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a b s t r a c t

To produce predictions with decent accuracy, collaborative filtering algorithms need sufficient data. Due
to the nature of online shopping and increasing amount of online vendors, different customers’ prefer-
ences about the same products can be distributed among various companies, even competing vendors.
Therefore, those companies holding inadequate number of users’ data might decide to combine their data
in such a way to present accurate predictions with acceptable online performance. However, they do not
want to divulge their data, because such data are considered confidential and valuable. Furthermore, it is
not legal disclosing users’ preferences; nevertheless, if privacy is protected, they can collaborate to pro-
duce correct predictions.

We propose a privacy-preserving scheme to provide recommendations on horizontally partitioned data
among multiple parties. In order to improve online performance, the parties cluster their distributed data
off-line without greatly jeopardizing their secrecy. They then estimate predictions using k-nearest neigh-
bor approach while preserving their privacy. We demonstrate that the proposed method preserves data
owners’ privacy and is able to suggest predictions resourcefully. By performing several experiments using
real data sets, we analyze our scheme in terms of accuracy. Our empirical outcomes show that it is still
possible to estimate truthful predictions competently while maintaining data owners’ confidentiality
based on horizontally distributed data.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Rapid improvements in the Internet technology help people
purchase several kinds of products through the Internet facilities.
Due to its attractiveness, many online vendors have been founded
to promote online shopping. To facilitate their customers choose
the right products, e-commerce sites employ Collaborative Filter-
ing (CF) schemes because selecting appropriate products to pur-
chase becomes a challenging problem as number of choices
increases [1]. In addition to recommending various products like
books, movies, music CDs, and so on, CF systems are also used to
suggest web pages.

The basic steps in CF process are, as follows [10,17]: After col-
lecting users’ likings about various items, an n �m user-item ma-
trix (D) is created, where n and m represent number of users and
items, respectively. CF schemes then estimate similarities between
users in their database and an active user (a) who is looking for a
prediction for a target item (q). Next, they determine neighbors
of the active user a (the best k similar users) according to the sim-
ilarity weights. Finally, a weighted average of their ratings on the
target item q is calculated.
ll rights reserved.
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One of the main purposes of CF systems is to offer truthful and
reliable referrals. To produce precise and dependable predictions,
such systems should collect ratings from enough number of users.
When online vendors own limited number of users’ data, it be-
comes a challenge to form reliable and large enough neighbor-
hoods; that might cause low quality CF services. Additionally,
inadequate number of users’ data lead to cold start problem, where
e-commerce sites can recommend predictions for limited number
of items. That might cause to lose customers due to the lack of
accuracy in the recommendations received [6]. Therefore, holding
sufficient number of users’ ratings is imperative for the overall suc-
cess of CF systems.

Some companies, especially recently established ones, might
not have enough users’ data for recommendation purposes. More-
over, customers may prefer different online vendors for shopping.
In other words, different users purchase the same products from
different companies and they can request referrals from corre-
sponding vendors. Consequently, ratings of the same items col-
lected from many users for CF purposes might be horizontally
partitioned among multiple vendors. For example, some clients
purchase books from Amazon.com and some prefer Barnes & No-
ble.com, while others get them from Borders, and so on. These
book sellers’ databases may include ratings for the same books re-
corded from disjoint sets of customers, and these can be jointly
used for better referrals. Notice that this does not mean that online
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vendors sell exactly the same items; however, containing huge
number of identical items in their database is comprehensible.
Such data distribution leads to Horizontally Distributed Data
(HDD). Formally, D is partitioned between C companies, where C
is a constant representing number of collaborating sites and
C� n. Each collaborating party j holds Dj, where Dj is an nj �m
matrix, j = 1, 2, . . . , C; and nj shows the number of users whose data
held by the retailer j. Thus, each party j holds the ratings of nj users
for the same m items. We assume that each collaborating party’s
database includes ratings for exactly the same products. In other
words, D is the most comprehensive intersection of products in
the cooperating companies’ databases; and it is updated periodi-
cally by inserting new users and/or items.

There are numerous opportunities in e-commerce to enable
beneficial association. When data are distributed, in order to over-
come accuracy and cold start problems, data owners want to pro-
duce predictions on their integrated data [7]. Privacy-Preserving
Collaborative Filtering (PPCF) on distributed data is important for
both online companies and users due to common advantages.
However, companies do not want to share confidential data with
each other, because they do not want to give up competitive
knowledge advantages or violate anti-trust law [10]. Like in e-com-
merce applications, data integration is becoming imperative in
healthcare applications, sharing scientific research data, and solv-
ing life-threading problems like efficient disease control and effec-
tive public safety [4]. It is inevitable to amalgamate data in such
applications; that can only be possible if privacy is preserved.
Without secrecy, the parties hesitate to collaborate due to privacy,
financial, and legal reasons.

Data collected for prediction purposes are considered compa-
nies’ secret information because they can be used to profile their
customers. Such data are also valuable asset and transferred or sold
in case of bankruptcy. Users’ ratings could be utilized to recruit
new customers and increase sales by advertising on users’ profiles.
Online vendors are also obliged to protect the collected data. It is
not legal to transfer users’ preferences. According to reports pub-
lished by the Organisation for Economic Co-operation and Devel-
opment – OECD [32,33], exposing of customers’ privacy is very
serious issue, and the companies are obliged to protect the data.
Therefore, utilizing privacy-preserving measures is vital for allevi-
ating privacy, financial, and legal concerns.

In this study, we propose a privacy-preserving method for pro-
viding k-nearest neighbor (k-nn)-based predictions on HDD with-
out jeopardizing data owners’ confidentiality. In addition to
preserving privacy, offering predictions during an online interac-
tion in a limited time is also essential for the overall success of
CF schemes. Since determining the nearest neighbors is difficult
and time consuming when predictions are produced in a distribu-
tive manner, we propose to cluster the distributed data using Self-
Organizing Map (SOM) clustering. E-commerce sites can cluster
their split data off-line using SOM clustering while preserving their
confidentiality so that they are able to improve online perfor-
mance. Moreover, besides privacy and performance, the parties
are also able to make accuracy better by data integration. They
can protect their secrecy during data clustering and estimating
predictions without disclosing their data to each other. Since pre-
cision, privacy, and performance conflict with each other, we aim
to provide a solution, which results equilibrium among them.

