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A  simple  and  novel  approach  to identify  the  clusters  based  on  structural  and  attribute  similarity  in
graph  network  is  proposed  which  is  a fundamental  task  in community  detection.  We  identify  the dense
nodes  using  Local  Outlier  Factor  (LOF)  approach  that  measures  the  degree  of outlierness,  forms  a  basic
intuition  for  generating  the initial  core  nodes  for  the  clusters.  Structural  Similarity  is identified  using
k-neighbourhood  and  Attribute  similarity  is  estimated  through  Similarity  Score  among  the  nodes  in  theQ4
group  of structural  clusters.  An  objective  function  is  defined  to  have  quick convergence  in the  proposed
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lustering
raph
-Neighbourhood
tructural
ttribute similarity

algorithm.  Through  extensive  experiments  on dataset  (DBLP)  with  varying  sizes,  we  demonstrate  the
effectiveness  and  efficiency  of  our  proposed  algorithm  k-Neighbourhood  Attribute  Structural  (kNAS)
over  state-of-the-art  methods  which  attempt  to  partition  the  graph  based  on  structural  and  attribute
similarity  in  field  of  community  detection.  Additionally,  we  find  the  qualitative  and  quantitative  benefit
of  combining  both  the similarities  in  graph.
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. Introduction

Clustering is an important data mining technique developed for
he purpose of identifying groups of entities [1,2] that are similar to
ach other using some similarity measures. The main goal of clus-
ering is to have high intra cluster similarity and low inter cluster
imilarity i.e., the objects inside the cluster are similar and objects
n different cluster are dissimilar. It is an unsupervised learning
echnique widely used in all the areas of science and engineering
hat includes bioinformatics, market research, social network anal-
sis, image analysis, financial and marketing field, trajectory data,
ime series data, spatial data and so on.

Graph structure is an expressive data structure [3] model which
tudies the relationship among the objects in the application
ike social networks, sensor networks and biological networks.
ecently, graph clustering [4] has gained the attention of the
esearchers due to its rapid expansion and fast proliferation in the
eld of many applications. Clustering on large graph aims to parti-
Please cite this article in press as: M.P. Boobalan, et al., Graph cluster
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.05.028

ion the graph into several densely connected subgraphs [5–9] that
s useful to understand and visualize large graphs. Graph clustering
ncludes community detection in social networks analytics [10–12],
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63
protein–protein interaction biological networks [13], document
clustering, citation network [14,15] and others. Due  to the extent
and the diversity of contexts in which graphs are used, the area
of graph clustering has become both crucial and interdisciplinary,
in order to understand the features, the structure and the dynam-
ics of these complex systems. The major difference between graph
clustering and traditional data clustering is that graph cluster-
ing measures the connectivity (number of possible edges between
two vertices) while data clustering measure distance between two
objects based on Euclidean distance. This distance measure fails to
detect cluster in dense set of objects that can represent in arbitrary
shape, as Euclidean distance favours compact and spherical shaped
clusters.

Community detection in graph refers to grouping of similar
nodes that share a common characteristics or properties [16–19].
Similarity is measured in two  ways, Structural similarity which con-
siders the topological features and Attribute similarity that groups
the similar characteristics related to nodes and edges [20,21]. In
information network analysis, the characteristics or roles of a per-
son is considered as attribute similarity, whereas the structural
similarity is the interaction or relationship among the group of
people. The vertices are assigned to cluster based on any of these
ing using k-Neighbourhood Attribute Structural similarity, Appl.

two similarities. However, the existing graph clustering algorithms
focus on anyone the similarity to partition the graph. But in many
real applications, both the structural and attribute similarity plays a
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ajor role in the analysis. A good clustering algorithm should gen-
rate clusters which have a cohesive intracluster similarity with
omogeneous attribute values by balancing both the similarities
22,23].

The proposed work in this article aims to partition the graph
ased on Structural and Attribute similarities. An object should
trictly satisfy both the similarities defined above. As discussed ear-
ier, it is challenging task to group the individuals who  are friends

ith same affiliation. The main contributions of this article are
ummarized as follows.

(i) Input parameters for the Algorithm:  There is only one input [24]
given to the proposed graph clustering algorithm. The dis-
tance (k) value used to find the k-neighbourhood in Structural
Similarity is the only parameter given to the algorithm.

(ii) Quick convergence: An efficient objective function is defined
which makes the algorithm to converge quickly. The exper-
iments have demonstrated that our proposed clustering
approach is able to partition the graph into quality clusters
with high structural similarity and homogeneous attribute
values in large scale real social graphs.

(iii) Time complexity: Since the random initialization of the cen-
troid is ignored, it takes less execution time for large dataset
when compared to other existing graph clustering algorithm.

