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a b s t r a c t 

Mobility prediction in IP-based WSNs makes it possible to predict the next movement di- 

rection of mobile sensor nodes, which results in less power consumption and delay dur- 

ing handoff. The previous direction detection approaches need specific hardware facilities 

and impose considerable overhead during handoff. The advantage of DMP-IOT is distribut- 

ing the learning model data around static sensors of the proposed tree, after the training 

phase. DMP-IOT includes a recovery mechanism that avoids disconnection of the mobile 

sensor node(s) to the network in case of a false prediction. The simulation results show 

about 25% improvement of DMP-IOT in saving power consumption and reducing handoff

delay and packet loss, compared to movement direction approaches in similar works. The 

accuracy of the proposed movement prediction scheme is 83%, in average, which is val- 

idated by t − St udent statistical test. Comparing the second-order Hidden Markov Model 

(HMM) with ANN reveals the superiority of the second-order HMM model in our applica- 

tion. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The number of advanced digital devices has been dramatically increased in recent years. Due to their powerful hard-

ware and software facilities, sophisticated platforms have been provided for connecting all those devices via the Internet

like structure [1] , known as Internet of Things (IOT). The mobile IP-based sensor network is a popular and well-known in-

frastructure of IOT where each mobile sensor node can have an IPv6 address. The Wireless Sensor Networks (WSNs) have

been widely used in health-care and military applications where the sensor nodes are worn on or implanted into the human

body to measure the vital parameters [2] . For Body-to-Body ubiquitous health-care applications, accurate mobility prediction

is necessary to perform critical tasks related to medical data routing among mobile WBANs. The critical tasks include call

admission control, congestion control, the reservation of network resources, pre-configuration of services and QoS provision-

ing. The mobile WSNs are flexible environments with dynamic changes in which the number of sensors fluctuates in each

network [3] . In poor infrastructure environments, if the mobile sensor nodes directly communicate to the gateway, a con-

siderable amount of mobile sensor node’s power would be consumed. Thus, for reducing the power consumption of mobile

sensor nodes, a mobility management procedure is used with the aid of static sensors which have fewer power constraints

compared to the mobile sensor nodes [4] . 
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Fig. 1. Movement direction detection by AOA method [9] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In IP-based WSNs, a mobility management procedure typically has four main phases: (1) detection of movement (2)

identifying the direction of motion (3) buffering data destined to the mobile sensor node during the handoff (4) sending

the new location of the mobile sensor node to the gateway. The first two phases of the procedure have a great impact on

handoff cost because they consume a significant amount of power. Furthermore, if identifying the direction of movement is 

done by mistake, the mobile sensor node’s connection to the network is broken which has a great negative impact on safety

critical applications like health-care. 

The typical WSN is designed to be efficient in energy consumption by reducing the number of message exchanges while

mobile sensor node(s) changes its point of attachment to the network. Another primary concern of WSNs is reducing packet

loss caused by handoff delay. An efficient movement direction detection approach in WSNs should consider both of these

factors. The previous works mostly detect the direction of a movement by using AOA (Angle of Arrival) method with the

aid of additional hardware like directional antennas, antenna arrays, etc. [5] . AOA is defined as the angle between the prop-

agation direction of an incident wave and some reference direction, which is known as orientation. Orientation, defined as

a fixed direction against which the AOAs are measured, is represented as degrees in a clockwise direction from the North.

When the orientation is 0 or pointing to the North, the AOA is absolute. Otherwise, it would be relative. One standard

approach to obtaining AOA measurement is to use an antenna array on each sensor node [6–8] . As shown in Fig. 1 , ’the

star’ shows mobile sensor node, abbreviated as MN, position at timestamps T S 1 , T S 2 , and T S 3 , respectively. The associated

Static Node abbreviated as SN, measures AOA from a signal that it receives from the MN. Moreover, the associated SN also

estimates the distance between the MN and itself by using Received Signal Strength (RSS) of the packets. As shown in Fig. 1 ,

let α1 , d 1 ; α2 , d 2 ; α3 , d 3 be the angles (in degrees) and the distances between the SN1 and the MN, at timestamps TS 1 ,

T S 2 and T S 3 , respectively. Considering the angle and distance information, the SN can get the location coordinates MN. The

accuracy of this method has not been evaluated before. Furthermore, this method needs specific hardware that is not always

available in real applications considering that implementation of networks with this feature is difficult. Moreover, if the di-

rectional antenna malfunctions or fails, detecting the direction of movement would be impossible. Another important issue

is that if a patient’s movement direction suddenly changes, the direction predicted by the AOA method would be incorrect,

which causes dis-connectivity of the mobile sensor node from the network. 