We explain related studies conducted so far in Section 2. Section
3 presents SOM clustering and gives a brief description of CF based
on k-nn. After extensively presenting our privacy-preserving
scheme for providing predictions on HDD in Section 4, we scruti-
nize our scheme in terms of privacy in Section 5. Section 6 presents
additional costs like storage, computation, and communication
costs caused by privacy-preserving measures. After presenting
our real data-based trials, empirical results, and discussion about

 

 

the outcomes in Section 7, we finally elucidate our conclusions
and briefly present future work in Section 8.
2. Related work

2.1. Methods for enhancing online performance of collaborative
filtering schemes

Various approaches have been proposed to enhance the online
performance of CF systems. Goldberg et al. [12] make use of Prin-
ciple Component Analysis (PCA) to generate constant time predic-
tions. Their method can produce a referral for a single item in
constant time O(1). Sarwar et al. [39] propose to reduce dimen-
sions of data by using Singular Value Decomposition (SVD) and
they improve performance of producing referrals. Clustering is
also among the methods that are applied to CF to improve online
efficiency. Data analyzers can explore large amounts of data in or-
der to discover useful information using clustering [3]. With the
intention of achieving better online performance, data holders
can cluster their split data off-line while preserving their privacy.
They then offer predictions online based on the clustered data.
Roh et al. [38] propose a method for producing SOM clustering-
based referrals. Their method improves accuracy and efficiency
of k-nn-based recommendation algorithm. Kelleher and Bridge
[24] present a new collaborative recommender system, which uti-
lizes a user-based model to predict user ratings for specified
items. In their study, authors compare their model with the exist-
ing ones and according to their results, accurate and efficient pre-
dictions can be produced by using the proposed model. Bobadilla
et al. [5] introduce a new metric to compute similarity between
users. They employ genetic algorithms in their proposed method
and according to their result, accuracy and performance of a rec-
ommender system can be improved. Researchers propose
employing trust instead of similarity to enhance overall perfor-
mance of recommender systems [43]. In order to improve re-
sponse time of recommender systems, Luo et al. [30] carry out
Regularized Matrix Factorization (RMF) to CF recommender
systems.
2.2. Privacy-preserving collaborative filtering

Due to the increasing popularity of privacy in e-commerce
applications, PPCF is receiving increasing attention. Canny [8,9]
proposes PPCF schemes in which users control all of their own pri-
vate data using some cryptographic approaches. Polat and Du [35]
utilize Randomized Response Techniques (RRTs) to perturb users’
data while still producing binary ratings-based referrals with de-
cent accuracy. The users either send their true ratings or the exact
opposite of their ratings with a probability. In another study, Polat
and Du [36] propose a PPCF scheme based on inconsistently
masked data. Each user variably disguises their private data using
different methods. Their scheme is still able to make it to offer pre-
dictions from inconsistently disguised data. Zhang et al. [44] intro-
duce a two-way communication privacy-preserving scheme for CF
in which users perturb their ratings for each item based on the ser-
ver’s guidance instead of using an item-invariant perturbation.
Parameswaran and Blough [34] propose a framework for obfuscat-
ing sensitive information in such a way that it protects individual
secrecy and also preserves the information content required for
CF. Kaleli and Polat [19] propose a method for producing private
referrals using Naı̈ve Bayesian Classifier (NBC)-based CF. They pro-
pose to use RRT for preserving users’ confidentiality. According to
their empirical results, their method is able to produce predictions
with decent accuracy.
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2.3. Privacy-preserving HDD-based data mining

With increasing popularity of distributed data-based data min-
ing with confidentiality, several works have been proposed to per-
form data mining on HDD while preserving data owners’ secrecy.
Kantarcioglu and Vaidya [21] show how to learn distributed NBC
securely using secure summation and logarithm on HDD. Their re-
sults also support that a few secure protocols can enable the secure
implementation of many distributed data mining algorithms. Kan-
tarcioglu and Clifton [22] discuss privacy-preserving association
rules on HDD. Their proposed methods incorporate cryptographic
techniques to minimize the information shared while adding little
overhead to the mining task. Lin et al. [28] propose a technique
that uses Expectation Maximization (EM) mixture modeling to per-
form clustering on distributed data. Their method controls data
sharing, preventing disclosure of individual data items or any re-
sults that can be traced to an individual site. Kun et al. [26] explore
the possibility of using multiplicative random projection matrices
for privacy-preserving distributed data mining. The authors pro-
pose a technique, which can be successfully used for different
types of privacy-preserving data mining applications, where data
can be distributed horizontally or vertically. Kaya et al. [23] pro-
pose a privacy-preserving distributed clustering protocol for HDD
on a very efficient homomorphic additive secret sharing scheme.
The proposed scheme utilizes a model using two non-colluding
third parties and uses a more efficient model for many data mining
applications.

 

 

2.4. Privacy-preserving distributed data-based collaborative filtering

In many cases, data collected for CF purposes might be parti-
tioned between various parties, even competing companies. Since
distributed computations are needed by many companies to over-
come the cold start problem while preserving their privacy, various
PPCF schemes on partitioned data have been proposed. Polat and
Du [37] present a scheme for binary ratings-based top-N recom-
mendation on partitioned data (horizontally or vertically) between
two parties. Their scheme can offer partitioned data-based refer-
rals on binary ratings without disclosing confidential data to col-
laborating vendors. Berkovsky et al. [2] investigate how a
decentralized approach to users’ profiles storage might mitigate
some of the privacy concerns of CF. Kaleli and Polat [18] introduce
a solution for two different data owners for integrating their split
data in order to produce NBC-based recommendations without
jeopardizing their privacy. They assume that data are partitioned
horizontally or vertically. Their approach is based on binary votes
rather than numerical ratings. Lathia et al. [27] propose a new
measure of similarity, which can be calculated without breaking
users’ privacy over a distributed environment. Their new method
works by estimating the number of concordant, discordant, and
tied pairs of ratings between any two users. Kaleli and Polat [20]
introduce a solution for producing SOM-based recommendations
on Vertically Distributed Data (VDD) among multiple parties. Our
study is different from their work. They consider vertically parti-
tioning data configuration, while we consider horizontally parti-
tioning. Both partitioning cases have different configurations and
require different solutions for achieving privacy.
3. SOM clustering and k-nn-based collaborative filtering