(iv) Automatic detection of centroids: Local Outlier Factor measure
is used to detect the initial centroids for the clustering process.
The vertex which is close to the average density of the cluster
is chosen as the next centroids iteratively until the objective
function converges.

(v) Strict Attribute and Structural Similarity: In the existing graph
clustering algorithms, the vertex closeness of the object is
measured based on the degree of structural or attribute
similarities. Most of the algorithms provide a good balance
between both of these similarities, but the proposed cluster-
ing algorithm strictly satisfies both the similarities. The objects
within the cluster are similar with respect to attribute and
connectivity.

(vi) Robust to outlier:  LOF measure is used initially to ignore the
outlier objects. The algorithm is efficient and robust to handle
sparseness and noise data in the graph. The presence of Outlier
objects does not affect the clustering result, as we  measure the
degree of outlierness of each object in the initial process of the
graph.

vii) Overlapping cluster:  The author’s area of interest is consid-
ered to be the attribute information for the DBLP dataset. In
this case, the authors would be specialized in more than one
research area. So, there is a chance that one vertex present
in more than one cluster, it means that one author would be
grouped into more than one cluster based on their area of
expertise.

The rest of this article is organized as follows. Section 2 discuss
bout the related work on Graph Clustering. Section 3 presents the
reliminary concepts and the design of proposed algorithm fol-

owed by Section 4 that provides the experimental analysis and
alidation on the clustering results on various datasets. Section 5
iscuss on DBLP dataset. Finally, Section 6 concludes the article.

. Related work

Graph clustering using mutual KNN [25] neighbours (G-MKNN)
Please cite this article in press as: M.P. Boobalan, et al., Graph cluster
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.05.028

s based on node affinity measure and edge weights helps to cap-
ure low and high dense clusters. It fails to deduct clusters on sparse
nd incomplete graph. Spectral clustering [26] method actively
elects the pairwise constraints based on novel notion of node
 PRESS
mputing xxx (2016) xxx–xxx

uncertainty rather than pair uncertainty. It consumes more time to
construct laplacian matrix and eigen vectors. When compared to
the above algorithms the proposed work takes less time to cluster
as it depends upon the neighbourhood distance matrix.

Hierarchical clustering [27] approach is used find structured
similarities for k nodes in incomplete information network. Dis-
tance based modularity is used to check quality of the clusters.
In graph based K-means clustering [28] algorithm, the number of
cluster (k) is determined based on prims trajectory. A threshold
value is constant along the prims trajectory. When the data set
size increases the quality of the cluster is decreased and it takes
more execution time. The proposed algorithm has proved that it
is scalable for various data size and efficient in terms of execution
time.

Recently, the graph algorithms focus on clustering based on both
structural and attribute similarities. CODICIL [29] is a framework
that uses Metis and Markov Clustering to combine both content
and link similarity. The link strength is based on the probability of
an edge belongs to the community and content similarity is esti-
mated using Jaccard coefficient. Similarly, a good balance between
structural and attribute similarities through unified distance mea-
sure and neighbourhood random walk is proposed in SA-cluster
[30]. The graph is partitioned into k clusters, so that each cluster
contain densely connected subgraph with homogeneous attribute
values. The density of cluster is high and the entropy value is high
in S-cluster [31] compared to SA-cluster. In general S-cluster has
high structural similarity and low attribute similarity compared
to SA-cluster. The proposed algorithm (kNAS) focuses on strict
structural-attribute similarity which means that the objects with
k-neighbourhood and similar attributes only are grouped into a
cluster. In this way, kNAS algorithm does not balance both the
similarities rather it strictly satisfies the structural and attribute
similarity.

3. k-Neighborhood Attribute Structural (kNAS)

An attributed graph is denoted as G = (V, E, A) where V is set of
vertices, connected with set of E edges and A = {a1, ...a�} is a set
of � attributes associated with each vertex vi ∈ V that describes
the properties with an attribute vector {a1(vi), ......, a�(vi)} and
N denotes the number of vertices in graph |V | = N.  A graph is
partitioned into m overlapping clusters where V1 ∪ ... ∪ Vm ⊆ V
and Vi ∩ Vj /= � for any i /= j. The proposed clustering algorithm
k-Neighborhood Attribute Structural (kNAS) achieve the follow-
ing two properties: (1) vertices within one cluster are close to
each other in terms of structural similarity and distant from each
other between the clusters (2) vertices within cluster have simi-
lar properties in terms of attribute similarity and dissimilar among
the clusters. The main issues are: (1) selecting initial value for m
(2) clustering algorithm based on structural and attribute similar-
ity (3) defining the objective function that converges quickly. The
importance of considering the structural and attribute similarities
is explained with a simple social network. For example, we  consider
a social network example (Fig. 1) in which vertices A–D are consid- 

ered as individuals and edge represents the relationship between
the individuals (friend relationship). The affiliation of the individ-
ual is taken as the vertex properties for which the values are ‘x’ and
‘y’.