The direction of movements can also be detected by broadcasting a message and measuring RSS of messages exchanged

between mobile and neighboring static nodes [10–13] . Some other works use LQI (Link Quality Indicator) and RSSI ( Received

Signal Strength Indicator) together to predict movement directions, more accurately. The RSS method, which is the easiest

one, requires a considerable number of message exchanges, which decreases the lifetime of mobile sensor nodes. Similar to

AOA, whenever the direction of a mobile sensor node suddenly changes, it fails to find the correct movement direction. 

To address the mentioned issues, we have designed a novel network and Distributed Movement Prediction scheme, DMP-

IOT, which predicts the movement direction of mobile sensor nodes in health-care applications to reduce the handoff cost

of the mobile sensor node(s). To this end, second-order Hidden Markov Model has been customized for mobility prediction

in the health-care application. DMP-IOT includes a false prediction recovery mechanism which avoids disconnection of the

mobile sensor node(s) to the network in case of incorrect prediction of patient’s movement. With the recovery mechanism,

handoff is not affected by false prediction and the connectivity of the mobile sensor node to the network is not disrupted. 

It is worth noting that vehicular network in which power consumption and continuous connectivity are not their issues is

out of the scope of this paper, accordingly. To our knowledge, no learning method has been applied to modeling movement

in mobile IP-based WSNs. 
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The rest of the paper is organized as follows. In Section 2 , we discuss the related works on movement prediction. The

proposed approach is described in Section 3 . The simulation results are presented in Section 4 . We conclude the paper with

a summary in Section 5 . 

2. Background and related work 

Since, there is no movement prediction method for IP-based mobile sensor networks, we review the movement direction

prediction methods in similar contexts. 

Movement prediction can be done either for indoor or outdoor location tracking [14,15] . For outdoor location tracking,

predicting the pedestrian trajectory in an outdoor area is considered while in indoor tracking, a person’s next location inside

a building is taken into account. The outdoor tracking data are analyzed to find frequent and popular routes, path clustering

or finding abnormal paths. 

In this paper, for health-care applications, we focus on indoor location tracking of patients. The mobility model could be

either (1) synthetic that is extracted from a random walk , (2) simple probability model or (3) trace-based mobility model

that is extracted from synthetic moving data [16] . Movement prediction can be provided by applying different algorithms

based on different f eatures. Markov, Hidden Markov, Artificial Neural Network (ANN) and Bayesian network techniques are

mainly applied for prediction in the literature [17–19] . 

Baratchi et al. have proposed a model for mobile data movement based on HMM [20] . They have also considered the

duration of each state by designing a hierarchical model with different state granularity. The super states composed of small

states contain behaviors which are repeated, periodically. However, this solution is appropriate for outdoor tracking. We

have decreased the complexity of HMM by distributing the model with the aid of our proposed tree scheme where each

tree node maintains a part of the model that it needs for movement prediction. 

Gellert et al. [19] use HMM for movement prediction in an office. They have evaluated their approach with a different

number of hidden states and also with HMM series 1–3 and Neural Network. However, they predict the next movement

location of a person if the source location is not his own room which makes the prediction very simple. Because of this

assumption, the accuracy of their proposed approach is high. Tran et.al [21] have proposed an approach based on decision

tree to predict the next location of a mobile user. Their decision tree can detect movements to new places on different

days of the week. They have considered properties for the time of the day, weekday, place ID, start and leave time for each

place. However, a decision tree is a slow solution for an online prediction and cannot model the hidden states such as the

thoughts of moving objects. It only considers the current location of a user and it is not a probabilistic model. 

Furey et al. [22] have formulated the movement prediction problem as a graph in which the most frequently visited

place is represented as a node. The paths between areas are considered as the graph edges. They use a discrete Bayes

filter to model actions and movements. However, it is a centralized system in which every decision should be made on the

server, and the real-time calculation of movement probabilities makes it a slow approach. It also assumes that movement

probability is independent of the previous states which seems not to be realistic. 

Duong et al. use a log file of node mobility history in mobile IP networks to predict next movement of mobile sensor

nodes. They generate the transactional database from the log file of node mobility history, discover all frequent movement

patterns in the database and generate all mobility rules using the regular mobility patterns. However, it needs a significant

amount of data in learning phase which is not adequate for real time and power constrained mobile sensor networks [23] . 

