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This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a
primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and
time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized
with ant colony method (ACO) is used to find the set of features which improve the classification accuracy.
CLA is applied due to its capability to learn and model complicated relationships. The selected features from
the last phase are evaluated using ROC curve and themost effective while smallest feature subset is determined.
The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine
and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the
proposed approach can find the smallest subset of genes while approaching the maximum accuracy.
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1. Introduction

Analyzing the gene expression level, one can gather valuable in-
formation regarding themutual influence of genes in a genetic network
[1].In the databases used for gene expression analysis, the number of
samples is few but the dimension is too high. These two factors make
classification and data analysis challenging. However, all genes do not
participate in the occurrence of cancer. Using all genes to discriminate
and classify cancer may lead to incorrect decisions. Using feature selec-
tion techniques to identify the effective subset of features is an impor-
tant issue in the problem of gene expression analysis. The main goal of
feature selection is to identify a minimum subset of features that in-
crease the decision accuracy.

Traditional feature selection approaches are divided into four
categories namely filter, wrapper, embedded and hybrid approaches.
In filter approaches each feature is evaluated individually [2]. These ap-
proaches can be easily applied to high dimensional datasets; their com-
plexity is low and the approaches are classifier independent. For this
purpose,measures such as t-test [3], information gain [4], minimumRe-
dundancy Maximum Relevance (mRMR) [5] and Euclidean distance [6]
are the most popular. In this type of feature selection approaches, the
features which have the best statistical score are selected. In filter fea-
ture selection approaches, the performance of the classifier and inter-
e Sharbaf),
.ac.ir (M.H. Moattar).
dependency of the features play no role, therefore it is not surprising
that the performance of the classifier would be low or redundant fea-
tures may be found in the selected feature set [7].

In wrapper approaches, classifier performance is used as the mea-
sures for feature evaluation.Wrapper approaches are categorized as de-
terministic and stochastic approaches. Sequential forward selection
(SFS) and Sequential backward elimination (SBE) are categorize as de-
terministic and optimization based approaches such as randomized
hill climbing [8], Ant colony [9] and genetic algorithms [10] are stochas-
tic approaches. Although the classifier performance is high for this
approaches but the search space complexity is very high for the prob-
lemswith thousands of feature and this leads to higher time complexity.

Embedded approaches take advantage of the model properties to
analysis the problem and select the most important features [11]. Ap-
proaches such as decision tree and neural network fall in this group of
methods, however these approaches are also of high computational
complexity. Guyon et. al. [12] introduced one of themostwidely applied
embedded techniques based on support vector machine and Recursive
Feature Elimination (SVM-RFE) for gene selection and cancer classifica-
tion. Also, Maldonado et. al. [13] proposed an embedded approach by
introducing a penalty factor in the dual formulation of SVM.

None of the above mentioned approaches are able to overcome all
the problems solely. Therefore ensemble approaches are proposed in
the literature [14,15]. In these approaches, feature selection is done
using a hybrid model and the results are integrated. Mundra et al. hy-
bridize two of the most popular feature selection approaches, namely
SVM-RFE andmRMR [16]. Shreemet. al. [17] proposed RM-GA approach
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which was a hybrid of ReliefF, mRMR and genetic algorithm (GA).
Chuang et al. [18] proposed a hybrid approach named CFS-TGA which
was the hybrid of correlation based feature selection (CFS) and
Taguchi-Genetic Algorithm (TGA) and used KNN as the classifier. Lee
and Liu [19] proposed an approach called Genetic Algorithm Dynamic
Parameter (GADP) for producing every possible subset of genes
and rank the genes using their occurrence frequency. Also, Yassi and
Moattar [20] proposed a feature selection approach for microarray
data which combined both ranking methods and wrapper approaches
to satisfy the data scarcity problem.

In this paper, we have proposed an ensemble approach to select
the smallest subset of features to have the best possible classifier perfor-
mance. This approach consists of two phases. Thefirst phase uses a filter
and the second phase is based on awrapper approach. In the first phase,
the features are ranked using Fisher criterion. The use of the filter
approach is intended to lower the search space complexity. Then, the
best features from the previous stage are fed to the wrapper approach
which is based on the hybrid cellular learning automata and ant colony
optimization. The rest of this paper is organized as follows. Section 2
introduces the main materials of the proposed approach including cel-
lular automata and ant colony optimization. Section 3 explains the pro-
posed methodology. The evaluation datasets are described in Section 4.
Section 5 summaries the experimental results and discussions. Finally
conclusions and guide for feature works are offered in Section 6.

