 9.2: A certain radar has target RCS ©, = O.lmz, pulse width
T = 0.2us, antenna beam width ©, = 0, = 0.02radians. Assume the detec-
tion range to be R = 50Km, and compute the SCR if
Zci = 1.6x 10 (m*/m’).

Solution: From Eq. (9.29) we have

80,
(SCR)y = ————————
neaeechZZGi
i=1
substituting the proper values we get
(SCR), = (3)(0.1) = 0.265

1(0.02)%(3 X 10%)(0.2 x 107°)(50 x 10%)°(1.6 x 10°%)

(SCR), = -5.768dB.
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9.4. Clutter Statistical Models

Since clutter within a resolution cell (or volume) is composed of a large
number of scatterers with random phases and amplitudes, it is statistically
described by a probability distribution function. The type of distribution
depends on the nature of clutter itself (sea, land, volume), the radar operating
frequency, and the grazing angle.

If sea or land clutter is composed of many small scatterers when the proba-
bility of receiving an echo from one scatterer is statistically independent of the
echo received from another scatterer, then the clutter may be modeled using a
Rayleigh distribution,

fix) = z—xeXp(i) ; x20 (9.30)
)CO X

where x,, is the mean squared value of x.

The log-normal distribution best describes land clutter at low grazing angles.
It also fits sea clutter in the plateau region. It is given by

(Inx - lnxm)z)
p|l- ——>|: x>0 (9.31)

1
— X
o2 x ( 26°
where x,, is the median of the random variable x, and ¢ is the standard devi-
ation of the random variable In(x).

flx) =

The Weibull distribution is used to model clutter at low grazing angles (less
than five degrees) for frequencies between 1 and 10GHz . The Weibull proba-
bility density function is determined by the Weibull slope parameter a (often
tabulated) and a median scatter coefficient 6, , and is given by

bx

b-1 b
flx) = 2% exp[—f— ) : x20 (9.32)

O Oo

where b = 1/a is known as the shape parameter. Note that when b = 2 the
Weibull distribution becomes a Rayleigh distribution.

9.5. Clutter Spectrum

The power spectrum of stationary clutter (zero Doppler) can be represented
by a delta function. However, clutter is not always stationary; it actually exhib-
its some Doppler frequency spread because of wind speed and motion of the
radar scanning antenna. In general, the clutter spectrum is concentrated around
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f = 0 and integer multiples of the radar PRF f,, and may exhibit some small
spreading.

The clutter power spectrum can be written as the sum of fixed (stationary)
and random (due to frequency spreading) components. For most cases, the ran-
dom component is Gaussian. If we denote the fixed to the random power ratio
by W2 , then we can write the clutter spectrum as

2

—(w G (-’
S.(0) = 60(—2)6(0)O)+ﬁ exp(——zoJ (9.33)
1+ W (1+Ww),/2nc,, 20

(O]

where 0, = 27f, is the radar operating frequency in radians per second, G,
is the rms frequency spread component (determines the Doppler frequency
spread), and G is the Weibull parameter.

The first term of the right-hand side of Eq. (9.33) represents the PSD for sta-
tionary clutter, while the second term accounts for the frequency spreading.
Nevertheless, since most of the clutter power is concentrated around zero Dop-
pler with some spreading (typically less than 100 Hz), it is customary to model
clutter using a Gaussian-shaped power spectrum (which is easier to analyze
than Eq. (9.33)). More precisely,

(9.34)

2
206,

PC
S(®) = = exp| -
2nGC

(- mo)zJ

®

where P, is the total clutter power; O'i and o, were defined earlier. Fig. 9.7
shows a typical PSD sketch of radar returns when both target and clutter are
present. Note that the clutter power is concentrated around DC and integer
multiples of the PRF.

spectrum A

clutter returns

| target

return noise level

»

I frequency

Figure 9.7. Typical radar return PSD when clutter and target are present.
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9.6. Moving Target Indicator (MTI)

Clutter spectrum is normally concentrated around DC (f = 0) and multiple
integers of the radar PRF f,, as illustrated in Fig. 9.8a. In CW radars, clutter is
avoided or suppressed by ignoring the receiver output around DC, since most
of the clutter power is concentrated about the zero frequency band. Pulsed
radar systems may utilize special filters that can distinguish between slowly
moving or stationary targets and fast moving ones. This class of filters is
known as the Moving Target Indicator (MTI). In simple words, the purpose of
an MTI filter is to suppress target-like returns produced by clutter, and allow
returns from moving targets to pass through with little or no degradation. In
order to effectively suppress clutter returns, an MTI filter needs to have a deep
stop-band at DC and at integer multiples of the PRF. Fig. 9.8b shows a typical
sketch of an MTI filter response, while Fig. 9.8c shows its output when the
PSD shown in Fig. 9.8a is the input.

input to
T filter

clutter returns

(a)

__ noise level

L fegue
_ =0 target requenc
fr f retfirn fr d Y
|
MTI filter |
response |
(b)
|
i |
7 f=0 | I frequency
MTI filter |
output |
| ©
|
. -
. f=0 I frequency

Figure 9.8. (a) Typical radar return PSD when clutter and target are
present. (b) MTI filter frequency response. (c) Output from an
MTTI filter.
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MTT filters can be implemented using delay line cancelers. As we will show
later in this chapter, the frequency response of this class of MTI filters is peri-
odic, with nulls at integer multiples of the PRF. Thus, targets with Doppler fre-
quencies equal to nf, are severely attenuated. And since Doppler is
proportional to target velocity (f;, = 2v/A), target speeds that produce Dop-
pler frequencies equal to integer multiples of f, are known as blind speeds.
More precisely,

Volind = 7 nz0 (9.35)

Radar systems can minimize the occurrence of blind speeds by either
employing multiple PRF schemes (PRF staggering) or by using high PRFs
where in this case the radar may become range ambiguous. The main differ-
ence between PRF staggering and PRF agility is that the pulse repetition inter-
val (within an integration interval) can be changed between consecutive pulses
for the case of PRF staggering.

Fig. 9.9 shows a block diagram of a coherent MTI radar. Coherent transmis-
sion is controlled by the STAble Local Oscillator (STALO). The outputs of the
STALO, f;,, and the COHerent Oscillator (COHO), f-, are mixed to produce
the transmission frequency, f; , + f. The Intermediate Frequency (IF), f- % f;,
is produced by mixing the received signal with f; . After the IF amplifier, the
signal is passed through a phase detector and is converted into a base band.
Finally, the video signal is inputted into an MTT filter.

| Pulse modulator l

frotfe * Jrotfc
Q@ power amplifier f-

Jrotfctfa Y
i Jro Jro
e STALO »| mixer
.
= T
- fe
IF amplifier COHO
f C if d | * + | fC
phase detector] »| MTI to detector
f d —

Figure 9.9. Coherent MTI radar block diagram.
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9.7. Single Delay Line Canceler

A single delay line canceler can be implemented as shown in Fig. 9.10. The
canceler’s impulse response is denoted as A (#). The output y(¢) is equal to the
convolution between the impulse response /(¢) and the input x(#). The single
delay canceler is often called a “two-pulse canceler” since it requires two dis-
tinct input pulses before an output can be read.

The delay T is equal to the PRI of the radar (1/f,). The output signal y(¢) is

Figure 9.10. Single delay line canceler.

() = x(5) —x(t-T) (9.36)
The impulse response of the canceler is given by
h(t) = 8(¢)-0(t—T) (9.37)

where &( - ) is the delta function. It follows that the Fourier transform (FT)
of h(t) is

H(w) = 1-¢7°7 (9.38)
where ® = 2xf.
In the z-domain, the single delay line canceler response is
H(z) = 1-2 (9.39)
The power gain for the single delay line canceler is given by
H(@)* = H@)H*(®) = (1-¢7")(1-¢"") (9.40)
It follows that
H()* = 1+1- (" +¢7°") = 2(1 = cosoT) (9.41)

and using the trigonometric identity (2 —2cos29) = 4( sin1f})2 yields
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|H(o)|* = 4(sin(wT/2))*

MATLAB Function “single_canceler.m”

The function “single_cancelerm” computes and plots (as a function of f/f,)
the amplitude response for a single delay line canceler. It is given in Listing 9.1

in Section 9.14. The syntax is as follows:

where fofr is the number of periods desired. Typical output of the function
“single_canceler.m” is shown in Fig. 9.11. Clearly, the frequency response of a
single canceler is periodic with a period equal to f,. The peaks occur at

[resp] = single_canceler (fofr)

f = (2n+1)/(2f,), and the nulls are at f = nf,, where n = 0.

o I~
» o

Amplitude response - Volts
o
N

Amplitude response - dB

1.5 2 25 3 3.5
Normalized frequency f/'f,

Figure 9.11. Single canceler frequency response.
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In most radar applications the response of a single canceler is not acceptable
since it does not have a wide notch in the stop-band. A double delay line can-
celer has better response in both the stop- and pass-bands, and thus it is more
frequently used than a single canceler. In this book, we will use the names “sin-
gle delay line canceler” and “single canceler” interchangeably.

9.8. Double Delay Line Canceler

Two basic configurations of a double delay line canceler are shown in Fig.
9.12. Double cancelers are often called “three-pulse cancelers” since they
require three distinct input pulses before an output can be read. The double line
canceler impulse response is given by

h(t) = 6(t)—28(t—T)+0(t—2T) (9.43)

Again, the names “double delay line” canceler and “double canceler” will be
used interchangeably. The power gain for the double delay line canceler is

H(o)* = |H,(o)]’|H, ()| (9.44)

where |H 1(0))|2 is the single line canceler power gain given in Eq. (9.42). It
follows that

4
|H(0)* = 16(sin(wg)) (9.45)
r—-— - — — — — — B r—— - - — — —I
W] sy 1| 1465 MR
| 2o | 2
| 1 delay, T | | > delay, T |
L =/ _ _ o L . _ == _ _ _|

» delay, T »- delay, T

Figure 9.12. Two configurations for a double delay line canceler.
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And in the z-domain, we have

1.2 _ _
H(z) = (1-2") =1-27"+2"
MATLAB Function “double_canceler.m”

The function “single_cancelerm” computes and plots (as a function of f/f,)
the amplitude response for a single delay line canceler. It is given in Listing 9.2

in Section 9.14. The syntax is as follows:
[resp] = double_canceler (fofr)

where fofr is the number of periods desired.

Fig. 9.13 shows typical output from this function. Note that the double can-
celer has a better response than the single canceler (deeper notch and flatter

pass-band response).

o
~

o
N

o

Amplitude response - Volts

— - single canceler

50 T — ——  double canceler . ,

%
\Y

g \ \ \
o= |’ ! \!
E |
£ | |
£ -100 . . \ .
< 05 1 1.5 2 25 3 35

Normalized frequency f/fr

Figure 9.13. Normalized frequency responses for single and double cancelers.
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9.9. Delay Lines with Feedback (Recursive Filters)

Delay line cancelers with feedback loops are known as recursive filters. The
advantage of a recursive filter is that through a feedback loop we will be able
to shape the frequency response of the filter. As an example, consider the sin-
gle canceler shown in Fig. 9.14. From the figure we can write

y(1) = x(1) = (1 - K)w(z) (9.47)
(1) = y(0) +w() (9:48)
w(t) = v(t-T) (9.49)

Applying the z-transform to the above three equations yields

t
x(t) v(1) delay, T y(t)

I w(t)

Figure 9.14. MTI recursive filter.

Y(z) = X(z2) -(1-K)W(z) (9.50)
V(z) = Y(z) + W(2) (9.51)
W(z) = 2 V(2) (9.52)

Solving for the transfer function H(z) = Y(z)/X(z) yields

1—
H(z) = —— (9.53)
1-Kz
The modulus square of H(z) is then equal to
—1 -1
1- 1- 2 -
H(2)|* = -z )d=2) 2tz ) (9.54)

(1-K7)W1-Kz) (1+K)—K(z+2 )

Using the transformation z = el yields
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z+ [1 = 2cos®T (9.55)

Thus, Eq. (54) can now be rewritten as

’H(e’mT)lz _ 2(21 — coswT)
(1+K7)-2Kcos(wT)
Note that when K = 0, Eq. (9.56) collapses to Eq. (9.42) (single line can-

celer). Fig. 9.15 shows a plot of Eq. (9.56) for K = 0.25, 0.7, 0.9. Clearly, by
changing the gain factor K one can control of the filter response.

(9.56)

In order to avoid oscillation due to the positive feedback, the value of K
should be less than unity. The value (1 - K )_l is normally equal to the number
of pulses received from the target. For example, K = 0.9 corresponds to ten
pulses, while K = 0.98 corresponds to about fifty pulses.

Amplitude response

0 01 02 05 o4 05 o6 07 o8 o8 1
Normalized frequencyf/fr
Figure 9.15. Frequency response corresponding to Eq. (9.56). This

plot can be reproduced using MATLAB program
“fig9_15.m” given in Listing 9.3 in Section 9.14.

9.10. PRF Staggering

Blind speeds can pose serious limitations on the performance of MTI radars
and their ability to perform adequate target detection. Using PRF agility by
changing the pulse repetition interval between consecutive pulses can extend
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the first blind speed to tolerable values. In order to show how PRF staggering
can alleviate the problem of blind speeds, let us first assume that two radars
with distinct PRFs are utilized for detection. Since blind speeds are propor-
tional to the PREF, the blind speeds of the two radars would be different. How-
ever, using two radars to alleviate the problem of blind speeds is a very costly
option. A more practical solution is to use a single radar with two or more dif-
ferent PRFs.

For example, consider a radar system with two interpulse periods 7', and
T,, such that

h_m 9.57

T, " m (9-57)
where n, and n, are integers. The first true blind speed occurs when

o _m

- = - 9.58

7,° T, (9-58)

This is illustrated in Fig. 9.16 for n; = 4 and n, = 5. Note that if
n, = n; + 1, then the process of PRF staggering is similar to that discussed in
Chapter 3.

The ratio

ny
k, = — (9.59)
n
is known as the stagger ratio. Using staggering ratios closer to unity pushes the
first true blind speed farther out. However, the dip in the vicinity of 1/7T,
becomes deeper, as illustrated in Fig. 9.17 for stagger ratio k, = 63/64. In
general, if there are N PRFs related by

nl_nz_ _n_N

—===..= 9.60
Tl TZ TN ( )

and if the first blind speed to occur for any of the individual PRFs is v,;;, .,
then the first true blind speed for the staggered waveform is

R+ Ny + .y
Vplind = N Vplindl (9-61)
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filter response

filter response

filter response

Figure 9.16. Frequency responses of a single canceler. Top plot
corresponds to 7, middle plot corresponds to 7,
bottom plot corresponds to stagger ratio 7,/T, = 4/3.
This plot can be reproduced using MATLAB program
“fig9_16.m” given in Listing 9.4 in Section 9.14.
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filter response, dB
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sofh ]

35f - - - - e e e R IR

-40

filter response, dB

target velocity relative to first blind speed; 33/34

Figure 9.17. MTI responses, staggering ratio 63/64. This plot can be
reproduced using MATLAB program “fig9_17.m” given
in Listing 9.5 in Section 9.14.

9.11. MTI Improvement Factor

In this section two quantities that are normally used to define the perfor-
mance of MTI systems are introduced. They are “Clutter Attenuation (CA)”
and the MTI “Improvement Factor.” The MTI CA is defined as the ratio
between the MTI filter input clutter power C; to the output clutter power C,,

CA = C,/C, (9.62)
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The MTI improvement factor is defined as the ratio of the Signal to Clutter
(SCR) at the output to the SCR at the input,

]‘i/ﬂ 9.63
‘(C)(C) (5-63)

o 2

which can be rewritten as

I—S”CA 9.64
=5 (9.64)

L

The ratio §,/S; is the average power gain of the MTI filter, and it is equal to
|H (03)|2. In this section, a closed form expression for the improvement factor
using a Gaussian-shaped power spectrum is developed. A Gaussian-shaped
clutter power spectrum is given by

P
W) = < exp(—fz/Zci) (9.65)

Jom o,

where P, is the clutter power (constant), and G, is the clutter rms frequency
and is given by

G, =206,/ (9.66)

where A is the wavelength, and o, is the rms wind velocity, since wind is the
main reason for clutter frequency spreading. Substituting Eq. (9.66) into Eq.
(9.65) yields

AP, A
W(f) = ———exp|- — (9.67)
D= S, p[ 8,

The clutter power at the input of an MTI filter is

C = P exp| - —f2 df (9.68)
i J. 2
GC

J2n 26

.
Factoring out the constant P, yields

C, = PCJ. ! exp[— i)df (9.69)

mcc 20?
It follows that (Why?)

C, =P, (9.70)
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The clutter power at the output of an MTI is

¢, = [wlapl ar ©.71)

—oo

We will continue the analysis using a single delay line canceler. The fre-
quency response for a single delay line canceler is given by Eq. (9.38). The sin-
gle canceler power gain is given in Eq. (9.42), which will be repeated here, in
terms of f rather than m, as Eq. (9.72),

\H(P|” = 4(sin(%))2 9.72)

It follows that

C, = }J%L cscexp[— %J4(sin(%))2 df (9.73)

Now, since clutter power will only be significant for small f, then the ratio
f/f, is very small (i.e., o, «f,). Consequently, by using the small angle
approximation Eq. (9.73) is approximated by

P f2 f)2
C,~ f “—exp| - “— 4(—@ df (9.74)
Pr o, [ zch /,
which can be rewritten as

oo

2

4P 1 1 £
C, = - L d (9.75)
ff J chfexp[ ZGJ r

—oo

The integral part in Eq. (9.75) is the second moment of a zero mean Gaussian
distribution with variance Gf. Replacing the integral in Eq. (9.75) by O'i yields

4Pc7t2 2
= o, (9.76)

&

C

o~

The

Substituting Egs. (9.76) and (9.70) into Eq. (9.62) produces

CA—C"—Lz 9.77
_C_(2ncc) ©.77)

o
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It follows that the improvement factor for a single canceler is

L VS,
I = (ZTCG) E (9.78)

L

The power gain ratio for a single canceler is (remember that |H(f)| is periodic
with period f,)

£/2
S 2 1 . Ttf\?
| 4(sm—f) d (9.79)
s, - A=y 7)Y
-f,/2
Using the trigonometric identity (2 —2cos2%) = 4(sin1§))2 yields
572
2 1 2n
[HNH" = = J 2-2cos=<|df = 2 (9.80)
Ir I
~f,/2
It follows that
I = 2(f/(2n6,))’ (9.81)

The expression given in Eq. (9.81) is an approximation valid only for
O, «f,. When the condition G, «f, is not true, then the autocorrelation func-
tion needs to be used in order to develop an exact expression for the improve-
ment factor.

Example 9.3: A certain radar has f, = 800Hz. If the clutter rms is
o, = 6.4Hz (wooded hills with 6, = 1.16311Km/ hr ), find the improvement
factor when a single delay line canceler is used.

Solution: The clutter attenuation CA is

— fr YV _ 800 2 : i
A= (ZRGC) - ((215)(6.4)) = 395771 = 25.974dB

and since S,/S; = 2 = 3dB we get

Iig = (CA+S,/8),; = 3+25.97 = 28.974dB.

9.12. Subclutter Visibiliy (SCV)

The phrase Subclutter Visibility (SCV) describes the radar’s ability to detect
non-stationary targets embedded in a strong clutter background, for some
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probabilities of detection and false alarm. It is often used as a measure of MTI
performance. For example, a radar with 10dB subclutter visibility will be able
to detect moving targets whose returns are ten times smaller than those of clut-
ter. A sketch illustrating the concept of SCV is shown in Fig. 9.18.

If a radar system can resolve the areas of strong and weak clutter within its
field of view, then the phrase Interclutter Visibility (ICV) describes the radar’s
ability to detect non-stationary targets between strong clutter points. The sub-
clutter visibility is expressed as the ratio of the improvement factor to the min-
imum MTT output SCR required for proper detection for a given probability of
detection. More precisely,

SCV = 1/(SCR), (9.82)

When comparing different radar systems’ performances on the basis of SCV,
one should use caution since the amount of clutter power is dependent on the
radar resolution cell (or volume), which may be different from one radar to
another. Thus, only if the different radars have the same beam widths and the
same pulse widths can SCV be used as a basis of performance comparison.

power

target

frequency

(a) (b)

Figure 9.18. Illustration of SCV. (a) MTI input.
(b) MTT output.

9.13. Delay Line Cancelers with Optimal Weights

The delay line cancelers discussed in this chapter belong to a family of trans-
versal Finite Impulse Response (FIR) filters widely known as the “tapped
delay line” filters. Fig. 9.19 shows an N-stage tapped delay line implementa-
tion.
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When the weights are chosen such that they are the binomial coefficients (coef-
ficients of the expansion (1 —x)N) with alternating signs, then the resultant
MTI filter is equivalent to N-stage cascaded single line cancelers. This is illus-
trated in Fig. 9.20 for N = 4. In general, the binomial coefficients are given by

i-1 N!
(N—-i+D!(i-1)!

w; = (=1) ;i=1,... ,N+1 (9.83)

Using the binomial coefficients with alternating signs produces an MTT filter
that closely approximates the optimal filter in the sense that it maximizes the
improvement factor, as well as the probability of detection. In fact, the differ-
ence between an optimal filter and one with binomial coefficients is so small
that the latter one is considered to be optimal by most radar designers. How-
ever, being optimal in the sense of the improvement factor does not guarantee a
deep notch, nor a flat pass-band in the MTI filter response. Consequently,
many researchers have been investigating other weights that can produce a
deeper notch around DC, as well as a better pass-band response.

In general, the average power gain for an N-stage delay line canceler is

N N

S 2

2= T[mol = H4(sin(;ﬂ)) (9.84)
i=1 i=1

where |H l(}‘)|2 is given in Eq. (9.72). For example, N = 2 (double delay line
canceler) gives

input

delay, T |4— delay, T ... | delay, T

]

P

summing network )

output

Figure 9.19. N-stage tapped delay line filter.
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input
P delay, T |-9— delay, T o—»| delay, T

summing network >

output

Figure 9.20. Two equivalent three delay line cancelers.
(a) Tapped delay line.
(b) Three cascaded single line cancelers.

SO

- 16( sin(®Y'
5, = l6(sm(ff)) (9.85)

Equation (9.84) can be rewritten as

S 2N
v () = 22N(sin(%)) (9.86)

As indicated by Eq. (9.86), blind speeds for an N-stage delay canceler are iden-
tical to those of a single canceler. It follows that blind speeds are independent
from the number of cancelers used. It is possible to show that Eq. (9.86) can be
written as

%: 1+N2+(N(N_1))2+(N(N_1)(N_2))2+... (9.87)

; 2! 3!
A general expression for the improvement factor of an N-stage tapped delay
line canceler is reported by Nathanson' to be

1. Nathanson, F. E., Radar Design Principles, second edition, McGraw-Hill, Inc.,
1991.
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N N

Y Swre(“F2)

k=1 j=1

I =

(9.88)

where the weights w, and w; are those of a tapped delay line canceler, and
p((k—j)/f,) is the correlation coefficient between the kth and jth samples.
For example, N = 2 produces
= ﬁ (9.89)
1- ng + §p2T

9.14. MATLAB Program/Function Listings

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun these codes with different inputs
in order to enhance their understanding of the theory.

Listing 9.1. MATLAB Function “single_canceler.m”

function [resp] = single_canceler (fofrl)
eps = 0.00001;

fofr = 0:0.01:fofrl;

argl = pi . * fofr;

resp = 4.0 .*((sin(argl))."2);

max1 = max(resp);

resp = resp ./ maxl;

subplot(2,1,1)

plot(fof,resp,'k’)

xlabel ('"Normalized frequency - f/fr')
vlabel( 'Amplitude response - Volts')
grid

subplot(2,1,2)
resp=10.*log10(resp+eps);
plot(fofrresp,'k’);

axis tight

grid

xlabel ('"Normalized frequency - f/fr')
vlabel( 'Amplitude response - dB’')
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Listing 9.2. MATLAB Function “double_canceler.m”

function [resp] = double_canceler(fofrl)
eps = 0.00001;

fofr = 0:0.01:fofrl;

argl = pi . * fofr;

resp = 4.0 .* ((sin(argl))."2);

max1 = max(resp);

resp = resp ./ maxl;

resp2 = resp .* resp;

subplot(2,1,1);

plot(fofr,resp, 'k--'.fofr;, resp2,'k’);

vlabel ('Amplitude response - Volts')
resp2 = 20. .* loglO(resp2+eps);

respl = 20. .* loglO(resp+eps);
subplot(2,1,2)

plot(fofr,respl, 'k--'fofrresp2,'k’);

legend ('single canceler','double canceler’)
xlabel ("Normalized frequency f/fr')
vlabel ('Amplitude response - Volts')

Listing 9.3. MATLAB Program “fig9_15.m”

clear all

Sfofr = 0:0.001:1;

arg = 2.*pi. *fofr;

nume = 2.%*(1.-cos(arg));

denll = (1. + 0.25 *0.25);
denl2 = (2. #0.25) .* cos(arg);
denl = denll - denl?2;

den2l = 1.0+ 0.7 *0.7;

den22 = (2. ¥0.7) .* cos(arg);
den2 = den2l - den22;

den3l = (1.0 + 0.9 *0.9);
den32 = ((2. ¥0.9) .* cos(arg));
den3 = den3l - den32;

respl = nume ./ denl;

resp2 = nume ./ den2;

resp3 = nume ./ den3;
plot(fofrrespl, 'k’ fofr,resp2,'k-." fofr,resp3,'k--");
xlabel('Normalized frequency')
ylabel('Amplitude response’)
legend('’K=0.25",'K=0.7','K=0.9")
grid

axis tight
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Listing 9.4. MATLAB Program “fig9_16.m”

clear all

Sfofr = 0:0.001:1;

f1 =4.0.* fofr;

12 =5.0.* fofr;

argl = pi .*fl;

arg2 = pi .*f2;

respl = abs(sin(argl));

resp2 = abs(sin(arg2));

resp = respl+resp2;

max1 = max(resp);

resp = resp./maxl;
plot(fofr,respl,fofr,resp2,fofrresp);
xlabel('Normalized frequency f/fr')
vlabel('Filter response’)

Listing 9.5. MATLAB Program “fig9_17.m”

clear all

Sfofr = 0.01:0.001:32;

a=0630/64.0;

terml = (1. - 2.0 .* cos(a*2*pi*fofr) + cos(4*pi*fofr)).”2;
term2 = (-2. .* sin(a*2*pi*fofr) + sin(4*pi*fofr))."2;

resp = 0.25 .* sqrt(terml + term2);

resp = 10. .* log(resp);

plot(fofr,resp);

axis([0 32 -40 0]);

grid

Problems

9.1. Compute the signal-to-clutter ratio (SCR) for the radar described in
Example 9.1. In this case, assume antenna 3dB beam width 05,5 = 0.03rad,

pulse width T = 10us, range R = 50Km, grazing angle y, = 15°, target
RCS o, = O.lmz, and clutter reflection coefficient 6° = O.O2(m2/ mz).

9.2. Repeat Example 9.2 for target RCS o, = 0.15m2, pulse width

T = 0.1us, antenna beam width 6, = 6, = 0.03radians; the detection

range is R = 100Km , and 26,. = 1.6x 10" (m*/m>).
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9.3 . The quadrature components of the clutter power spectrum are, respec-
tively, given by
C

Jamo,

Si(f) = 8(f) + exp(—f-/267)

- C
So(f) = Eexp(—fz/ch)

Compute the D.C. and A.C. power of the clutter. Let o, = 10Hz.