In [24] the authors show the suitability of an ANN, implemented in ad-hoc routing protocol, for predicting human mobil-

ity in opportunistic network scenarios as well as showing the effects of implementing a mobility model on reliability, delay

and delay variation. However, as the model update process is done inside the nodes, it increases power consumption that is

an issue for the sensors. 

The majority of the movement direction prediction methods that are applied in different contexts, fail to consider the

temporal variable in their model, completely [20,25] . It means that they do not consider that the pattern of movements

may vary at different times of the day. For example, if a patient is in the kitchen, to determine the next movement of the

patient, it is important to know where he stayed before going to the kitchen which implicitly represents the time of the

day. Another drawback is that they do not propose a scheme consistent with their proposed method. Our proposed approach

takes advantage of tree structure where each node maintains a part of the model related to the probability of movement

from/to itself to/from the neighboring cells. 

3. The proposed approach 

In IP-based mobile WSN, which is designed for health-care applications, we assume that there are n mobile sensor nodes

and m static sensors. The static nodes handle the movement overhead of mobile sensor nodes, none of the nodes is aware

of its location. Every static sensor is assumed to be in the range of its neighbors. Each mobile sensor node sends the data

through the nearest static node, so-called candidate node, to the gateway. A candidate node is one of the leaves of the tree

which is placed in the middle of a cell where the mobile sensor node is located, at the moment. The goal is to maintain the

connectivity of mobile sensor node(s) to the gateway during handoff. 

DMP-IOT has three main parts as shown in Fig. 2 including the initial setup, movement prediction and movement man-

agement that are described in the following sub-sections. For more convenience, the serial number in each box represents
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Fig. 2. DMP-IOT architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the number of sub-section which describes the corresponding module. Initial setup of DMP-IOT is described in 3.1, where the

static node placement, DMP-Tree construction and movement data collection are carried out. Subsequently, in Section 3.2 ,

the movement prediction model is generated and distributed using the constructed tree. In Section 3.3 , the movement man-

agement module is described. The overall steps of the proposed movement prediction approach in our suggested network

scheme is shown in Fig. 3 . As shown in the figure, during the training phase, the patient’s tracking data is forwarded to

the gateway via the DMP-Tree where the HMM model, as a table, is constructed. Then it is divided into sub-tables, each

of them is carrying data required for predicting the direction of the patient’s movement considering each cell of the area.

These sub-tables are forwarded through DMP-Tree and distributed over static leaf nodes, positioned at the center of each

cell. 

3.1. Initial setup 

At the initial network setup, firstly we put static nodes DSHMP-Tree, detailed in Section 3.1.1 . Then, build the tree in

Section 3.1.2 . Subsequently, collecting movement data is described in Section 3.1.3 . 

3.1.1. Static node placement 

The algorithm for static node placement of DMP-Tree is depicted in Table 1 where SensorCount is the total number

of static nodes, tree is the variable which holds the tree information, Area is the monitoring area and pos holds the two

dimensional positions of static nodes. The monitoring area is assumed to be a Cartesian plane with coordinates X and Y

where the origin is the left down corner of the area. Parameter k holds the current tree level and L holds the cell’s length,

which could be in square meters. At first, the static nodes as the leaves of the tree are placed at the middle of cells (line 4).

For two given leaves, the parent is a static node which is placed at a point where its x location is the middle of its children’s

x values and its y value is the y value of the children plus L /2. Similarly, the static nodes at higher levels are positioned (line

7–12). For a given node z , the id of its left child is twice as the ID of z and the id of its right child is twice as the ID of

z plus one. After the placement of nodes, each node finds its parent and children. Firstly, the root sends the ID of its two

children. Subsequently, each child of the root that receives its ID, sends the ID of its children, in a similar way. This is done

recursively until the leaves of the tree set their IDs. 

3.1.2. Tree construction 

For efficient distribution of the prediction model across the monitoring area, we need an efficient tree structure. The

proposed tree, DMP-Tree, also simplifies addressing, routing and collecting data for model construction. The most important

advantage of DMP-Tree is facilitating the process of predicting the next movement of a patient, stayed in a cell, by commu-

nication within the neighboring cells. In the proposed tree, each two leaves in two corresponding neighboring cells have a

common node that is in the range of both adjacent cells. Firstly, to make the network scalable, we divide the monitoring

area into equal sized cells. In other words, the home area is considered as a set of the cells with length L . For the area

shown in Fig. 4 , the transmission range of the DMP-Tree’s leaf nodes are computed as Eq. (1) . 