Roh et al. [38] apply SOM clustering to CF for better predictions.
According to their empirical results, SOM-based CF scheme pro-
vides higher quality predictions than other comparative models.
In addition to providing high quality recommendations, SOM has
capability of clustering large-scale databases and it is an important
aptitude to handle with high dimensional data in recommender
systems [31]. SOM was introduced by Kohonen [25]. SOM reduces
dimensions into one or two-dimensional lattice by producing a
map showing the similarities of the data by grouping similar ob-
jects together. The SOM architecture consists of two fully con-
nected layers: an input layer and a Kohonen layer. Due to the
assumption that there is a topological structure among the cluster
units, it is called topology-preserving maps [42]. The steps of SOM
clustering algorithm and the constants used in the algorithm are
described in the following [11]:

1. Determine values of initial constants: g0, r0, s1, and s2, as fol-
lows: g0 = 0.1, r0 = 3/2, s1 = 1000/log r0, and s2 = 1000, which
are configured by Haykin [14]. Note that g is learning rate, r
represents the radius of the lattice, and s1 and s2 are the time
constants.

2. Find the winning Kohonen layer neuron. In this step, a random
object x is selected from input data X and the winning Kohonen
Neuron (KNi) is determined by the computed minimum Euclid-
ean distance between x and Wj using Eq. (1), as follows. Notice
that Wj represents initial weights chosen randomly among
objects in X for j = 1, 2, . . . , T, where T shows number of neurons
in Kohonen layer and s shows an iteration:
KNðsÞi ¼min xðsÞ �W ðsÞ
j

��� ���: ð1Þ
3. Update the weight vectors of all neurons by using Eq. (2), as
follows:
W ðsþ1Þ
j ¼W ðsÞ

j þ gðsÞhj;iðsÞ x�W ðsÞ
j

� �
; ð2Þ
where hj,i(s) is the neighborhood function. g(s) and hj,i(s) are com-
puted using Eqs. (3) and (4), as follows:
gðsÞ ¼ g0 expð�s=s2Þ; s ¼ 0;1;2; . . . ; ð3Þ

hj;iðsÞ ¼ exp �
d2

i;j

2r2ðsÞ

 !
and rðsÞ ¼ r0ð�s=s1Þ: ð4Þ

Repeat from step 2 until no noticeable change in the future map.
k-nn CF algorithm includes two major steps. In the first one, the

similarities between a and other users are computed. The most
commonly used method for computing user–user similarities is
called Pearson correlation coefficient, as follows [15]:

wau ¼
PI

j¼1
zajzuj; ð5Þ

where zaj and zuj show z-score values of item j of users a and u,
respectively, I shows commonly rated items set, and wau is similar-
ity weight between users a and u. The z-score can be found, as fol-
lows: zuj ¼ ðvuj � vuÞ=ru, where vu and ru show the mean and the
standard deviation of user u’s ratings, respectively. The prediction
for a on q (paq) is computed, after selecting the k nearest neighbors:

paq ¼ va þ
Pk

u¼1ðvuq � vuÞwauPk
u¼1wau

; ð6Þ

where va represents mean ratings of a. Those similar users who al-
ready rated q are involved in the prediction computation. As seen
from Eq. (6), after computing the aggregate result, it is de-normal-
ized by adding a’s mean vote and paq is returned to a. Standardized
values, which are normalized using deviation from mean approach,
are needed to provide recommendations as seen from Eq. (6). Sim-
ilarly, for estimating similarity values defined in Eq. (5), normalized
values, which are standardized using z-score normalization, are
needed.
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4. Privacy-preserving SOM-based predictions on distributed
data

The companies, especially malicious ones, participating in dis-
tributed CF services might try to derive information about each
other’s data. They can try to obtain useful information from inter-
im results or final predictions. To protect data owners’ confiden-
tiality, our proposed scheme has to overcome privacy attacks. We
can define privacy, as follows: The parties should not be able to
learn the true ratings values and the rated and/or unrated items
held by each other. Besides protecting privacy, producing accu-
rate recommendations is also an expected goal. Accuracy can be
described, as follows: Predictions provided with privacy concerns
should be as close as possible to those generated without privacy
concerns. Accuracy losses due to privacy measures should not be
larger than accuracy gains due to collaboration. Finally, producing
recommendations on distributed data should not introduce too
much extra costs damaging CF services’ efficiency. Due to privacy
concerns, supplementary costs are expected; however, they
should be small and still make it possible to offer recommenda-
tions efficiently.

We use a hybrid CF approach, where we cluster data off-line
using SOM clustering (called model creation) and utilize k-nn-
based method to estimate predictions online (called memory-
based scheme). We perform as many works as possible off-line
to improve online efficiency. We perform neighbor selection,
which is conducted online in traditional algorithms, off-line by
clustering users. After determining a’s cluster online, prediction
is estimated based on the users’ data in that cluster. The basic steps
of our proposed protocol are, as follows:

a. Off-line
i. Cluster users’ data distributed among multiple parties

using SOM while preserving data owners’ privacy.
ii. Compute aggregate data values required for recommenda-

tion estimations.
b. Online

i. Determine a’s cluster.
ii. Estimate prediction after receiving required aggregate data

from other parties. Return the referral to a.

4.1. Privacy-preserving SOM clustering on horizontally distributed
data

We assume that data to be clustered are partitioned between C
parties horizontally. If data owners are able to cluster their users
without disclosing their data to each other, where each cluster
holds the similar users together, they can use these users as the
nearest neighbors in recommendation process online. The details
of the Private Distributed SOM Clustering Protocol (PDSOM) are,
as follows:

1. Data owners decide number of clusters (c) and determine the
sequence of active party in clustering operation.

2. The first active company (Initial Party – IP) initializes Wj vectors
for all j = 1, 2, . . . , c by selecting random rating values and deci-
des the constant parameters.

3. The IP starts clustering operation by selecting a random user
among its users. After finding winning neuron in Kohonen layer
using Eq. (1), it updates Wj vectors using Eq. (2). It then
increases s by one.

4. It repeats step 2 until all users it holds are assigned to a cluster.
It finally sends the updated Wj vectors and s to the second party
in the sequence.