9.4. A certain radar has the following specifications: pulse width
v’ = lus, antenna beam width Q = 1.5°, and wavelength A = 3cm. The

radar antenna is 7.5m high. A certain target is simulated by two point targets

(scatterers). The first scatterer is 4m high and has RCS ¢, = 20m” . The sec-

ond scatterer is 12m high and has RCS ¢, = 1m” . If the target is detected at
10Km , compute (a) SCR when both scatterers are observed by the radar; (b)

the SCR when only the first scatterer is observed by the radar. Assume a reflec-
tion coefficient of —1, and 0'0 = -30dB.

9.5. A certain radar has range resolution of 300m and is observing a target

somewhere in a line of high towers each having RCS ¢ = 10°m’. If the

tower
target has RCS o, = lmz, (a) How much signal-to-clutter ratio should the

radar have? (b) Repeat part a for range resolution of 30m.

9.6 . (a)Derive an expression for the impulse response of a single delay line
canceler. (b) Repeat for a double delay line canceler.

9.7. One implementation of a single delay line canceler with feedback is
shown below:
1+

- ¥
M »| delay, T :@—>

"

(a) What is the transfer function, H(z)? (b) If the clutter power spectrum is
W) = woexp(—f / 203), find an exact expression for the filter power gain.
(c) Repeat part b for small values of frequency, f. (d) Compute the clutter
attenuation and the improvement factor in terms of K and G,..
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9.8. Plot the frequency response for the filter described in the previous
problem for K = -0.5,0, and 0.5.

9.9. An implementation of a double delay line canceler with feedback is
shown below:

++ *-I- '
x(1) S _ _ y(t)
gl lanede
+
+ |

[
&

(a) What is the transfer function, H(z)? (b) Plot the frequency response for
K, =0=K,,and K, = 02,K, = 0.5.

9.10. Consider a single delay line canceler. Calculate the clutter attenua-
tion and the improvement factor. Assume that ¢, = 4Hz and a PRF
f, = 450Hz.

9.11. Develop an expression for the improvement factor of a double delay
line canceler.

9.12. Repeat Problem 9.10 for a double delay line canceler.

9.13. An experimental expression for the clutter power spectrum density is

W) = woexp(—f2 / 26?), where w, is a constant. Show that using this
expression leads to the same result obtained for the improvement factor as
developed in Section 9.11.

9.14. Repeat Problem 9.13 for a double delay line canceler.

9.15. A certain radar uses two PRFs with stagger ratio 63/64. If the first
PRF is f,; = 500Hz, compute the blind speeds for both PRFs and for the

resultant composite PRF. Assume A = 3cm.

9.16. A certain filter used for clutter rejection has an impulse response
h(n) = 8(n)-38(n-1)+338(n-2)-38(n-3). (a) Show an implementation
of this filter using delay lines and adders. (b) What is the transfer function?
(c) Plot the frequency response of this filter. (d) Calculate the output when the
input is the unit step sequence.

9.17. The quadrature components of the clutter power spectrum are given
in Problem 9.3. Let 6. = 10Hz and f, = 500Hz. Compute the improvement

of the signal-to-clutter ratio when a double delay line canceler is utilized.
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9.18. Develop an expression for the clutter improvement factor for single
and double line cancelers using the clutter autocorrelation function. Assume
that the clutter power spectrum is as defined in Eq. (9.65).
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Chapter 10 Radar Antennas

An antenna is a radiating element which acts as a transducer between an
electrical signal in a system and a propagating wave. The Institute of Electrical
and Electronic Engineers (IEEE)’s Standard Definition of Terms for Antennas
(IEEE std. 145-1973) defines an antenna as “‘a mean for radiating or receiving
radio power.”

10.1. Directivity, Power Gain, and Effective Aperture

Radar antennas can be characterized by the directive gain G, power gain
G, and effective aperture A, . Antenna gain is term used to describe the ability
of an antenna to concentrate the transmitted energy in a certain direction.
Directive gain, or simply directivity, is more representative of the antenna radi-
ation pattern, while power gain is normally used in the radar equation. Plots of
the power gain and directivity, when normalized to unity, are called antenna
radiation pattern. The directivity of a transmitting antenna can be defined by

maximum radiation intensity
average radiation intensity

Gp = (10.1)

The radiation intensity is the power per unit solid angle in the direction
(6, 0) and denoted by P(0, ¢) . The average radiation intensity over 4n radi-
ans (solid angle) is the total power divided by 4m. Hence, Eq. (10.1) can be
written as

_ dn(maximum radiated power/unit solid angle)
total radiated power

Gp (10.2)
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It follows that

4nP(B,
Gp = AP Oar_ (10.3)

[JPs.0) apao

As an approximation, it is customary to rewrite Eq. (10.3) as

_4n
B305

where B; and ¢, are the antenna half-power (3-dB) beamwidths in either
direction.

Gp (10.4)

The antenna power gain and its directivity are related by

G = p,G, (10.5)

where p, is the radiation efficiency factor. In this book, the antenna power
gain will be denoted as gain. The radiation efficiency factor accounts for the
ohmic losses associated with the antenna. Therefore, the definition for the
antenna gain is also given in Eq. (10.1). The antenna effective aperture A, is
related to gain by

_ GV

Ac = 4w

(10.6)

where A is the wavelength. The relationship between the antenna’s effective
aperture A, and the physical aperture A is

Ae = pA (107)
0<p<1

p is referred to as the aperture efficiency, and good antennas require p — 1
(in this book p = 1 is always assumed, i.e., A, = A).

Using simple algebraic manipulations of Eqgs. (10.4) through (10.6) (assum-
ing that p, = 1) yields

4mA
=— = An (10.8)
A B39;
Consequently, the angular cross section of the beam is
22
== 10.
B30; A (10.9)

© 2000 by Chapman & Hall/CRC



Eq. (10.9) indicates that the antenna beamwidth decreases as ,/A, increases. It
follows that, in surveillance operations, the number of beam positions an
antenna will take on to cover a volume V is

Vv

Npoums > 7 (10.10)
Beam B;05

and when V represents the entire hemisphere, Eq. (10.10) is modified to

NBeams > B’%q)S = 7\’2 = E (10.11)

10.2. Near and Far Fields

The electric field intensity generated from the energy emitted by an antenna
is a function of the antenna physical aperture shape and the electric current
amplitude and phase distribution across the aperture. Plots of the modulus of
the electric field intensity of the emitted radiation, |E( B, ¢)| , are referred to as
the intensity pattern of the antenna. Alternatively, plots of |E(f, d))|2 are called
the power radiation pattern (the same as P(B, ¢)).

Based on the distance away from the face of the antenna, where the radiated
electric field is measured, three distinct regions are identified. They are the
near field, Fresnel, and the Fraunhofer regions. In the near field and the Fresnel
regions, rays emitted from the antenna have spherical wavefronts (equi-phase
fronts). In the Fraunhofer regions the wavefronts can be locally represented by
plane waves. The near field and the Fresnel regions are normally of little inter-
est to most radar applications. Most radar systems operate in the Fraunhofer
region, which is also known as the far field region. In the far field region, the
electric field intensity can be computed from the aperture Fourier transform.

Construction of the far criterion can be developed with the help of Fig. 10.1.
Consider a radiating source at point O that emits spherical waves. A receiving
antenna of length d is at distance r away from the source. The phase differ-
ence between a spherical wave and a locally plane wave at the receiving
antenna can be expressed in terms of the distance 8r. The distance dr is given
by

- 2
or = AO-0OB = r2+(§) -7 (10.12)

and since in the far field d «r, Eq. (10.12) is approximated via binomial
expansion by
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. antenna
spherical )\

wavefront

radiating r
source

Figure 10.1. Construction for far field criterion.

2 2
5 = ,( 1+(2ir) _1)zg—r (10.13)

It is customary to assume far field when the distance &r corresponds to less
than 1/16 of a wavelength (i.e., 22.5°). More precisely, if

&r = d°/8r<\/16 (10.14)

then a useful expression for far field is

r22d /A (10.15)

Note that far field is a function of both the antenna size and the operating
wavelength.

10.3. Circular Dish Antenna Pattern

Circular dish reflectors are widely used in microwave and radar applications
because of their simplicity in design and fabrication. Additionally, closed form
far field expressions can be easily computed for all existing modes over the
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circular aperture. Fig. 10.2 shows the geometry associated with a circular aper-
ture. Denote the aperture radius as r. A far field observation point P is
defined by range R and angular position (3, ¢). The aperture factor at P is
given by

E@.0) = J JD(’“" ¥ dy (10.16)
aperture
y(x’,y") = k(x’sinBcosd +y sinBsind) (10.17)

where k = (2m)/A, A is the wavelength, and D(x’, y’) is the current distri-
bution over the aperture. Due to the circular nature of the aperture, it is more
convenient to adopt cylindrical coordinates. It follows that

= pc?sq), (10.18)
y' = psin¢’
x'sinfBcosd + y’sinBsing = psinfcos(d—¢") (10.19)
dx'dy’ = pdpd¢’ (10.20)
oo
EB9) = [pdp [ PP~ gy; (t0.21)
0 0

aperture

Figure 10.2. Circular aperture geometry.
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where the current distribution over the aperture is assumed to be unity. The
second integral in Eq. (10.21) is of the form

2n
J‘eizc°5§d§ = 21Jy(z) (10.22)

0

where J|, is the Bessel function of the first kind of order zero. Because of the
circular symmetry over the aperture, the electric field is independent of ¢.
Hence, E(B, ) = E(B), and Eq. (10.21) can now be rewritten as

r

Ep) = 2njp10(kp sinB)dp (10.23)
0

Using the Bessel function identity

r

IPJo(qp)dP = f] Ji(qr) (10.24)
0

leads to the following expression for the aperture factor

» 2J,(krsinf)
krsinf3
The far field circular dish antenna pattern is computed as the modulus of the

aperture factor defined in Eq. (10.25). The first null occurs when the Bessel
function is zero. More precisely,

EB) = mr (10.25)

2nr . A
Tsm[_’)nl =12n=8, = 1.222—” (10.26)

Through tapering (windowing) the current distribution across the aperture, one
can significantly reduce the side lobe levels.

MATLAB Function “circ_aperture.m”

The function “circ_aperture.m” computes and plots the antenna patter for a
circular aperture of diameter d . It is given in Listing 10.1 in Section 10.9. The
syntax is as follows:

[emod] = circ_aperture (lambda, d)

where lambda is the wavelength and d is the aperture diameter; both parame-
ters should be in meters. Fig. 10.3 shows typical outputs produced using this
function. In this example, d = 0.3m and A = 0.1m.
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Normalized radiation pattern

kr*sin(angle)

Figure 10.3a. Circular aperture radiation pattern. Typical output produced
by “circ_aperturem”. d = 03m; A = 0.1m.
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Figure 10.3b. Three-dimensional array pattern corresponding to Fig. 10.3a.
Typical output produced by “circ_aperture.m”.

d=03m; A =0.1m.
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physical
array
axis

270

Figure 10.3c. Polar plot for a circular aperture. Typical output produced by
“circ_aperture.m”. d = 03m; A = 0.1m.

10.4. Array Antennas

An array is a composite antenna formed from two or more basic radiators.
Each radiator is denoted as an element. The elements forming an array could
be dipoles, dish reflectors, slots in a wave guide, or any other type of radiator.
Array antennas synthesize narrow directive beams that may be steered,
mechanically or electronically, in many directions. Electronic steering is
achieved by controlling the phase of the current feeding the array elements.
Arrays with electronic beam steering capability are called phased arrays.
Phased array antennas when compared to other simple antennas such as dish
reflectors, are costly and complicated to design. However, the inherent flexibil-
ity of phased array antennas to steer the beam electronically and also the need
for specialized multi-function radar systems have made phased array antennas
attractive for radar applications.

10.4.1. Linear Array Antennas

Fig.10.4 shows a linear array antenna consisting of N identical elements.
The element spacing is d (normally measured in wavelength units). The com-
bined electric field measured at a far field observation point P is computed as
the product between the array factor and the element pattern,
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E(P) = E(one element)(array factor) (10.27)
The array factor is a general function of the number of elements, their spacing,

and their relative phases and magnitudes.

Consider the linear array shown in Fig. 10.4. Let element #1 serve as a phase
reference for the array. From the geometry, it is clear that an outgoing wave at
the nth element leads the phase at the (n + 1)tk element by kdsinf3, where
k = 2m/A. The electric field at a far field observation point with direction-
sine equal to sinf (assuming isotropic elements) is

N
E(sinB) = Zef(i’l)(k"Si"B) (10.28)
i=1

Expanding the summation in Eq. (10.28) yields

+ %'\e\éQd\&?
xoﬁ)‘@‘
(N-1)d
)
__V____d_,#l C\B >

Figure 10.4. Linear array of equally spaced elements.
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E(sinB) = 1+ 0Py 4 JV-DkdsinB) (10.29)

The right-hand side of Eq. (10.29) is a geometric series, which can be
expressed in the form

N

2 ~1 1-

l+a+a +a +...+a™ )=1—a (10.30)
—-a

jkdsinf

Replacing a by e yields

1= M1 _ cosNkdsinB — jsin Nkdsinp

E(sinB) = 1 _ JkdsinB "~ 1 —coskdsinP — jsinkdsin (1031)
The far field array intensity pattern is then given by
|E(sinB)| = JE(sinP)E*(sinp) (10.32)
Substituting Eq. (10.31) into Eq. (10.32) and collecting terms yield
a2 - a2
|E(sinpB)| = J(l — cosNkdsinB)” + (sinNkdsinB) (10.33)
(1 - coskdsinB)’ + (sinkdsinB’)
_ |1 —cosNkdsinf
1 — coskdsinf3
and using the trigonometric identity 1 — cos® = 2(sin8/ 2)2 yields
|E(sinp)| = sin(Nkdsin3/2) (10.34)
sin(kdsinf3/2)

which is a periodic function of kdsinf, and its period is equal to 27.

The maximum value of |E(sinf)| occurs at B = 0, and it is equal to N. It
follows that the normalized intensity pattern is equal to

. 1 . .
E (sinB)| = — [sin((NVkdsinB)/2) (10.35)
[Ex(sinB)] N | sin((kdsinP)/2)
The normalized two-way array pattern (radiation pattern) is given by
. B N sin((desinB)/2))2
G(sinB) = |E,(sinB)|” = ¥ ( Sin((kdsinB)/2) (10.36)

Fig. 10.5 shows a plot of Eq. (10.36) versus sinf3 for N = 8. The radiation
pattern G(sinf}) has cylindrical symmetry about its axis (sinf3 = 0), and it is
independent of the azimuth angle. Thus, it is completely determined by its val-
ues within the interval (0 <3 <m). This plot can be reproduced using MAT-
LAB program “figl0_5.m” given in Listing 10.2 in Section 10.9.
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Figure 10.5a. Normalized radiation pattern for a linear array;

N=8andd = A.

270

Figure 10.5b. Polar plot for the radiation pattern in Fig. 10.5a.
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The main beam of an array can be steered electronically by varying the
phase of the current applied to each array element. Steering the main beam into
the direction-sine sinf3, is accomplished by making the phase difference
between any two adjacent elements equal to kdsinf,, . In this case, the normal-
ized radiation pattern can be written as

1 (sin[(de/Z)(sinB — sin Bo)])2 (10.37)

G(sinB) = A2 \sin[(kd/2)(sinB - sinBy)]

If B, = O then the main beam is perpendicular to the array axis, and the array
is said to be a broadside array. Alternatively, the array is called an endfire array
when the main beam points along the array axis.

The radiation pattern maxima are computed using L'Hopital’s rule when
both the denominator and numerator of Eq. (10.36) are zeros. More precisely,

kdsinf3 4

> mm c;m=20,1,2,... (10.38)

Solving for B yields

B, = asin(i%) sm=0,1,2, ... (10.39)

where the subscript m is used as a maxima indicator. The first maximum
occurs at B, = 0, and is denoted as the main beam (lobe). Other maxima
occurring at |m| > 1 are called grating lobes. Grating lobes are undesirable and
must be suppressed. The grating lobes occur at non-real angles when the abso-
lute value of the arc-sine argument in Eq. (10.39) is greater than unity; it fol-
lows that d <A . Under this condition, the main lobe is assumed to be at
B = 0 (broadside array). Alternatively, when electronic beam steering is con-
sidered, the grating lobes occur at

|sinP —sinB| = J_r%1 sn=1,2,... (10.40)

Thus, in order to prevent the grating lobes from occurring between £90°, the
element spacing should be d <A/2.

The radiation pattern attains secondary maxima (side lobes). These second-
ary maxima occur when the numerator of Eq. (10.36) is maximum, or equiva-
lently

NEdSOB - senE ii=12 (10.41)

Solving for B yields
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= asin|+— ;1 =1,2,... .

B, as1n( T 1= 1,2, (10.42)
where the subscript / is used as an indication of side lobe maxima. The nulls of
the radiation pattern occur when only the numerator of Eq. (10.36) is zero.
More precisely,

k2l+1)

N, . . n=12,..
—kdsinp = tnmn ; 10.43
2 b n#N,2N, ... (10.49)

Again solving for B yields
. 7\,”) n = 1, 2,
= asin| == ; 10.44
P, ( dN n#N,2N, ... ( )

where the subscript n is used as a null indicator. Define the angle which corre-
sponds to the half power point as B, . It follows that the half power (3 dB)
beam width is 2|B,, — B, . This occurs when

N,oin . (2782
2kdsmBh— 1.391 radians = B, = as1n(2nd N ) (10.45)

MATLAB Function “linear_array.m”

The function “linear_array.m” computes and plots the linear array radiation
pattern, in linear and polar coordinates. This function is given in Listing 10.3 in
Section 10.9. The syntax is as follows:

[emod] = linear_array (ne, d, beta0)

where
Symbol Description Units Status
ne number of elements in array none input
d element spacing (e.g., wavelengths input
d=2X;d=M\2)
beta0 steering angle degrees input
emod radiation pattern vector dB output

Fig. 10.6 shows typical outputs produced using this function. In this exam-
ple, ne = 8, d = A/2, and beta0O = 30°. The array axis is assumed to be
aligned with the line passing through the 90-to-270 degrees line. Fig. 10.7 is
similar to Fig. 10.6 except in this case d = A and beta0 = 0°. Note how the
grating lobes get closer to the main beam as the element spacing is increased,
thus, limiting the electronic steering capability of the array to within the first
pair of grating lobes.
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Figure 10.6a. Normalized radiation pattern for a linear array. N = 8,
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Figure 10.6b. Polar plot corresponding to Fig. 10.6a.
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10.5. Array Tapering

Fig. 10.8 shows a normalized two-way radiation pattern of a uniformly
excited linear array of size N = 8, element spacing d = A/2. The first side
lobe is about 13.46 dB below the main lobe, and for most radar applications
this may not be sufficient.

In order to reduce the side lobe levels, the array must be designed to radiate
more power towards the center, and much less at the edges. This can be
achieved through tapering (windowing) the current distribution over the face
of the array. There are many possible tapering sequences that can be used for
this purpose. However, as known from spectral analysis, windowing reduces
side lobe levels at the expense of widening the main beam. Thus, for a given
radar application, the choice of the tapering sequence must be based on the
trade-off between side lobe reduction and main beam widening.

array pattern

s
0
sine angle - dimensionless

Figure 10.8. Normalized radiation pattern for a linear array.

N =8andd = A/2.

10.6. Computation of the Radiation Pattern via the DFT

Fig. 10.9 shows a linear array of size N, element spacing d, and wavelength
A . The radiators are circular dishes of diameter D = d. Let w(n) and y(n),
respectively, denote the tapering and phase shifting sequences. The normalized
electric field at a far field point in the direction-sine sinf is
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y(0) w(l) v(2) w(3)| v(4)
w(0) w(l) w(2) w(3) w(4)
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D

Figure 10.9. Linear array of size 5, with tapering and phase shifting hardware.

plo-(5)

N-1
E(sinp) = Z w(n)e (10.46)
n=0

where in this case the phase reference is taken as the physical center of the
array, and

Ao = 2%lsinﬁ (10.47)

Expanding Eq. (10.46) and factoring the common phase term
exp[j(N-1)A0/2] yield

E(sinB) = &V V22 00000)e 7V (1) TNV (10.48)
+...+w(N=-1)}
By using the symmetry property of a window sequence (remember that a win-

dow must be symmetrical about its central point), we can rewrite Eq. (10.48) as

E(sinf) = ej%{w(N— De 7N D8 4y (v—2) 7P (10.49)
+...+w(0)}
where 05 = (N-1)Ad/2.

Define { V| = exp(—jAdn);n =0, 1,... ,N—1}.1It follows that
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E(sinB) = ¢ [w(0) + w(1)V! + ...+ wN— 1)V 1] (10.50)

N-1
= Y wm v,
The discrete Fourier transform of the sequence w(n) is defined as
N-1 _(j2mnk)
wik) = Y wne " s k=01,... ,N-1 (10.51)
n=0

The set {sinf3,} which makes V; equal to the DFT kernel is

sinf, = ]7\;—]; s k=0,1,... ,N-1 (10.52)

Then by using Eq. (10.52) in Eq. (10.51) yields
E(sinB) = ¢"W(k) (10.53)

The one-way array pattern is computed as the modulus of Eq. (10.53). It fol-
lows that the one-way radiation pattern of a tapered linear array of circular
dishes is

G(sinB) = Ge(l%)' W(k)| (10.54)

where G, is the element pattern. Fig. 10.10 shows the one-way array pattern
for a linear array of size N = 16, element spacing d = A/2, and the ele-
ments being circular dishes of diameter D = d; no tapering is utilized.

10.7. Array Pattern for Rectangular Planar Array

Fig. 10.11 shows a sketch of an N X N planar array formed from a rectangu-
lar grid. Other planar array configurations may be composed using a circular or
hexagonal grid. Planar arrays can be steered electronically in both azimuth and
elevation (j3, ¢).

If the array were composed of only one line of elements distributed along the
x-axis, then the electric field at a far field observation point defined by (B, ¢)
is
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array pattern

sine angle - dimensionless

isotropic elements

array pattern

sine angle - dimensionless

circular dishes

Figure 10.10. Normalized one-way pattern for linear array of size 8,
isotropic elements, and circular dishes. This plot can be
reproduced using MATLAB program “fig10_10.m”
given in Listing 10.4 in Section 10.9.
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Figure 10.11. Planar array geometry.

N
j(n—1)kd,sinfcos¢
E.(B,0) = 2 e (10.55)

n=1

where d, is the element spacing along the x-axis. Now, if N of these linear
arrays are placed next to one another along the y-axis, a rectangular array
would be formed. In this case, the total electric field at a far field observation
point is computed as

N
j(m—1 sinfsin
EB.0) = EBOE®B.9) = ¥ EMB 0" T s
m=1
where
N
Ey(ﬁ, (1)) _ Z ej(m—l)kdysmﬁsmq) (10.57)
m=1

and d, is the element spacing along the y-axis.
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The rectangular array one-way intensity pattern is then equal to the product of
the individual patterns. More precisely,

sin ((Nkd,sinBcos¢)/2)
sin((kd sinBcosd)/2)

sin ((Nkd, sinBsin)/2)
sin((kd,sinPsing)/2)

E@B, 0) = (10.58)

The radiation pattern maxima, nulls, side lobes, and grating lobes in both the x-
and y-axis are computed in a similar fashion to the linear array case. Addition-
ally, the same conditions for grating lobes control are applicable.

MATLAB Function “rect_array.m”

The function “rect_array.m” computes and plots the linear array radiation
pattern, in linear and polar coordinates. This function is given in Listing 10.5 in
Section 10.9. The syntax is as follows:

[emod] = rect_array (nex, ney, dx, dy)

where

Symbol Description Units Status
nex number of elements in x-direction none input
ney number of elements in y-direction none input
dx element spacing in x-direction wavelengths input

(eg.d =N, d=2N/2)
dy element spacing in y-direction wavelengths input

(eg.d =N\, d=A/2)
emod radiation pattern vector dB output

Fig. 10.12 shows a three-dimensional radiation pattern for a rectangular array
of size 5 X 5, element spacing d, = d, = A/2 , and isotropic elements.

10.8. Conventional Beamforming

Adaptive arrays are phased array antennas that are normally used to auto-
matically sense and eliminate unwanted signals entering the radar's Field of
View (FOV), while enhancing reception about the desired target returns. For
this purpose, adaptive arrays utilize a rather complicated combination of hard-
ware and require demanding levels of software implementation. Through feed-
back networks, a proper set of complex weights is computed and applied to
each channel of the array. Adaptive array operation can be considered a special
case of beamforming, where the basic idea is to enhance the signal in a certain
direction while attenuating noise in all other directions.
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Figure 10.12a. Three-dimensional pattern for a rectangular array
of size 5x5, and uniform element spacing.

E

=
e

Figure 10.12b. Contour plot corresponding to Fig. 10.12a.
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Multiple beams can be formed at the transmitting or receiving modes. Also,
it can be carried out at the RF, IF, base band, or digital levels. RF beamforming
is the simplest and most common technique. In this case, multiple narrow
beams are formed through the use of phase shifters. IF and base band beam-
forming require complex coherent hardware. However, the system is operated
at lower frequencies where tolerance is not as critical. Digital beamforming is
more flexible than RF, IF, or base band techniques, but it requires a demanding
level of parallel VLSI processing hardware.

A successful implementation of adaptive arrays depends heavily on two fac-
tors: first, a proper choice of the reference signal, which is used for comparison
against the received target/jammer returns. A good estimate of the reference
signal makes the computation of the weights systematic and effective. On the
other hand, a bad estimate of the reference signal increases the array's adapting
time and limits the system to impractical (non-real time) situations. Second, a
fast (real time) computation of the optimum weights is essential. There have
been many algorithms developed for this purpose. Nevertheless, they all share
a common problem, that is the computation of the inverse of a complex matrix.
This drawback has limited the implementation of adaptive arrays to experi-
mental systems or small arrays.

Consider a linear array of N equally spaced elements, and a plane wave inci-
dent on the aperture with direction-sine sinf, as shown in Fig. 10.13. Conven-
tional beamformers appropriately delay the outputs of each sensor to form a
beam steered at angle . The output of the beamformer is

N-1
() = Zx,,(t—f,,) (10.59)

n=0

d .
T, = (N—l—n);smB; n=N-1 (10.60)

where d is the element spacing and ¢ is the speed of light. Fourier transforma-
tion of Eq. (10.59) yields

N-1

Y(0) = Z X, (®)exp(—joT,) (10.61)
n=0

which can be written in vector form as

2 N g
Y=aX (10.62)
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Figure 10.13. A linear array of size NV, element spacing d , and
an incident plane wave defined by sinf3 .

ZT = [exp(jot,) exp(joOT,)...exp(jOOTy_ )] (10.63)
>
X =[X,(0) X{(0)...Xy_(0)]* (10.64)

where the superscript T indicates complex conjugate transpose.