Structure-based clustering: The closeness of vertex is measured
based on connectivity between the vertices. Objects within cluster
are closely connected than objects in different cluster. In Fig. 1(b)
ing using k-Neighbourhood Attribute Structural similarity, Appl.

the individuals with friend relationship are grouped together irre-
spective of the similar attributes. Since the objects are clustered
based on connectivity, it ignores group the objects based on sim-
ilar attributes. However, in one cluster the individuals have quite
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ifferent affiliation, for example, A and B with affiliation ‘x’ and C
ith affiliation ‘y’.

Attribute-based clustering: The vertices are grouped based on
imilar attributes. Individuals with similar properties are grouped
n a cluster and individuals in different cluster have dissimilar prop-
rties. For example, in Fig. 1(c) all the individuals A–D belong to
he same affiliation ‘x’ but there is no relationship between A and
. In this way, the attribute based clustering ignores the structural

imilarity among the vertices.
Structural-Attribute based clustering: The grouping of objects is

ased on both structure and attribute information. In Fig. 1(d) the
luster contains individuals with ‘friend relationship’ who belong to
ame affiliation. It provides a good balance between both structural
nd attribute similarities. The goal of this study is to satisfy this
roperty on clustering.

.1. Cluster centroid initialization

There are enormous numbers of initialization methods for cen-
roid initialization in formation of cluster. The first scheme of
entroid initialization was proposed by Ball [32]. This method
orks based on the parameter d, that defines the minimum dis-

ance between any two centroids. The recent initialization method
-means++ approach proposed by Ref. [33] depends upon the selec-
ion of subsamples. However, most of centroid selection approach is
ensitive to outlier/noise data and the results depend on selection
f input parameter. Local Outlier Factor [34] is used for selecting
he initial set of cluster centroids. This measure is proposed as a

easure to determine the degree to which a point is core or outlier
oint. It assigns each object a degree of being outlier, that degree

s called Local Outlier Factor. The local degree depends on how iso-
ated the object is with respect to the surrounding neighbourhood.

efinition 1. k-Distance Neighbourhood

Given a value of, dist(x, y) the distance between the objects x
nd y is calculated using Manhattan distance measure and distk(x)
s the distance of k th nearest neighbour of x. Then the k th nearest
eighbourhood of x contains every object whose distance from x is
ot greater than k th distance, such as
Please cite this article in press as: M.P. Boobalan, et al., Graph cluster
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.05.028

k(x) = {y|y ∈ D, dist(x, y) ≤ distk(x)}
Even though, the distk(x) is well defined for any positive integer

, the neighborhood object y may  not be unique. So, in this case
 PRESS
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the cardinality of Nk(x) is greater than k. For example, if there are
2 objects for 1-distance from object x and 3 objects for 2-distance
from object. Then the cardinality of neighbourhood of |N2(x)| = 5 is
greater than the value of 2.

Definition 2. Relative density function

Let Nk(x) denotes the k th nearest neighbourhood of x, |N(x)|
represents the number of neighbourhood points of x. The relative
density of x is then computed as follows,

rdk(x) = (

∑
(y ∈ Nk(x)distk(x, y)

|Nk(x)|
)
−1

The relative density of an object x is the inverse of the average
distance based on the k-nearest neighbours of x. Note that the rel-
ative density can be ∞,  if all the summation of distance between x
and y are 0. This may  occur if the neighbour points share the same
spatial coordinates or if there exist duplicates of x in the dataset. For
simplicity, we  assume that no two  objects share the same spatial
co-ordinates.

Definition 3. Local Outlier Factor

Assume that the relative density value of each object is deter-
mined by previous section. The LOF identifies the degree of x being
outlier. It is defined as the average local density of x with the y and
k-nearest neighbours of x.

LOFk(x) =
∑

y ∈ Nk(x)
rdk(y)
rdk(x)

|Nk(x)|

If a relative density of a point is low with density of its neigh-
bours, the value of LOF is high. Thus, the LOF value determines the
extent of being outlier with varied density of clusters. An object
whose LOF value approximately equal to 1, exactly belongs to a
cluster, as its density and the density of its neighbours are same.
Some extensive properties of LOF [35]: (i) efficient in making a deci-
sion of degree to which a point is outlier. The objects belonging to
cluster will assume an LOF value close to 1. (ii) It leads to faster
convergence of any density based clustering algorithms (iii) it is
robust with clusters having varied density and size. According to
the LOF function, we sort all vertices in the ascending order of their
LOF values. Then vertices with LOF values less than or equal to 1
are selected as initial centroids {c0

1, ......c0
m}.