 

 

5. Since the updated value of s and Wj vectors are enough to con-
tinue clustering, the second party repeats step 2 as IP does.
When all users it holds are assigned to a cluster, it sends new
s and updated Wj vectors to the next party.

6. After receiving s and Wj vectors, each party updates them like IP
does. When all parties assign their users to a cluster, an epoch is
completed. The last party then sends the updated Wj vectors to
the IP.

7. Steps 3–6 are repeated until no noticeable change in the future
map.

The IP initially chooses Wj vectors and updates them s times.
Since it sends the updated Wj vectors to the next party, that com-
pany cannot learn the true ratings and the rated and/or unrated
items held by the IP. Although number of users held by the IP is
known by the second company, it cannot derive any information
about data held by the IP, because it does not know which users
have rated which items and the distances between users and Wj

vectors. Similar argument is also true for other companies. The par-
ties only exchange the updated Wj vectors and the updated s val-
ues. The parties after the second one cannot learn the number of
users held by the previous company without colluding with the
one coming before the previous one in the sequence. Without
revealing useful information to each other, the parties can deter-
mine their users’ clusters using PDSOM protocol off-line.

4.2. Privacy-preserving k-nn-based predictions on horizontally
distributed data

An active user a asks a prediction for a target item q from one of
the e-companies called the Master Party (MP). Once the MP re-
ceives a’s data and her query, it provides the prediction after esti-
mating it through collaboration with other parties online. Note
that each party knows the Wj vectors (cluster centers) and the clus-
ters of their users. The MP first determines a’s cluster by calculat-
ing the distances between a and each cluster center. It assigns a to
the closest cluster. The users’ data in that cluster is then used to
estimate a prediction for a using Eqs. (5) and (6). As seen from such
equations, z-scores (zuj) and deviation from mean ratings of q (vduq)
are needed. Notice that vduq ¼ ðvuq � vuÞ, where vuq is user u’s rat-
ings for item q. Thus, in order to improve online performance, each
party computes both zuj and vduq values off-line and stores them.
They can compute such values because they have the data required
to calculate them. Eq. (6) can be written as paq ¼ va þ P, where P is:

P ¼
Pk

u¼1

PI
j¼1zajzuj

h i
vduqPk

u¼1

PI
j¼1zajzuj

¼
PI

j¼1zaj
Pk

u¼1zujvduq

h i
PI

j¼1zaj
Pk

u¼1zuj

h i : ð7Þ

As seen from Eq. (7), since the MP is able to compute zaj values and
va value, it can estimate paq. However, since data are horizontally
partitioned among C parties, P can be written, as follows:

P ¼
PI

j¼1zaj
Pk1

u¼1zujvduq þ
Pk2

u¼1zujvduq þ � � � þ
PkC

u¼1zujvduq

h i
PI

j¼1zaj
Pk1

u¼1zuj þ
Pk2

u¼1zuj þ � � � þ
PkC

u¼1zuj

h i ; ð8Þ

where k1, k2, . . . , kC show the number similar users held by the first,
second, . . ., and the Cth party, respectively, who rated q. The MP,
which is asked by a for recommendation, needs aggregate data from
other C � 1 companies to estimate recommendations. If the MP
sends a’s data to other parties, they can easily compute the required
data. However, since a’s ratings are valuable and will be added to
the MP’s database; and her data will be used for prediction genera-
tion in the following queries, it does not send them to collaborating
companies. Thus, such companies should compute

Pk
u¼1zujvduq and
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Pk
u¼1zuj aggregate values for all j = 1, 2, . . . , m � 1, where m shows

number of items; and send them to the MP without greatly jeopar-
dizing their privacy. Therefore, the parties follow the following Pri-
vate Distributed k-nn CF Protocol (PDKNN) to offer predictions:

1. The MP determines a’s cluster (ca) using Eq. (1) after receiving
required data from a. Note that in Eq. (1), x represents a’s rat-
ings vector. The MP assigns a to the closest cluster. It sends ca

and q to other parties.
2. Each party including the MP computes

Pk
u¼1zujvduq and

Pk
u¼1zuj

aggregate values based on those users’ data that are in ca. They
then send them to the MP.

3. The MP then is able to estimate P using Eq. (8) after collecting
required aggregate data from other parties.

4. It finally estimates paq and returns it to a.

The parties can succeed recommendation process based on
HDD. However, PDKNN has the following shortcomings:

a. Since the MP has the required partial results for the target
cluster (ca) to estimate paq, it can use them for producing
referrals for those active users who will be in that cluster
and ask prediction for q.

b. The MP can collect aggregate data values for fake active
users over a time in order to derive information about other
parties’ databases.

To overcome the aforementioned shortcomings, the parties fol-
low the following steps to compute aggregate values in the step 2
of PDKNN protocol, where we call the new protocol as the IPDKNN
(Improved PDKNN):

1. Each party j uniformly randomly selects a random number (bj)
over the range (0, c]. They then uniformly randomly choose bj

percent of the users who did not rate q, where the probability
of selecting any user is proportional to the number ratings
she has due to accuracy concerns. In other words, the chance
of selecting a user with more ratings is bigger than the chance
of selecting a user with fewer ratings.

 

 

Fig. 1. An overview of private distributed
2. Each party then fills selected users’ cells for q with non-person-
alized ratings (vd). Since vd values are estimated based on avail-
able ratings, when selecting users, giving higher probability to
those users with more ratings makes sense. The parties gener-
ate vd values using the distribution of users’ ratings, which
can be considered as a Gaussian distribution with mean (l)
and standard deviation (r).

3. Before calculating
Pk

u¼1zujvduq and
Pk

u¼1zuj aggregate values for
all m � 1 items, each party uniformly randomly selects some of
its zuj values, removes their values, and replaces with zero. For
this purpose, each data holder j uniformly randomly selects a
random number (aj) over the range (0, d]. They then uniformly
randomly choose aj percent of their zuj values, remove their val-
ues, and replace with zero.

4. Each party then estimates the required aggregate values based
on its modified database. They finally send them to the MP.

In order to enhance the understanding of our proposed scheme,
we presented our method in Fig. 1. Notice that Fig. 1 shows the ex-
change data between the MP and the helping companies and the
MP and a. Note that x represents a’s ratings vector. The figure also
demonstrates the computations performed by each involving party
including the MP and a.