Let A, bg the amplitude of the wavefront defined by sinf, ; it follows that
the vector X is given by

> > %
X = Ask (10.65)

2 ?
where sk1 is a steering vector, and in general s is given by

W= 1 exp(h) - expN- DR k = 24 i o6

Ignoring the phase term exp(—j(N — 1)k), we can write Eq. (10.63) as

> >
a = Sk (10.67)

and the beamformer output will be
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> >t > 1>
Y=aX=Ask sk (10.68)

Thg array pattern of the beam steered at k; is computed as the expected value

of Y. In other words,

>>F NETES
S(k) = E[YY] = P sk Rk (10.69)
2 > %
where P, = E[]A|?] and R is the correlation matrix. If X = A sk1 , then

the power spectrum is

> T > 1>
S(k) = PySk Sk1Sk1 Sk (10.70)

Consider L incident plane waves with directions of arrival defined by

ko= sy i = 1,1 (10.71)

The n'* sample at the output of the m* sensor is

L
Yu(n) = v(n)+ ZAi(n)exp(—jmki); m=0,N-1 (10.72)
i=1

where A,(n) is the amplitude of the i plane wave, and v(n) is white, zero-
mean noise with variance 62, and it is assumed to be uncorrelated with the
signals. Eq. (10.72) can be written in vector notation as

L
;(n) = z(n)+ ZAi(n);ki* (10.73)
i=1

A set of L steering vectors is needed to simultaneously form L beams.
Define the steering matrix X as

— |> > >
X = [Skl . SkJ (10.74)

Then the autocorrelation matrix of the field measured by the array is

> > 7
R = E{ym(n)ym (n)} = o2+ RCKRT (10.75)
where C = dig [Pl P, ... PLJ’ and I is the identity matrix.

The array pattern can now be computed using standard spectral estimators.
For example, using the Bartlett beamformer yields
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E(k) = szER;k (10.76)

The spectrum defined by Eq. (10.76) generates spectral peaks at angles [, for
each wavefront defined by k;. Assuming the i"* wavefront, then the SNR is

P.
SNR = N(—;) (10.77)
G‘l)

10.9. MATLAB Programs and Functions

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun these codes with different inputs
in order to enhance their understanding of the theory.

Listing 10.1. MATLAB Function “circ_aperture.m”

function [emod] = circ_aperture (lambda, d)
eps = 0.000001;

k = 2. *pi/lambda;

r=d/2.;

beta = -pi:pi/200.:pi;

sinbet = sin(beta);

var = k *r.* sinbet; %2.0 * pi * (-2:0.001:2);
pattern = (2. ¥ "2) .* besselj(1,var) ./ (var);
maxval = max(abs(pattern));

pattern = pattern ./ maxval;

emod = 20. * logl0(abs(pattern));

figure(1)

plot(var,emod,'k’)

grid;

xlabel('kr*sin(angle)’)

ylabel('Normalized radiation pattern’);
minval = fix(min(var));

maxval = fix(max(var));

var3d = minval:.5:maxval;

[X,Y] = meshgrid(var3d,var3d);

U =sqri(X.”2 + Y 2) + eps;

z=2. *besselj(1,U) ./ U;

figure (2)

mesh(abs(z))

axis off

Jfigure(3)
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polar(beta,pattern,’k’)

Listing 10.2. MATLAB Program “figl0_5.m”

clear all
eps = 0.0000001;
beta = -pi : pi/ 10791 : pi;
var = sin(beta);
Yovar = -1.:0.00101:1.;
num = sin((8. * 2. *pi *0.5) .* var);
iflabs(num) <= eps)
num = eps;
end
den = sin((2. * pi *0.5) .* var);
if(abs(den) <= eps)
den = eps;
end
pattern = num ./ den;
maxval = max(abs(pattern));
pattern = abs(pattern ./ maxval);
i=0;
mod=abs(pattern);
figure (1)
plot(varmod,'k’);
grid;
xlabel('sine angle - dimensionless')
ylabel('array pattern’')
figure(2)
polar(beta,abs(pattern),'k')

Listing 10.3. MATLAB Function “linear_array.m”

function [emod] = linear_array (ne, d, beta0)
eps = 0.0000001;
beta =0 : pi/ 10791 : 2.%pi;
beta0 = beta0 * pi /180.;
var = sin(beta) - sin(beta0);
num = sin((0.5 *ne * 2. * pi *d).*var);
iftabs(num) <= eps)
num = eps;
end
den = sin((0.5 * 2. * pi *d) .* var),;
iftabs(den) <= eps)
den = eps;
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end

pattern = num ./ den;

maxval = max(abs(pattern));
pattern = abs(pattern ./ maxval);
emod=abs(pattern);

figure(1)

plot(sin(beta),emod,'k’);

grid;

xlabel('sine angle - dimensionless')
ylabel('array pattern’')

figure(2)

polar(beta,abs(pattern),'k’)

Listing 10.4. MATLAB Program “fig10_10.m”

pattern = num ./ den;
maxval = max(abs(pattern));
pattern = abs(pattern ./ maxval);

i=0.;
Sfor ii=-1:0.001:1
i=i+1.;

if(pattern(i) < 0.001)

pattern(i) = 0.0011;
end
end
mod = abs(pattern);
subplot(2,1,1);
plot(var,20.0 .* log10(mod),'k');
grid;
xlabel('sine angle - dimensionless’')
ylabel('array pattern’)
gtext('main lobe');
gtext('grating lobe’');
gtext('grating lobe’');
varl = 1. * pi . * var;
patternj = 2. .* besselj(1,varl) ./ varl;
mod = abs(pattern) .* abs(patternj);
subplot(2,1,2);
plot(var,20.0 .* log10(mod),'k’);
grid;
xlabel('sine angle - dimensionless')
ylabel('array pattern’')
gtext('main lobe');
gtext('grating lobe’');
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gtext('grating lobe');

Listing 10.5. MATLAB Function “rect_array.m”

function emod = rect_array(nex,ney,dx,dy)
eps = 0.0000001;
factx = nex *2. ¥*pi ¥0.5 *dx ;
facty =ney *2. ¥*pi ¥0.5 *dy ;
ii=0.;
delpi = pi/ 10.;
for betax = 0.+delpi : pi/101 : 2.*pi-delpi
ii=ii+1;
numx = sin(factx * sin(betax));
if(abs(numx) <= eps)
numx = eps;
end
denx = sin(factx * sin(betax) / nex);
if(abs(denx) <= eps)

denx = eps;
end
Jj=0;
for betay = 0.+delpi : pi/I101 : 2.*pi-delpi
=g+ 1

numy = sin(facty * sin(betay));
if(abs(numy) <= eps)
numy = eps;
end
deny = sin(facty * sin(betay) / ney);
if(abs(deny) <= eps)
deny = eps;
end
emod(ii,jj) = abs(numx / denx) * abs(numy / deny);
end
end
maxval = max(max(emod));
emod = emod ./ maxval;
figure(1)
mesh(emod)
figure(2)

contour(emod)
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Problems

10.1. Consider an antenna whose diameter is d = 3m. What is the far
field requirement for an X-band or an L-band radar that is using this antenna?
10.2. Consider an antenna with electric field intensity in the xy-plane
E(¢) . This electric field is generated by a current distribution D(y) in the yz-
plane. The electric field intensity is computed using the integral

r/2

E@Q) = | DOexp(2msingay
—r/2

where A is the wavelength and r is the aperture. (a) Write an expression for
E(c) when D(Y) = d,, (a constant). (b) Write an expression for the normal-
ized power radiation pattern and plot it in dB.

10.3. A linear phased array consists of 50 elements with A/2 element
spacing. (a) Compute the 3dB beam width when the main beam steering angle
is 0° and 45°. (b) Compute the electronic phase difference for any two con-
secutive elements for steering angle 60° .

10.4. A linear phased array antenna consists of eight elements spaced with
d = A element spacing. (a) Give an expression for the antenna gain pattern
(assume no steering and uniform aperture weighting). (b) Sketch the gain pat-
tern versus sine of the off boresight angle J. What problems do you see is
using d = A ratherthan d = A/27?

10.5. In Section 10.6 we showed how a DFT can be used to compute the

radiation pattern of a linear phased array. Consider a linear of 64 elements at
half wavelength spacing, where an FFT of size 512 is used to compute the pat-

tern. What are the FFT bins that correspond to steering angles B = 30°,45°?
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Chapter 11 Target Tracking

Part I: Single Target Tracking

Tracking radar systems are used to measure the target’s relative position in
range, azimuth angle, elevation angle, and velocity. Then, by using and keep-
ing track of these measured parameters the radar can predict their future val-
ues. Target tracking is important to military radars as well as to most civilian
radars. In military radars, tracking is responsible for fire control and missile
guidance; in fact, missile guidance is almost impossible without proper target
tracking. Commercial radar systems, such as civilian airport traffic control
radars, may utilize tracking as a means of controlling incoming and departing
airplanes.

Tracking techniques can be divided into range/velocity tracking and angle
tracking. It is also customary to distinguish between continuous single-target
tracking radars and multi-target track-while-scan (TWS) radars. Tracking
radars utilize pencil beam (very narrow) antenna patterns. It is for this reason
that a separate search radar is needed to facilitate target acquisition by the
tracker. Still, the tracking radar has to search the volume where the target’s
presence is suspected. For this purpose, tracking radars use special search pat-
terns, such as helical, T.V. raster, cluster, and spiral patterns, to name a few.

11.1. Angle Tracking

Angle tracking is concerned with generating continuous measurements of
the target’s angular position in the azimuth and elevation coordinates. The
accuracy of early generation angle tracking radars depended heavily on the
size of the pencil beam employed. Most modern radar systems achieve very
fine angular measurements by utilizing monopulse tracking techniques.
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Tracking radars use the angular deviation from the antenna main axis of the
target within the beam to generate an error signal. This deviation is normally
measured from the antenna’s main axis. The resultant error signal describes
how much the target has deviated from the beam main axis. Then, the beam
position is continuously changed in an attempt to produce a zero error signal. If
the radar beam is normal to the target (maximum gain), then the target angular
position would be the same as that of the beam. In practice, this is rarely the
case.

In order to be able to quickly achieve changing the beam position, the error
signal needs to be a linear function of the deviation angle. It can be shown that
this condition requires the beam’s axis to be squinted by some angle (squint
angle) off the antenna’s main axis.

11.1.1. Sequential Lobing

Sequential lobing is one of the first tracking techniques that was utilized by
the early generation of radar systems. Sequential lobing is often referred to as
lobe switching or sequential switching. It has a tracking accuracy that is lim-
ited by the pencil beam width used and by the noise caused by either mechani-
cal or electronic switching mechanisms. However, it is very simple to
implement. The pencil beam used in sequential lobing must be symmetrical
(equal azimuth and elevation beam widths).

Tracking is achieved (in one coordinate) by continuously switching the pen-
cil beam between two pre-determined symmetrical positions around the
antenna’s Line of Sight (LOS) axis. Hence, the name sequential lobing is
adopted. The LOS is called the radar tracking axis, as illustrated in Fig. 11.1.

As the beam is switched between the two positions, the radar measures the
returned signal levels. The difference between the two measured signal levels
is used to compute the angular error signal. For example, when the target is
tracked on the tracking axis, as the case in Fig. 11.1a, the voltage difference is
zero and, hence, is also the error signal. However, when the target is off the
tracking axis, as in Fig. 11.1b, a nonzero error signal is produced. The sign of
the voltage difference determines the direction in which the antenna must be
moved. Keep in mind, the goal here is to make the voltage difference be equal
to zero.

In order to obtain the angular error in the orthogonal coordinate, two more
switching positions are required for that coordinate. Thus, tracking in two
coordinates can be accomplished by using a cluster of four antennas (two for
each coordinate) or by a cluster of five antennas. In the latter case, the middle
antenna is used to transmit, while the other four are used to receive.

© 2000 by Chapman & Hall/CRC



beam A beam B
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return beam B
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Figure 11.1. Sequential lobing. (a) Target is located on track axis.
(b) Target is off track axis.

11.1.2. Conical Scan

Conical scan is a logical extension of sequential lobing where, in this case,
the antenna is continuously rotated at an offset angle, or has a feed that is
rotated about the antenna’s main axis. Fig. 11.2 shows a typical conical scan
beam. The beam scan frequency, in radians per second, is denoted as ®,. The
angle between the antenna’s LOS and the rotation axis is the squint angle ¢ .
The antenna’s beam position is continuously changed so that the target will
always be on the tracking axis.

Fig. 11.3 shows a simplified conical scan radar system. The envelope detec-
tor is used to extract the return signal amplitude and the Automatic Gain Con-
trol (AGC) tries to hold the receiver output to a constant value. Since the AGC
operates on large time constants, it can hold the average signal level constant
and still preserve the signal rapid scan variation. It follows that the tracking
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error signals (azimuth and elevation) are functions of the target’s RCS; they are
functions of its angular position with the main beam axis.

In order to illustrate how conical scan tracking is achieved, we will first con-
sider the case shown in Fig. 11.4. In this case, as the antenna rotates around the
tracking axis all target returns have the same amplitude (zero error signal).
Thus, no further action is required.

rotating
feed

Figure 11.2. Conical scan beam.

> Az & El
- Am P SEIVO motor
g DALMY D drive
'
elevation transmitter w
error -<
detector |
A L i |
envelope | g | mixer & -
— detector IF Amp. |
AGC
azimuth scan motor &

error < scan reference
detector
I

Figure 11.3. Simplified conical scan radar system.
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time

Figure 11.4. Error signal produced when the target is on the tracking
axis for conical scan.

Next, consider the case depicted by Fig. 11.5. Here, when the beam is at
position B, returns from the target will have maximum amplitude. And when
the antenna is at position A, returns from the target have minimum amplitude.
Between those two positions, the amplitude of the target returns will vary
between the maximum value at position B, and the minimum value at position
A. In other words, Amplitude Modulation (AM) exists on top of the returned
signal. This AM envelope corresponds to the relative position of the target
within the beam. Thus, the extracted AM envelope can be used to derive a
servo-control system in order to position the target on the tracking axis.

Now, let us derive the error signal expression that is used to drive the servo-
control system. Consider the top view of the beam axis location shown in Fig.
11.6. Assume that ¢+ = O is the starting beam position. The locations for maxi-
mum and minimum target returns are also identified. The quantity € defines
the distance between the target location and the antenna’s tracking axis. It fol-
lows that the azimuth and elevation errors are, respectively, given by
€, = €sinQ (11.1)

a

€, = £COSQ (11.2)

e

These are the error signals that the radar uses to align the tracking axis on the
target.
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Figure 11.5. Error signal produced when the target is off the
tracking axis for conical scan.
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Figure 11.6. Top view of beam axis for a complete scan.

© 2000 by Chapman & Hall/CRC



The AM signal E(¢) can then be written as
E(t) = Eycos(0,t—@) = Eye,cosmt+ EyE, sinw ¢ (11.3)

where E, is a constant called the error slope, ®, is the scan frequency in radi-
ans per seconds, and @ is the angle already defined. The scan reference is the
signal that the radar generates to keep track of the antenna’s position around a
complete path (scan). The elevation error signal is obtained by mixing the sig-
nal E(t) with coswt (the reference signal) followed by low pass filtering.
More precisely,

E (t) = Eycos(m,—@)cosmt = — %Eocoscp+%cos(2(ost—(p) (11.4)

and after low pass filtering we get

E (1) = - %EQCOS([) (11.5)
Negative elevation error drives the antenna beam downward, while positive
elevation error drives the antenna beam upward. Similarly, the azimuth error
signal is obtained by multiplying E(#) by sinw,¢ followed by low pass filter-
ing. It follows that

E, (1) = %Eosin(p (11.6)

The antenna scan rate is limited by the scanning mechanism (mechanical or
electronic), where electronic scanning is much faster and more accurate than
mechanical scan. In either case, the radar needs at least four target returns to be
able to determine the target azimuth and elevation coordinates (two returns per
coordinate). Therefore, the maximum conical scan rate is equal to one fourth of
the PRF. Rates as high as 30 scans per seconds are commonly used.

The conical scan squint angle needs to be large enough so that a good error
signal can be measured. However, due to the squint angle, the antenna gain in
the direction of the tracking axis is less than maximum. Thus, when the target
is in track (located on the tracking axis), the SNR suffers a loss equal to the
drop in the antenna gain. This loss is known as the squint or crossover loss.
The squint angle is normally chosen such that the two-way (transmit and
receive) crossover loss is less than a few decibels.

11.2. Amplitude Comparison Monopulse

Amplitude comparison monopulse tracking is similar to lobing in the sense
that four squinted beams are required to measure the target’s angular position.
The difference is that the four beams are generated simultaneously rather than
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sequentially. For this purpose, a special antenna feed is utilized such that the
four beams are produced using a single pulse, hence the name “monopulse.”
Additionally, monopulse tracking is more accurate and is not susceptible to
lobing anomalies, such as AM jamming and gain inversion ECM. Finally, in
sequential and conical lobing variations in the radar echoes degrade the track-
ing accuracy; however, this is not a problem for monopulse techniques since a
single pulse is used to produce the error signals. Monopulse tracking radars can
employ both antenna reflectors as well as phased array antennas.

Fig. 11.7 show a typical monopulse antenna pattern. The four beams A, B, C,
and D represent the four conical scan beam positions. Four feeds, mainly
horns, are used to produce the monopulse antenna pattern. Amplitude
monopulse processing requires that the four signals have the same phase and
different amplitudes.

Figure 11.7. Monopulse antenna pattern.

A good way to explain the concept of amplitude monopulse technique is to
represent the target echo signal by a circle centered at the antenna’s tracking
axis, as illustrated by Fig. 11.8a, where the four quadrants represent the four
beams. In this case, the four horns receive an equal amount of energy, which
indicates that the target is located on the antenna’s tracking axis. However,
when the target is off the tracking axis (Figs. 11.8b-d), an unbalance of energy
occurs in the different beams. This unbalance of energy is used to generate an
error signal that drives the servo-control system. Monopulse processing con-
sists of computing a sum X and two difference A (azimuth and elevation)
antenna patterns. Then by dividing a A channel voltage by the £ channel volt-
age, the angle of the signal can be determined.

The radar continuously compares the amplitudes and phases of all beam
returns to sense the amount of target displacement off the tracking axis. It is
critical that the phases of the four signals be constant in both transmit and
receive modes. For this purpose, either digital networks or microwave compar-
ator circuitry are utilized. Fig. 11.9 shows a block diagram for a typical micro-
wave comparator, where the three receiver channels are declared as the sum
channel, elevation angle difference channel, and azimuth angle difference
channel.
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(a) (b) @

Figure 11.8. Illustration of monopulse concept. (a) Target is on the
tracking axis. (b) - (d) Target is off the tracking axis.
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D — az (A+D)-(B+C) azimuth error
B —
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y 2 (AD}(B+C) sum channel
(B+C)
c —

Figure 11.9. Monopulse comparator.

To generate the elevation difference beam, one can use the beam difference
(A-D) or (B-C). However, by first forming the sum patterns (A+B) and (D+C)
and then computing the difference (A+B)-(D+C), we achieve a stronger eleva-
tion difference signal, A,;. Similarly, by first forming the sum patterns (A+D)
and (B+C) and then computing the difference (A+D)-(B+C), a stronger azi-

muth difference signal, A,,_, is produced.

A simplified monopulse radar block diagram is shown in Fig. 11.10. The
sum channel is used for both transmit and receive. In the receiving mode the
sum channel provides the phase reference for the other two difference chan-
nels. Range measurements can also be obtained from the sum channel. In order
to illustrate how the sum and difference antenna patterns are formed, we will
assume a sin@/¢ single element antenna pattern and squint angle @,. The
sum signal in one coordinate (azimuth or elevation) is then given by

sin(@—@y) sin(Q+@y)
5 _ .
(@) (9—0p) ¥ (9 +9p) -0
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Figure 11.10. Simplified amplitude comparison monopulse radar block diagram.
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and a difference signal in the same coordinate is

sin(@—@,) sin(Q + @)
A _ _
(@) (9—9p) (¢ + )

MATLAB Function “mono_pulse.m”

(11.8)

The function “mono_pulse.m” implements Eqs. (11.7) and (11.8). Its output
includes plots of the sum and difference antenna patterns as well as the differ-
ence-to-sum ratio. It is given in Listing 11.1 in Section 11.10. The syntax is as
follows:

mono_pulse (phi0)
where phi0 is the squint angle in radians.

Fig. 11.11 (a-c) shows the corresponding plots for the sum and difference
patterns for ¢, = 0.15 radians. Fig. 11.12 (a-c) is similar to Fig. 11.11, except
in this case @, = 0.75 radians. Clearly, the sum and difference patterns
depend heavily on the squint angle. Using a relatively small squint angle pro-
duces a better sum pattern than that resulting from a larger angle. Additionally,
the difference pattern slope is steeper for the small squint angle.

Squinted patterns

-0.4

Angle - radians

Figure 11.11a. Two squinted patterns. Squint angle is ¢, = 0.15 radians.
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© 2000 by Chapman & Hall/CRC



1ans.

0.75 rad

- radians

Angle

’

08f - - - -

06fF - - - -
4

waped wng

sulejied peajuinbg

Figure 11.12a. Two squinted patterns. Squint angle is @,
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Figure 11.12b. Sum pattern corresponding to Fig. 11.12a.
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Difference pattern

Angle - radians

Figure 11.12c. Difference pattern corresponding to Fig. 11.12a.

The difference channels give us an indication of whether the target is on or
off the tracking axis. However, this signal amplitude depends not only on the
target angular position, but also on the target’s range and RCS. For this reason
the ratio A/X (delta over sum) can be used to accurately estimate the error
angle that only depends on the target’s angular position.

Let us now address how the error signals are computed. First, consider the
azimuth error signal. Define the signals S| and S, as

S, =A+D (11.9)

S, =B+C (11.10)

The sum signal is X= §;+S,, and the azimuth difference signal is
A= 8,-8,.If § =85,, then both channels have the same phase 0° (since
the sum channel is used for phase reference). Alternatively, if S; <S,, then the
two channels are 180° out of phase. Similar analysis can be done for the ele-
vation channel, where in this case S; = A+ B and S, = D+ C. Thus, the
error signal output is

_ Al

o T |3

COS& (11.11)
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where & is the phase angle between the sum and difference channels and it is
equal to 0° or 180°. More precisely, if & = 0, then the target is on the track-
ing axis; otherwise it is off the tracking axis. Fig. 11.13 (a,b) shows a plot for
the ratio A/ for the monopulse radar whose sum and difference patterns are
in Figs. 11.11 and 11.12.

voltage gain

Angle - radians

Figure 11.13a. Difference-to-sum ratio corresponding to Fig. 11.11a.

voltage gain

Angle - radians

Figure 11.13b. Difference-to-sum ratio corresponding to Fig. 11.12a.
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11.3. Phase Comparison Monopulse

Phase comparison monopulse is similar to amplitude comparison monopulse
in the sense that the target angular coordinates are extracted from one sum and
two difference channels. The main difference is that the four signals produced
in amplitude comparison monopulse will have similar phases but different
amplitudes; however, in phase comparison monopulse the signals have the
same amplitude and different phases. Phase comparison monopulse tracking
radars use a minimum of a two-element array antenna for each coordinate (azi-
muth and elevation), as illustrated in Fig. 11.14. A phase error signal (for each
coordinate) is computed from the phase difference between the signals gener-
ated in the antenna elements.

'
antenna

target
axis

Figure 11.14. Single coordinate phase comparison monopulse antenna.
Consider Fig. 11.14; since the angle o is equal to ¢ + /2, it follows that
R = R2+(4)2—251Rcos( +7—t) (11.12)
Le 2) TIPS '
2
=R+ g —dRsin@

and since d « R we can use the binomial series expansion to get

© 2000 by Chapman & Hall/CRC



d .
R, ~R(l + Z—Rsm(p) (11.13)

Similarly,

d .
R2~R(1—2Rs1n(p) (11.14)

The phase difference between the two elements is then given by

2n
A
where A is the wavelength. The phase difference ¢ is used to determine the
angular target location. Note that if ¢ = 0, then the target would be on the
antenna’s main axis. The problem with this phase comparison monopulse tech-
nique is that it is quite difficult to maintain a stable measurement of the off
boresight angle ¢, which causes serious performance degradation. This prob-
lem can be overcome by implementing a phase comparison monopulse system
as illustrated in Fig. 11.15.

0 = ZE(R,~Ry) = “Ldsing (11.15)

The (single coordinate) sum and difference signals are, respectively, given
by

S+, (11.16)

Z(0)

A(9)

where the §; and §, are the signals in the two elements. Now, since S, and
S, have similar amplitude and are different in phase by ¢, we can write

S-S, (11.17)

S, = S,e”* (11.18)

Figure 11.15. Single coordinate phase monopulse antenna,
with sum and difference channels.
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It follows that

A(Q) = S,(1-¢7% (11.19)

(@) = S,(1+e7*) (11.20)
The phase error signal is computed from the ratio A/X. More precisely,

1-¢7° 0

A . 0
S ]tan(z) (11.21)

which is purely imaginary. The modulus of the error signal is then given by
Al _ (9)
5 - tan{ 3 (11.22)

This kind of phase comparison monopulse tracker is often called the half-angle
tracker.

11.4. Range Tracking

Target range is measured by estimating the round-trip delay of the transmit-
ted pulses. The process of continuously estimating the range of a moving target
is known as range tracking. Since the range to a moving target is changing with
time, the range tracker must be constantly adjusted to keep the target locked in
range. This can be accomplished using a split gate system, where two range
gates (early and late) are utilized. The concept of split gate tracking is illus-
trated in Fig. 11.16, where a sketch of a typical pulsed radar echo is shown in
the figure. The early gate opens at the anticipated starting time of the radar
echo and lasts for half its duration. The late gate opens at the center and closes
at the end of the echo signal. For this purpose, good estimates of the echo dura-
tion and the pulse centertime must be reported to the range tracker so that the
early and late gates can be placed properly at the start and center times of the
expected echo. This reporting process is widely known as the “designation pro-
cess.”

The early gate produces positive voltage output while the late gate produces
negative voltage output. The outputs of the early and late gates are subtracted,
and the difference signal is fed into an integrator to generate an error signal. If
both gates are placed properly in time, the integrator output will be equal to
zero. Alternatively, when the gates are not timed properly, the integrator output
is not zero, which gives an indication that the gates must be moved in time, left
or right depending on the sign of the integrator output.
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Figure 11.16. Illustration of split-range gate.
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Part I1: Multiple Target Tracking

Track-while-scan radar systems sample each target once per scan interval,
and use sophisticated smoothing and prediction filters to estimate the target
parameters between scans. To this end, the Kalman filter and the Alpha-Beta-
Gamma (ofy) filter are commonly used. Once a particular target is detected,
the radar may transmit up to a few pulses to verify the target parameters, before
it establishes a track file for that target. Target position, velocity, and accelera-
tion comprise the major components of the data maintained by a track file.

The principles of recursive tracking and prediction filters are presented in
this part. First, an overview of state representation for Linear Time Invariant
(LTD) systems is discussed. Then, second and third order one-dimensional
fixed gain polynomial filter trackers are developed. These filters are, respec-
tively, known as the o and oy filters (also known as the g-h and g-h-k fil-
ters). Finally, the equations for an n-dimensional multi-state Kalman filter is
introduced and analyzed. As a matter of notation, small case letters, with an
underneath bar, are used.

11.5. Track-While-Scan (TWS)

Modern radar systems are designed to perform multi-function operations,
such as detection, tracking, and discrimination. With the aid of sophisticated
computer systems, multi-function radars are capable of simultaneously track-
ing many targets. In this case, each target is sampled once (mainly range and
angular position) during a dwell interval (scan). Then, by using smoothing and
prediction techniques future samples can be estimated. Radar systems that can
perform multi-tasking and multi-target tracking are known as Track-While-
Scan (TWS) radars.

Once a TWS radar detects a new target it initiates a separate track file for
that detection; this ensures that sequential detections from that target are pro-
cessed together to estimate the target’s future parameters. Position, velocity,
and acceleration comprise the main components of the track file. Typically, at
least one other confirmation detection (verify detection) is required before the
track file is established.