The complexity analysis for finding the initial centroid using LOF
value is analysed based on the steps involved. The cost of LOF value
for each examined point is given by O(nk) where n is the number of
vertices and k denotes the k neighbourhood distance of the object.
This computation is done for m centroids in the worst case. As a
result, the overall complexity for calculating LOF  value is O(mnk).

3.2. Structure based clustering

Clustering based on structure is grouping of objects based on k-
nearest neighbour distance measure. The set of m{c0

1, ......c0
m} initial

centroids are selected using LOF method. For each n th iteration, we
assign the vertex vi ∈ V to its closest centroid c∗ ∈ {c0

1, ......c0
m}.

c∗ = {vi|vi ∈ V, min
cn
j

d
(
vi, cnj

)
}

(
n
)

ing using k-Neighbourhood Attribute Structural similarity, Appl.

where the d vi, c
j

is the nearest distance between the vertex

and the centroid. For a dataset size of n and number of centroids to
be m,  the complexity for grouping the objects based on structural
similarity is O(nm) where n 	 m.
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.3. Attribute based clustering

Grouping of objects are based on the properties defined for
ach object is known as Attribute based Clustering. The similarities
mong the properties of object are measured using the Similarity
atrix. The complexity for generating the similarity matrix is con-

idered as O
(
n2�

)
where n is the number of vertex and � is the

imensionality of each vertex.

efinition 4. Similarity Matrix

Let � denotes the set of attributes defined for each vertex.
he similarity between any two vertices vi and vj with respect to
ttribute is indicated as Sij .

ij = 1
�

�∑
a=1

Sija

where,

ija =
{

0, ifvi andvj do not matcha th attribute

1, ifvi andvj match for thea  th attribute

roperties. If any two objects vi and vj are similar then, the Sim-
larity Matrix (S) satisfies the following properties,

(i) Symmetry: S
(
vi, vj

)
= S

(
vj, vi

)
(ii) Positivity: 0 ≤ S

(
vi, vj

)
≤ 1∀vi andvj

iii) Reflexivity: S
(
vi, vj

)
= 1 ifi = j

The following properties holds good on Dissimilarity Matrix (D),
f any two objects vi and vj are dissimilar,

(i) Symmetry: D
(
vi, vj

)
= D

(
vj, vi

)
(ii) Positivity: D

(
vi, vj

)
≥ 0∀vi andvj

iii) Reflexivity: D
(
vi, vj

)
= 0 ifi = j

.4. Update cluster centroid

The initial centroids
{
c0

1, . . ..  . .c0
m

}
for m clusters {V1. . .Vm} are

elected using LOF values for n th iteration. When all the vertices
re assigned to some clusters mutually, the centroid will be updated
ith the centrally located vertex in each cluster. The point which

s close to the average point in a cluster is centrally located point.
his point is updated as a new centroid for the next n + 1 iteration.
he Average point of Cluster Vi is defined as,

vg (Vi) = 1
|Vi|

∑
j ∈ Vi

d
(
vj, vi

)
, ∀vi ∈ V

Then, we find a new centroid cn+1
i

in the (n + 1) th iteration
hose distance to closest to the average point of that cluster Vi.

he cluster centroids are updated for each iteration as,

n+1
i

= min
vj ∈ Vi

‖vj − Avg (Vi) ‖

Let s be the number of objects in a cluster. Now, the complexity
nalysis for computing the average point of cluster Vi is O (nms)
Please cite this article in press as: M.P. Boobalan, et al., Graph cluster
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.05.028

here n is the number of vertex and m is the number of cluster. For
ach iteration, the time taken for updating the centroid with new
entroid is O (ms).  Finally the complexity for the overall process for
pdating the cluster centroid requires O (ms (n + 1)) time.
 PRESS
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3.5. Merging the clusters

The minimum distance between the centroids are merged into
a single cluster. For example, if the distance of centroid c1 is mini-
mum with c2 than c3, then c1 is merged with c2. d(c1, c2) < d(c1, c3)
then c1 and c2 are merged together. This would result in a reduced
number of centroids generated in each iteration and faster overall
computation time of O (m) where m is the number of clusters.

3.6. Clustering objective function

The main aim of clustering process is to minimize interclus-
ter similarity and to maximize intracluster similarity. An objective
function is defined to maximize the structural density and the Sim-
ilarity Score, thereby maximizing the intracluster similarity. Since
we group the objects based on the k-nearest neighbourhood dis-
tance, the objective function focus only on the maximizing the
attribute Similarity Score.