2. Materials and methods

2.1. Cellular learning automata

Cellular learning automata (CLA) are system modeling approaches
which consists of simple basic parts. In CLA, the behavior of every part
is modified based on the behaviors of its neighbors and its personal pre-
vious experiments. The simple parts of this model can show complicat-
ed functionalities via interactions with each other. A CLA is a cellular
automaton in which every cell (or a group of cells) is equipped with
learning capability.

Local rule, φ controls the cellular automata and determines if a
selected action should be punished or rewarded. The rewards and
punishes leads to the structural update of the cellular learning automata
to achieve a specific objective. A cellular learning automaton is denoted
by a penury bΛ, A,Ω,φ, LN. Λ={λ1,λ2,…,λn} denotes the set of cells in
the cellular learning automata which constructs a Cartesian network.
A = {a1, a2, …, ak} is the set of allowed actions of a CLA in a cell. At(λi)
denotes the executed action in time t and cell λi and φ is the rule with
governs the cellular learning automata. Ω is the neighboring cells and
L is the set of learning cells. Depending on the application, the neighbor-
ing cells are determined using different approaches (i.e. Von Neumaan,
Smith, Moore and Cole neighborhood) [21]. Learning automata is capa-
ble of simulating complicated systems using simple interactions of cells,
and hence is appropriate for solving NP-complete problems.

2.2. Ant colony optimization

Ant colony optimization is a meta-heuristic algorithm inspired from
the explorative behavior of ants. In spite of beingblind andweakly intel-
ligent, the ants can find the shortest path from home to the food and
vice versa. Biologists found out that this is because of the pheromone
trails that they use to communicate and exchange routing data among
each other. These trails lead the ants to the shortest possible paths.
Ants choose the routes, based on a probability which is proportional
to the amount of the pheromones remained on the paths. The stronger
the pheromone trail, thefittest the path. This algorithmhas some compel-
ling features such as: positive feedback, distributed computation, and a
constructive greedy heuristic, which have attracted the researchers [22].
Positive feedback brings about a faster speed to find good solutions. Be-
sides that, distributed computation stops the algorithm from premature
and early convergence. And finally, the greedy heuristic helps in finding
acceptable solutions in early stages of the search. These are the character-
istics which have made the Ant Colony Algorithm robust, versatile and
controllable.

3. Proposed approach

The proposed method consists of three main stages including: fea-
ture ranking using Fisher criterion, optimum feature subset selection
using the hybrid method of cellular learning automata and ant colony,
and final feature determination using Receiver Operating Characteris-
tics (ROC) curve. Fig. 1 depicts a view of the proposed methodology.

3.1. Feature ranking using Fisher criterion

In this stage, in order to eliminate the weak features, we utilize a
ranking method. With regards to the fact that, in recent studies the
focus has been on the Fisher information measure, and this metric has
proven its robustness against data scarcity [20], in this work, we used
Fisher ratio to rank the features. The Fisher ratio is calculated for fea-
tures using Eq. (1).

FR jð Þ ¼
μ j1−μ j2

� �2

σ j1
2−σ j2

2 ð1Þ

Where, μ jc is the sample mean of feature j in class c and σ2
jc is

variance of feature j in c. The N features possessing the highest Fisher
value are sent to the next stage.

3.2. Cellular learning automata-ant colony optimization feature selection
(CLACOFS)

In this stage we analyze a variety of feature subsets. The N best fea-
tures in the ranking phase are the input, and a subset with the smallest
number of features and high discrimination would be the output. To do
this, we consider the problem space as a two dimensional grid of cells.
The number of cells is the least power of 2 which is greater than N.
The neighborhood is considered to be of Moore type, which implies
that each cell will have eight neighbors. Likewise, the cells on the left,
right, up and down boundaries are considered to be neighbors.

Each cell can have one of the three states of asleep, awake, and
dead. At first, all cells are awake. We consider the environment in
the cellular automata to be of type Q. In this case, the feedback of
the environment to a cell can have three forms of good, average,
and bad. The cell would be rewarded or penalized proportional to
the environment's feedback.

We assigned an ant to each cell.We used the Fisher values as heuris-
tic information (initial predictions of feature's performance), and their
average as the initial amount of pheromones. In each living cell, the
ant uses the probability rule in Eq. (2) to choose features. The number
of features each ant is authorized to choose is calculated randomly.
The performance of the classifier is determined by the features each
ant chooses and is used to update the local pheromone. The environ-
ment also analyzes each cell and proportionally rewards or penalizes
it based on the performance of the classifier; which changes the cell's
energy. Dropping the cell's energy level below the threshold causes it
to go asleep and if these conditions remain steadily and sequentially
for some iteration the cell dies out.