Unlike single target tracking systems, TWS radars must decide whether each
detection (observation) belongs to a new target or belongs to a target that has
been detected in earlier scans. And in order to accomplish this task, TWS radar
systems utilize correlation and association algorithms. In the correlation pro-
cess each new detection is correlated with all previous detections in order to
avoid establishing redundant tracks. If a certain detection correlates with more
than one track, then a pre-determined set of association rules are exercised so
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that the detection is assigned to the proper track. A simplified TWS data pro-
cessing block diagram is shown in Fig. 11.17.

Choosing a suitable tracking coordinate system is the first problem a TWS
radar has to confront. It is desirable that a fixed reference of an inertial coordi-
nate system be adopted. The radar measurements consist of target range, veloc-
ity, azimuth angle, and elevation angle. The TWS system places a gate around
the target position and attempts to track the signal within this gate. The gate
dimensions are normally azimuth, elevation, and range. Because of the uncer-
tainty associated with the exact target position during the initial detections, a
gate has to be large enough so that targets do not move appreciably from scan
to scan; more precisely, targets must stay within the gate boundary during suc-
cessive scans. After the target has been observed for several scans the size of
the gate is reduced considerably.

establish time B pre-processing smoothing » deleting files
and radar atin ° & prediction of lost targets
coordinates saing \
: A
correlation /
=1 association
Iy Y
radar establish
measurements track files

Figure. 11.17. Simplified block diagram of TWS data processing.

Gating is used to decide whether an observation is assigned to an existing
track file, or to a new track file (new detection). Gating algorithms are nor-
mally based on computing a statistical error distance between a measured and
an estimated radar observation. For each track file, an upper bound for this
error distance is normally set. If the computed difference for a certain radar
observation is less than the maximum error distance of a given track file, then
the observation is assigned to that track.

All observations that have an error distance less than the maximum distance
of a given track are said to correlate with that track. For each observation that
does not correlate with any existing tracks, a new track file is established
accordingly. Since new detections (measurements) are compared to all existing
track files, a track file may then correlate with no observations or with one or
more observations. The correlation between observations and all existing track
files is identified using a correlation matrix. Rows of the correlation matrix
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represent radar observations, while columns represent track files. In cases
where several observations correlate with more than one track file, a set of pre-
determined association rules can be utilized so that a single observation is
assigned to a single track file.

11.6. State Variable Representation of an LTI System

Linear time invariant system (continuous or discrete) can be describe mathe-
matically using three variables. They are the input, output, and the state vari-
ables. In this representation, any LTI system has observable or measurable
objects (abstracts). For example, in the case of a radar system, range may be an
object measured or observed by the radar tracking filter. States can be derived
in many different ways. For the scope of this book, states of an object or an
abstract are the components of the vector that contains the object and its time
derivatives. For example, a third-order one-dimensional (in this case range)
state vector representing range can be given by

R
x=|R (11.23)

R
where R, R, and R are, respectively, the range measurement, range rate
(velocity), and acceleration. The state vector defined in Eq. (11.23) can be rep-
resentative of continuous or discrete states. In this book, the emphasis is on
discrete time representation, since most radar signal processing is executed

using digital computers. For this purpose, an n-dimensional state vector has the
following form:

t
5 =[xy x d oy e (1129

where the superscript indicates the transpose operation.

The LTI system of interest can be represented using the following state equa-
tions:

x(1) = A x(t) + Bw(1) (11.25)

y(t) = C x(1) + Dw(1) (11.26)

where: x is the value of the n X 1 state vector; y is the value of the p X 1 out-

put vector; w is the value of the m X 1 input vector; A is an n X n matrix; B
is an nXm matrix; C is pXn matrix; and D is an p X m matrix. The
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homogeneous solution (i.e., w = 0) to this linear system, assuming known
initial condition x(0) at time ¢, , has the form

x(1) = ®(t—19)x(t 1) (11.27)

The matrix @ is known as the state transition matrix, or fundamental matrix,
and is equal to

A(t-1y)
D(r-1y) = e (11.28)

Eq. (11.28) can be expressed in series format as

A k
O(r-10)| _, = I+At+A —+ ZA — (11.29)
-

Example 11.1: Compute the state transition matrix for an LTI system when

A-l0 1
- 051

The state tranmzon matrlx can be computed using Eq. (11.29). For this pur-
pose, compute A and A . It follows

Solution:

1 11
A= 2 A=]2 2
- 1 1 - 1

2 2 30

Therefore,

I 12 13 13 |

2 2 £ 2
1+0t——+=5+... 0+¢- —+—+

& = 21 " 3l 3!

0—1t+2——4—+ 1—t+2—+0—t3+
2 20 3 20 31 7

The state transition matrix has the following properties (the proof is left as
an exercise):

1. Derivative property
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%?(r—to) = AD(1-1,) (11.30)
2. Identity property

D(1y-1y) = P0) =1 (11.31)

3. Initial value property

id)(t—to) =A (11.32)
or— o T
-0
4. Transition property
g)(tz—to) = g)(tz—tl)?(tl—to) ; 10SH <1, (11.33)
5. Inverse property
D(1y—1,) = D (1, 1) (11.34)
6. Separation property
-1
gn(tl—to) = d_)(tl)d_D (%) (11.35)

The general solution to the system defined in Eq. (11.25) can be written as

x(1) = ®(1~10)x(sy) + [ ®(1 - DBw(T)dt (11.36)

lo
The first term of the right-hand side of Eq. (11.36) represents the contribution
from the system response to the initial condition. The second term is the contri-
bution due to the driving force w. By combining Eqgs. (11.26) and (11.36) an
expression for the output is computed as

t
A(t—1y) A(t-1)
y(1) = Ce” )_c(t0)+J‘[§e‘ B-D3(t—1)]w(t)dr (11.37)

Iy

A
Note that the system impulse response is equal to ge‘tl_i - Do(t) .

The difference equations describing a discrete time system, equivalent to
Egs. (11.25) and (11.26), are
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x(n+1) = A x(n)+Bw(n) (11.38)

y(n) = C x(n)+ Dw(n) (11.39)
where n defines the discrete time n7T and T is the sampling interval. All other
vectors and matrices were defined earlier. The homogeneous solution to the
system defined in Eq. (11.38), with initial condition x(n,) , is

x(n) = A" "x(ng) (11.40)

In this case the state transition matrix is an n X n matrix given by

-ny

®(n,ng) = ®(n-ny) = A" (11.41)

The following is the list of properties associated with the discrete transition
matrix

D(n+1-ny) = A®(n—-ny) (11.42)
®(ng—ng) = ®(0) = I (11.43)
®(ny+1-np) = (1) = A (11.44)
B, =ng) = Blny=n,)D(n, —np) (11.45)
®(ng—n) = @ (n,—ng) (11.46)
®(n,—ng) = D(n)D " (ny) (11.47)

The solution to the general case (i.e., non-homogeneous system) is given by
n—1
x(n) = @(n=ng)x(ng) + Y P(n—m—1)Bw(m) (11.48)
m=ng
It follows that the output is given by
n-1
y(n) = CO(n—ng)x(ng)+ » € @(n—m—1)Bw(m)+Dw(n) (11.49)
m=n,

where the system impulse response is given by
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n—-1
h(n) = Z C ®(n—m-1)B3(m) + D3(n) (11.50)

Taking the Z-transform for Egs. (11.38) and (11.39) yields
72x(z) = Ax(z) + Bw(z) +zx(0) (11.51)
y(z) = Cx(z) + Dw(z) (11.52)
Manipulating Egs. (11.51) and (11.52) yields
x(2) = [zl - AT Bw(z) + [z~ Al zx(0) (11.53)
¥(2) = {ClzI-A1'B+ D}w(z) + ClzI - A1 zx(0) (11.54)
It follows that the state transition matrix is
- -l
D(2) = zlzd-AT = [1-2"'A] (11.55)
and the system impulse response in the z-domain is

h(z) = C®(z)z 'B+D (11.56)

11.7. The LTI System of Interest

For the purpose of establishing the framework necessary for the Kalman fil-
ter development, consider the LTI system shown in Fig. 11.18. This system
(which is a special case of the system described in the previous section) can be
described by the following first order differential vector equations

x(1) = A x(2) +u(r) (11.57)

y() = G x(1) +v(r) (11.58)

where y is the observable part of the system (i.e., output), u is a driving force,
and v is the measurement noise. The matrices A and G vary depending on the
system. The noise observation v is assumed to be uncorrelated. If the initial
condition vector is x(f,) , then from Eq. (11.36) we get

t

x(1) = @(1-10)x(ty) + [ D(1 - Du(D)dr (11.59)

Iy
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Figure 11.18. An LTI system.

The object (abstract) is observed only at discrete times determined by the
system. These observation times are declared by discrete time n7T where T is
the sampling interval. Using the same notation adopted in the previous section,
the discrete time representations of Eqs. (11.57) and (11.58) are

x(n) = A x(n—1)+u(n) (11.60)

y(n) = G x(n)+v(n) (11.61)

The homogeneous solution to this system is given in Eq. (11.27) for continuous
time, and in Eq. (11.40) for discrete time.

The state transition matrix corresponding to this system can be obtained
using Taylor series expansion of the vector x . More precisely,

X=x4+Tx+=x+...

2!
. (11.62)
x=x+Tx+...
X = X+...
It follows that the elements of the state transition matrix are defined by
=i i <iic
o[ij] = {ﬁ G- 1—”]—”} (11.63)
- 0 Jj<i

Using matrix notation, the state transition matrix is then given by
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2,

1 T
=101 T .. (11.64)
00 1

The matrix given in Eq. (11.64) is often called the Newtonian matrix.

11.8. Fixed-Gain Tracking Filters

This class of filters (or estimators) is also known as “Fixed-Coefficient” fil-
ters. The most common examples of this class of filters are the aff and oy
filters and their variations. The o3 and a7y trackers are one-dimensional sec-
ond and third order filters, respectively. They are equivalent to special cases of
the one-dimensional Kalman filter. The general structure of this class of esti-
mators is similar to that of the Kalman filter.

The standard oy filter provides smoothed and predicted data for target
position, velocity (Doppler), and acceleration. It is a polynomial predictor/cor-
rector linear recursive filter. This filter can reconstruct position, velocity, and
constant acceleration based on position measurements. The ofy filter can also
provide a smoothed (corrected) estimate of the present position which can be
used in guidance and fire control operations.

Notation:

For the purpose of the discussion presented in the remainder of this chapter,
the following notation is adopted: x(n|m) represents the estimate during the
nth sampling interval, using all data up to and including the mth sampling
interval; y, is the nth measured value; and e, is the nth residual (error).

The fixed-gain filter equation is given by

x(n|n) = Dx(n— Iin-1)+ K[y, - GPx(n— Iin-1)] (11.65)

Since the transition matrix assists in predicting the next state,

x(n+1|n) = (i))_c(n|n) (11.66)

Substituting Eq. (11.66) into Eq. (11.65) yields

x(n|n) = x(n|n-1)+ K[y, - Gx(n|n-1)] (11.67)

© 2000 by Chapman & Hall/CRC



The term enclosed within the brackets on the right hand side of Eq. (11.67) is
often called the residual (error) which is the difference between the measured
input and predicted output. Eq. (11.67) means that the estimate of x(n) is the
sum of the prediction and the weighted residual. The term Gx(n|n —1) repre-
sents the prediction state. In the case of the afy estimator, G is row vector
given by B

G=1100.] (11.68)

and the gain matrix K is given by

o
K= |B/T (11.69)

y/T2

One of the main objectives of a tracking filter is to decrease the effect of the
noise observation on the measurement. For this purpose the noise covariance
matrix is calculated. More precisely, the noise covariance matrix is

C(n|n) = E{(x(n|n) )x'(n|m)} 5y, =, (11.70)

where E indicates the expected value operator. Noise is assumed to be a zero
. . 2 ... .

mean random process with variance equal to ¢, . Additionally, noise measure-

ments are also assumed to be uncorrelated,

5o” n=m
E{v,v,} = Y (11.71)
0 n#m
Eq. (11.65) can be written as
x(n|n) = Ax(n-1jn-1)+Ky, (11.72)
where
A= (-KO® (1173

Substituting Eqs. (11.72) and (11.73) into Eq. (11.70) yields

C(nln) = E{(Ax(n-1jn-1)+ Ky )(Ax(n-1|n-1) +I_(yn)t} (11.74)

Expanding the right hand side of Eq. (11.74) and using Eq. (11.71) give
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C(n|n) = AC(n—1jn-1)A"+ Ko K' (11.75)

Under the steady state condition, Eq. (11.75) collapses to

C(n|n) = ACA" + K6 K' (11.76)

where Cc is the steady state noise covariance matrix. In the steady state,

C(nln) = C(n-1|n-1) = C for any n (11.77)

Several criteria can be used to establish the performance of fixed-gain track-
ing filter. The most commonly used technique is to compute the Variance
Reduction Ratio (VRR). The VRR is defined only when the input to the tracker
is noise measurements. It follows that in the steady state case, the VRR is the
steady state ratio of the output variance (auto-covariance) to the input measure-
ment variance.

In order to determine the stability of the tracker under consideration, con-
sider the Z-transform for Eq. (11.72),
x(z) = éz_l)_c(z) +Ky,(z) (11.78)

Rearranging Eq. (11.78) yields the following system transfer functions:

x(2) -1

h(z) = = (I-A7") K (11.79)
- yn(z) B - -

where (I— Azfl) is called the characteristic matrix. Note that the system trans-
fer functions can exist only when the characteristic matrix is a non-singular
matrix. Additionally, the system is stable if and only if the roots of the charac-
teristic equation are within the unit circle in the z-plane,

‘({—é\z’l)‘ =0 (11.80)

The filter’s steady state errors can be determined with the help of Fig. 11.19.
The error transfer function is

(0 = 25 (11.81)
N YTE) '
and by using Abel’s theorem, the steady state error is
. . z—1
e = lim e(t) = lim (—) e(z) (11.82)
- t—>o0 T z—1 Z -
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Substituting Eq. (11.82) into (11.81) yields

_ (2)
e = lim el 2 (11.83)

-1z 1+h(z)

W.@@(z) o SO
+ T_ -

Figure 11.19. Steady state errors computation.

11.8.1. The O.]3 Filter

The aff tracker produces, on the nth observation, smoothed estimates for
position and velocity, and a predicted position for the (n + 1)th observation.
Fig. 11.20 shows an implementation of this filter. Note that the subscripts “p”
and “s” are used to indicate, respectively, the predicated and smoothed values.
The o} tracker can follow an input ramp (constant velocity) with no steady
state errors. However, a steady state error will accumulate when constant
acceleration is present in the input. Smoothing is done to reduce errors in the
predicted position through adding a weighted difference between the measured
and predicted values to the predicted position, as follows:

x,(n) = x(n|n) = xp(n) +Oc(x0(n)—xp(n)) (11.84)
xs(n) = X' (n|n) = xs(n—1) +[]_3“ (xo(n) = x,(n)) (11.85)

X, is the position input samples. The predicted position is given by

x,(n) = x(njn-1) = x(n-1)+ Txs(n—1) (11.86)
The initialization process is defined by
x,(1) = x,(2) = xo(1)
x(1) =0

x9(2) = xo(1)

xs(z) = T
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Figure 11.20. An implementation for an o3 tracker.

A general form for the covariance matrix was developed in the previous sec-
tion, and is given in Eq. (11.75). In general, a second order one-dimensional
covariance matrix (in the context of the o§ filter) can be written as

XX C
C(n|n) = “ (11.87)
- Ci Cii
where, in general, ny is
C,y = E{xy'} (11.88)

By inspection, the a3 filter has

A= {1_0‘ (I_O‘)T} (11.89)
-B/T (1-P)
K = {B“} (11.90)
- /T
G = [1 OJ (11.91)
o=|1T (11.92)
- 0 1
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Finally, by using Eqs. (11.89) through (11.92) in Eq. (11.72) yields the steady
state noise covariance matrix,
2 200- 3o +2pB &0;_@

€= o(4—20—-B) B(20.—B) 24 (11:93)

r T

It follows that the position and velocity VRR ratios are, respectively, given by

2 2a2—30cB+ZB

(VRR), = C,,/0, = a(@-20-B) (11.94)
_ 21 op
(VRR)).C = C).M./cv = 7 a@_20_p) (11.95)

The stability of the af filter is determined from its system transfer func-
tions. For this purpose, compute the roots for Eq. (11.80) with A from Eq.
(11.89),

-a7'| = 1-@-0-B)z ' +(1-0)z7 = 0 (11.96)
Solving Eq. (11.96) for z yields

a+B+l
2 T2

J(o - PB)* - 4B (11.97)

2,0 = 1=
and in order to guarantee stability

|24 <1 (11.98)

Two cases are analyzed. First, z; , are real. In this case (the details are left as
an exercise),

B>0 ;o> (11.99)
The second case is when the roots are complex; in this case we find
oa>0 (11.100)

The system transfer functions can be derived by using Eqgs. (11.79), (11.89),
and (11.90),

(a-B)
(D)) _ ! az(z_ o ) (11.101)
he(@)|  Z-z2-a-B+(1-a) | Bz(z-1)

T
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Up to this point all relevant relations concerning the oy filter were made
with no regard to how to choose the gain coefficients (o and ). Before con-
sidering the methodology of selecting these coefficients, consider the main
objective behind using this filter. The purpose of the of} tracker can be
described twofold:

1. The tracker must reduce the measurement noise as much as possible.

2. The filter must be able to track maneuvering targets, with as little residual
(tracking error) as possible.

The reduction of measurement noise reduction is normally determined by the
VRR ratios. However, the maneuverability performance of the filter depends
heavily on the choice of the parameters o and 3.

A special variation of the a3 filter was developed by Benedict and Bord-
nerl, and is often referred to as the Benedict-Bordner filter. The main advan-
tage of the Benedict-Bordner is reducing the transient errors associated with
the a3 tracker. This filter uses both the position and velocity VRR ratios as
measure of performance. It computes the sum of the squared differences
between the input (position) and the output when the input has a unit step
velocity at time zero. Additionally, it computes the squared differences
between the real velocity and the velocity output when the input is as described
earlier. Both error differences are minimized when

2

B = 20_‘a (11.102)

In this case, the position and velocity VRR ratios are, respectively, given by

(VRR), = —0;(62;50()8 (11.103)
o —o0+
3
(VRR), = 1% % (11.104)
o —o0 +

Another important sub-class of the oy tracker is the critically damped filter,
often called the fading memory filter. In this case, the filter coefficients are
chosen on the basis of a smoothing factor &, where 0 <& < 1. The gain coeffi-
cients are given by

o=1-¢ (11.105)

1. Benedict, T. R. and Bordner, G. W., Synthesis of an Optimal Set of Radar Track-
While-Scan Smoothing Equations. IRE Transaction on Automatic Control, AC-7.
July 1962, pp. 27-32.
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B=(1-8) (11.106)

Heavy smoothing means & — 1 and little smoothing means & — 0. The ele-
ments of the covariance matrix for a fading memory filter are

= (11;;3 (1+4E+5E%) o (11.107)
c.=C,_= % (11;;3 (1+28+38) o, (11.108)
= T% ﬁ (1-8) o, (11.109)

11.8.2. The O.[3Y Filter

The o.fy tracker produces, for the nth observation, smoothed estimates of
position, velocity, and acceleration. It also produces predicted position and
velocity for the (n + 1)th observation. An implementation of the oy tracker
is shown in Fig. 11.21.

The afy tracker will follow an input whose acceleration is constant with no
steady state errors. Again, in order to reduce the error at the output of the
tracker, a weighted difference between the measured and predicted values is
used in estimating the smoothed position, velocity, and acceleration as follows:

Figure 11.21. An implementation for an 0.3y tracker.
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xy(n) = x,(n) + oxy(n) —x,(n)) (11.110)

x5(n) = xs(n—1) + Txs(n - 1)+g (xo(n) —x,(n)) (11.111)
. . 2'y
xs(n) = xs(n—1)+ 7_2 (xp(n) —xp(n)) (11.112)
) P
xp(n +1) = x,(n)+T x4(n)+ ) xs(n) (11.113)

and the initialization process is
x(1) = x,(2) = x,(1)
xa(l) = xa(l) = xa(z) =0

xp(2) = xo(1)
T

Xo(3) + xo(1) = 2x(2)
T

Using Eq. (11.63) the state transition matrix for the ofy filter is

x5(2) =

x5(3) =

(11.114)

ﬂ
= = 8N,

The covariance matrix (which is symmetric) can be computed from Eq.
(11.76). For this purpose, note that

o
K=|B/T (11.115)
y/T2
G=l100 (11.116)
and
l—a (-o)T (1-o)T*/2
A=(U-KGO®=| p/7 —p+1 (1-p/2yr| (1117

2v/T 2/T (1-7v)
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Substituting Eq. (11.117) into (11.76) and collecting terms the VRR ratios
are computed as

_ 2B(207 + 2B —3apB) — ay(4 — 20— B)
(VRR), = (20 _P) (20 + oy 27) (11.118)

48° -4’y + 2y’ 2-0)

(VRR). =
* 72(4—20c—B)(20L[3+0Ly—27)

(11.119)

4By’
(VRR). =
Y4 -20-B)(2aB + ay-2Yy)

(11.120)

As in the case of any discrete time system, this filter will be stable if and only if
all of its poles fall within the unit circle in the z-plane.

The oy characteristic equation is computed by setting

‘{—éz"’ =0 (11.121)

Substituting Eq. (11.117) into (11.121) and collecting terms yield the following
characteristic function:

fz2) =2+ (=30+B+P +B-P-2a+7)z— (1 - ) (11.122)
The oy becomes a Benedict-Bordner filter when
2[3—0((0(+B+%) =0 (11.123)

Note that for v = 0 Eq. (11.123) reduces to Eq. (11.102). For a critically
damped filter the gain coefficients are

o=1-¢ (11.124)
B=15(1-E)(1-E) = 151-E)7(1+E&) (11.125)
y=(1-8’ (11.126)

Note that heavy smoothing takes place when & — 1, while & = 0 means that
no smoothing is present.
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MATLAB Function “ghk_tracker.m”

The function “ghk_tracker.m”1 implements the steady state oy filter. It is
given in Listing 11.2 in Section 11.10. The syntax is as follows:

[residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)

where

Symbol Description Status

X0 initial state vector input

smoocof desired smoothing coefficient input

inp array of position measurements input

npts number of points in input position input

T sampling interval input

nvar desired noise variance input

residual array of position error (residual) output

estimate array of predicted position output

Note that “ghk_tracker.m” uses MATLAB’s function “normrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox.
If this toolbox is not available to the user, then “ghk_tracker.m” function-call
must be modified to

[residual, estimate] = ghk_trackerl (X0, smoocof, inp, npts, T)

which is also part of Listing 11.2. In this case, noise measurements are either to
be considered unavailable or are part of the position input array.

To illustrate how to use the functions ghk_tracker.m and ghk_trackerml,
consider the inputs shown in Figs. 11.22 and 11.23. Fig. 11.22 assumes an
input with lazy maneuvering, while Fig. 11.23 assumes an aggressive maneu-
vering case. For this purpose, the program called “fig/l_21.m” was written. It
is given in Listing 11.3 in Section 11.10.

Figs. 11.24 and 11.25 show the residual error and predicted position corre-
sponding (generated using the program “figl/l_21.m”) to Fig. 11.22 for two
cases: heavy smoothing and little smoothing with and without noise. The noise
is white Gaussian with zero mean and variance of Gi = 0.05. Figs. 11. 26 and
11.27 show the residual error and predicted position corresponding (generated
using the program “fig/l_20.m”) to Fig. 11.23 with and without noise.

1. This function was written by Mr. Edward Shamsi of COLSA Corporation in Hunts-
ville, AL.
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Figure 11.22. Position (truth-data); lazy maneuvering.
3.5
3 _
2.5 _
c 2 E
2
.“;‘
o
o 1.5 4

0 I I I
0 1000 2000 3000 4000 5000 6000

Sample number

Figure 11.23. Position (truth-data); aggresive maneuvering.
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Figure 11.24a-1. Predicted and true position. £ = 0.1 (i.e., large gain
coefficients). No noise present.

Residual

Sample number

Figure 11.24a-2. Position residual (error). Large gain coefficients.
No noise. The error settles to zero fairly quickly.
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Figure 11.24b-1. Predicted and true position. £ = 0.9 (i.e., small
gain coefficients). No noise present.
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Figure 11.24b-2. Position residual (error). Small gain coefficients. No noise.
It takes the filter longer time for the error to settle down.
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Figure 11.25a-1. Predicted and true position. £ = 0.1 (i.e., large
gain coefficients). Noise is present.
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Figure 11.25a-2. Position residual (error). Large gain coefficients. Noise present.
The error settles down quickly. The variation is due to noise.
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Figure 11.25b-1. Predicted and true position. § = 0.9 (i.e., small gain
coefficients). Noise is present.

0.4

0.2k - |

Residual
<)
IS

0B H - - - e

B

0 500 1000 1500
Sample number

Figure 11.25b-2. Position residual (error). Small gain coefficients. Noise present.
The error requires more time before settling down. The
variation is due to noise.
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Figure 11.26a. Predicted and true position. & = 0.1 (i.e., large gain
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Figure 11.26b. Position residual (error). Large gain coefficients. No noise.
The error settles down quickly.
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Figure 11.27a. Predicted and true position. E_, = 0.8 (i.e., small gain coefficients).
Noise is present.
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Figure 11.27b. Position residual (error). Small gain coefficients. Noise present.
The error stays fairly large; however, its average is around zero.
The variation is due to noise.
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11.9. The Kalman Filter

The Kalman filter is a linear estimator that minimizes the mean squared error
as long as the target dynamics are modeled accurately. All other recursive fil-
ters, such as the oy and the Benedict-Bordner filters, are special cases of the
general solution provided by the Kalman filter for the mean squared estimation
problem. Additionally, the Kalman filter has the following advantages:

1. The gain coefficients are computed dynamically. This means that the same
filter can be used for a variety of maneuvering target environments.

2. The Kalman filter gain computation adapts to varying detection histories,
including missed detections.

3. The Kalman filter provides an accurate measure of the covariance matrix.
This allows for better implementation of the gating and association pro-
cesses.

4. The Kalman filter makes it possible to partially compensate for the effects
of miss-correlation and miss-association.

Many derivations of the Kalman filter exist in the literature; only results are
provided in this chapter. Fig. 11.28 shows a block diagram for the Kalman fil-
ter. The Kalman filter equations can be deduced from Fig. 11.28. The filtering
equation is

x(n|n) = x (n) = x(n|n—-1)+ K(n)[y(n) - Gx(n|n—1)] (11.127)

The measurement vector is

y(n) = Gx(n) +v(n) (11.128)

where v(n) is zero mean, white Gaussian noise with covariance R,

R, = E{y(n) y'(n)} (11.129)

The gain (weights) vector is dynamically computed as

K(n) = P(n[n—1)G'[GP(n|n-1)G' + R ] (11.130)

where the measurement noise matrix P represents the predictor covariance
matrix, and is equal to

P(n+1|n) = E{x,(n+ Dx* (n)} = ®P(n|n)® + 0 (11.131)

where Q is the covariance matrix for the input u,
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Q = E{u(n) u'(n)} (11.132)

The corrector equation (covariance of the smoothed estimate) is

P(n|n) = [I-K(n)G]P(n|n-1) (11.133)

Finally, the predictor equation is

x(n+1|n) = (i),f(n|n) (11.134)
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Figure 11.28. Structure of the Kalman filter.