When the parties follow the aforementioned protocols, they
preserve their privacy against each other and such protocols
force them to collaborate whenever a asks a prediction from
one of them. They can produce accurate and dependable
predictions. In one hand, the parties increase the amount of data
involved in aggregate data computation by inserting vd values in
some q’s empty cells. On the other hand, the amount of data in-
volved in such computations is reduced due to removed zuj

values. In each query, data owners choose different b and a so
that unpredictable randomness is added to their databases. Each
party will compute different partial results for a cluster in
different recommendation processes. Therefore, they collaborate
with each other to answer queries until they have enough data
to offer accurate and dependable recommendations by
themselves.
k-nn collaborative filtering protocol.
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5. Privacy analysis

Lindell and Pinkas [29] define privacy in terms of distributed
data-based data mining, as follows: ‘‘No party should learn any-
thing more than its prescribed output. In particular, the only infor-
mation that should be learned about other parties’ inputs is what
can be derived from the output itself.’’ Similarly, in our proposed
scheme, the companies should not be able to learn the true ratings
and the rated and/or unrated items held by each other. To analyze
our proposed approach in terms of privacy, we first determine pos-
sible privacy attacks caused by the parties and vulnerabilities,
which are harmful for data owners’ confidentiality. We then pro-
pose solutions against such attacks and weaknesses; and show
how private our scheme is against them. Such attacks and vulner-
abilities can be described, as follows:

1. A1: Parties can coalesce for capturing a target party’s data: In this
attack, C � 1 companies can coalesce for capturing a target
site’s private data. Since the target party acts as the MP, it col-
lects partial results, combines them with its own ones, and
returns a recommendation to a. Therefore, other parties can
derive its partial results from the output prediction value for
a in multiple scenarios. One of the corrupted parties can act
as an a and requests referrals for some target items in several
settings to derive data about the target party. After they get at
least m � 1 recommendations for the same item, they are able
to figure out target party’s partial results. Once they determine
such partial results calculated for different target items, such
corrupted parties can derive information about the target
items’ ratings. If it is conducted, A1 can jeopardize the MP’s
privacy. To defend itself against A1, the MP also should utilize
IPDKNN protocol like auxiliary parties do. Since the MP adds
arbitrariness to its private data in each recommendation com-
putation process, corrupted parties cannot get exact partial
results to derive information about the MP’s database.

2. A2: Paying-off: This attack is similar to A1. Instead of acting as an
a in multiple states, C � 1 corrupted parties can bribe a to
gather the target party’s useful information for themselves.
Moreover, since the databases are updated periodically by
inserting active users’ ratings and removing some old ratings,
the spoiled companies utilize such bribed users’ data in order
to derive information about the target party’s data.
As explained previously, if data owners including the MP follow
the IPDKNN protocol, they can defend themselves against A2.
Since each party including the MP can bribe any active user,
any induced user can be corrupted again by offering more
incentives. Therefore, this attack might become expensive and
data obtained through this attack are more likely questionable.

3. V1: Not able to return any result: To be part of the recommenda-
tion process, each party should return partial results. To do that,
each assisting party must have at least one user who rated q.
One or more parties might not be able to return any partial
results to the MP. This phenomenon happens when such auxil-
iary parties face with extreme cases in which they may have no
rating for q. Such cases definitely leak information about sec-
ondary parties’ data. In other words, the MP learns that such
parties, that are not able to return any partial results, do not
have any rating for q. This absolutely violates data owners’ pri-
vacy. If the MP knows the users held by that party who did not
send any partial results, it can offer special discounts to them
for selling q.
In order to resolve V1, each party should return results to the
MP even if they do not have any rating for q. If such parties fol-
low our proposed IPDKNN protocol properly, they can easily
overcome this weakness.

 

 

4. V2: Missing values in aggregate values vector: This limitation
occurs when some assisting parties face with another type of
extreme case. When such parties do not have any ratings for
items other than q, aggregate values for them will be 0. If this
is the case, similar to the V1, the MP concludes that they do
not have any ratings for such items. It then can exploit this
information to make financial benefits.

This vulnerability can be easily fixed. When any party faces
with V2, they just fill some of the randomly chosen cells of such
items with non-personalized votes. Thus, the MP cannot learn
whether they have any items without any ratings.

Our proposed scheme contains distributed data-based SOM
clustering, which preserves data owners’ confidentiality. The par-
ties are able to cluster their users without exchanging private
data. They exchange updated weight vectors and s values. Thus,
the parties cannot learn useful information about each other data
during clustering. Each party learns the number of users held by
the previous party in the sequence. However, that information
does not cause any privacy, financial, or legal problems. Even if
they have such information, they cannot use it to determine true
ratings and rated and/or unrated items held by the assisting
company.

As explained above, our scheme is able to preserve data owners’
confidentiality against the aforementioned privacy attacks and vul-
nerabilities. If each party including the MP follows the proposed
protocols, they defend themselves against A1 and A2; and they
are able to overcome vulnerabilities V1 and V2. Due to the random-
ness they add, the MP and the auxiliary parties preserve their pri-
vacy. In addition, our scheme utilizes normalized values (z-scores
and deviation from mean values), which are computed by each
party alone. Since computations are performed on such normalized
values, even if they are derived, it becomes difficult to learn true
ratings because attacking party does not know the mean and stan-
dard deviation values. Also, the parties exchange aggregate values
rather than individual data items. Finally, due to randomness,
which added in each prediction generation process, the MP cannot
keep the interim results collected from other parties for future rec-
ommendation processes. It must collaborate with other companies
for upcoming predictions.

6. Supplementary costs analysis

Due to privacy protection measures, extra costs like storage,
communication, and computation costs are inevitable because pri-
vacy, accuracy, and performance conflict with each other. Note that
off-line computation and communication costs are not critical for
overall performance. Therefore, it is better to conduct as many
computations as possible off-line in order improve online effi-
ciency. However, in order to provide new recommendations after
users provide new ratings, the collaborating parties need to update
their databases by inserting new votes. In other words, to get new
ratings involved in prediction process so that new referrals can be
estimated, the companies should update their model (clustering
users conducted off-line) periodically. They then provide recom-
mendations online using the up-to-date model and the ratings.