Definition 5. Similarity Score (SC)

Let Vi, Vj be two vertex sets. The Similarity Score between
SC(Vi, Vj) between Vi andVj is defined as,

SC
(
Vi, Vj

)
=

∑
vi ∈ Vi,vj ∈ Vj

Sij
(
vi, vj

)
|Vi| × |Vj|

where Sij is the similarity value defined between vi and vj . The above
Similarity Score would quantitatively measure the extent of simi-
larity between the attributes. When the attributes of two vertices
are more dissimilar, then the value of SC will be low. Obviously, the
SC value will be high for vertices having more similar attributes.

Definition 6. Objective Function

Given a group of Clusters Vi. . .Vm of m clusters, where Vi corre-
sponds to the i th cluster, the objective function to be maximized
is defined as follows,

O
({
Vi

})k
i=1

=
k∑
i=1

SC (Vi, Vi)

The clustering algorithm is iterated until the above objective
function converges. Till it reaches a high intra cluster similarity the
clustering objective function is maximized.

Algorithm. Input: Graph G with vertex set V, edge set E, and
attribute set A and the distance value (k). Output: m clusters Vi. . .Vm

1: Calculate the initial centroids using Local Outlier Factor
2: Repeat until the objective function converges
3: Assign each vertex to the nearest centroid
4: Partition the cluster based on the similarity of the vertex
5: Merge the nearest clusters
6: Update the cluster centroid
7: Return m clusters
Initially the k-distance neighbourhood of the vertices are cal-

culated. Then using Local Outlier Factor the vertex having high
density are selected as the m core points. Structural similarity is
achieved by taking the k-neighbourhood of the core points that are
grouped into m partitions. Then, similarities of attributes among
the vertices are performed using the Similarity Score and grouped
into m clusters. The vertex which is closer to average density of
the cluster is updated as a new centroid. The following process is
ing using k-Neighbourhood Attribute Structural similarity, Appl.

iterated until the objective function is maximized. This is analo-
gous to,‘The rich get richer and the poor get poorer’ principle as the
vertices in the clusters within the k-neighbourhood having simi-
lar properties becomes denser with the centroid updating for the
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Table  1
Summary of experimental data sets.

Dataset Nodes Edges Clusters (m)

DBLP-1 8781 4789 471
DBLP-2 17,578 12,545 2179
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Table 2
Distortion Score for different centroid initialization method on DBLP-1 dataset.

Number of clusters (m)  Random LOF  k-means ++

100 9925 7225 8700
200 8020 7865 7950
300 6900 6436 6200

(

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457
458

459

460

461

462
463

464

465

466

467

468

469

Downloaded from http://iranpaper.ir
http://plcman.vcp.ir
Facebook 4089 170,174 193
Twitter 81,306 1,768,149 3140

ext iteration. The complexity for calculating the objective func-
ion is O

(
m2

)
. Finally, adding up the costs of the steps, the overall

omputation complexity of the entire process of kNAS algorithm is(
e.

(
nm + n2� + nms + ms + m2

))
where e represents the num-

er of iterations the algorithms runs till the objective function gets
aximized. In the next section we demonstrate through experi-
ents that our proposed clustering algorithm is more efficient than

ther existing algorithm and converges very quickly on the given
ataset.

. Implementation

Extensive experiments are performed to evaluate the per-
ormance of our proposed algorithm k-Neighborhood Attribute
tructural (kNAS) with the state-of-art algorithms SA-Cluster-Opt,
ISE and CODICIL on real graph datasets.

.1. Experimental datasets

We  use two real graph datasets for the evaluation of proposed
lgorithm for graph clustering. The number of nodes and edges in
ach dataset is summarized in Table 1. The number of cluster (m)
ormed using our proposed method is also denoted in the table.

DBLP-1 is a dataset extracted from DBLP database that provides
he bibliographic information about the co-authors in the field of
omputer science journals and proceedings. We  gather informa-
ion from three research fields including Database, Data mining
nd Image Processing. We  create a co-author graph where the
uthors who have published more than three research papers dur-
ng the period of 2000–2014 are considered as nodes and any pair
f authors who have co-authored are linked as edges of the graph.
his co-author graph contains 8781 nodes and 4789 edges. Each
ode is attached with the information about the author and their

ist of research areas.
DBLP-2 is used inorder to test the efficiency and scalability of

ur proposed method. We  use large dataset with 17,578 nodes and
2,545 edges. This dataset contains the information selected from
he following areas: Multimedia, Data Mining and Bioinformatics.
he same setups with DBLP-1 are used to build the co-author graph
or this dataset.

The last two networks (Facebook and Twitter) are ego networks
rom online social network services that are collected from the
tanford Large Network Dataset collection (http://snap.stanford.
du/data). The user profile information such as gender, job, insti-
ution and hobby are considered as the node attributes for the
acebook network. In Twitter network, the hashtags used by the
ser in their tweets are defined as the attributes for nodes.