11.9.1. The Singer OLB’Y-Kalman Filter

The Singer1 filter is a special case of the Kalman where the filter is gov-
erned by a specified target dynamic model whose acceleration is a random pro-
cess with autocorrelation function given by

t

1

a

m

E{i(1) X(t+1,)} = 0. e (11.135)

1. Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned Maneu-
vering Targets, IEEE Transaction on aerospace and Electronics, AES-5, July, 1970.
pp. 473-483.
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where 7, is the correlation time of the acceleration due to target maneuver or
atmospheric turbulence. The correlation time T,, may vary from as low as 10
seconds for aggressive maneuvering to as large as 60 seconds for lazy maneu-
ver cases.

Singer defined the random target acceleration model by a first order Markov
process given by

in+1) =p, ¥n)+Al-p. o, wn) (11.136)

where w(n) is a zero mean, Gaussian random variable with unity variance,
o, is the maneuver standard deviation, and the maneuvering correlation coef-

m

ficient p,, is given by

P =€ (11.137)

I
Tm

The continuous time domain system that corresponds to these conditions is as
the Wiener-Kolmogorov whitening filter which is defined by the differential
equation

%v(t) = —B,,v(#) +w(t) (11.138)

where B,, is equal to 1/71,,. The maneuvering variance using Singer’s model
is given by

2

2 Amax
= T[l+4Pmax_PO] (11.139)

m

o

A is the maximum target acceleration with probability P and the term

max max

P, defines the probability that the target has no acceleration.

The transition matrix that corresponds to the Singer filter is given by

1
LT _2(_1 +BmT+pm)
D = 1 (11.140)
- |01 B_(l ~Pw)

0 0 P

Note that when TP, = T/7,, is small (the target has constant acceleration),
then Eq. (11.140) reduces to Eq. (11.114). Typically, the sampling interval T is
much less than the maneuver time constant T, ; hence, Eq. (11.140) can be
accurately replaced by its second order approximation. More precisely,
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1 T
©=10 1 7T(1-T/21,) (11.141)
0 0 P

The covariance matrix was derived by Singer, and it is equal to

20_2 C11 C12 C13
C= T_mm Cy Cp Cp (11.142)
C31 G5, Cy3
where
2 1 2B, T 2B T 2 BT
C,, =0, = —5[1—e +2B,,T+ 3 —23m72—4BmTe }(11.143)

m

) _ _
Cpp = Cyy = ?[e‘ Pl 1226 2B T P o, T4 BAT (1.149)
2

m

-2 —
Ci; =Cy = %[l—e B”’T—ZBmTe B”’T] (11.145)
- -2
Cy = %[46 Pl _3 Ty 28,71 (11.146)
28,
-2 _
Cy = Cxp = %[e Pl 1 - 2e B”’T] (11.147)
1 -28,,T
Cy = m[l—e ] (11.148)

Two limiting cases are of interest:

1. The short sampling interval case (T « T, ),
2 |T°720 T'/8 T/6

Jim C=0 8 13 T (11.149)
/6 T/2 T

© 2000 by Chapman & Hall/CRC



and the state transition matrix is computed from Eq. (11.141) as

1 7 T°/2
Blirng0 g: =10 1 T (11.150)
00 1

which is the same as the case for the ofy filter (constant acceleration).

2. The long sampling interval (T » t,, ). This condition represents the case

when acceleration is a white noise process. The corresponding covariance
and transition matrices are, respectively, given by

2731,”

Tt, T

3 m m
lim C = o, (11.151)
BT e = thm 217, T,
131 T 1
1 7T Tr,
im ®=1[pg 1 ¢ (11.152)
BT — "
0 0 O

Note that under the condition that 7' » T, , the cross correlation terms C,; and
C,; become very small. It follows that estimates of acceleration are no longer
available, and thus a two state filter model can be used to replace the three state
model. In this case,

C =20,1, (11.153)
/2 T
o=|1T (11.154)
- 01

11.9.2. Relationship between Kalman and O.3Y Filters

The relationship between the Kalman filter and the oy filters can be easily
obtained by using the appropriate state transition matrix @, and gain vector K
corresponding to the afy in Eq. (11.127). Thus,
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x(n|n) x(njn-1) ky(n)
x(nln)| = [x(n|n-1)| + |ky(n)|[xo(n) —x(n|n—1)] (11.155)
i(n|n) )'c'(n|n -1) ky(n)

with (see Fig. 11.21)

x(njn-1) = x(n-1)+T xg(n— 1)+%‘2 xs(n—1) (11.156)
x(njn=1) = x;(n=1)+T x4(n-1) (11.157)
x(njn-1) = x,(n-1) (11.158)

Comparing the previous three equations with the ofy filter equations
yields,

o

B ki

T| = |k, (11.159)
AR

T

Additionally, the covariance matrix elements are related to the gain coeffi-
cients by

ky | Cu

k) = ——|Cph, (11.160)
C, +o0,

ks 13

Eq. (11.160) indicates that the first gain coefficient depends on the estimation
error variance to the total residual variance, while the other two gain coeffi-
cients are calculated through the covariances between the second and third
states and the first observed state.

MATLAB Function “kalman_filter.m”

The function “kalman _filter.m”1 implements the Singer-ofy Kalman filter.
It is given in Listing 11.4 in Section 11.10. The syntax is as follows:

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)

1. This function was written by Mr. Edward Shamsi of COLSA Corporation in Hunts-
ville, AL.
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where

Symbol Description Status
npts number of points in input position input
T sampling interval input
X0 initial state vector input
inp input array input

R noise variance see Eq. (11-129) input
nvar desired state noise variance input
residual array of position error (residual) output
estimate array of predicted position output

Note that “kalman_filterm” uses MATLAB’s function “normrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox.

To illustrate how to use the functions “kalman_filter.m”, consider the inputs
shown in Figs. 11.22 and 11.23. Figs. 11.29 and 11.30 show the residual error
and predicted position corresponding to Figs. 11.22 and 11.23. These plots can
be reproduced using the program “fig//_28.m” given in Listing 11.5 in Sec-
tion 11.10.

- truth

position
T
1

1 f 1 1 1 1 1 1 1 1

200 400 600 800 1000 1200 1400 1600 1800 2000

Predicted position

L L L L L L L L L
200 400 600 800 1000 1200 1400 1600 1800
Sample number

Figure 11.29a. True and predicted positions. Lazy maneuvering. Plot produced
using the function “kalman_filter.m”.

© 2000 by Chapman & Hall/CRC



0.08

0.06 |-

0.04

0.02

Residual

-0.02

-0.04

-0.06

-0.08 |

-0.1 }

50 100 150 200 250 300 350 400 450 500
Sample number

Figure 11.29b. Residual corresponding to Fig. 11.29a.

position - truth

200 400 600 800 1000 1200 1400 1600 1800 2000

Predicted position

200 400 600 800 1000 1200 1400 1600 1800
Sample number

Figure 11.30a. True and predicted positions. Aggressive maneuvering. Plot

produced using the function “kalman_filter.m”.
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Figure 11.30b. Residual corresponding to Fig. 11.30a.

500

11.10. MATLAB Programs and Functions

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun these codes with different inputs

in order to enhance their understanding of the theory.

Listing 11.1. MATLAB Function “mono_pulse.m”

function mono_pulse(phi0)
eps = 0.0000001;

angle = -pi:0.01:pi;

y1 = sinc(angle + phi0);

y2 = sinc((angle - phi0));
ysum =yl +y2;

ydif = -y1 +y2;

figure (1)

plot (angle,y1,'k',angle,y2,'k");
grid;

xlabel ('Angle - radians')
ylabel ('Squinted patterns')
figure (2)
plot(angle,ysum,'k");
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grid;

xlabel ('Angle - radians')
ylabel ('Sum pattern')
figure (3)

plot (angle,ydif,'k');

grid;

xlabel ('Angle - radians')
ylabel (‘Difference pattern’)
angle = -pi/4:0.01:pi/4;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ydif = -y1 +y2;

ysum =yl +y2;

dovrs = ydif ./ ysum;
figure(4)

plot (angle,dovrs,'k");
grid;

xlabel ('Angle - radians')
ylabel ('voltage gain')

Listing 11.2. MATLAB Function “ghk_tracker.m”

function [residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)
m=1;
% read the initial estimate for the state vector
X = XO0;
theta = smoocof;
%compute values for alpha, beta, gamma
wl = 1. - (theta”3);
w2 = 1.5 * (1. + theta) * ((1. - theta)2) / T;
w3 = ((1. - theta)*3) / (TA2);
% setup the transition matrix PHI
PHI =[1. T (T~2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
%use the transition matrix to predict the next state
XN =PHI * X;
error = (inp(rn) + normrnd(0,nvar)) - XN(1);
residual(rn) = error;
tmpl = wl * error;
tmp2 = w2 * error;
tmp3 = w3 * error;
% compute the next state
X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3;
estimate(rn) = X(1);
m=rm-+ 1.
end
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return

MATLAB Function “ghk_trakerl.m”

function [residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)
m=1;
% read the initial estimate for the state vector
X = XO0;
theta = smoocof;
%compute values for alpha, beta, gamma
wl = 1. - (theta”3);
w2 = 1.5 * (1. + theta) * ((1. - theta)2) / T;
w3 = ((1. - theta)*3) / (T"2);
% setup the transition matrix PHI
PHI =[1. T (T~2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
%use the transition matrix to predict the next state
XN =PHI * X;
error = inp(rn) - XN(1);
residual(rn) = error;
tmpl = w1 * error;
tmp2 = w2 * error;
tmp3 = w3 * error;
% compute the next state
X(1) =XN(1) + tmpl1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3;
estimate(rn) = X(1);
m=rm-+ 1.
end
return

Listing 11.3. MATLAB Program “figll_21.m”

clear all
eps = 0.0000001;

npts = 5000;
del = 1./ 5000.;
t=0.:del: 1.,

% generate input sequence

inp = 1.+ tA3 + .5 #t 2 + cos(2.%pi*10 .* t) ;

% read the initial estimate for the state vector
X0=[2,.1,.017;

% this is the update interval in seconds

T = 100. * del;

% this is the value of the smoothing coefficient

xi=.91;

[residual, estimate] = ghk_tracker (X0, xi, inp, npts, T, .01);
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figure(1)

plot (residual(1:500))
xlabel ('Sample number")
ylabel ('Residual error')
grid

figure(2)

NN =4999.;

n=1:NN;

plot (n,estimate(1:NN),'b',n,inp(1:NN),'r'")
xlabel ('Sample number")
ylabel ('Position')

legend ('Estimated',' Input')

Listing 11.4. MATLAB Function “kalman_filter.m”

function [residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)
N = npts;
m=1;
% read the initial estimate for the state vector
X =XO0;
% it is assumed that the measurmeny vector H=[1,0,0]
% this is the state noise variance
VAR = nvar;
% setup the initial value for the predication covariance.
S=[1.1.1;1. 1.1 1. 1. L.];
% setup the transition matrix PHI
PHI=[1.T (T~2)/2.;0.1.T;0.0. 1.];
% setup the state noise covariance matrix
Q(1,1) = (VAR * (T*5)) /20,
Q(1,2) = (VAR * (TM4))/ 8.;
Q(1,3) = (VAR * (T"3))/ 6,
Q2,1 =Q(1,2);
Q(2,2) = (VAR * (T"3)) /3.
Q(2,3) = (VAR * (T"2)) / 2,;
Q@31 =Q(1,3);
Q(3.2)=Q(2.3);
Q(3,3)=VAR * T,
while rn <N ;
%use the transition matrix to predict the next state
XN =PHI * X;
% Perform error covariance extrapolation
S=PHI *S * PHI' + Q;
% compute the Kalman gains
ak(1) =S(1,1) / (S(1,1) + R);
ak(2) = S(1,2) / (S(1,1) + R);
ak(3) = S(1,3) / (S(1,1) + R);
%operform state estimate update:
error = inp(rn) + normrnd(0,R) - XN(1);
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residual(rn) = error;
tmpl = ak(1) * error;
tmp2 = ak(2) * error;
tmp3 = ak(3) * error;
X(1) = XN(1) + tmp1;
X(2) = XN(2) + tmp2;
X(3) = XN(3) + tmp3;
estimate(rn) = X(1);
% update the error covariance
S(1,1) =S(1,1) * (1. -ak(1));
S(1,2) =S(1,2) * (1. -ak(1));
S(1,3) = S(1,3) * (1. -ak(1));
S(2,1) =S(1,2);
S(2,2) = -ak(2) * S(1,2) + S(2,2);
S(2,3) = -ak(2) * S(1,3) + S(2,3);
S(3,1) =S(1,3);
S(3,3) =-ak(3) * S(1,3) + S(3.3);
m=rn+ 1.

end

Listing 11.5. MATLAB Program “figll_28.m”

clear all

npts = 2000;

del = 1/2000;

t=0:del:1;

inp=(1+2 % t+ .1 .*t.22) + cos(2. * pi * 2.5 .* 1);
X0=[1,.1,.017;

% it is assumed that the measurmeny vector H=[1,0,0]
% this is the update interval in seconds

T=1;

% enter the measurement noise variance

R =.035;

% this is the state noise variance

nvar = .5;

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)

plot(residual)

xlabel ('Sample number')

ylabel ('Residual’)

figure(2)

subplot(2,1,1)

plot(inp)

axis tight

ylabel ('position - truth')

subplot(2,1,2)

plot(estimate)

axis tight
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xlabel ('Sample number"')
ylabel (‘'Predicted position')

Problems

11.1. Show that in order to be able to quickly achieve changing the beam
position the error signal needs to be a linear function of the deviation angle.
11.2. Prepare a short report on the vulnerability of conical scan to amplitude
modulation jamming. In particular consider the self-protecting technique
called “Gain Inversion.”

11.3. Consider a conical scan radar. The pulse repetition interval is 10pLs .
Calculate the scan rate so that at least ten pulses are emitted within one scan.
11.4. Consider a conical scan antenna whose rotation around the tracking
axis is completed in 4 seconds. If during this time 20 pulses are emitted and
received, calculate the radar PRF and the unambiguous range.

11.5. Reproduce Fig. 11.11 for ¢, = 0.05, 0.1, 0.15 radians.

11.6. Reproduce Fig. 11.13 for the squint angles defined in the previous
problem.

11.7. Derive Eq. (11.33) and Eq. (11.34).

11.8. Consider a monopulse radar where the input signal is comprised of
both target return and additive white Gaussian noise. Develop an expression

for the complex ratio Z/A.
11.9. Consider the sum and difference signals defined in Eqgs. (11.7) and
(11.8). What is the squint angle ¢, that maximizes (¢ = 0)?

11.10. A certain system is defined by the following difference equation:
y(n) +4y(n—1)+2y(n-2) = w(n)
Find the solution to this system for >0 and w = §.

11.11. Prove the state transition matrix properties (i.e., Eqs. (11.30) through
(11.36)).

11.12. Suppose that the state equations for a certain discrete time LTT sys-

tem are
xi(n+1) _ 0 1]||x(n) + 0 w(n)
Xy(n+1) =2 =3||x,(n) 1

If y(0) = y(1) = 1, find y(n) when the input is a step function.

11.13. Derive Eq. (11.59).
11.14. Derive Eq. (11.75).
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11.15. Using Eq. (11.83), compute a general expression (in terms of the
transfer function) for the steady state errors when the input sequence is:

ul = {0,1,1,1,1,...}
u2 = {0,1,2,3,...}

w3 = {0,1%,2%3% .1

ud = 10,1°,2° 3% .1
11.16. Verify the results in Eqs. (11.99) and (11.100).
11.17. Develop an expression for the steady state error transfer function for
an o} tracker.
11.18. Using the result of the previous problem and Eq. (11.83), compute
the steady-state errors for the o tracker with the inputs defined in Problem
11.13.
11.19. Design a critically damped o8, when the measurement noise vari-

. . e . 2 .
ance associated with position is ¢, = 50m and when the desired standard

deviation of the filter prediction error is 5.5m .
11.20. Derive Egs. (11.118) through (11.120).
11.21. Derive Eq. (11.122).

11.22. Consider a oy filter. We can define six transfer functions: H,(z),
H,(z), H;(z), H,(z), Hs(z), and Hy(z) (predicted position, predicted
velocity, predicted acceleration, smoothed position, smoothed velocity, and

smoothed acceleration). Each transfer function has the form

-1 -2
az+a,z +a,z

H(z) =
1+b,0  +b,2  + by

The denominator remains the same for all six transfer functions. Compute all
the relevant coefficients for each transfer function.

11.23. Verify the results obtained for the two limiting cases of the Singer-
Kalman filter.
11.24. Verify Eq. (11.160).
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Chapter 12 Synthetic Aperture Radar

12.1. Introduction

Modern airborne radar systems are designed to perform a large number of
functions which range from detection and discrimination of targets to mapping
large areas of ground terrain. This mapping can be performed by the Synthetic
Aperture Radar (SAR). Through illuminating the ground with coherent radia-
tion and measuring the echo signals, SAR can produce high resolution two-
dimensional (and in some cases three-dimensional) imagery of the ground sur-
face. The quality of ground maps generated by SAR is determined by the size
of the resolution cell. A resolution cell is specified by range and azimuth reso-
lutions of the system. Other factors affecting the size of the resolution cells are
(1) size of the processed map and the amount of signal processing involved;
(2) cost consideration; and (3) size of the objects that need to be resolved in the
map. For example, mapping gross features of cities and coastlines does not
require as much resolution when compared to resolving houses, vehicles, and
streets.

SAR systems can produce maps of reflectivity versus range and Doppler
(cross range). Range resolution is accomplished through range gating. Fine
range resolution can be accomplished by using pulse compression techniques.
The azimuth resolution depends on antenna size and radar wavelength. Fine
azimuth resolution is enhanced by taking advantage of the radar motion in
order to synthesize a larger antenna aperture. Let N, denote the number of
range bins and let N, denote the number of azimuth cells. It follows that the
total number of resolution cells in the map is N,N,. SAR systems that are
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generally concerned with improving azimuth resolution are often referred to as
Doppler Beam-Sharpening (DBS) SARs. In this case, each range bin is pro-
cessed to resolve targets in Doppler which correspond to azimuth. This chapter
is presented in the context of DBS.

Due to the large amount of signal processing required in SAR imagery, the
early SAR designs implemented optical processing techniques. Although such
optical processors can produce high quality radar images, they have several
shortcomings. They can be very costly and are, in general, limited to making
strip maps. Motion compensation is not easy to implement for radars that uti-
lize optical processors. With the recent advances in solid state electronics and
Very Large Scale Integration (VLSI) technologies, digital signal processing in
real time has been made possible in SAR systems.

12.2. Real Versus Synthetic Arrays

A linear array of size N, element spacing d, isotropic elements, and wave-
length A is shown in Fig. 12.1. A synthetic linear array is formed by linear
motion of a single element, transmitting and receiving from distinct positions
that correspond to the element locations in a real array. Thus, synthetic array
geometry is similar to that of a real array, with the exception that the array
exists only at a single element position at a time.

The two-way radiation pattern (in the direction-sine sinf}) for a real linear
array was developed in Chapter 10; it is repeated here as Eq. (12.1):

sin((desin[3)/2))2 (12.1)

G(sinB) = ( sin((kdsinf)/2)

Since a synthetic array exists only at a single location at a time, the array
transmission is sequential with only one element receiving. Therefore, the
returns received by the successive array positions differ in phase by 8 = kAr,
where k = 2n/A, and Ar = 2dsinf3 is the round-trip path difference
between contiguous element positions. The two-way array pattern for a syn-
thetic array is the coherent sum of the returns at all the array positions.

Thus, the overall two-way electric field for the synthetic array is

N
E(sinB) = 1+ 4 7% 4 4 72N-18 2 ze"fz("”l)kds‘"ﬁ (12.2)

n=1

By using similar analysis as in Section 10.4, the two-way electric field for a
synthetic array can be expressed as

© 2000 by Chapman & Hall/CRC



yA éQ
G
0 S
-
(N=1)d
d
I A A B .

Figure 12.1. Geometry of real or synthetic array.

. _ sin(NkdsinB)
E(sinf) = sin(kdsinp) (12.3)
and the two-way radiation pattern is
G(sinB) = |E(sinB)| = |sin(Nkdsinp) (12.4)
(sinp) = [E(sinf) sin(kdsinf})

Comparison of Eq. (12.4) and Eq. (12.1) indicates that the two-way radiation
pattern for a real array is of the form (sin®/ 6)2, while it is of the form
sin20/20 for the synthetic array. Consequently, for the same size aperture,
the main beam of the synthetic array is twice as narrow as that for the real
array. Or equivalently, the resolution of a synthetic array of length L (aperture
size) is equal to that of a real array with twice the aperture size (2L), as illus-
trated in Fig. 12.2.
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array pattern

angle - radians

Figure 12.2. Pattern difference between real and synthetic arrays. This plot
can be reproduced using MATLAB program ‘figl12_2.m” given in
Listing 12.1 in Section 12.12.

12.3. Side Looking SAR Geometry

Fig. 12.3 shows the geometry for the standard side looking SAR. We will
assume that the platform carrying the radar maintains both fixed altitude 4 and
velocity v. The antenna 3dB beam width is 0, and the elevation angle (mea-
sured from the z-axis to the antenna axis) is B . The intersection of the antenna
beam with the ground defines a footprint. As the platform moves, the footprint

scans a swath on the ground.
N
The radar positign with respect to the absglute origin O = (0, 0, 0), at any

time is the vector a(r) . The velocity vector a'(¢) is

N - A -
a(t) =0xa,+vxa,+0xa; (12.5)

The Line of Sight (LOS) for the current footprint centered at Z](tc) is defined
-

by the vector R(t.) where 7, denotes the central time of the observation inter-

val T, (coherent integration interval). More precisely,

Tob Tob
(t=t,+1) ; - <t< > (12.6)
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Figure 12.3. Side looking SAR geometry.
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5
where ¢, and ¢ are the absolute and relative times, respectively. The vector m,
defines the ground projection of the antenna at central time. The minimum

slant range to the swath is R,,;, , and the maximum range is denoted R, ., as
illustrated by Fig. 12.4. It follows that
R, = h/cos(f-6/2)
R,,.. = h/cos(B+6/2) (12.7)
9
R(t,)| = h/cosP
Notice that the elevation angle B is equal to
B = 90 -y, (12.8)

where y, is the grazing angle. The size of the footprint is a function of the
grazing angle and the antenna beam width, as illustrated in Fig. 12.5. The SAR
geometry described in this section is referred to as SAR “strip mode” of opera-
tion. Another SAR mode of operation, which will not be discussed in this
chapter, is called “spot-light mode,” where the antenna is steered (mechani-
cally or electronically) to continuously illuminate one spot (footprint) on the
ground. In this case, one high resolution image of the current footprint is gen-
erated during an observation interval.

Figure 12.4. Definition of minimum and maximum range.

12.4. SAR Design Considerations

The quality of SAR images is heavily dependent on the size of the map reso-
lution cell shown in Fig. 12.6. The range resolution, AR, is computed on the
beam LOS, and is given by

AR = (c1)/2 (12.9)
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Figure 12.6. Definition of a resolution cell.
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where 7T is the pulse width. From the geometry in Fig. 12.7 the extent of the
range cell ground projection AR, is computed as

cT
ARg = Esecwg (12.10)

The azimuth or cross range resolution for a real antenna with a 3dB beam
width O (radians) at range R is

AA, = OR (12.11)

However, the antenna beam width is proportional to the aperture size,

0 z;_: (12.12)

where A is the wavelength and L is the aperture length. It follows that

_ R

AA
g L

(12.13)
And since the effective synthetic aperture size is twice that of a real array, the
azimuth resolution for a synthetic array is then given by

AR

AA = 28
A 2L

(12.14)

T
5 secy,

Figure 12.7. Definition of a range cell on the ground.
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Furthermore, since the synthetic aperture length L is equal to vT,,, Eq.
(12.14) can be rewritten as

AR

AA =
2vT,,

(12.15)

The azimuth resolution can be greatly improved by taking advantage of the
Doppler variation within a footprint (or a beam). As the radar travels along its
flight path the radial velocity to a ground scatterer (point target) within a foot-
print varies as a function of the radar radial velocity in the direction of that
scatterer. The variation of Doppler frequency for a certain scatterer is called the
“Doppler history.”

Let R(t) denote range to a scatterer at time ¢, and v, be the corresponding
radial velocity; thus the Doppler shift is

= (12.16)

where R'(?) is the range rate to the scatterer. Let ¢, and ¢, be the times when
the scatterer enters and leaves the radar beam, respectively, and let ¢, be the
time that corresponds to minimum range. Fig. 12.8 shows a sketch of the corre-
sponding R(#) (see Eq. (12.16)). Since the radial velocity can be computed as
the derivative of R(¢) with respect to time, one can clearly see that Doppler
frequency is maximum at ¢, , zero at ¢,, and minimum at t,, as illustrated in
Fig. 12.9.

In general, the radar maximum PRF, f, , must be low enough to avoid
range ambiguity. Alternatively, the minimum PRF, f. , must be high enough
to avoid Doppler ambiguity. SAR unambiguous rangem must be at least as wide
as the extent of a footprint. More precisely, since target returns from maximum
range due to the current pulse must be received by the radar before the next
pulse is transmitted, it follows that SAR unambiguous range is given by
R,=R,, —R (12.17)

An expression for unambiguous range was derived in Chapter 1, and is
repeated here as Eq. (12.18),

C

R, = 3 (12.18)

Combining Eq. (12.18) and Eq. (12.17) yields
f < < (12.19)

Tmax Z(Rmax - Rmin)
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Figure 12.8. Sketch of range versus time for a scatterer.
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Figure 12.9. Point scatterer Doppler history.

SAR minimum PREF, f, , is selected so that Doppler ambiguity is avoided.
In other words, f, must be greater than the maximum expected Doppler
spread within a focgltlf)rint. From the geometry of Fig. 12.10, the maximum and
minimum Doppler frequencies are, respectively, given by

2v
doar = N

2
(=%
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cos(90—g)sin|3) ; at t

cos(90+g)sinﬁ) ;at ty

(12.20)

(12.21)
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Figure 12.10. Doppler history computation. (a) Full view; (b) top view.
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It follows that the maximum Doppler spread is

Afy = 1y

Substituting Egs. (11.20) and (11.21) into Eq. (12.22) and applying the proper
trigonometric identities yield

~fy (12.22)

max

4y . 06 .
Af, = - Siny sin 3 (12.23)
Finally, by using the small angle approximation we get

Af,= ‘% 251 |3_ esmB (12.24)

Therefore, the minimum PRF is

fi T 0sinf (12.25)

Combining Eqgs. (11.19) and (11.25) we get

IR Zfrzx 0sinf (12.26)

max Rmin)

It is possible to resolve adjacent scatterers at the same range within a foot-
print based only on the difference of their Doppler histories. For this purpose,
assume that the two scatterers are within the kth range bin. Denote their angu-
lar displacement as A6, and let Af, ~ be the minimum Doppler spread
between the two scatterers such that they will appear in two distinct Doppler
filters. Using the same methodology that led to Eq. (12.24) we get

Afdmm = 2% ABsinf3, (12.27)

where B, is the elevation angle corresponding to the kth range bin.

The bandwidth of the individual Doppler filters must be equal to the inverse of

the coherent integration interval T, (i.e., Af; = 1/T,,). It follows that
A
AO = ——F— 12.28
2vT,,sinf, ( )

Substituting L for vT,, yields
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A

AO = 12.2
0 2Lsinf, (12.29)
Therefore, the SAR azimuth resolution (within the kth range bin) is
AA, = ABR, = R _A (12.30)
g k= Tk 2LsinB, '

Note that when B, = 90°, Eq. (12.30) is identical to Eq. (12.14).