To improve online performance, the parties compute normal-
ized values off-line and store them. Due to their storage, extra stor-
age cost is in the order of O(nm). Since each party uses the cluster
centers, they save them in C matrices with size c �m. Accordingly,
additional storage cost is in the order of O(m) because C and c are
constants. Although our scheme seems to cause further storage
costs; however, the parties should save such information after cal-
culating off-line to improve online performance even if they offer
referrals by themselves.
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Providing recommendations is an online process. Performing CF
tasks efficiently is imperative. For this reason, our proposed
scheme must not introduce significant extra computation costs
that might harm the efficiency of CF schemes. Due to clustering,
which is conducted off-line, additional costs are not critical. During
online phase, data owner insert some default votes, which in-
creases the amount of computations, while they remove some of
the z-scores, which decreases the amount of computations. Gener-
ally speaking, applying these two different randomness processes
surpass their effects on the amount of computations. Furthermore,
data used in CF are distributed in our scheme and online computa-
tions are done simultaneously. Traditional k-nn-based scheme’s
online computation time (without the use of clustering) is in the
order of O(nm), while our proposed scheme improves online com-
putation costs by C � c times without considering communication
costs due to clustering and simultaneous computations.

Our scheme introduces extra online communication costs. In
traditional CF schemes, an active user sends a message (her ratings
vector and a query) to a server that returns a prediction. Hence,
number of communications is two only. In our distributed scheme,
a sends the same message to the MP as in traditional systems.
However, the MP sends ca and q to C � 1 companies so that they
return partial results (two vectors containing m � 1 aggregate val-
ues). In other words, number of communications is 2C in our
scheme or in the order of O(C), where C is a constant. Therefore,
communication costs increase by C times. Supplementary costs
can be considered negligible because auxiliary parties simulta-
neously communicate with the MP.

 

 

7. Accuracy and overall performance analysis

To test our scheme in terms of accuracy and investigate its over-
all performance, we perform various experiments on real data sets.
Accuracy shows how precise our privacy-preserving scheme-based
recommendations are. We conduct trials for testing how the pro-
posed scheme affects the quality of the predictions.

7.1. Data sets and evaluation criteria

We used two well-known real data sets, Jester and MovieLens
(ML), constructed for CF purposes. Jester data set contains ratings
for jokes [13]. ML data set was collected by GroupLens at the Uni-
versity of Minnesota (www.cs.umn.edu/research/GroupLens). We
describe the data sets in Table 1, where we present various proper-
ties of both data sets.

To measure the quality of the referrals, we used Mean Absolute
Error (MAE) because it is the most well-known statistical accuracy
metric. The lower the MAE is, the more accurate our results are.
Thus, MAE value should be minimized. MAE measures how close
the predictions with privacy concerns to the true ratings. If
p1, p2, . . . , pd are actual user rating values, and p01; p

0
2; . . . ; p0d are pre-

dicted values with privacy concerns, then fn1; n2; . . . ; ndg ¼
p01 � p1; p

0
2 � p2; . . . ; p0d � pd

� �
represents errors. Therefore, the

MAE can be computed, as follows: MAE ¼
Pd

i¼1
jni j

d , where d shows
the total number of predictions. Since collaboration among multi-
ple parties increases the amount of data involved in prediction pro-
cess, the parties are able to generate predictions for more items
Table 1
Data sets.

Name Item Size (n �m) Total votes

Jester Joke 24,983 � 100 1,810,455
ML Movie 6040 � 3900 1 million
and they might overcome cold start problem. Thus, to show how
collaboration affects the number of items for which predictions
could be provided, we utilized coverage metric, which is the per-
centage of items for which a CF algorithm can provide referrals.
Coverage can be calculated, as follows: Coverage = vres/vtest, where
vres and vtest stand for the number of predictions returned and
the number of test ratings. Finally, we applied statistical t-tests
in order to show that our results are statistically significant and
they are not occurred by chance. We first compute a t value. Then,
we find a p-value from t-distribution table. If the p-value chosen
for some significance level (usually 0.10, 0.05, or 0.01) is less than
the calculated t value, then it is concluded that the improvements
are statistically significant and they are not happened by chance.

7.2. Methodology

Given the entire data sets, we first determined those users who
rated at least 50 items from both data sets. We then uniformly ran-
domly divided such users into two disjoint sets, training and test
sets. We finally randomly selected 1000 and 500 users for training
and testing from train and test sets, respectively. For each test user,
we uniformly randomly chose five rated items. After withholding
their true ratings, we replaced their entries with null; and tried
to provide referrals for them using the train users’ data. We as-
sumed that data are distributed among C companies, where C
might be 1, 2, 3, 5, 7, or 10. Hence, each data owner owns about
n/C number of train users. Since we use SOM clustering to deter-
mine k nearest neighbors, we clustered each train set using SOM
clustering algorithm. We ran our trials using MATLAB 7.6.0 on a
computer, which is Intel Core2Duo, 2.0 GHz with 2 GB RAM. To car-
ry out SOM clustering, we used the toolbox in MATLAB. Since Roh
et al. [38] determined the optimum cluster number as three, we set
radius of lattice to 3/2; and network topology to hexagonal lattice,
which is default topology in the MATLAB toolbox.

7.3. Experiment results

Effects of collaboration on coverage and accuracy: We first per-
formed trials to demonstrate how coverage changes with varying
n and C values. In other words, we first tested how collaboration
affects overall performance. With increasing available data, cover-
age is expected to increase. We hypothesize that the parties are
able to provide predictions for more items if they integrate their
split data through collaboration. To verify this hypothesis, we per-
formed experiments while changing n from 250 to 1000 and C from
1 to 10. We assumed that if there is at least one rating for q; and at
least two commonly rated items between a and those users who
rated q, the CF system can provide referrals for q. We found cover-
age values for data owners based on data sets they own only (split
data) and combined data (collaboration) for both data sets. Since
Jester is a dense data set (the density of the set that we use is about
72%), coverage is 100% even if n is 250 and C is 10. However, since
ML is a very sparse set (the density is about 4%), coverage is signif-
icantly affected by varying available data. In Fig. 2, we presented
the average coverage values for ML with varying n and C values.