.2. Comparison of initialization methods

Random, k-means++ and LOF initialization method is compared
n DBLP-1 data set with varied density and sizes. Distortion score

s used as an evaluation metric to compare the effectiveness of the
Please cite this article in press as: M.P. Boobalan, et al., Graph cluster
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.05.028

OF over the random initialization method. The sum of the distance
etween each point to its closest centre is defined as the distortion
core. Smaller the values of distortion score, better the clustering
esult. Multiple runs are performed on DBLP-1 using the algorithms
400 6500 6100 6376
500 8650 5500 7893

that depend either on the order of objects in the dataset or on ran-
domization. Results for different number of clusters are shown in
Table 2. The bold number in each row represented in Table 2 indi-
cates the lower distortion score. Finally, it clearly shows that the
LOF based centroid initialization performs better than other two
algorithms.

4.3. Algorithms for comparison

The proposed algorithm kNAS is compared with three algo-
rithms which consider both structural and attribute similarities.

(i) SA-Cluster-Opt: This is an improved version of SA-Cluster algo-
rithm based on Neumann series which achieves a good balance
between structural and attribute similarities through a unified
distance measure.

(ii) CODICIL [29]: A simple approach balancing both content and
graph topology detects the community based on the signal
strength between the two nodes in the network. The inputs
given to this algorithm are k = 50, the number of the near-
est content neighbours for each vertex,  ̨ = 0.5 parameter
that specifies the weights of content and topology similarity,
l = 100–500 the number of cluster to be formed.

iii) NISE [36]: Neighborhood Inflated Seed Expansion is an effec-
tive overlapping community detection algorithm which is
based on Personalized PageRank algorithm (PPR). Each seed
is expanded based on the PPR score.

(iv) kNAS: k-Neighborhood Attribute Structural Similarity Algo-
rithm is our proposed algorithm, considers both structural and
attributes similarity with very minimal input parameter.

4.4. Evaluation metrics

The quality of the clusters is evaluated based on two measures
such as density (D) proposed by Cheng et al., 2011 and Tanimoto
Coefficient (TC) [37]. The definitions are as follows.

D
({
Vi

}m
i=1

)
=

m∑
i=1

|
{(

vx, vy
)

|vx, vy ∈ Vi,
(
vx, vy

)
∈ E

}
|

|E|

where
{
Vi

}m
i=1

is m clusters formed using different algorithms,
vx andvy are two vertices that belong to the same cluster. Density
function represents the density of edges within the cluster with
respect to the density of edges of the graph.

TCAB = c

a + b − c

where a denotes the number 1’s in attributes of A vertex, b rep-
resents the number of 1’s in attributes of B vertex and c indicates
number of common 1’s in attributes of A and B vertex. The Tanimoto
coefficient is used to find the similarity between all the vertices
with the centroid within the cluster where the value ranges from 0
ing using k-Neighbourhood Attribute Structural similarity, Appl.

to 1.
The kNAS algorithm is compared with the baselines that focuses

on both structural and node information. In general combining two
similarities such as attribute and structural for detecting commu-
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Table 3
Performance of four algorithms on four datasets. The bolded value denotes the algorithm that performs better than the other algorithms.

Method Density (D) Tanimoto Coefficient (TC) Avg.

DBLP-1 DBLP-2 Facebook Twitter DBLP-1 DBLP-2 Facebook Twitter

SA 0.832a 0.686a 0.640a 0.834 0.648a 0.618a 0.743a 0.678a 0.709a

CODICIL 0.453a 0.620a 0.656a 0.587a 0.450a 0.432a 0.563a 0.590a 0.555a

NISE 0.563a 0.654a 0.593a 0.534a 0.437a 0.529a 0.675a 0.638a 0.577a

KNAS 0.982 0.756 0.727 0.678 1.000 1.000 1.000 1.000 0.892

nce level.
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Table 4
Cluster quality and convergence in DBLP-1 dataset.

Iteration SA CODICIL NISE kNAS

D TC D TC D TC D TC

1 0.79 0.58 0.79 0.70 0.65 0.56 0.80 1
2  0.80 0.60 0.80 0.68 0.65 0.56 0.84 1
3  0.82 0.65 0.83 0.72 0.66 0.57 0.85 1
4  0.84 0.73 0.66 0.58

Table 5
cluster quality and convergence in DBLP-2 dataset.

Iteration SA CODICIL NISE KNAS

D TC D TC D TC D TC

1 0.80 0.52 0.30 0.39 0.40 0.10 0.8 1
2  0.84 0.60 0.35 0.45 0.45 0.18 0.92 1
3  0.85 0.64 0.40 0.45 0.55 0.25 0.91 1
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a Represents the KNAS outperforms the other baselines by 95% statistical confide

ities would consume more time for clustering than the algorithm
hat use any one of the similarity. So we considered the baseline
lgorithm that uses both the similarities for comparing the perfor-
ance with the kNAS algorithm. The strong performance of kNAS

s clearly evident from the above table. It performs better than the
tate-of-the-art methods which indicate that kNAS combines the
est elements from both the sources of data.