Pk
i tð Þ ¼ τi tð Þ½ �a ηi tð Þ� �β

X
υε jk

tu tð Þ½ �a ηu tð Þ� �β
0 Otherwise

8>>>><
>>>>:

if iε jk ð2Þ



Fig. 1. The flowchart of the proposed approach.
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Pi
k(t) The probability of selecting ith feature by kth ant in time step t.

τi The pheromone amount of ith feature.
ηi The heuristic information of ith feature.
α The relational importance of pheromone.
β The relational importance of heuristic information.

If the cell is at the asleep state, we analyze its neighbor cells. If M of
its neighbors were awake, the cell itself becomes awake. After deter-
mining the new state for the whole cells, the pheromone is updated
globally. To do this, first the best ant must be determined. The criterion
to choose the best ant is the classifier's performance which is in direct
relation with the features that are chosen by that ant. If we gain the
same classifier performance for some ants, we choose the onewithmin-
imum number of features. If once again we see some ants under the
same circumstances, we use the cell's energy as a criterion to choose
the best cell. After determining the best ant, the global pheromone is
updated according to Eq. (3).

τi t þ 1ð Þ ¼ t þ 1ð Þ ¼ 1−ρð Þ:τi tð Þ þ
Xm
k¼1

Δτki tð Þ þ Δτgi tð Þ ð3Þ

Ρ Global pheromone evaporation rate.
M Number of ants (cells).



Table 1
Evaluation datasets.

Dataset Sample size # genes # Class

ALL-AML leukemia 72 7129 2
Prostate tumor 136 12,600 2
MLL-leukemia 72 12,582 3
ALL-AML-4 72 7129 4

Table 2
Parameters of Classifier.

Classifier Parameter

SVM Kernel function = polynomial;
Order of the polynomial kernel = 3;
Method used to find the separating hyper plane = SMO;

K-nearest neighbor Distance = Standardized Euclidean distance;
number of nearest neighbors = 3 Or 4;

Naïve Bayes Distribution = Gaussian;
prior probabilities for the classes = empirical;

Table 3
Average classification accuracy for each feature ranking method.

Data Set Classifier T test Information Gain Fisher Z score

Prostate tumor SVM 86.12 73.00 88.00 85.75
KNN 96.25 73.75 98.12 97.37
NB 97.00 95.87 97.00 97.00

ALL-AML leukemia SVM 74.12 43.5 76.37 58.37
KNN 91.00 76.37 89.50 63.00
NB 88.37 60.25 96.25 58.00

MLL-leukemia KNN 75.25 63.75 75.25 71.37
NB 73.12 76.25 64.12 68.75

ALL-AML-4 KNN 67.37 67.12 67.62 63.37
NB 67.75 69.37 68.12 63.12

The bold entries denote the highest accuracy among the feature selection approaches for
the mentioned data set and classifier.
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Δτig(t) The change amount the best ant has had on the pheromone
vector as Eq. (4).

Δτki tð Þ ¼ φ:Sk tð Þþ
1−φð Þ: n−jSk tð Þj

� �

n
if iεSk tð Þ

0 Otherwise

8><
>:

ð4Þ

Δτik(t) Pheromone of feature i of the kth ant at time t.
Φ Local evaporation coefficient.
Sk(t) Accuracy of the cell's classifier.
|. |: The number of chosen features by the kth ant.
N The total number of features.

In case the system prematurely converges, ants will choose the same
features. After updating the global pheromone, the information of the
current and the previous iterations are compared, the ant with best per-
formance is saved as the algorithm's final solution up to this iteration.
The algorithm continues running until the number of features in the
final solution of the algorithmgoes below x and the accuracy of the clas-
sifier exceeds y, or it reaches the maximum number of iterations noted
as T. If in some sequential iteration, the information of the current
iteration's best ant remains steady, the information of whole cells is
reset. A summary of the algorithm is depicted in Algorithm 1.
Fig. 2. Classification accuracy of KNN with different f
Algorithm 1. The pseudo code of the proposed CLACOFS

While fulfill termination condition do

1. Set parameters (Each ant is assigned to a cell).
2. For alive cells do
a. R features selected by each ant (R is random for each ant)
b. Determine the efficiency classifier
c. If the classifier accuracy is more than threshold T1