12.5. SAR Radar Equation

The single pulse radar equation was derived in Chapter 1, and is repeated
here as Eq. (12.31),

P.G'\o

SNR = L
(41)’R.kT,BL, .,

(12.31)

where: P, is peak power; G is antenna gain; A is wavelength; G is radar cross
section; R, is radar slant range to the kth range bin; k is Boltzman’s constant;
T, is receiver noise temperature; B is receiver bandwidth; and L, is radar
losses. The radar cross section is a function of the radar resolution cell and ter-
rain reflectivity. More precisely,

0 0,, CT
=0 ARgAAg =0 AAgEsecwg (12.32)
where 60 is the clutter scattering coefficient, AA < is the azimuth resolution,
and Eq. (12.10) was used to replace the ground range resolution. The number
of coherently integrated pulses within an observation interval is

fL
n=fT,,=— (12.33)

v
where L is the synthetic aperture size. Using Eq. (12.30) in Eq. (12.33) and

rearranging terms yield

MRS, 12.34
n= 244, cseB, (12.34)

The radar average power over the observation interval is
P, = (P,/B). (12.35)

The SNR for n coherently integrated pulses is then
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P.G'\'o
(SNR),, = nSNR = n 7 (12.36)
(4TC) RkkTOBLLoss

Substituting Egs. (11.35), (11.34), and (11.32) into Eq. (12.36) and performing
some algebraic manipulations give the SAR radar equation,

PG\’ AR
(SNR), = —5—5—— ¥ cscfy (12.37)
(4n)’RkToL, .. 2V
Eq. (12.37) leads to the conclusion that in SAR systems the SNR is (1)
inversely proportional to the third power of range; (2) independent of azimuth
resolution; (3) function of the ground range resolution; (4) inversely propor-

tional to the velocity v ; and (5) proportional to the third power of wavelength.

12.6. SAR Signal Processing

There are two signal processing techniques to sequentially produce a SAR
map or image; they are line-by-line processing and Doppler processing. The
concept of SAR line-by-line processing is as follows. Through the radar linear
motion a synthetic array is formed, where the elements of the current synthetic
array correspond to the position of the antenna transmissions during the last
observation interval. Azimuth resolution is obtained by forming narrow syn-
thetic beams through combination of the last observation interval returns. Fine
range resolution is accomplished in real time by utilizing range gating and
pulse compression. For each range bin and each of the transmitted pulses dur-
ing the last observation interval, the returns are recorded in a two-dimensional
array of data that is updated for every pulse. Denote the two-dimensional array
of data as MAP.

To further illustrate the concept of line-by-line processing, consider the case
where a map of size N, X N, is to be produced, N, is the number of azimuth
cells, and N, is the number of range bins. Hence, MAP is of size N,XN,,
where the columns refer to range bins, and the rows refer to azimuth cells. For
each transmitted pulse, the echoes from consecutive range bins are recorded
sequentially in the first row of MAP . Once the first row is completely filled
(i.e., returns from all range bins have been received), all data (in all rows) are
shifted downward one row before the next pulse is transmitted. Thus, one row
of MAP is generated for every transmitted pulse. Consequently, for the current
observation interval, returns from the first transmitted pulse will be located in
the bottom row of MAP, and returns from the last transmitted pulse will be in
the first row of MAP .
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In SAR Doppler processing, the array MAP is updated once every N pulses
so that a block of N columns is generated simultaneously. In this case, N
refers to the number of transmissions during an observation interval (i.e., size
of the synthetic array). From an antenna point of view, this is equivalent to
having N adjacent synthetic beams formed in parallel through electronic steer-
ing.

12.7. Side Looking SAR Doppler Processing

Consider the geometry shown in Fig. 12.11, and assume that the scatterer C;
is located within the kth range bin. The scatterer azimuth and elevation angles
are W; and f3;, respectively. The scatterer elevation angle B, is assumed to be
equal to B,, the range bin elevation angle. This assumption is true if the
ground range resolution, AR,, is small; otherwise, B; = B, +¢; for some
small €;; in this chapter €; = 0.

The normalized transmitted signal can be represented by

s(t) = cos(2mfyt— &) (12.38)

AZ

kth

range bin

projection of
radar LOS

Figure 12.11. A scatterer C; within the k¢: range bin.
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where f, is the radar operating frequency, and &, denotes the transmitter
phase. The returned radar signal from C; is then equal to

s (1) = A;cos[2mf(t—T,(1, 1,)) — &l (12.39)

where T,(¢, 1;) is the round-trip delay to the scatterer, and A; includes scat-
terer strength, range attenuation, and antenna gain. The round-trip delay is

2r(t, W,
T, N;) = ﬂ (12.40)
where c is the speed of light and r,(z, W;) is the scatterer slant range. From the
geometry in Fig. 12.11, one can write the expression for the slant range to the
ith scatterer within the kth range bin as

h 2vt . vt 2
ri(t W) = COSBi/\/I - cosf;cosp;sinf; + (h cosBi) (12.41)

And by using Eq. (12.40) the round-trip delay can be written as

2 h 2vt . vt 2
Tt W) = ccosBiA/l_ . COSBiCOSMiSIHBi"‘(hCOSﬁ,) (12.42)

The round-trip delay can be approximated using a two-dimensional second
order Taylor series expansion about the reference state (z, ) = (0,0). Per-
forming this Taylor series expansion yields

2
- - -t
T(L W) =T+ Ty WitE+Ty 5 (12.43)

where the over-bar indicates evaluation at the state (0, 0), and the subscripts
denote partial derivatives. For example, T,, means

2

Ty = —atauri(t, [.Li)|(t’ = (0.0) (12.44)
The Taylor series coefficients are (see Problem 11.6)
- 2h) 1
T = ( - )cosBi (12.45)
Ty = (Z?V)sinﬁi (12.46)
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T, = (%)Cosﬁi (12.47)

Note that other Taylor series coefficients are either zeros or very small, hence
they are neglected. Finally, by substituting Eqs. (12.45) through (12.47) into
Eq. (12.43), we can rewrite the returned radar signal as

s;(t, 1) = Ageos[yi(e, W) — E_»o]
. ] L P (12.48)
v, W) = 271:f0|:(1 — Tyl ) =T~ Ttt§:|

Observation of Eq. (12.48) indicates that the instantaneous frequency for the
ith scatterer varies as a linear function of time due to the second order phase
term ano(%ntz/ 2) (this confirms the result we concluded about a scatterer
Doppler history). Furthermore, since this phase term is range-bin dependent
and not scatterer dependent, all scatterers within the same range bin produce
this exact second order phase term. It follows that scatterers within a range bin
have identical Doppler histories. These Doppler histories are separated by the
time delay required to fly between them, as illustrated in Fig. 12.12.

Suppose that there are [ scatterers within the krh range bin. In this case, the
combined returns for this cell are the sum of the individual returns due to each
scatterer as defined by Eq. (12.48). In other words, superposition holds, and the
overall echo signal is

1

s,(1) = ZSi(t, uw,) (12.49)

i=1

N\

-
|

Doppler histories A

o

| )
|

[ N

| Tob |

Figure 12.12. Doppler histories for several scatterers within the same range bin.
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A signal processing block diagram for the kth range bin is illustrated in Fig.
12.13. It consists of the following steps. First, heterodyning with carrier fre-
quency is performed to extract the quadrature components.

This is followed by LP filtering and A/D conversion. Next, deramping or
focusing to remove the second order phase term of the quadrature components
is carried out using a phase rotation matrix. The last stage of the processing
includes windowing, performing FFT on the windowed quadrature compo-
nents, and scaling of the amplitude spectrum to account for range attenuation
and antenna gain.

The discrete quadrature components are

x(t,) = xi(n) = Acos[yilt,, ) — &l
(12.50)

xo(t,) = xo(n) = Asin[yi(z,, ;) - &l

Vit 1) = Wit 1) — 27y, (12.51)

and ¢, denotes the nth sampling time (remember that -7 ,,/2<t,<T ,/2).
The quadrature components after deramping (i.e., removal of the phase
Yy = —nfor,,ti) are given by

x(n)| _ {cosw —sinw} xi(n) (12.52)
xo(n)|  [siny cosy| |, (n)

12.8. SAR Imaging Using Doppler Processing

It was mentioned earlier that SAR imaging is performed using two orthogo-
nal dimensions (range and azimuth). Range resolution is controlled by the
receiver bandwidth and pulse compression. Azimuth resolution is limited by
the antenna beam width. A one-to-one correspondence between the FFT bins
and the azimuth resolution cells can be established by utilizing the signal
model described in the previous section. Therefore, the problem of target
detection is transformed into a spectral analysis problem, where detection is
based on the amplitude spectrum of the returned signal. The FFT frequency
resolution Af is equal to the inverse of the observation interval 7', . It follows
that a peak in the amplitude spectrum at k;Af indicates the presence of a scat-
terer at frequency f,;; = k,;Af.

For an example, consider the scatterer C; within the kth range bin. The
instantaneous frequency f,;; corresponding to this scatterer is
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Figure 12.13. Signal processing block diagram for the kth range bin.
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LTI e
fai = modr Jotml; = A sinf3; (12.53)

which is the same result derived in Eq. (12. 27), where u; = A6. Therefore,
the scatterers separated in Doppler by a frequency greater than Af can then be
resolved.

12.9. Range Walk

As shown earlier SAR Doppler processing is achieved in two steps: first,
range gating and second, azimuth compression within each bin at the end of the
observation interval. For this purpose, azimuth compression assumes that each
scatterer remains within the same range bin during the observation interval.
However, since the range gates are defined with respect to a radar that is mov-
ing, the range gate grid is also moving relative to the ground. As a result a scat-
terer appears to be moving within its range bin. This phenomenon is known as
range walk. A small amount of range walk does not bother Doppler processing
as long as the scatterer remains within the same range bin. However, range
walk over several range bins can constitute serious problems, where in this
case Doppler processing is meaningless.

12.10. Case Study

Table 12.1 lists the selected design system parameters. The 3 dB element
beamwidth is © = 63.75 milliradians. The maximum range interval
spanned by the central footprint is

R,un = Ry — R, (12.54)
R, = h/cos(B*+6/2) (12.55)
R,, = h/cos(f*-6/2) (12.56)

Substituting the proper values from Table 12.1 into Egs. (12.54), (12.55), and
(12.56) yields

{R,pans Ry Ryn} = {81448, 1315.538, 1234.090 }m (12.57)

which indicates that the system should have a total of 82 range bins. Doppler
shift over the footprint is proportional to the radial velocity. It is given by

2y

A

For this example, f; is

cos(90 +6/2)sinB* < f < 2%cos(90 —0/2)sinp* (12.58)
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TABLE 12.1. List of selected system parameters.

Parameter Symbol Value
# subintervals M 64
size of array N 32
wavelength A 3.19mm
element spacing d 16\
velocity v 65m/s
height h 900m
elevation angle [ 35°
range resolution d, Im
observation interval D,, 20ms
—-1489.88Hz < f,, < 1489.88H (12.59)

To avoid range and Doppler ambiguities the Pulse Repetition Frequency (PRF)
should be

c
2R

span

27‘}6 SPRF< (12.60)

Using the system parameters defined in Table 12.1, we find
5.995KHz < PRF < 1.31579MHz . The DFT frequency resolution Af is com-
puted as the inverse of the observation interval, and it is equal to 5S0Hz . The
size of the DFT, denoted as NFFT, is equal to the number of positions the
antenna takes on along the flight path. The maximum Doppler variation
resolved by this DFT is less than or equal to AfX NFFT/2 .

12.11. Arrays in Sequential Mode Operation

Standard Synthetic Aperture Radar (SAR) imaging systems are generally
used to generate high resolution two-dimensional (2-D) images of ground ter-
rain. Range gating determines resolution along the first dimension. Pulse com-
pression techniques are usually used to achieve fine range resolution. Such
techniques require the use of wide band receiver and display devices in order
to resolve the time structure in the returned signals. The width of azimuth cells
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provides resolution along the other dimension. Azimuth resolution is limited
by the duration of the observation interval.

An approach for multiple target detection using linear arrays operated in
sequential mode was previously presented by Mahafza. This technique is based
on Discrete Fourier Transform (DFT) processing of equiphase data collected in
sequential mode (DFTSQM). DFTSQM processing was also developed for 2-D
real and synthetic arrays to include applications such as SAR imaging. The
Field of View (FOV) of an array utilizing DFTSQM operation and signal pro-
cessing is defined by the 3 dB beamwidth of a single element. Advantages of
DFTSQM are (1) simultaneous detection of targets within the array’s FOV
without using any phase shifting hardware; and (2) the two-way array pattern
is improved due to the coherent integration of equiphase returns. More specifi-
cally, the main lobe resolution is doubled while achieving a 27 dB sidelobe
attenuation. However, the time required for transmission and processing may
become a limitation when using this technique. A brief description of
DFTSQM is presented in the next section.

12.11.1. Linear Arrays

Consider a linear array of size N, uniform element spacing d, and wave-
length A. Assume a far field scatterer P located at direction-sine sinf,.
DFTSQM operation for this array can be described as follows. The elements
are fired sequentially, one at a time, while all elements receive in parallel. The
echoes are collected and integrated coherently on the basis of equal phase to
compute a complex information sequence {b(m);m =0,2N-1}. The x-
coordinates, in d-units, of the xflh element with respect to the center of the
array are

xn=(—1%l+n); n=0N-1. (12.61)

The electric field received by the xtzh element due to the firing of the xtlh ,and
reflection by the 1" far field scatterer P is

R 4

E(x, xp55,) = Gz(s,)(Eo) A/0'_, exp(jO(x,, x535,)) (12.62)
21

O(xy, Xp58;) = T(x, +x,)(s;) (12.63)

s, = sinf, (12.64)
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where JG_, is the target cross section, G2(s,) is the two-way element gain, and
(Ry/R)* is the range attenuation with respect to reference range R,. The scat-
terer phase is assumed to be zero, however it could be easily included.

Assuming multiple scatterers in the array’s FOV, the cumulative electric
field in the path x; = x, due to reflection from all scatterers is

E(x),x,) = Z [E (x), %338)) + JE(x1, X538))] (12.65)
all 1

where the subscripts (I, Q) denote the quadrature components. Note that the
variable part of the phase given in Eq. (12.63) is proportional to the integers
resulting from the sums {(x,, +x,,); (nl,n2) =0, N—1}. In the far field
operation there are a total of (2N—1) distinct (x,; +x,,) sums. Therefore,
the electric fields with paths of the same (x,, +x,,) sums can be collected
coherently. In this manner the information sequence {b(m);m = 0,2N—1} is
computed, where b(2N — 1) is set to equal zero. At the same time one forms
the sequence {c(m);m =0,2N -2} which keeps track of the number of
returns that have the same (x,;+x,,) sum. More precisely, for
m=nl+n2; (nl,n2) = O,N-1

b(m) = b(m) +E(x,, x,,) (12.66)

c(m) = c(m)+1 (12.67)

It follows that

m+1 ; m=0N-2
{c(m);m=0,2N-2} =N ; m = N-1 (12.68)
2N-1-m m = N,2N-2

which is a triangular shape sequence.

The processing of the sequence {b(m)} is performed as follows: (1) the
weighting takes the sequence {c(m)} into account; (2) the complex sequence
{b(m)} is extended to size N, a power integer of two, by zero padding; (3)
the DFT of the extended sequence {b'(m);m = 0, Np— 1} is computed,

Np—1

27“”"); g=0N—1 (12.69)
F

B = 3 bom- exn( 2
m=0
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and (4) after compensation for antenna gain and range attenuation, scatterers
are detected as peaks in the amplitude spectrum |B(q)| . Note that step (4) is
true only when

sian =—L ;4=02N-1 (12.70)

where sinf3 , denotes the direction-sine of the g" scatterer, and N = 2N is
implied in Eq. (12.70).

The classical approach to multiple target detection is to use a phased array
antenna with phase shifting and tapering hardware. The array beamwidth is
proportional to (L/Nd), and the first sidelobe is at about -13 dB. On the other
hand, multiple target detection using DFTSQM provides a beamwidth propor-
tional to (A/2Nd) as indicated by Eq. (12.70), which has the effect of dou-
bling the array’s resolution. The first sidelobe is at about -27 dB due the
triangular sequence {c(m)} . Additionally, no phase shifting hardware is
required for detection of targets within a single element field of view.

12.11.2. Rectangular Arrays

DFTSQM operation and signal processing for 2-D arrays can be described as
follows. Consider an N, XN.‘, rectangular array. All NXN}, elements are fired
sequentially, one at a time; after each firing, all the NXN}, array elements
receive in parallel. Thus, N, N, samples of the quadrature components are col-
lected after each firing, and a total of (NXN),)2 samples will be collected. How-
ever, in the far field operation, there are only (2N,—1)x (2Ny — 1) distinct
equiphase returns. Therefore, the collected data can be added coherently to
form a 2-D information array of size (2N,—1)x(2N,—1). The two-way
radiation pattern is computed as the modulus of the 2-D amplitude spectrum of
the information array. The processing includes 2-D windowing, 2-D Discrete
Fourier Transformation, antenna gain, and range attenuation compensation.
The field of view of the 2-D array is determined by the 3 dB pattern of a single
element. All the scatterers within this field will be detected simultaneously as
peaks in the amplitude spectrum.

Consider a rectangular array of size N X N, with uniform element spacing
d. = d, = d, and wavelength A. The coordinates of the n'" element, in d -
units, are

=0,N-1 (12.71)

=
I
[
‘2
[
—_
+
S
N————
S
[

<
S
I}
|
=
| )
p—
+
S
N————
N
I}

0O,N—-1 (12.72)
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Assume a far field point P defined by the azimuth and elevation angles (o, B).
In this case, the one-way geometric phase for an element is

Q'(x,y) = 2Tn[xsinﬁcosm + ysinPBsina] (12.73)

Therefore, the two-way geometric phase between the (x, y;) and (x,, y,)
elements is

21 . .
O(xp, yp, X9, ¥2) = Tnsmﬁ[(xl +x,)cos0+ (y; +y,)sino] (12.74)

The two-way electric field for the /' scatterer at (o, B,) is

R 4
EGrio a2 B) = GX(B)( ) /0, expli(@(ai vy )] (1279

Assuming multiple scatterers within the array’s FOV, then the cumulative
electric field for the two-way path (x;, y;) = (x,, ¥,) is given by

E(xy, x5, y1,2) = Z E(xy, X9, Y15 Y2300, B) (12.76)

all scatterers
All formulas for the 2-D case reduce to those of a linear array case by setting
N,=1lando = 0.

The variable part of the phase given in Eq. (12.74) is proportional to the inte-
gers (x; +x,) and (y,, y,). Therefore, after completion of the sequential fir-
ing, electric fields with paths of the same (i, j) sums, where

{i=x, +x,,i=—(N-1),(N-1)} (12.77)

=y +ypi=—-(N-1),(N-1)} (12.78)

can be collected coherently. In this manner the 2-D information array
{b(my, my)i(m,, m,) = 0,2N—-1} is computed. The coefficient sequence
{e(my, my)i(m,, my) = 0,2N -2} is also computed. More precisely,

for m,=nl+n2 and my=n1+n2; (12.79)
nl=0,N-1, and n2 = O,N-1

b(mp m.‘,) = b(mp m.‘,) + E(xnl’ ynl’ xn2’ ynz) (1280)

It follows that
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c(m,, my) = (N, - |mx - (N, - 1)|) X (Ny - |my - (Ny - 1)|) (12.81)

The processing of the complex 2-D information array {b(m,, m,)} is simi-
lar to that of the linear case with the exception that one should use a 2-D DFT.
After antenna gain and range attenuation compensation, scatterers are detected
as peaks in the 2-D amplitude spectrum of the information array. A scatterer
located at angles (o, B,) will produce a peak in the amplitude spectrum at
DFT indexes (p,, q,) , where

o = atan(q—’) (12.82)
Pi

Ap, _ Aq
2Ndcosa,;  2Ndsinoy

SinB[ = (12.83)

In order to prove Eq. (12.82), consider a rectangular array of size NXN,

with uniform element spacing d, = d, = d, and wavelength A. Assume

sequential mode operation where elements are fired sequentially, one at a time,
while all elements receive in parallel. Assuming far field observation defined
by azimuth and ¢levation angles (o, B) . The unit vector u on the line of sight,
with respect to O, is given by
u = sinPcosa ay + sinPsinal ay +cosP a, (12.84)
The (n,, n,)’ h element of the array can be defined by the vector
> N-1), » N-1), »
e(n,, "y) = (”x - T)d a, + (ny - T)d ay (12.85)

where (n,, n, =0, N—1). The one-way geometric phase for this element is

¢'(n,n,) = k(uee(n,n,)) (12.86)

where k = 21/ is the wave-number, and the operator (e ) indicates dot

product. Therefore, the two-way geometric phase between the (n,, n,,) and
(4, n,,) elements is
O(nyp s gy ) = klu e {e(nyy, nyp) +e(ng,ny) il (12.87)

The cumulative two-way normalized electric due to all transmissions in the
direction (o, B) is

E(u) = E(u)E, (i) (12.88)
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where the subscripts ¢ and r, respectively, refer to the transmitted and received
electric fields. More precisely,

N-1 N-1

E,(u) = Z Z w(ny, ny)expljk{u e e(ng, n,)} (12.89)
n, =0 nyr:O
N-1 N-1

E,(u) = 2 z w(n,, n,)expljk{uee(n,,n,)}] (12.90)
n,=0 n, =0

In this case, w(n, n,) denotes the tapering sequence. Substituting Egs.
(12.87), (12.89), and (12.90) into Eq. (12.88) and grouping all fields with the
same two-way geometric phase yield

N,-1 N,—1

E(u) = el® z z w'(m, n)expljkdsinP(mcoso + nsino)]  (12.91)
m=0 n=0

N, =2N-1 (12.92)

m=n,+n,m=02N-2 (12.93)

no=n,+n,n = 0,2N-2 (12.94)

o= (_dSTmB)(N— 1)(cosol + sinal) (12.95)

The two-way array pattern is then computed as

N,-1 N,-1

’E(I;)‘ = Z Zw'(m,n)exp[jkdsinB(mcosa+nsin0L)] (12.96)
m=0 n=0

Consider the two-dimensional DFT transform, W'(p, g), of the array
w'(n,, ny)

N, -1 N, -1
a a 21-[
f/ﬁa(pm +qn)
W(p,q) = Z Z w'(m, n)e ; (p,g) = 0,N,—1 (12.97)
m=0 n=0
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Comparison of Eq. (12.96) and (12.97) indicates that |E(z;)| is equal to
W(p, gl if

21 2T, .
—(]Va)p = Tdsmﬁcosa (12.98)
2n 21 . .
_(Na)q =3 dsinBsino (12.99)
It follows that
o = tan*l(g) (12.100)
V4

which is the same as Eq. (12.82).

12.12. MATLAB Programs

This section contains the MATLAB programs used in this chapter.

Listing 12.1. MATLAB Program “figl2_2.m”

clear all

var = -pi:0.001:pi;

y1 = (sinc(var)) .~2;

y2 = abs(sinc(2.0 * var));
plot (var,yl,vary2);

axis tight

grid;

xlabel (‘angle - radians');
ylabel (‘array pattern');

Problems

12.1. A sidelooking SAR is traveling at an altitude of 15Km ; the elevation
angle is f = 15°. If the aperture length is L = 5m, the pulse width is
T = 20us and the wavelength is A = 3.5¢m . (a) Calculate the azimuth reso-
lution. (b) Calculate the range and ground range resolutions.

12.2. A MMW side looking SAR has the following specifications: radar
velocity v = 70m/s, elevation angle P = 35°, operating frequency
fo = 94GHz, and antenna 3dB beam width 65,; = 65mrad. (a) Calculate

© 2000 by Chapman & Hall/CRC



the footprint dimensions. (b) Compute the minimum and maximum ranges. (c)
Compute the Doppler frequency span across the footprint. (d) Calculate the
minimum and maximum PRFs.

12.3. A side looking SAR takes on eight positions within an observation
interval. In each position the radar transmits and receives one pulse. Let the

distance between any two consecutive antenna positions be d, and define

d = 27t;—f( sinf} — sinf) to be the one-way phase difference for a beam steered

at angle B, . (a) In each of the eight positions a sample of the phase pattern is

obtained after heterodyning. List the phase samples. (b) How will you process
the sequence of samples using an FFT (do not forget windowing)? (c) Give a
formula for the angle between the grating lobes.

12.4. Consider a synthetic aperture radar. You are given the following Dop-
pler history for a scatterer: {1000Hz, 0,—1000HZ} which corresponds to
times {-10ms, 0, I0ms}. Assume that the observation interval is
T,, = 20ms, and a platform velocity v = 200m/s. (a) Show the Doppler
history for another scatterer which is identical to the first one except that it is
located in azimuth 1m earlier. (b) How will you perform deramping on the
quadrature components (show only the general approach)? (c¢) Show the Dop-
pler history for both scatterers after deramping.

12.5. You want to design a side looking synthetic aperture Ultrasonic radar
operating at f, = 60KHz and peak power P, = 2W. The antenna beam is

conical with 3dB beam width 6;,, = 5°. The maximum gain is 16 . The radar

is at a constant altitude & = 15m and is moving at a velocity of 10m/s. The
elevation angle defining the footprint is B = 45°. (a) Give an expression for
the antenna gain assuming a Gaussian pattern. (b) Compute the pulse width
corresponding to range resolution of 10mm . (c) What are the footprint dimen-
sions? (d) Compute and plot the Doppler history for a scatterer located on the

central range bin. (e) Calculate the minimum and maximum PRFs; do you need
to use more than one PRF? (f) How will you design the system in order to

achieve an azimuth resolution of 10mm ?

12.6. Derive Eq. (12.45) through Eq. (12.47).

12.7. In Section 12.7 we assumed the elevation angle increment € is equal
to zero. Develop an equivalent to Eq. (12.43) for the case when € #0. You
need to use a third order three-dimensional Taylor series expansion about the
state (£, 1, €) = (0,0,0) in order to compute the new round-trip delay
expression.
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Chapter 13 Signal Processing

13.1. Signal and System Classifications

In general, electrical signals can represent either current or voltage, and may
be classified into two main categories: energy signals and power signals.
Energy signals can be deterministic or random, while power signals can be
periodic or random. A signal is said to be random if it is a function of a random
parameter (such as random phase or random amplitude). Additionally, signals
may be divided into low pass or band pass signals. Signals that contain very
low frequencies (close to DC) are called low pass signals; otherwise they are
referred to as band pass signals. Through modulation, low pass signals can be
mapped into band pass signals.

The average power P for the current or voltage signal x(#) over the interval
(¢, t,) acrossa 1Q resistor is

1

_|.|X(t)|2 dt (13.1)

]

1
b=t

The signal x(z) is said to be a power signal over a very large interval
T = t,—t,,if and only if it has finite power; it must satisfy the following rela-
tion:

T/2
0< lim L J x()]> dt <oo (13.2)
T— o T

-1/2
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Using Parseval’s theorem, the energy E dissipated by the current or voltage
signal x(f) across a 1Q resistor, over the interval (¢, t,) , is

5]
E = J|x(t)|2 dt (13.3)
14

The signal x(¢) is said to be an energy signal if and only if it has finite
energy,

E= [ di <e (13.4)
A signal x(t) is said to be periodic with period T if and only if
x(t) = x(t+nT) for all t (13.5)
where n is an integer.