As expected, coverage significantly improves with increasing n
values for sparse data set ML. If n increases, amount of ratings
involving in recommendation process also increases; that makes
Density (%) Range Type

72.47 [�10, 10] Continuous
4.22 [1, 5] Discrete

http://www.cs.umn.edu/research/GroupLens


Fig. 2. Coverage with varying n and C values.

C. Kaleli, H. Polat / Knowledge-Based Systems 33 (2012) 124–135 131 
 

 

coverage better. As seen from Fig. 2, due to integrating split data,
coverage enhances. When 250 users’ data horizontally distributed
among 10 parties, coverage is about 42%. If they integrate their
data through collaboration, coverage increases to 78%. Note that
when C is 1, data are held by a single party. In other words, when
C = 1, it means that the parties decide to collaborate. For sparse
data sets, collaboration among various parties definitely improves
coverage.

To show how accuracy changes due to collaboration among
multiple parties, we conducted experiments using both data sets.
We wanted to compare results when collaborating and when the
parties do not collaborate. We used 500 users for testing and used
250, 500, and 1000 users for training, where we varied C from 1 to
10. Notice again that when C = 1, it means that data owners collab-
orate and provide predictions on integrated data. If C = 2, 3, and so
on, then it means that data are partitioned between two, three par-
ties, and so on, respectively. With increasing C values from 2 to 10,
the parties provide predictions on their split data only. Number of
users held by each party decreases with increasing C values. We
clustered train data using SOM clustering. The optimum value of
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Fig. 3. MAEs with varyi
c was determined by Roh et al. [38], where they found three as
the best one. Thus, we clustered train users into three clusters,
which happen to give the best results. We first estimated predic-
tions for test items for all test users using the data held by each
party only. Then, predictions were estimated for the same items
using the integrated data. We computed the MAE values for both
cases; and displayed them in Fig. 3 for Jester and ML data sets.

As seen from Fig. 3, when data owners decide to collaborate,
they achieve the best results (the outcomes for C = 1). The MAE val-
ues improve with decreasing C values. In other words, if data own-
ers provide predictions on their integrated data via collaboration,
they offer more accurate recommendations. Similarly, accuracy en-
hances with increasing n values, as expected. When data are dis-
tributed among various parties, each party uses its data to
provide predictions. Since available data decrease, accuracy be-
comes worse. If they decide to collaborate, they are able to use
more data for referral generation. That makes accuracy better.
When n is 1000 and data are distributed among 10 parties, the
MAE is about 0.83 for ML, while it is about 0.75 if they collaborate.
Thus, integrating split data definitely enhances the quality of the
n = 500 n = 1,000
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predictions. For both data sets, accuracy develops due to providing
referrals on combined data. In order to show whether the improve-
ments due to collaboration are statistically significant or not, we
conducted t-tests. For example, for ML, the improvements are sta-
tistically significant for n = 1000 and C = 10 because the value of t is
5.94, which is still greater than the value of t for significance le-
vel = 0.01 in the t-table. Similarly, for Jester, the value of t is 9.51,
which is still greater than the value of t in the t-table for signifi-
cance level being 0.01. For both data sets, the improvements are
still statistically significant for C = 5 for significance level = 0.01.

Effects of privacy measures on accuracy: In the following trials,
we assumed that data are distributed between 10 vendors. To pro-
tect each data owners’ privacy and let them collaborate for future
recommendations, they add randomness to train data. As ex-
plained previously, data owners add default ratings into randomly
chosen some of the unrated cells of q. Each party j selects a random
number bj over the range (0, c] to fill randomly chosen bj percent of
unrated cells of q with default votes. We performed trials for both
data sets while varying c from 0 to 100 to show how accuracy
changes with various amount of randomness. We used 1000 and
500 users for training and testing, respectively for both data sets.
Since we add uncertainty, we performed our trials 100 times. After
computing the outcomes in terms of MAE values, we showed them
in Table 2 for both data sets. Note that c being 0 represents the case
without privacy concerns.

As seen from Table 2, with increasing c values, the quality of the
recommendations generally becomes poorer. As expected, adding
randomness to original data makes accuracy worse. However, the
results are still promising because default votes are inserted in or-
der to add randomness. Such votes are non-personalized ratings
and they might represent users’ true preferences. For ML, increas-
ing c values make accuracy worse. For Jester, although the MAE
values become poorer with increasing c values, accuracy losses

 

 

Table 2
MAEs with varying c values.

c 0 6.25 12.50 25 50 100

Jester data set 3.2880 3.2980 3.3120 3.3140 3.3220 3.3360
ML data set 0.7552 0.7560 0.7576 0.7604 0.7652 0.7864

Fig. 4a. MAEs with varying d
due to inserting default votes are very small compared to ML.
The parties can append uncertainty into their partial results by
inserting non-personalized votes into unrated cells of q without
greatly sacrificing on accuracy.

Besides inserting default ratings into unrated cells of q, data
owners randomly select some of their z-scores and then remove
them. To do this, each party j uniformly randomly selects aj over
the range (0, d]. Removing some of the z-scores affects accuracy
because the amount of ratings involved in recommendation pro-
cess decreases. Therefore, in order to show how removing various
amounts of z-scores affects our outcomes, we ran experiments
while varying d from 0 to 100. In our experiments, we removed
uniformly randomly selected aj percent of the z-scores from train
sets. We again used the same train and test users as in the previ-
ous trial. After computing the MAE values, we displayed them in
Figs. 4a and 4b for Jester and ML data sets, respectively. Note
again that d being 0 means that the parties do not remove any
z-scores.

As seen from Figs. 4a and 4b, MAE values become worse with
escalating d values. However, compared to losses in ML, accuracy
losses in Jester due to removing z-scores are very small. The reason
for this phenomenon can be explained with the density of Jester.
Since Jester is much more dense set than ML, removing some of
the z-scores does not significantly affect the quality of the predic-
tions. Even if d is 100, the MAE increases from 3.2875 to 3.3057 for
Jester. Although MAE values become worse with increasing d val-
ues for ML, the results are hopeful when d is smaller than 12.5.
To achieve better results in terms of accuracy, we determined
3.125 as the optimum value of d for both data sets. However, the
parties can use different d values in order to achieve required levels
of privacy and accuracy.