Increase the energy of the cell (energy = energy + R1)
else if the classifier accuracy is between threshold T1 and T2
Increase the energy of the cell (energy = energy + R2)
else
Decrease the energy of the cell (energy = energy-P)
If cell energy is less than T, put cell in sleep state

d. Update local pheromone
e. Select best ant
f. Update global pheromone

3. For sleep cells do
a. If cell has N neighbor in alive state Put cell in alive state
b. If cell is in asleep in successive step put it in die state
3.3. Final feature determination using ROC curve

Each time we run the algorithm a subset of features are chosen.
Among these subsets, the subsets with the minimum cardinality and
eature ranking methods on evaluation datasets.



Table 4
The classification accuracy at the end of the proposed CLACOFS step.

Data set Classifier Classification using all features Classification using selected
features in first phase

Classification using selected features
in second phase

No of features Accuracy % No of features Accuracy % Average No of selected features Accuracy %

ALL-AML leukemia SVM 7129 58.8235 100 74.65 2.55 95.95
150 73.45 2.65 94.30

KNN 70.5882 100 86.05 3.60 95.95
150 86.20 3.35 95.20

NB 94.1176 100 96.10 5.25 97.60
150 96.40 5.35 97.00

Prostate tumor SVM 12,600 73.5294 100 83.50 14.05 98.35
150 88.15 15.40 99.25

KNN 97.0588 100 96.55 9.45 99.40
150 98.20 14.50 99.85

NB 26.4706 100 97.05 6.50 99.10
150 97.05 9.20 99.40

MLL KNN 12,582 80.00 200 93.33 18.70 97.55
250 93.33 24.75 94.05

NB 100.00 200 93.33 12.40 98.95
250 100 14.90 99.30

ALL-AML-4 KNN 7129 73.60 100 62.49 15.77 80.99
150 70.82 20.65 80.51

NB 91.66 100 73.60 12.23 86.30
150 69.44 13.08 86.38

Table 5
AUC value of top 5 features.

Data set Number (gene symbol/accession) AUC

SVM NB KNN

Prostate tumor 6185 (37639_at) 0.8427 0.7069 0.9167
9937 (40607_at) 0.6875 0.6042 0.6011
9267 (38740_at) 0.7886 0.6042 0.6829
6462 (38634_at) 0.6581 0.6042 0.8272
4690 (32076_at) 0.8038 0.6042 0.6481

ALL-AML leukemia 1834 (M23197_at) 1.0000 0.9875 0.9875
2354 (M92287_at) 0.6883 0.8860 0.9156
6041 (L09209_s_at) 0.9839 0.9715 0.9364
6855 (M31523_at) 0.6000 0.9680 0.9456
2642(U05259_rna1_at) 0.6557 0.8588 0.8491

MLL-leukemia 10,998(1718_at) NA 0.8941 0.8728
2436(35485_at) NA 0.8681 0.6919
640(32016_at) NA 0.8312 0.7506
10,515(33117_r_at) NA 0.7729 0.5587
12,291(385_at) NA 0.9117 0.8092

ALL-AML-4 3469 (U59878_at) NA 0.9867 0.9487
4366 (X61587_at) NA 0.9355 0.8556
2121 (M63138_at) NA 0.7396 0.9535
4514 (X71973_at) NA 0.9016 0.7605
1834 (M23197_at) NA 0.7853 0.7911
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maximumaccuracy are chosen. Now, to determine thefinal features the
ROC curve is used. ROC curve shows the sensitivity versus specificity. Sen-
sitivity shows the ratio between the correctly classified positive samples
and the true positive samples.

Sensitivity ¼ Correctly Classified Possitive Samples
True Positive Samples

ð5Þ

Specificity shows the ratio between the correctly classified negative
samples and the true negative samples.

Specificity ¼ Correctly Classified Negative Samples
True Negative Samples

ð6Þ

Wepartitioned the dataset samples into two groups of train and test
using 10-fold cross validation technique. For each best feature set, we
plotted the ROC curve and calculated the Area under Curve (AUC). The
feature with the highest AUC is introduced as the final feature set.

4. Evaluation datasets

To evaluate the proposed algorithm, we utilized four datasets. A
description of these datasets is given in Table 1.

ALL-AML Leukemia [23]: This dataset has two classes named AML,
and ALL. Each sample contains 7129 genes. In the training set, there
are 27 samples in ALL class and 11 samples in AML class. Also, in test
set 20 samples belong to ALL class, and 14 samples are from AML class.