Example 13.1: Classify each of the following signals as an energy signal, as
a power signal, or as neither. All signals are defmed over the interval
(—eo <t <o) x (1) = cost+ cos2t, x,(1) = exp(—o t)

Solution:
/2
Y = % J (cost + cosZt)zdt =1= power signal
-T/2

Note that since the cosine function is periodic, the limit is not necessary.

222 Ch 22
= J(eaf)dt=2je 2 g =2 o [ = energy signal.
—oo 0

Zﬁoc o

Electrical systems can be linear or nonlinear. Furthermore, linear systems
may be divided into continuous or discrete. A system is linear if the input sig-
nal x;(¢) produces y,(#) and x,(#) produces y,(t); then for some arbitrary
constants a; and a, the input signal a,x,(t) + a,x,(#) produces the output
a,y,(t) +a,y,(t). A linear system is said to be shift invariant (or time invari-
ant) if a time shift at its input produces the same shift at its output. More pre-
cisely, if the input signal x(¢) produces y(¢) then the delayed signal x(z— 1)
produces the output y(¢ —¢,) . The impulse response of a Linear Time Invariant
(LTI) system, h(t), is defined to be the system’s output when the input is an
impulse (delta function).
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13.2. The Fourier Transform
The Fourier Transform (FT) of the signal x(7) is

oo

Fix()} = X(0) = _[x(t)e"f‘”’ dt (13.6)

or

F{x(1)}

X() =[x ar (13.7)

and the Inverse Fourier Transform (IFT) is

=

FUX(0)} = x(1) = %JX(w)e

—oo

jor

do (13.8)

or

FUX(DT = x(1) = IX(f)e"z"ff df (13.9)

—oo

where, in general, ¢ represents time, while ® = 2mf and f represent fre-
quency in radians per second and Hertz, respectively. In this book we will use
both notations for the transform, as appropriate (i.e., X(®) and X(f) ).

A detailed table of the FT pairs is listed in Appendix C. The FT properties are
(the proofs are left as an exercise):

1. Linearity:
Fl{ax,(t) + ayx,(t)} = a,X;(®)+a,X,(m) (13.10)
2. Symmetry: If F{x(t)} = X(®) then

oo

27X (-®) = JX(t)e‘jm’dz (13.11)

—oo

3. Shifting: For any real time t
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Tjwi

F{x(ttt)} = e X(w) (13.12)

4. Scaling: If F{x(t)} = X(®) then
F{x(an)} = ix(‘i’) (13.13)

la|” \a
5. Central Ordinate:
X(0) = Jx(t)dt (13.14)
X(0) = in(m)dm (13.15)
2n )

—oo

. Frequency Shift: If F{x(t)} = X(®) then

B0
F{e "x(0)} = X(0Fw,) (13.16)

. Modulation: If F{x(t)} = X(®) then

F{x(t)coswyt} = %[X(w+(o0)+X(o)—m0)] (13.17)
F{x(t)sin(wyt)} = le[X((o—(oO)—X(m+o)0)] (13.18)
. Derivatives:
F{ d’ (x(t))} = (j©)"X(o) (13.19)
dr"

. Time Convolution: if x(t) and h(t) have Fourier transforms X(®) and
H(w), respectively, then

oo

F Jx(r)h(t—r)dr = X(0)H(®) (13.20)

—oo
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10. Frequency Convolution:

oo

F{x(t)h(t)} = %E.[X(T)H(u)—‘c)d‘t (13.21)

11. Autocorrelation:

oo

F _[x(r)x*(r—z)dr = X(0)X*(0) = [X(o) (13.22)

—oo

12. Parseval’s Theoerem: The energy associated with the signal x(t) is

E = J|x(t)2|dt = J|X(w)|2du) (13.23)

13. Moments: The nth moment is

m, = Jt”x(t)dt = LX(w)LD:O (13.24)
do"

0

13.3. The Fourier Series

A set of functions S = {¢,(¢) ; n=1,..., N} is said to be orthogonal over
the interval (,, t,) if and only if

153 153

Jor ar = | =40 7 13.25
000t = [oorwar =1, (13.25)

t f

where the asterisk indicates complex conjugate, and A, are constants. If
7‘1‘ = 1 for all i, then the set S is said to be an orthonormal set.

An electrical signal x(¢#) can be expressed over the interval (z,,7,) as a
weighted sum of a set of orthogonal functions as

N

x(1) = Z X,0,(1) (13.26)

n=1
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where X, are, in general, complex constants, and the orthogonal functions
¢, (?) are called basis functions. If the integral-square error over the interval
(¢, t,) is equal to zero as N approaches infinity, i.e.,

153 N 2

lim | |x(r) - ZXn(pn(t) dt =0 (13.27)

N — oo

t n=1
then the set § = {¢,(#)} is said to be complete, and Eq. (13.12) becomes an
equality. The constants X, are computed as

123

[ xe, war

N = e (13.28)
[ lou(0far
|

Let the signal x(¢) be periodic with period 7', and let the complete orthogo-
nal set S be

j2nnt
S = {e Tp= —oo,oo} (13.29)

Then the complex exponential Fourier series of x(¢) is

- i2mnt
x(t) = Z X,e | (13.30)
Using Eq. (13.28) yields
7/2 4
| —j2mnt
X, =7 J x(te | dt (13.31)
-1/2
The FT of Eq. (13.30) is given by
_ 2mn
X(w) = 2% Z XnS((o— 7 ) (13.32)

n=—oco

where 8( - ) is delta function. When the signal x(7) is real we can compute
its trigonometric Fourier series from Eq. (13.30) as
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oo

x(f) = ay+ Z ancos(zznt) + Z bnsin(znTm) (13.33)

n=1 n=1

ao = XO
T/2
1j x(t)cos(znm)dt
nT T T
-T/2

T/2
n = %J‘ x(1) sin(zgnt)dt
-1/2

The coefficients a, are all zeros when the signal x(z) is an odd function of
time. Alternatively, when the signal is an even function of time, then all b, are
equal to zero.

Q
Il

(13.34)

Ny
|

Consider the periodic energy signal defined in Eq. (13.33). The total energy
associated with this signal is then given by

t +T )

2 2
_1 2, _ % 4y bn
E_T.[Mt)' dt—4+2(2+2) (13.35)

1y n=1

13.4. Convolution and Correlation Integrals
The convolution ¢, () between the signals x(#) and h(t) is defined by

=3

0., (1) = x(1)®h(r) = Jx(t)h(t—t)dt (13.36)

—oco

where T is a dummy variable, and the operator e is used to symbolically
describe the convolution integral. Convolution is commutative, associative,
and distributive. More precisely,

x(t) o h(t) = h(r) e x(1)
x(r) e h(r)eg(t) = (x(z)®h(r))eg(t) = x(1) e (h(r)eg(r))

For the convolution integral to be finite at least one of the two signals must be
an energy signal. The convolution between two signals can be computed using
the FT

(13.37)

0,(1) = F {X(0)H(®)} (13.38)
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Consider an LTI system with impulse response A(z) and input signal x(t). It
follows that the output signal y(#) is equal to the convolution between the
input signal and the system impulse response,

(1) = fx(r)h(r—r)dr - _[h(r)x(t—r)dr (13.39)

The cross-correlation function between the signals x(¢) and g(¢) is defined
as

=

R, (1) = Jx*(r)g(t+‘r)d‘t (13.40)

Again, at least one of the two signals should be an energy signal for the corre-
lation integral to be finite. The cross-correlation function measures the similar-
ity between the two signals. The peak value of R, (7) and its spread around
this peak are an indication of how good this similarity is. The cross-correlation
integral can be computed as

Ry () = F {X*()G(®)} (13.41)
When x(t) = g(t) we get the autocorrelation integral,
R(1) = fx*(r)x(tﬂ)dr (13.42)

—oo

Note that the autocorrelation function is denoted by R () rather than R (7).
When the signals x(¢#) and g(¢) are power signals, the correlation integral
becomes infinite and thus, time averaging must be included. More precisely,

T/2
Rug(t) = lim % J ¥ (D)g(t+1)dt (13.43)

-T/2

13.5. Energy and Power Spectrum Densities

Consider an energy signal x(z). From Parseval’s theorem, the total energy
associated with this signal is
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= oo

_ 2, _ 1 2
E = J|x(t)| dt = ZTEJ.|X((D)| do (13.44)

When x(#) is a voltage signal, the amount of energy dissipated by this signal
when applied across a network of resistance R is

oo

= Lol = 2 [P
E = % lx()|“dt = SR X ()| do (13.45)

Alternatively, when x(t) is a current signal we get

o oo

_ 2., _ R 2
E = RJ.|x(t)| dr = 215.[ X ()| do (13.46)

The quantity J-|X (0))|2d0) represents the amount of energy spread per unit fre-
quency across a 1€Q resistor; therefore, the Energy Spectrum Density (ESD)
function for the energy signal x(#) is defined as

ESD = [X(0)* (13.47)
The ESD at the output of an LTI system when x(¢) is at its input is

Y(o)* = [X(o0)*|H(w) (13.48)

where H() is the FT of the system impulse response, h(¢) . It follows that the
energy present at the output of the system is

1 2 2
E, = ZJ'X(‘D)' |H(0)|"do (13.49)

—oo

Example 13.2: The voltage signal x(t) = ! ; 20 is applied to the

input of a low pass LTI system. The system bandwidth is SHz, and its input
resistance is 5Q. If H(®w) = 1 over the interval (—10n < ® < 10m) and zero
elsewhere, compute the energy at the output.

Solution: From Egs. (13.45) and (13.49) we get

107
_ 1 J‘ 2 2
E =5% X (0)|"|H(w)|"do

o =-10n
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Using Fourier transform tables and substituting R = 5 yield

107
E‘, = iJ. 21 dw
Yooomd 425
0

Completing the integration yields

E

1
y = E_C[atanh(Zn)—atanh(O)] = 0.01799 Joules
Note that an infinite bandwidth would give E, = 0.02, only 11% larger.
The total power associated with a power signal g(¢) is
/2
P = lim i _[ lg(0)] dt (13.50)
T— oo T

-1/2

Define the Power Spectrum Density (PSD) function for the signal g(z) as
S,(®), where

T/2 o

“im L] lgolPar = |
P = Thflm T lg(n)| dt = o S, (®)dw (13.51)

-7/2 —oo

It can be shown that (see Problem 1.13)

2
S() = fim G
T — oo

(13.52)

Let the signals x(#) and g(7) be two periodic signals with period T'. The
complex exponential Fourier series expansions for those signals are, respec-
tively, given by

- i2mnt
x(t) = Z X,e ! (13.53)
R
< [ZRmt
T
g(r) = z G, (13.54)
m = —co

The power cross-correlation function I}gx(t) was given in Eq. (13.43), and is
repeated here as Eq. (13.55),
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T/2
Rex(t) = % f 25 (T)x(1 + T)dr (13.55)
-T/2

Note that because both signals are periodic the limit is no longer necessary.
Substituting Eqs. (13.53) and (13.54) into Eq. (13.55), collecting terms, and
using the definition of orthogonality, we get

oo

j2nmt

Rex() = z G, *X,e " (13.56)

n = —oo

When x(t) = g(t), Eq. (13.56) becomes the power autocorrelation function,

B ~ 2nmt - 2nmt
Ri(t) = z x,[e T = |X0|2+22|Xn|2e T (13.57)
n=—oo n=1

The power spectrum and cross-power spectrum density functions are then
computed as the FT of Egs. (13.57) and (13.56), respectively. More precisely,

g’x(u)) 27 Z X, 6( 2nn)

(13.58)

Ser(@) = 21 z G, *X, S(w_zﬂt)

The line (or discrete) power spectrum is defined as the plot of ‘X ? versus n ,

il

where the lines are Af =

, and the total

power is Z ]X]

n=—

13.6. Random Variables

Consider an experiment with outcomes defined by a certain sample space.
The rule or functional relationship that maps each point in this sample space
into a real number is called “random variable.” Random variables are desig-
nated by capital letters (e.g., X, Y, ... ), and a particular value of a random vari-
able is denoted by a lowercase letter (e.g., x, y, ... ).
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The Cumulative Distribution Function (cdf) associated with the random vari-
able X is denoted as Fy(x), and is interpreted as the total probability that the
random variable X is less or equal to the value x . More precisely,

Fy(x) = Pr{X<x} (13.59)

The probability that the random variable X is in the interval (x, x,) is then
given by

Fy(xy) = Fx(x;) = Pr{x;<X<x,} (13.60)

The cdf has the following properties:

0<Fy(x)=1
Fy(==) =0

(13.61)
Fy(e0) =1

Fy(x)) SFy(x,) ©x,<x,

It is often practical to describe a random variable by the derivative of its cdf,
which is called the Probability Density Function (pdf). The pdf of the random
variable X is

fulx) = dinm (13.62)
X

or, equivalently,

Fy(x) = PriX<x} = _[ Fo(M)dh (13.63)

—oo

The probability that a random variable X has values in the interval (x,, x,) is
X2
Fy(xy) —Fy(x)) = Pr{x;<X<x,} = fo(x)dx (13.64)
Define the nth moment for the random variable X as

=

E[X"1=X"= anfx(x)dx (13.65)

The first moment, E[X], is called the mean value, while the second moment,
E[Xz], is called the mean squared value. When the random variable X
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represents an elegtrical signal across a 1Q resistor, then E[X] is the DC com-
ponent, and E[X"] is the total average power.

The nth central moment is defined as

EX-X)" = X-X)" = [ (r-0"flw)dx (13.66)

and thus, the first central moment is zero. Thze second central moment is called
the variance and is denoted by the symbol G,

=2
oy = (X-X) (13.67)
Appendix E has some common pdfs and their means and variances.

In practice, the random nature of an electrical signal may need to be
described by more than one random variable. In this case, the joint cdf and pdf
functions need to be considered. The joint cdf and pdf for the two random vari-
ables X and Y are, respectively, defined by

Fyy(x,y) = Pri{X<x;Y<y} (13.68)

PE
Jxy(xy) = WFXY(X’}’) (13.69)

The marginal cdfs are obtained as follows:

X

Fy(x) = f _[ Fuv(tt, V)dudy = Fyy(x, o)

—o0—o0

(13.70)
oy

Fy(y) = JJfUV(u’ v)dvdu = Fyy(eo, y)

—o0—o0

If the two random variables are statistically independent, then the joint cdfs and
pdfs are, respectively, given by

Fyy(x,y) = Fx(x)Fy(y) (13.71)

fxr(6y) = fx()fy(y) (13.72)

Let us now consider a case when the two random variables X and Y are
mapped into two new variables U and V through some transformations 7',
and T, defined by
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U
Vv

T(X,Y)

(13.73)
T)(X,Y)

The joint pdf, f,,(u, v), may be computed based on the invariance of proba-
bility under the transformation. One must first compute the matrix of deriva-
tives; then the new joint pdf is computed as

fuv(u’ V) = fxy(x, )’)|J| (13.74)
ox ox
Ju Jv
| = (13.75)
dy dy
ou Jv

where the determinant of the matrix of derivatives |J| is called the Jacobian.

The characteristic function for the random variable X is defined as

Cy(w) = E[¢*] = j Fr(x) e dx (13.76)

The characteristic function can be used to compute the pdf for a sum of inde-
pendent random variables. More precisely, let the random variable Y be equal
to

Y =X, +X,+ ...+ X, (13.77)

where {X; ; i =1,...N} is a set of independent random variables. It can be
shown that

Cy(m) = CXI((D)CXZ((D)...CXN((D) (13.78)

and the pdf fy(y) is computed as the inverse Fourier transform of C,(®) (with
the sign of y reversed),

oo

1 o
fy(y) = ﬁJCY(m)e " do (13.79)

—oo

The characteristic function may also be used to compute the nth moment for

the random variable X as
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X' = ()" (o) (13.80)

do" =0

13.7. Multivariate Gaussian Distribution

Consider a joint probability for m random variables, X, X,, ..., X,,. These
variables can be represented as components of an m X 1 random column vec-
tor, X . More precisely,

1

X' =[x, %, .. x, (13.81)

where the superscript indicates the transpose operation. The joint pdf for the
vector X is

f)f()_c) = fxl,x@ “_,Xm(xl, Xo5 ooy Xy) (13.82)

The mean vector is defined as

W= [Ex,1 BT . ELX,] (13.83)

and the covariance is an m X m matrix given by

C, = EIX X1-u, (13.84)

Note that if the elements of the vector X are independent, then the covariance
matrix is a diagonal matrix.

By definition a random vector X is multivariate Gaussian if its pdf has the
form

£ = 120" 1e) A (- n'Cla-w))  gass

where |, is the mean vector, C, is the covariance matrix, C_I is inverse of
the covariance matrix and |C | is its determinant, and X is of dlmenswn m.If
A is a k X m matrix of rank &, then the random vector Y = AX is a k-variate
Gaussian vector with

ny, = Au, (13.86)

and

C, = ACA’ (13.87)

The characteristic function for a multivariate Guassian pdf is defined by
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Cy = Elexp{j(0X; + 0, X, +... +®,X,)}] = (13.88)

exp{juig - %Q’ng)}

Then the moments for the joint distribution can be obtained by partial differen-
tiation. For example,

a3

ElX,XX51 = 0®,00,00
1 2 3

Cy (o, 0,, ®3) at

1]
1S

(13.89)

Example 13.3: The vector X is a 4-variate Gaussian with

t
mo=1[2110
6321

c = |3432
2343
1233

Define

X X
Xlz\l} )fz:{s}

Solution:

X, has a bivariate Gaussian distribution with

' 1 ' 34

The vector Y can be expressed as
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2000
Y=11200 = AX

0011 X3
X

It follows that
t
M= Ap, = [44 1]
2424 6

C,=ACA = {2434 13
6 13 13

13.8. Random Processes

A random variable X is by definition a mapping of all possible outcomes of
a random experiment to numbers. When the random variable becomes a func-
tion of both the outcomes of the experiment as well as time, it is called a ran-
dom process and is denoted by X(#). Thus, one can view a random process as
an ensemble of time domain functions that are the outcome of a certain random
experiment, as compared to single real numbers in the case of a random vari-
able.

Since the cdf and pdf of a random process are time dependent, we will denote
them as Fy(x;¢) and fy(x;t), respectively. The nth moment for the random
process X(t) is

=3

E[X"(1)] = fxnfx(x;t)dx (13.90)

—oo

A random process X(¢) is referred to as stationary to order one if all its sta-
tistical properties do not change with time. Consequently, E[X(¢)] = X,
where X is a constant. A random process X(¢) is called stationary to order two
(or wide sense stationary) if

fx(.xl, .sz;tl, tz) = fx(.xl, x2;t1 + At, t2 + At) (13.91)

for all ¢, ¢, and Az.
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Define the statistical autocorrelation function for the random process X(t)
as

Ry(ty, 1,) = E[X(1)X(1,)] (13.92)

The correlation E[X(#,)X(t,)] is, in general, a function of (¢, ,). As a con-
sequence of the wide sense stationary definition, the autocorrelation function
depends on the time difference T = ¢, — ¢, rather than on absolute time; and

thus, for a wide sense stationary process we have

E[X(H)] = X

(13.93)
Rx(1) = E[X(D)X(1+71)]

If the time average and time correlation functions are equal to the statistical
average and statistical correlation functions, the random process is referred to
as an ergodic random process. The following is true for an ergodic process:

T/2
lim L _[ x(t)dt = E[X(1)] = X (13.94)
T— oo T
-T/2
T/2
. 1
lim = J xX*(D)x(t+1)dr = Ry(1) (13.95)
T— oo T
-T/2

The covariance of two random processes X () and Y(¢) is defined by
Cyy(t,t+71) = E[{X(#t) - E[X(O)]HY(@+T)-E[Y(t+T)]}] (13.96)

which can be written as

Cyy(t, t+7) = Ryy(1) - XY (13.97)

13.9. Sampling Theorem

Most modern communication and radar systems are designed to process dis-
crete samples of signals bearing information. In general, we would like to
determine the necessary condition such that a signal can be fully reconstructed
from its samples by filtering, or data processing in general. The answer to this
question lies in the sampling theorem which may be stated as follows: let the
signal x(¢) be real-valued and band-limited with bandwidth B ; this signal can
be fully reconstructed from its samples if the time interval between samples is
no greater than 1/(2B).
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Fig. 13.1 illustrates the sampling process concept. The sampling signal p(t)
is periodic with period T, which is called the sampling interval. The Fourier
series expansion of p(7) is

jZTEnt

p(t) = z Pe g (13.98)

The sampled signal x,(¢) is then given by

oo

[27tnt
0 = 3 x(nP,e g (13.99)

Taking the FT of Eq. (13.99) yields

oo

X,(0) = Z P, X( 2ﬂ) = PoX(0) + Z P, X(u) 2;‘”) (13.100)

n = —oo

n#0

where X () is the FT of x(¢).

x(1) x,(1) Pox(1)

LPF f—>

X(w) = 0 for || >2nB

p(t)

Figure 13.1. Concept of sampling.

Therefore, we conclude that the spectral density, X (®) , consists of replicas
of X(w) spaced (2rm/T,) apart and scaled by the Fourier series coefficients
P, . A Low Pass Filter (LPF) of bandwidth B can then be used to recover the
original signal x(¢).
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When the sampling rate is increased (i.e., T, decreases), the replicas of
X(w) move farther apart from each other. Alternatively, when the sampling
rate is decreased (i.e., T increases), the replicas get closer to one another. The
value of T, such that the replicas are tangent to one another defines the mini-
mum required sampling rate so that x(#) can be recovered from its samples by
using an LPF. It follows that

2n

1
— =2n(2 = — .
T n(2B) & T, 3B (13.101)

s

The sampling rate defined by Eq. (13.101) is known as the Nyquist sampling
rate. When T, > (1/2B), the replicas of X(®) overlap and thus, x(#) cannot

be recovered cleanly from its samples. This is known as aliasing. In practice,
ideal LPF cannot be implemented; hence, practical systems tend to over-sam-
ple in order to avoid aliasing.

Example 13.4: Assume that the sampling signal p(t) is given by

p(n) = Y 8(1-nT,)

Compute an expression for X (m).

Solution: The signal p(t) is called the Comb function. Its exponential Fourier
series is

2nnt

p(t) = Z %e "

It follows that

oo

2nnt

0=y x(t)Tie g

s

n=—oo

Taking the Fourier transform of this equation yields

oo

X, (w) = 2 X(m—zTﬂ).

s

n = —oo
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Before proceeding to the next section, we will establish the following nota-
tion: samples of the signal x(¢) are denoted by x(n) and referred to as a dis-
crete time domain sequence, or simply a sequence. If the signal x(z) is
periodic, we will denote its sample by the periodic sequence x(n) .

13.10. The Z-Transform

The Z-transform is a transformation that maps samples of a discrete time
domain sequence into a new domain known as the z-domain. It is defined as

oo

Z{x(n)} = X(z) = Z x(n)z™" (13.102)

n = —oo

where z = rejw, and for most cases, r = 1. It follows that Eq. (13.102) can
be rewritten as

oo

X(®) = Z x(n)e"® (13.103)

n=—oco

In the z-domain, the region over which X(z) is finite is called the Region of
Convergence (ROC). Appendix D has a list of most common Z-transform
pairs. The Z-transform properties are (the proofs are left as an exercise):

1. Linearity:
Z{ax;(n) +bx,(n)} = aX,(z) + bX,(z) (13.104)
2. Right-Shifting Property:

Zix(n-0} = 7X(2) (13.105)
3. Left-Shifting Property:

k-1
Zix(n+ 0} = X(2) - zx(n)z"’” (13.106)
n=0
4. Time Scaling:
Z{d"x(n)} = X(a '7) = Z(a_lz)_nx(n) (13.107)
n=0
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5. Periodic Sequences:

ZN
R Zxn)

Z{x(n)} =

Z

where N is the period.
6. Multiplication by n :
_ . d
Z{nx(n)} = —z—X(2)
dz

7. Division by n+ a; ais a real number:

R Z

s} S

n=0 0

8. Initial Value:

x(ng) = 2°X(2)]

Z—> oo

9. Final Value:

lim x(n) = lim (1-z ")X(z)
n-— oo z—>1

10. Convolution:

=3

VA Zh(n—k)x(k) = H(2)X(z)

k=0

11. Bilateral Convolution:

oo

Z Z h(n-k)x(k)+ = H(2)X(z)

k= —oo

Example 13.5: Prove Eq. (13.109).

Solution: Starting with the definition of the Z-transform,
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(13.111)

(13.112)

(13.113)

(13.114)



=

X() = Y amz”

n = —oo

Taking the derivative, with respect to z, of the above equation yields

oo

2x@ = Y xmm "

n = —oo

= (=) Y nx(mz”

It follows that
Z{nx(n)} = (—z)di)«z)
Z

In general, a discrete LTI system has a transfer function H(z) which
describes how the system operates on its input sequence x(n) in order to pro-
duce the output sequence y(n). The output sequence y(n) is computed from
the discrete convolution between the sequences x(n) and h(n),

y(n) = Z x(m)h(n—m) (13.115)

However, since practical systems require that the sequence x(n) be of finite
length, we can rewrite Eq. (13.115) as

N

y(n) = ZX(m)h(n—m) (13.116)

m=0

where N denotes the input sequence length. Taking the Z-transform of Eq.
(13.116) yields

Y(z) = X(2)H(z) (13.117)

and the discrete system transfer function is

H(z) = )% (13.118)
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Finally, the transfer function H(z) can be written as
H@)| .= |H(®)| ) (13.119)

where ’H (ej m)’ is the amplitude response, and ZH (ej ®Y is the phase response.

13.11. The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical operation that
transforms a discrete sequence, usually from the time domain into the fre-
quency domain, in order to explicitly determine the spectral information for the
sequence. The time domain sequence can be real or complex. The DFT has
finite length N, and is periodic with period equal to N.

The discrete Fourier transform for the finite sequence x(n) is defined by

N-1

» _ j2mnk
X(k) = Zx(n)e N ; k=0,..,N-1 (13.120)
n=0
The inverse DFT is given by
1N71~ j2mnk
x(n) = NZX(k)e N cn=0,..,N-1 (13.121)
k=0

The Fast Fourier Transform (FFT) is not a new kind of transform different
from the DFT. Instead, it is an algorithm used to compute the DFT more effi-
ciently. There are numerous FFT algorithms that can be found in the literature.
In this book we will interchangeably use the DFT and the FFT to mean the
same. Furthermore, we will assume radix-2 FFT algorithm, where the FFT size
is equal to N = 2" for some integer m .

13.12. Discrete Power Spectrum

Practical discrete systems utilize DFTs of finite length as a means of numeri-
cal approximation for the Fourier transform. It follows that input signals must
be truncated to a finite duration (denoted by T') before they are sampled. This
is necessary so that a finite length sequence is generated prior to signal pro-
cessing. Unfortunately, this truncation process may cause some serious prob-
lems.
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To demonstrate this difficulty, consider the time domain signal
x(t) = sin2zft. The spectrum of x(#) consists of two spectral lines at %f;,.
Now, when x(#) is truncated to length 7 seconds and sampled at a rate
T, = T/N, where N is the number of desired samples, we produce the
sequence {x(n) ; n=20,1,..., N—1}. The spectrum of x(n) would still be
composed of the same spectral lines if T is an integer multiple of T and if the
DFT frequency resolution Af is an integer multiple of £, . Unfortunately, those
two conditions are rarely met and as a consequence, the spectrum of x(n)
spreads over several lines (normally the spread may extend up to three lines).
This is known as spectral leakage. Since f; is normally unknown, this discon-
tinuity caused by an arbitrary choice of T cannot be avoided. Windowing tech-
niques can be used to mitigate the effect of this discontinuity by applying
smaller weights to samples close to the edges.