We observe that the kNAS achieves higher margin in perfor-
ance against the existing algorithms in the information network

uch as DBLP-1and DBLP-2 dataset than the social networks. For
xample, in DBLP-1dataset kNAS achieves 18% relative gain in Den-
ity measure and 54% in the Tanimoto coefficient when compared
o the best baseline. For DBLP-2 dataset it attains 10% in density
nd 61% in tanimoto coefficient measure. The reason behind this
henomenon is that in information network the node attributes
lays an important role than the social network. We  also note that
cross all datasets and valuation metrics, kNAS yields the best per-
ormance in 7 out of 8 cases. kNAS outperforms SA by 25% CODICIL
y 66% and NISE by 54% in terms of average performance. It is

nferred that the performance of SA algorithm and kNAS are closer
o each other (Table 3).

We  also measure the statistical significance of kNAS with the
aselines. Statistical significance test is used to validate the perfor-
ance of the kNAS with all the baselines. Based on the hypothesis

esting using one-tail Z test we conclude that the kNAS algorithm
utperforms the baselines. The symbol (a) in Table indicates that
NAS outperforms a given baseline by 95% statistical confidence

evel. The kNAS algorithm outperforms all the baselines except the
witter database in terms of density of the edges. In this case the SA
lgorithm has a better performance of 12% than the kNAS algorithm.
ince the attribute information tweets are given more importance
han the structural relationship in Twitter database, the Tanimoto
oefficient value is higher than the density values.

. Case study on DBLP dataset

The different values of Density and Tanimoto values using
arious algorithms on DBLP-1 and DBLP-2 dataset are dis-
ussed. Fig. 2a depicts, density comparison among the four
lgorithm on DBLP-1 dataset when we set the cluster number

 = {100,200,300,400,500}. The density values of SA-cluster and
NAS cluster are close. The density value kNAS increases when
umber of cluster increases (m = 500). On the other hand, CODI-
IL has a low density and the density of edges gradually decreases
s the value of m increases

Fig. 2(b) shows the comparison of Tanimoto coefficient among
he four algorithms on DBLP-1 dataset with same set of m val-
es. In general, SA, CODICIL, and NISE algorithm follow a specific
echnique to balances the structural and attribute similarity. They
Please cite this article in press as: M.P. Boobalan, et al., Graph cluster
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.05.028

aintain the coefficient value between 0.5 and 0.7 but the pro-
osed algorithm strictly satisfies the full attribute similarity among
he vertices, it has a coefficient value to be 1. The SA algorithm
utperforms the CODICIL and NISE in terms of attribute similarity.

552
4  0.85 0.65 0.43 0.46 0.65 0.25
5  0.43 0.46

Fig. 2(c) and (d) shows the density and tanimoto coeffi-
cient on the DBLP-2 dataset with different number of clusters
m = {500,1000,1500,2000,2500} implemented on clusters formed
by SA, CODICIL, NISE and kNAS algorithms. The density of the clus-
ter decreases as the number of cluster increases for CODICIL and
density value is around 0.6–0.7 for NISE algorithm. The SA-cluster
and kNAS algorithm has proved it works better with higher den-
sity even after the increase in dataset size. Since the kNAS strictly
enforces the attribute similarity the tanimoto coefficient of the pro-
posed algorithm is always set to 1 with different values of m.  In
the other algorithms, the similarities are considered based on the
weight assigned to the constants. For example, in CODICIL algo-
rithm the constant value is set to  ̨ = 0.5, which determines the
weights for structural and content similarities. The content simi-
larity decreases with increase of m in NISE algorithm. Therefore,
it is clear that the proposed kNAS algorithm is scalable and works
efficiently than the other state-of-art methods.

5.1. Clustering convergence

The quality of the cluster in this algorithm is evaluated for its
performance using two  measures density and tanimoto coefficients
with three algorithms SA, CODICIL and NISE. Tables 4 and 5 show
the cluster quality of four algorithms iteration by iteration on DBLP-
1 and DBLP-2 dataset. When the number of cluster m value is 30,
the SA and kNAS method converges faster in the third iteration,
whereas the CODICIL and NISE algorithm converges in the fourth
iteration only. For DBLP-2 dataset, we set the m value to be 100 and
quality of clusters is calculated for each iteration. The SA cluster and
NISE performs the same number of iteration but CODICIL algorithm
ing using k-Neighbourhood Attribute Structural similarity, Appl.