Prostate [24]: In this two-class dataset, the training set contains 52
prostate cancer samples and 50 healthy samples, and also the test set
consists of 25 cancer samples and 9 healthy samples. Each sample has
12,600 genes.

MLL-Leukemia [25]: This dataset is consisted of three classes named
ALL, MLL, and AML. Each sample is structured by 12,582 genes. The
training set in this dataset consists of 57 samples. The number of sam-
ples in ALL, MLL, and AML classes are 20, 17, and 20, respectively. Simi-
larly, there are 15 samples in the test set and ALL, MLL, and AML classes
contain 4, 3, and 8 samples, respectively.

ALL-AML-4 [23]: In this dataset there exist four classes called B-cell,
T-cell, BM, and PB, each class consisting 38, 9, 21, and 4 samples. Each
sample is described by 7129 features. Furthermore, to create the test
samples we used the 4-Fold technique.
5. Experiment and result

In the experimental study, first, we have examined the impact of
different rankingmethods on feature selection. Second, we have chosen
the best method for the first phase of the proposed algorithm. Third, we
have used the CLA-ACOmodel to introduce subsets of superior features.
Eventually, for this purpose, we have examined different classifiers such
as SVM, KNN and Naïve Bayes (NB) (worth mentioning that SVM is not
applied for more than two class problems). Table 2 represents the pa-
rameters of the proposed approach.

In Fig. 2, the results of feature selection by different rankingmethods
such as T-test, information gain, fisher and Z-score are shown for 4
datasets. For summary, this figure only depicts the classification accura-
cy of KNN classifier. The horizontal axis is the number of selected
features and the vertical axis shows the classification accuracy.

To evaluate the feature selection results using each rankingmethod,
the average results are depicted in Table 3. Comparing the results, it is
apparent that the fisher ranking approach has the highest performance.



Fig. 3.ROC curve for the best selected gene andKNN classifier a) 37639_at gene for Prostate Tumor b) 1834 gene for ALL-AML Leukemia c) 10,998 gene forMLL-Leukemia and 3469gene for
ALL-AML-4. Blue curve depicts the proposed approach while green curve is the diameter.
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The results prove that fisher criterion is, on average, the best ranking
approach for microarray.

In Table 4, the results of classification at the end of first and second
stage are shown. In this table, we have first used all features for the clas-
sification of samples. Then, the samples were classified by N selected
features in the ranking phase. Comparing the classification accuracy in
these cases shows that the ranking phase improves the classification
performance. In the second phase, the proposed CLACOFS is performed
20 times and the average results are depicted in Table 4. In this phase, by
features that are far less than the selected features in the first phase,
classification accuracy has been increased.

By comparing the results achieved from the different classifiers, it is
shown that the Naïve Bayes classifier outperforms the other two classi-
fiers; and the KNN classifier is better than the SVM classifier. It is due to
the fact that in Naïve Bayes classifier, the features are considered inde-
pendent and this consideration increases the performance of classifier.
We have to remind that the SVM classifier was not applied for more
than 2 class problems such as MLL and ALL-AML-4 dataset.

In Table 5, the top five genes of each database are depicted. The more
frequently chosen genes, inmultiple execution of the proposed algorithm,
Table 6
Comparison of the methods on the prostate tumor dataset.

Method
(feature selection + classification)

Number of
selected genes

Classification
accuracy %

Signal to noise ratios + KNN [24] 4 77
SFS + Bayes classifier [7] 4 97
PMOGA + SVM [26] 89 100
PMOGA+ Naïve Bayes [26] 89 100
Proposed feature selection + SVM 2 100
Proposed feature selection + KNN 2 100
Proposed feature selection + Naïve Bayes 2 100
were considered superior. The ROC curve was drawn for each superior
gene. For plotting the ROC, we first use the 10-fold cross validation in
order to divide the database samples into train and test groups. Then,
for each fold, the Sensitivity and Specificity are calculated and the ROC
curve is drawn. Finally, by comparing the area under curves (AUC), the
final feature is determined. The gene which has the greatest AUC will be
introduced as the final feature. This gene has been shown in Table 5
with distinct color. NA in Table 5 denotes that SVM was not evaluated
for MLL and ALL-AML-4 datasets as stated before.