A truncated sequence x(n) can be viewed as one period of some periodic
sequence x(n) with period N. The discrete Fourier series expansion of x(n)
is

N-l Jj2nnk

N

x(n) = ZXke (13.122)
k=0

It can be shown that the coefficients X, are given by

N-1 .
| —{Z;I:nk 1
X, = NZx(n)e = 5X(K) (13.123)
n=0
where X(k) is the DFT of x(n). Therefore, the Discrete Power Spectrum
(DPS) for the band limited sequence x(n) is the plot of |X k|2 versus k, where
the lines are Af apart,

1
Py = SIX(0)?
N

-1 (13.124)

=

P = (XMW +IXN-0Y k=12,
N
1
Py = _2|X(N/2)|2
N

Before proceeding to the next section, we will show how to select the FFT
parameters. For this purpose, consider a band limited signal x(¢) with band-
width B. If the signal is not band limited, a LPF can be used to eliminate
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frequencies greater than B . In order to satisfy the sampling theorem, one must
choose a sampling frequency f, = 1/T, such that

f,=2B (13.125)

The truncated sequence duration 7 and the total number of samples N are
related by

T = NT;
(13.126)
or equivalently,
N
= = 13.127
fs T ( )
It follows that
fi = 1172 2B (13.128)
T
and the frequency resolution is
1 s 1_2B
Af = — == ==2— 13.129
/ NT, N T N ¢ )

13.13. Windowing Techniques

Truncation of the sequence x(n) can be accomplished by computing the
product,

x,,(n) = x(n)w(n) (13.130)
where
:n=0,1,.. -1
w(n) ={ fln) =01, N } (13.131)
0 otherwise

where f(n) < 1. The finite sequence w(n) is called a windowing sequence, or
simply a window. The windowing process should not impact the phase
response of the truncated sequence. Consequently, the sequence w(n) must

retain linear phase. This can be accomplished by making the window symmet-
rical with respect to its central point.

If f(n) = 1 for all n we have what is known as the rectangular window. It
leads to the Gibbs phenomenon which manifests itself as an overshoot and a
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ripple before and after a discontinuity. Fig. 13.2 shows the amplitude spectrum
of a rectangular window. Note that the first side lobe is about —13.46dB below
the main lobe. Windows that place smaller weights on the samples near the
edges will have lesser overshoot at the discontinuity points (lower side lobes);
hence, they are more desirable than a rectangular window. However, side lobes
reduction is offset by a widening of the main lobe (loss of resolution). There-
fore, the proper choice of a windowing sequence is continuous trade-off
between side lobe reduction and main lobe widening.

The multiplication process defined in Eq. (13.131) is equivalent to cyclic
convolution in the frequency domain. It follows that X (k) is a smeared (dis-
torted) version of X (k). To minimize this distortion, we would seek windows
that have a narrow main lobe and small side lobes. Additionally, using a win-

dow other than a rectangular window reduces the power by a factor P,,, where
N-1 N-1
1 2 2
P, = NZW (n) = ZIW(k)I (13.132)
n=0 k=0

It follows that the DPS for the sequence x,,(n) is now given by

20*log(amplitude)

Yo T S | e | T | R | PR

-80

20 40 60 80 100 120
sample number

Figure 13.2. Normalized amplitude spectrum for rectangular window.
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W 1
Py = —Ix(0)
PN
w l N
Pl = —{XWF+XN-0} i k=12..5-1 (139
P N

w

w 1 2
Py, = —IX(N/2)|
PN
where P, is defined in Eq. (13.133). Table 13.1 lists some common windows.

Figs. 13.3 through 13.5 show the frequency domain characteristics for these
windows.

TABLE 13.1. Some common windows. n = 0, N — 1.

First side Main lobe

Window Expression lobe width
rectangular | () = 1 -13.46dB | 1
Hamming —41dB 2
w(n) = 0.54 - O.46c0s( 211 )
N-1
Hanning -32dB 2
w(n) = 0.5[1 - COS(]\ZITnl)J
Kaiser -46dB
ey < faB1= /N B
1,(B) B=on |JO

1 is the zero-order modified Bessel

function of the first kind
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Figure 13.3. Normalized amplitude spectrum for Hamming window.
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Figure 13.4. Normalized amplitude spectrum for Hanning window.
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20*log(amplitude)

L L L L L L
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sample number

Figure 13.5. Normalized amplitude spectrum for Kaiser
window (parameter T ).

Problems

13.1. Classify each of the following signals as an energy signal, as a power
signal, or as neither. (a) exp(0.5¢) (r=0); (b) exp(-0.5¢) (r=0); (c)
Cost+ 082t (—eo<t<o0):(d) e ™ (a>0).

13.2. Compute the energy associated with the signal x(¢) = ARect(t/7).
13.3. (a) Prove that ¢,(¢) and @,(¢), shown in Fig. P13.3, are orthogonal
over the interval (-2 <r<2). (b) Express the signal x(7) = ¢ as a weighted
sum of @,(¢) and @,(#) over the same time interval.

13.4. A periodic signal x,(7) is formed by repeating the pulse
x(t) = 2A((t-3)/5) every 10 seconds. (a) What is the Fourier transform of

x(1) . (b) Compute the complex Fourier series of x,(¢) ? (¢) Give an expression

for the autocorrelation function Rx(f) and the power spectrum density

Ex,,(m) .
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Ao (D) A Qy(1)

\J

Figure P13.3

13.5. If the Fourier series is
x(t) - Z Xnejzrmt/T
n=—oo

define y(¢) = x(t—t,). Compute an expression for the complex Fourier series

expansion of y(7).

13.6. Show that (a) Ru(~f) = R. (¢). (b) If x(r) = f(t)+m, and
y(t) = g(t) +m,, then I}xy(t) = m,m,, where the average values for f(t)

and g(t) are zeroes.
13.7. Whatis the power spectral density for the signal

x(t) = Acos(2mfyt + 0,)

13.8. A certain radar system uses linear frequency modulated waveforms of
the form

2
t t
x(t) = Rect(%)cos(w0t+ HE)

What are the quadrature components? Give an expression for both the modula-
tion and instantaneous frequencies.
13.9. Consider the signal x(r) = Rect(t/‘t)cos(u)ot—Btz/Z‘t) and let

T = 15us and B = 10MHz. What are the quadrature components?
13.10. Determine the quadrature components for the signal

h(t) = 6(1) - (%O

-2t .
e " sinmyt u(t).
d
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13.11. If x(#) = x;(¢) — 2x,(t—5) + x,(¢ — 10) , determine the autocorrela-
tion functions R, (¢) and R () when x(7) = exp(—t2/2) .

13.12. Write an expression for the autocorrelation function Ry(t) , where

5
t—n5
y(t) = z YnRect( > )
n=1
and {Y,} = {0.8,1,1,1,0.8}. Give an expression for the density function
Sy(®).

13.13. Derive Eq. (13.52).
13.14. An LTI system has impulse response

ho) = {exp(—Zt) tZO}
0 t<0

(a) Find the autocorrelation function R,(7) . (b) Assume the input of this sys-

tem is x(#) = 3cos(100¢) . What is the output?
13.15. Suppose you want to determine an unknown DC voltage v, in the

.. . . . . 2
presence of additive white Gaussian noise n(t) of zero mean and variance o, .
The measured signal is x(t) = v, +n(t). An estimate of v, is computed by

making three independent measurements of x(#) and computing the arithmetic

_
mean, v, = (x; +x, +x3)/3. (a) Find the mean and variance of the random

variable 1;; (b) Does the estimate of v,. get better by using ten measure-
ments instead of three? Why?
13.16. Consider the network shown in Fig. P13.16, where x(¢) is a random

voltage with zero mean and autocorrelation function R (1) = 1+ exp(-al]).
Find the power spectrum S (®) . What is the transfer function? Find the power

spectrum §,(®) .
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Figure P13.16.

13.17. (a) A random voltage v(r) has an exponential distribution function
fy(v) = aexp(-av) where (a>0);(0<v<e). The expected value
E[V] = 0.5. Determine Pr{V>0.5}.

13.18. Assume the X and Y miss distances of darts thrown at a bulls-eye

dart board are Gaussian with zero mean and variance G- . (a) Determine the
probability that a dart will fall between 0.8¢ and 1.26. (b) Determine the
radius of a circle about the bulls-eye that contains 80% of the darts thrown. (c)
Consider a square with side s in the first quadrant of the board. Determine s
so that the probability that a dart will fall within the square is 0.07.

13.19. Let S x(®) be the PSD function for the stationary random process
X(t). Compute an expression for the PSD function of
Y(t) = X(1)-2X(t-T).

13.20. Let X be arandom variable with

13

fux) =40 ¢

0 elsewhere

t=>0

(a) Determine the characteristic function Cy(®). (b) Using Cy (), validate
that f,(x) is a proper pdf. (c) Use Cy(®) to determine the first two moments

of X . (d) Calculate the variance of X.

13.21. Let X(#) be a stationary random process, E[X(#)] = 1 and the

autocorrelation R, (1) = 3 + exp(-|1/) . Define a new random variable

2

Y = J.x(t)dt

0
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2
Compute E[Y(#)] and oy.

13.22. InFig. 13.1, let

p(t) = iARect(t_TnT)

Give an expression for X (o).

13.23. Compute the Z-transform for
@ x,(1) = ~u(n); (b) xy(n) = ——u(-n).
n! (—n)!
13.24. (a) Write an expression for the Fourier transform of
x(t) = Rect(t/3)

(b) Assume that you want to compute the modulus of the Fourier transform
using a DFT of size 512 with a sampling interval of 1 second. Evaluate the

modulus at frequency (80/512)Hz. Compare your answer to the theoretical
value and compute the error.

13.25. A certain band-limited signal has bandwidth B = 20KHz . Find the

FFT size required so that the frequency resolution is Af = 50Hz. Assume
radix 2 FFT and record length of 1 second.

13.26. Assume that a certain sequence is determined by its FFT. If the
record length is 2ms and the sampling frequency is f, = 10KHz, find N.
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Appendix A Noise Figure

Any signal other than the target returns in the radar receiver is considered as
noise. This includes interfering signals from outside the radar and thermal
noise generated within the receiver itself. Thermal noise (thermal agitation of
electrons) and shot noise (variation in carrier density of a semiconductor) are
the two main internal noise sources within a radar receiver.

The power spectral density of thermal noise is given by

S, (w) = |l (A1)

ol

where || is the absolute value of the frequency in radians per second, T is
temperature of the conducting medium in degrees Kelvin, k is Boltzman’s
constant, and & is Plank’s constant (2 = 6.625 X 107 joule seconds).
When the condition || « 2nkT/h is true, it can be shown that Eq. (A.1) is
approximated by

S () = 2kT (A2)

This approximation is widely accepted, since, in practice, radar systems oper-
ate at frequencies less than 100 GHz; and, for example, if 7 = 290K, then
2nkT/h= 6000 GHz.

The mean square noise voltage (noise power) generated across a 1 ohm
resistance is then

2nB
) = %: J 2UT  do = AKTB (A3)
-2nB

where B is the system bandwidth in hertz.
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Any electrical system containing thermal noise and having input resistance
R;, can be replaced by an equivalent noiseless system with a series combina-
tion of a noise equivalent voltage source and a noiseless input resistor R,,
added at its input. This is illustrated in Fig. A.1.

Rin .
noiseless

(n’y = 4kTBR,, system

Figure A.1. Noiseless system with an input noise
voltage source.

The amount of noise power that can physically be extracted from <n2> is
one fourth the value computed in Eq. (A.3). The proof is left as an exercise.

Consider a noisy system with power gain A, as shown in Fig. A.2.

R.

1243

("

Figure A.2. Noisy amplifier replaced by its noiseless equivalent
and an input voltage source in series with a resistor.

The noise figure is defined by

total noise power out

F,z = 10 lo
a8 gnoise power out due to R;, alone

(A.4)

More precisely,

N
Fup = 10 logN Z (A.5)
i P

where N, and N, are, respectively, the noise power at the output and input of
the system.
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If we define the input and output signal power by §; and S, respectively,
then the power gain is

%)

Ap = =2 (A.6)

%)

It follows that

Fo - 10l S;/Ni B S; S, A7
= Og(So/No) - (Ni)dB_(No)dB ( - )
where
3,
Ni dB No dB .

Thus, it can be said that the noise figure is the loss in the signal-to-noise ratio
due to the added thermal noise of  the amplifier
((SNR), = (SNR),—F in dB).

We can also express the noise figure in terms of the system’s effective tem-
perature T,. Consider the amplifier shown in Fig. A.2, and let its effective
temperature be T,. Assume the input noise temperature is 7, . Thus, the input
noise power is

N, = kT,B (A9)

and the output noise power is

N, = kT,B A,+kT,B A, (A.10)

where the first term on the right-hand side of Eq. (A.10) corresponds to the
input noise, and the latter term is due to thermal noise generated inside the sys-
tem. It follows that the noise figure can be expressed as

_ (SNR); &, BA T,+T, 1+Te
" (SNR), ~ kT,B roos T T,

(A1)

Equivalently, we can write

T,=(F-1T, (A.12)

Example A.1: An amplifier has a 4dB noise figure; the bandwidth is
B = 500 KHz. Calculate the input signal power that yields a unity SNR at
the output. Assume T, = 290 degree Kelvin and an input resistance of one
ohm.
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Solution: The input noise power is

kT,B = 1.38x 107 x 290 x 500 x 10° = 2.0x 10w

Assuming a voltage signal, then the input noise mean squared voltage is

(n}y = kT,B = 20x 107" »*

F=10" = 251

From the noise figure definition we get

and

(s = F(n}) = 251x20x107"° = 502x10°" 1

Finally,

J(s7) = 70.852ny

Consider a cascaded system as in Fig. A.3. Network 1 is defined by noise
figure F, power gain G,, bandwidth B, and temperature T,,. Similarly, net-
work 2 is defined by F,, G,, B, and T,, . Assume the input noise has temper-
ature 7.

network 1 network 2
Si So
— ™| T.:GiF, M| TsGoiFy, |——*
N; N,

Figure A.3. Cascaded linear system.

The output signal power is

S, = 5,G,G, (A.13)

The input and output noise powers are, respectively, given by

N; = kT,B (A.14)
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No = kToBG1G2+kTelBG1G2+kTe2BG2 (A15)

where the three terms on the right-hand side of Eq. (A.15), respectively, corre-
spond to the input noise power, thermal noise generated inside network 1, and
thermal noise generated inside network 2.

Now if we use the relation T, = (F—1)T, along with Eq. (A.13) and Eq.
(A.14), we can express the overall output noise power as

N, = F\N,G,G, + (F,— 1)NiG, (A.16)

It follows that the overall noise figure for the cascaded system is

S,/ N, Fy-1
_(l 1)_F 2

= = + A7
(S()/No) ! Gl ( )
In general, for an n-stage system we get

FoF F,-1 F;-1 F,-1 A18

= F+——+= + - - -+ .
766G, GGG, - - G, 1

Also, the n-stage system effective temperatures can be computed as

T T Te2 Te3 Ten A19

= + ==+ - - -+ .
=1t G166, G,.6,.G, - - -G,_, &9

As suggested by Eq. (A.18) and Eq. (A.19), the overall noise figure is mainly
dominated by the first stage. Thus, radar receivers employ low noise power
amplifiers in the first stage in order to minimize the overall receiver noise fig-
ure. However, for radar systems that are built for low RCS operations every
stage should be included in the analysis.

Example A.2: A radar receiver consists of an antenna with cable loss
L = 1dB = F|, an RF amplifier with F, = 6dB, and gain G, = 20dB,
followed by a mixer whose noise figure is F; = 10dB and conversion loss
L = 8dB, and finally, an integrated circuit IF amplifier with F, = 6dB and
gain G, = 60dB. Find the overall noise figure.

Solution:

From Eq. (A.18) we have

F,-1 F,-1 F,—-1
2 + 03 L4
G, GGy, GGG

F=F+
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—-1dB | 20dB | —8dB | 60dB | 1dB 6dB 10dB | 6dB

0.7943] 100 0.1585| 10° 1.2589] 3.9811| 10 3.9811

It follows that

F= l.2589+3'9811_1 + 10-1 + 39811 -1 — 53628

0.7943 100 x 0.7943 ~ 0.158 x 1000.7943

F = 10log(5.3628) = 7.294dB

Problems

A.1l. A source with equivalent temperature 7, = 500K is followed by

three amplifiers with specifications shown in the table below.

Amplifier F,dB G,dB T,
1 You must compute 12 350
2 10 22

3 15 35

Assume a bandwidth of 150KHz. (a) Compute the noise figure for the three
cascaded amplifiers. (b) Compute the effective temperature for the three cas-
caded amplifiers. (c) Compute the overall system noise figure.

A.2. Derive Eq. (A.19).
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Appendix B Decibel Arithmetic

The decibel, often called dB, is widely used in radar system analysis and
design. It is a way of representing the radar parameters and relevant quantities
in terms of logarithms. The unit dB is named after Alexander Graham Bell,
who originated the unit as a measure of power attenuation in telephone lines.
By Bell’s definition, a unit of Bell gain is

Py
log(F) (B.1)

where the logarithm operation is base 10, P, is the output power of a standard

telephone line (almost one mile long), and P; is the input power to the line. If

voltage (or current) ratios were used instead of the power ratio, then a unit Bell

gain is defined as
tog[ 20Y’ tog( ) B.2
Og(V,) or Og(li) (B.2)

A decibel, dB, is 1/10 of a Bell (the prefix “deci” means 1071 ). It follows
that a dB is defined as

101 Py = 101 V°2—101 Loy B.3
ox(5) = 1ov( 3] = 101 ®2)

i

The inverse dB is computed from the relations

P,/P, = 1098710
Vy/V, = 1077% (B.4)
1,/1, = 1098720
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Decibels are widely used by radar designers and users for several reasons.
Perhaps the most important of them all is that utilizing dBs drastically reduces
the dynamic range that a designer or a user has to use. For example, an incom-
ing radar signal may be as weak as 0.000000001V, which can be expressed in
dBs as 101og(0.000000001) = —90dB . Alternatively, a target may be located
at range R = 1000000m = 1000Km which can be expressed in dBs as
60dB .

Another advantage of using dB in radar analysis is to facilitate the arithmetic
associated with calculating the different radar parameters. The reason for this
is the following: when using logarithms, multiplication of two numbers is
equivalent to adding their corresponding dBs, and their division is equivalent
to subtraction of dBs. For example,

250 x 0.0001
a5 ®2)
[1010g(250) + 10log(0.0001) — 10log (455)]dB = —42.6dB
In general,
1010g(A%B) — 10logA + 10logB — 10log C (B.6)
10logA? = ¢ x 10logA (8.7)

Other dB ratios that are often used in radar analysis include the dBsm (dB -
squared meters). This definition is very important when referring to target
RCS, whose units are in squared meters. More precisely, a target whose RCS is

6 m’ canbe expressed in dBsm as 10log(c mz) . For example, a 10m” tar-

get is often referred to as 10dBsm target, and a target with RCS 0.01m’ is

equivalent to a —20dBsm .

Finally, the units dBm and dBW are power ratios of dBs with reference to
one milliwatt and one Watt, respectively.

_ P

dBm = lOlog(—lmW) (B.8)

dBW = 10lo (i) (8.9)
= VR Tw :

To find dBm from dBW, add 30 dB, and to find dBW from dBm, subtract 30
dB.
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Appendix C Fourier Transform

Table
x(1) X(o)
ARect(t/7T) ; rectangular pulse AtSinc(®wt/2)
AA(t/7) ; triangular pulse A%Sincz(’cu)/4)
) 2 2
I exp| - L. Gaussian pulse exp(— 2> )
mc 202 ’ 2
e_mu(t) 1/(a+jo)
Pl 2a
2 2
a +o
eiatsinu)ot u(r) o

m§+ (a +jo))2

_at a+jo
e “coswyt u(t) 1

m§+ (a +jo))2

o(1) 1
1 2o ()
u(?) nd(w) +j%o
sgn(t) 2
jo
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X(w)

x(1)
COS Mt T[3(0 - @) + 8(® + )]
sinmr JT[B(0 + @)-8( - 1) ]
u(1) cos Wyt g[S(m—wO)+8(m+m0)]+ 2]'(0
0, — ®
u (1) sinm,t 0

2%[8((0 + ®)—0(0— )] +

2
0, - O
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Appendix D Some Common
Probability Densities

Chi-Square with N degrees of freedom

NOZRR —x
fx(x) = —exp{—} ; x>0
TN N2y 2

X=N: o0y,=2N

gamma function = T'(z) = J.Kzflef}hdk; Re{z}>0

0

Exponential

(fx(x) = aexp{—-ax}) ; x>0
x=1, oy = iz
a a

Gaussian

fx(x) = ! ex _1(x—xm)2 c X = . 6i=0"
Xx_mGPZG P &= m > Ox T

Laplace

felx) = gexp{—cyx—xm\}
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X=x, ; Oy= ~2-5
o
Log-Normal
£.() 1 (ln)c—ln)cm)2 0
x) = expl|—- ——————1| ; x>
X xcm 202

2

X= exp{lnxm +2

3} ; 0)2(= [exp{21nxm+02}][exp{62}—1]

Rayleigh

Uniform
1 — b b— 2
K =g a<b )(:‘“2r L on =t 12a)
Weibull

b-1 b
Fulx) = 25 exp(—@-) . (x,b,00) 20

(o)) Oo

ra+s) . 2 _Ta+207)-[ra b

X=——== oy
1/(4/o0) 1/1%(50)°1

© 2000 by Chapman & Hall/CRC



Appendix E Z - Transform Table
x(n); n=0 X(z2) ROC; |zl >R
o(n) 1 0
1 Z 1
z—1
n Z 1
(z-1)°
n2 z(z + 13) 1
(z—1)
a" 2z |al
Z—a
na" az ; |al
(z—a)
a” ea/z 0
n!
(n+1)a" Z |al
(z-a)’
sinnwT zsinoT 1
zz—ZZcosmT+ 1
cosnmT z(z—cosmT) 1
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x(n); n=0 X(z) ROC; |zl > R
a"sinnoT azsinT 1
zz—Zazcoso)T+ a |al
a"cosnoT 2(z—a*cos@T) ﬁ
z2—2azcoso)T+ a a
nn-1) Z 1
2! (z- 1)3
nn-1)(n-2) Z 1
3' (Z_ 1)4
(n+1)(n+2)d" 2 |al
2! (Z—a)3
(n+D(n+2)...(n+m)a" z'"” |al
m! (Z—a)m+l
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Appendix F MATILAB Program
and Function Name
List

A MATLAB program and function! name list is provided in this appendix on
a per-chapter basis. Programs and functions that have associated MATLAB
GUI are identified. All these programs and functions can be downloaded from
CRC Press Web site (www.crcpress.com). For this purpose, create the follow-
ing directory in your C-drive: C:\RSA. Copy all programs into this directory.
The path tree should be as shown in Fig. F.1. Users can execute a certain func-
tion / program GUI by typing: file_name_driver, where file names are as indi-
cated in the left columns of the tables listed in this appendix.

- o]

|

|

| | L — _| programs
| L — _ chapter 2

|

| o £
b [

'and so on|

[
\ Lo programs

|
| L
Figure F.1. Path tree.

1. All MATLAB programs and functions provided in this book were developed using
MATLAB 5.0 - R11 with the Signal Processing Toolbox, on a PC with Windows 98
operating system.
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Chapter 1:

Name

Purpose

pulse_train
range_resolution
doppler_frequency
radar_equation
Iprf_req
hprf_req

power_aperture

ssj_req

s0j_req

range_red_fac

compute duty cycle, average power, pulse energy
compute range resolution
compute Doppler frequency
implement the radar equation - with GUI
implement the LPRF radar equation - with GUI
implement the HPRF radar equation - with GUI

implement the surveillance radar equation - with
GUI

implement self-screening jammer radar equation -
with GUI

implement the stand-off jammer radar equation -
with GUI

compute and plot the range reduction factor associ-
ated with ECM - with GUI

Chapter 2:
Name Purpose (all functions have associated GUI)
rcs_aspect compute and plot RCS dependency on aspect

rcs_frequency
rcs_sphere
res_ellipsoid
rcs_circ_plate
rcs_frustum
rcs_cylinder
rcs_rect_plate
rcs_isoceles
rcs_cylinder_complex

swerlin_models

© 2000 by Chapman & Hall/CRC

angle
compute and plot RCS dependency on frequency
compute and plot RCS of a sphere
compute and plot RCS of an ellipsoid
compute and plot RCS of a circular flat plate
compute and plot RCS of a truncated cone
compute and plot RCS of a cylinder
compute and plot RCS of a rectangular flat plate
compute and plot RCS of a triangular flat plate
reproduce Fig. 2.22
reproduce Fig. 2.24




Chapter 3:

Name Purpose

range_calc perform radar range equation calculation - with

MATLAB-based GUI
Chapter 4:

Name Purpose

marcumsq compute and plot single pulse probability of detec-

tion versus SNR
improv_fac compute and plot non-coherent integration

incomplete_gamma
threshold

pd_swerling5

pd_swerlingl

pd_swerling2

pd_swerling3

pd_swerling4

© 2000 by Chapman & Hall/CRC

improvement factor
compute and plot Incomplete Gamma function

compute appropriate threshold for probability of
detection calculation

compute and plot probability of detection for
Swerling 5 targets

compute and plot probability of detection for
Swerling 1 targets

compute and plot probability of detection for
Swerling 2 targets

compute and plot probability of detection for
Swerling 3 targets

compute and plot probability of detection for
Swerling 4 targets



Chapter 5:

Name Purpose
fresnel compute and plot Fresnel functions
hrr_profile compute and plot High Range Resolution Profiles
associated with Stepped Frequency waveforms
Chapter 6:
Name Purpose

single_pulse_ambg

compute and plot single ambiguity function

fig6_3 reproduce Fig. 6.3
fig6_5 reproduce Fig. 6.5

Ifm_ambg compute and plot LFM ambiguity function, with

GUI

figb_6 reproduce Fig. 6.6
figb_7 reproduce Fig. 6.7

train_ambg compute and plot ambiguity function for a coher-

ent pulse train
figh-9a reproduce Fig. 6.9a
Chapter 7:

Name Purpose

matched_filter

stretch
fig7_10
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Compute and plot compressed output from a
matched filter

implements stretch pulse compression

reproduce Fig. 7.10



Chapter 8:

Name Purpose
ref_coef compute and plot reflection coefficient - vertical
and horizontal
Chapter 9:
Name Purpose

single_canceler

double_canceler

plot output from a single delay line canceler

plot output from a double delay line canceler

figd_15 reproduce Fig. 9.15
figd_16 reproduce Fig. 9.16
figo_17 reproduce Fig. 9.17
Chapter 10:
Name Purpose

circ_aperture

figl0_5
figl0_10

linear_array

rect_array

© 2000 by Chapman & Hall/CRC

compute and plot antenna radiation pattern for a
circular aperture, including 3-D

reproduce Fig. 10.5
reproduce Fig. 10.10

compute and plot radiation pattern for a linear
phased array

compute and plot radiation pattern for a rectangu-
lar array



Chapter 11:

Name

Purpose

mono_pulse

ghk_tracker

compute and plot sum and difference patterns for
monopulse antenna

implement ghk 3-state tracker

figl1_21 reproduce Fig. 11.21
kalaman_filter implement a 3-state Kalman filter
figl1_28 reproduce Fig. 11.28
Chapter 12:
Name Purpose
figl2_2 reproduce Fig. 12.2
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