takes more iteration when the dataset size increases. The proposed
algorithm kNAS has proved to converge quickly than all the other
three algorithms.
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Fig. 2. (a) & (b) Cluster quality comparison on DBLP-1 dataset. (c) & (d) Denotes cluster quality comparison on DBLP-2 dataset.
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Fig. 3. (a) Efficiency of four algorithms on DBLP-1 da

.2. Clustering efficiency evaluation

This experiment compares the efficiency of different cluster-
ng algorithm in Fig. 3(a) and (b) on DBLP-1 and DBLP-2 dataset
espectively. Fig. 3(a) shows that all methods have less runtime
ue to its small dataset size. When m = 500 for DBLP-1 dataset the
A cluster and kNAS cluster takes more time to execute than the
ther two algorithms. As SA-cluster has to calculate the random
alk distance for each iteration and kNAS algorithm has to detect

 centroids using Local Outlier Factor consumes more time that
Please cite this article in press as: M.P. Boobalan, et al., Graph cluster
Soft Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.05.028

ignificantly increases the runtime. Fig. 3(b) shows the runtime
or DBLP-2 dataset using four algorithms. When the dataset size
ncreases the runtime of CODICIL and NISE algorithm consumes

ore time than the kNAS algorithm because the centroid and the
 (b) efficiency of four algorithms on DBLP-2 dataset.

number of cluster is calculated initially in kNAS which takes less
time to group the objects in large dataset. This result proves that
the kNAS algorithm is efficient to scalable dataset size and produces
quality clusters when compared to other algorithms.

5.3. Discussion on DBLP dataset

This section examines the clustering results on DBLP-1 dataset.
Table 6 shows only a snapshot of the list of authors from the follow-
ing areas, Data Base, Data mining and Image processing database
ing using k-Neighbourhood Attribute Structural similarity, Appl.

due to lack of space. Cluster 1, 2, & 3 contain three group of author
who work on “Database System”, “Data mining” and “Image pro-
cessing”. Some information about the author graph is as follows:
The authors who have co-authored and have similar attributes
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Table 6
Cluster of authors from DBLP-1 dataset.

Cluster 1 (DB) Cluster 2 (DM) Cluster 3 (IP)

David Maier Srinivasan Parthasarathy Li Z
Kristin Tufte Mohammed J.Zaki Ling F
V.M.  Megler Jing Gao Chen E
Peter Alvaro AmolGhoting Wang Q
Patrick Leyshock Hui Yang Zhijian Li
Lois M.L.Delcambre SitaramAsur Pirollo S
Joseph M Hellerstein Jiawei Han Wen  Bilong
Jing Gao Raghu Machiraju Ghosh B
Bill Howe Sameep Mehta Peng D H
Sudarshan Murthy Wagner Meira Zhihong Li
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[36] J.J., Whang, D.F. Gleich, I.S. Dhillon, Overlapping Community Detection Using
Neighborhood-Inflated Seed Expansion (2015). arXiv preprint
arXiv:1503.07439.

[37] Alan H. Lipkus, A proof of the triangle inequality for the Tanimoto distance, J.
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Shawn Bowers VenuSatuluri Sugarbaker
Jeffrey D. Ullman YiyeRuan Wilson W.K
Jiawei Han Wei  Li Jie Fang

re grouped into cluster. Sometimes group of clusters have same
opic but have never collaborated. For example, author Srinivasan
arthsarathy belong to Data mining, but he is also an expertise
n Database. Since he has not co-authored with David Maier, it is
ot included in the cluster1. Author Jing Gao is expertise in both
atabase and data mining. Since Jing Gao have co-authored with
bjects in two different clusters, they are present in both the clus-
ers. Similarly, Jawei Han is also overlapped with two different
lusters. Yang Zhou is an expert in data mining, but he has not co-
uthored with any of the cluster. Due to the absence of topological
imilarity, it is not grouped with any of the cluster.

. Conclusion

In this paper, we have proposed a new approach (kNAS) for over-
apping community detection in large scale graph by combining the
opological and attribute similarity. The large graph is partitioned
nto m clusters having high intracluster structural similarity and
ow intercluster similarity. The initial centroids of the cluster are
utomatically selected based on Local Outlier Factor instead of ran-
om selection of centers. Iteratively the centroids updated to the
ertex closest to average density of the cluster. The vertices are
ssigned to cluster that are within the k-distance and have simi-
ar attributes with the centroid. The structural similarity is based
n k-neighbourhood vertex and attribute similarity is based on the
imilarity Score. Moreover, two evaluation measures are defined to
easure the quality of the cluster formed by four algorithms. Our

xperiment demonstrates that kNAS algorithm outperforms state-
f-art methods in quality and efficiency with respect to varied size
atasets.
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