The top 5 genes mentioned in Table 2 are comparable with the-state-
of-the-art findings for each disease. For example, in [32] genes with
accession number of (M23197_at), (L09209_s_at) and (M63138_at) are
selected among the top 20 genes for ALL-AML Leukemia diagnosis.
Also, [31] denotes that the combination of (U05259_rna1_at) and
(M92287_at) are effective for Leukemia diagnosis and can achieve the
accuracy of 94.12%. This article also suggests (M23197_at) and
(L09209_s_at) as informative gene for Leukemia diagnosis.

As referred to in [29]which is a US patent, 1718_at is one of themost
informative genes for the purpose of leukemia diagnosis. Also, this
Table 7
Comparison of the methods on the ALL-AML leukemia dataset.

Method
(feature selection + classification)

Number of
selected genes

Classification
accuracy %

PMOGA + SVM [26] 89 97
PMOGA + NB [26] 89 94
CLARANS + Naïve Bayes [27] 44 97.22
AODEsr [28] 5 95.8
AODEsr [28] 10 100
Proposed feature selection + SVM 1 100
Proposed feature selection + KNN 2 100
Proposed feature selection + Naïve Bayes 1 100
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feature is included in other texts such as [30,31] as one of the bio-
markers which can signify the disease. On the other hand, NCBI profiles
show that 1718_at can be expressed for leukemia diagnosis. The same
discussion can be done for the top 5 selected genes for prostate tumor.
For instance, NCBI profiles show that (37639_at) is highly associated
with the growth and progression of cancers, particularly prostate can-
cer. Fig. 3 show the ROC curve for best feature in each dataset.

In the following, SFS [7], PMOGA [26], CLARANS [27], and AODEsr
[28] approaches are compared with our proposed scheme. In SFS,
which is a wrapper method, the accuracy of classifier plays a decisive
role in determining the subset of effective features. The PMOGA applies
a new multi-purpose evolutionary approach and uses two evaluation
functions which are based on the concepts of mathematics (probability
theory and Rough set theory). The CLARANSmethod uses the clustering
algorithm based on random search. In this method, the clustering and
dimension reduction are done based on gene ontology (GO). In AODEsr
approach entropy is used for gene selection. AODEsr applies a decision
approach called averaged-on dependence estimator with subsumption
resolution (AODEsr) to solve cancer recognition problem. Also, the au-
thors of [28] applied EntropyMinimization Discretization (EMD)meth-
od which is popular in discretization of high-dimensional data.

The proposed approach is compared with the above mentioned
approaches for two of the four datasets namely, Prostate Tumor and
ALL-AML Leukemia. The results of evaluations are depicted in Tables 6
and 7.

As shown below the proposed framework has achieved the accuracy
of 100% on both datasets while from the other approaches only PMOGA
and AODEsr has gained similar performance on Prostate Tumor and
ALL-AML Leukemia, respectively. However, compared to the best per-
formed approaches, still the proposed approach has found the least
number of features (i.e. 1 or 2) to achieve this gain. This fact shows
that the proposed approach is both efficient in reaching the best accura-
cy and finding the smallest subset of features which is due the high ca-
pability of CLA tomodel the complex problem of high dimensional data.
6. Discussion

This paper proposed a feature selection approach to find themost in-
formative genes for cancer classification and diagnosis which applies
cellular automata (CA) to model the interaction between genes and
ant colony optimization (ACO) to learn the rules and structure of CA.
Themain objective of the proposed approach is to find the smallest sub-
set of biomarkerswhich can signify the disease efficiently. The contribu-
tion of CA is that it can effectively model the interactions in complex
systems and is appropriate for the problem of feature selection from
high dimensional data. Besides being effective in modeling complicated
relations, CA provides the possibility of parallel processing. Also, ACO is
chosen due to its advantages such as higher convergence rate and
computational effectiveness. Also, using ROC curve in order to select
the final subset, will guarantee the method's stability. By stability,
we mean the ability of the approach to be extended to datasets
with much less samples. The proposed approach is evaluated on 4
popular microarray datasets and compared with some of the most
recent approaches.

The results show that although selecting a minimal subset of fea-
tures, the selected genes have high influence on separating different
classes. The experiments denote that the proposed approach has
achieved high accuracy rate even with 1 or 2 highly informative
genes. Also, as compared with the-state-of-the-art, the selected
genes are previously found meaningful in the biology texts. In future
works, other evolutionary algorithms such as artificial bee colony
that have been used for feature selection can be evaluated together
with CA. Also, due to the good discrimination power of the selected
genes, it is worth evaluating them through biological researches and
experiments.
Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ygeno.2016.05.001.
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