We finally conducted experiments to show the joint effects of c
and d values with varying n values. Although we determined the
optimum values of c and d in the previous trials, we varied them
from 0 to 12.5 to show how overall performance changes with var-
ious c and d values. We also varied n from 250 to 1000. We again
used the same 500 test users and five rated items for testing. After
performing the trials for both data sets, we computed the MAE val-
ues; and displayed them in Figs. 5a and 5b for Jester and ML data
sets, respectively.

Figs. 5a and 5b show that the joint effects of such measures on
accuracy are negligible. It is still possible to offer accurate recom-
values (Jester data set).



Fig. 4b. MAEs with varying d values (ML data set).

Fig. 5a. Joint effects of varying c and d values on MAEs (Jester data set).

Fig. 5b. Joint effects of varying c and d values on MAEs (ML data set).
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mendations with privacy concerns. As shown previously, due to
collaboration among various parties even competing companies,
improvements in accuracy are statistically significant. On the other
hand, privacy-preserving measures cause losses in accuracy. Such
losses should not surpass the gains due to alliance. Compared to
the enhancements, accuracy losses are smaller.
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To show whether privacy-preserving distributed scheme devel-
ops accuracy significantly or not, we performed t-tests. We com-
pared the results on split data with the ones on our proposed
scheme. For ML data set, for example, the improvements are statis-
tically significant for n = 1000, c = d = 3.125, and C = 10 because the
value of t is 5.63, which is still greater than the value of t for signif-
icance level = 0.01 in the t-table. In the same case, for Jester, the va-
lue of t is 7.62, which is still greater than the value of t in the t-
table. Even if C is 5, the improvements are still statistically signif-
icant for both data sets. In our t-test experiments, we used 99 as
the degree of freedom. As the t-tests show, our distributed data-
based scheme with privacy improves accuracy. When data holders
offer predictions on their split data only, accuracy diminishes due
to the insufficient amount of ratings. However, if they collaborate,
accuracy enhances even if they apply privacy-preserving measures
because of increasing amount of available ratings.

7.4. Comparison of the proposed method with traditional clustering-
based schemes

Our empirical outcomes emphasize that it is possible to produce
accurate recommendations and increase producing accurate pre-
diction capability of the parties having insufficient data by employ-
ing SOM-based CF algorithm while preserving data owners’
privacy. Our results are comparable with the ones reported in
the literature obtained by utilizing other recommendation algo-
rithms. In order to compare our results with the ones conducted
in the literature, we used the Normalized Mean Absolute Error
(NMAE) metric. The NMAE can be computed, as follows:
NMAE ¼ MAE

vmax�vmin
, where vmax and vmin represent the maximum

and minimum votes, respectively. One of the well-known CF algo-
rithms, referred to as Eigentaste, proposed by Goldberg et al. [12]
can produce predictions with NMAE value of 0.187. The authors
utilize recursive rectangular clustering algorithm in order to clus-
ter users off-line. Herlocker et al. [15] propose a memory-based
scheme whose accuracy in terms of NMAE is about 0.1920, where
the authors utilize some techniques like normalization, signifi-
cance weighting, and neighbor selection for such enhanced accu-
racy. Roh et al. [38] apply SOM clustering to CF, where they also
utilize Case-Based Reasoning (CBR) for better performance. The
authors’ scheme, called SOM cluster-indexing CBR CF predictor,
yields NMAE of 0.1524. They also propose SOM cluster induction
and SOM cluster neural network CF predictor as comparative mod-
els, which achieve NMAE values of 0.1892 and 0.1557, respectively.
Furthermore, Roh et al. [38] utilize another comparative model re-
ferred to as simple Pearson CF predictor, which yields NMAE of
0.1719. Xue et al. [41] suggest grouping users using k-means clus-
tering for improved performance. Their empirical results show that
their clustering-based scheme achieves NMAE of 0.2055. Honda
and Ichihashi [16] propose a scheme for CF utilizing linear fuzzy
clustering. Their robust fuzzy clustering-based method produces
predictions with NMAE of 0.1877. In another study performed by
Taek-Hun et al. [40], the authors propose to use k-means clustering
for grouping data for improved performance. According to their
empirical results, the highest accuracy, in terms of NMAE, that
their scheme achieved is about 0.1892. Without privacy concerns,
Roh et al. [38] compare performance of SOM-based CF scheme with
comparable models, as explained above. We suggest a privacy-pre-
serving scheme to provide predictions on distributed data without
violating data owners’ privacy, where users’ data are clustered uti-
lizing SOM clustering only. When we consider the confidentiality
of data owners, our proposed method yields the best results in
terms of NMAE values of 0.1885 and 0.1645 for ML and Jester,
respectively. For ML, compared to the results presented in Ref.
[38], our results show that accuracy decreases due to privacy, as
we expected. However, our results are still promising.

 

 

8. Conclusions and future work

We presented a privacy-preserving scheme to provide recom-
mendations based on horizontally distributed data among multiple
parties using clustering-based collaborative filtering algorithm.
Accuracy, performance, and privacy are major goals that recom-
mender systems want to accomplish. Since they are conflicting
goals, we provided a scheme finding equilibrium among them. To
improve online performance, clustering is widely used. We also ap-
plied clustering in our proposed scheme. Data collected for recom-
mendation purposes might be partitioned among multiple
companies, even competing sites. Performing prediction services
on integrated data is vital to offer accurate predictions. Since data
are split, the parties might not offer accurate referrals. As our
experiment results show, integrating split data significantly im-
proves preciseness. Although privacy concerns make accuracy
worse, accuracy losses are smaller than the accuracy gains due to
collaboration. We showed that enhancements in accuracy due to
our proposed scheme are statistically significant. Auxiliary costs
due to privacy are also negligible. Our scheme still makes it possi-
ble to offer referrals efficiently.

We will investigate whether we can apply other clustering
methods or not while providing distributed data-based recommen-
dations with confidentiality. We considered horizontally distrib-
uted data in this study. In addition to horizontal partitioning,
data can be arbitrarily partitioned. Note that we assumed that each
party’s database includes exactly the same items. However, arbi-
trary partitioning is more common in real life. We are planning
to show how to extend our scheme to arbitrarily distributed data.
We are also planning to investigate how to provide trust-based
recommendations on distributed data with privacy.
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