R = 

√ 

2 L (1) 

For example, in Fig. 4 the parent of two leaf nodes 1, 2 is node (1, 2), located at the common up corner of corresponding

cells, and the parent of two non-leaf nodes (1, 2) and (3, 4) is A , located in the middle of the line connecting the children.
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Fig. 3. The proposed DMP-IOT movement prediction steps+ network scheme. 

Table 1 

Algorithm for tree construction. 

Please cite this article as: A. Zamanifar et al., DMP-IOT: A distributed movement prediction scheme for IOT health-care 

applications, Computers and Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.09.015 

http://dx.doi.org/10.1016/j.compeleceng.2016.09.015


6 A. Zamanifar et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–17 

ARTICLE IN PRESS 

JID: CAEE [m3Gsc; September 22, 2016;17:8 ] 

Fig. 4. Initial setup:tree construction. 

 

 

 

 

 

 

 

Similarly, node A 

′ is the parent of two static nodes A and B , located in the middle of the line connecting the children and

so on. Each leaf node in DMP-Tree has a unique table that holds the list of the successor mobile sensor nodes. This table is

used for routing and forwarding packets to mobile sensor nodes While the leaves of DMP-Tree are responsible for handling

movement of mobile sensor nodes and receiving/sending data of mobile sensor node(s) to/from their parents, the non-leaf

nodes act as intermediate devices to receive and send data between their parents and children. For example, in Fig. 4 when

a mobile sensor node is in cell 1, the static node 1 forwards the data d of the mobile sensor node to node (1, 2) which

sends it to node A . Subsequently, it will be forwarded to node A 

′ , then it is sent to node A 

′ ′ which forwards it to node o ′ 
and finally it is received at the root. For simplicity, we use literal as the ID of the tree’s nodes in Fig. 4 . 

As shown in Fig. 4 , we assume that the monitoring area is divided into n equal sized cells. In Eq. (2) , n is determined

according to the size of the monitoring area, M , and the transmission range. 

n = 

M −→ n = 

2 × M 

(2) 

L × L R × R 
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Fig. 5. DMP-Tree for the monitoring area of Fig. 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

 

 

 

 

 

 

 

 

 

 

 

3.1.3. Collecting movement data 

For each static sensor node at the center of each cell, the current candidate node, and the next candidate node after

patient’s movement, their corresponding rooms, and a time stamp is sent to the gateway at training phase. Each static

sensor sends data to the predecessors in DMP-Tree until it reaches the gateway. 

3.2. Movement prediction 

In Section 3.2 , we explain the details of the movement direction prediction approach. In Section 3.2.1 , the way we con-

struct the model is described. In Section 3.2.2 , it is depicted how the generated data models are distributed after the training

phase over the leaves of the DMP-Tree ( Fig. 5 ). 

3.2.1. Constructing movement prediction model 

The movement prediction is achieved by modeling the data that is collected from the movement of a given patient

during the training phase. Considering a sequence of states and a sequence of observations (output) at a time, HMM can

predict the next state and observation. A typical first order hidden Markov model has four parameters: the hidden states (q),

the initial probability ( �) which is a matrix consisting the likelihood of being in each state at initial time, state transition

probability matrix (A) which are the matrix consist of the probability of transition from one hidden state to another one,

and the emission probability matrix (B) which are the matrix consist of likelihood of observing particular output b in certain

state a . 

In our monitoring area (nursing house), each room is considered as a state. We assume that each room consists of one

or more cells. The non-room parts such as a corridor are part of one of the neighboring rooms. In DMP-IOT, the observa-

tions are the cells of the monitoring area in which the moving object is located and moves. The sequence of observations

corresponding to the patient’s movements in a building should be collected at the training phase to build the model. We

assume that the patient’s current state is not only related to the previous state at time t − 1 , but it also depends on the

state at time t − 2 . Thus, we have applied second-order HMM technique for modeling movement patterns. According to this

model, the probability of being in a given place depends on previous two states at time t − 1 and t − 2 . 

During the training phase, the likelihood of moving from each cell to the neighboring cells (go to other observations) is

computed. At training period, in each cell, the next observation with the most probability could be determined in o(1). The

initial probability of transition is determined based on the lifestyle of the people in an elderly house. 

Fig. 6 shows a part of the HMM model that is used by static node 2 to predict the movement direction of the patient

when he is located in cell 2. In Fig. 6 , q n is the n th hidden state (room) and O q n is the output or cell that the patient stays in

when the patient’s state (room) equals to q n . Considering the hidden state at time t − 2 and previously hidden state at time

 − 1 , the hidden state at the current time can be determined. Then, it enables determining the most probable observation.

For example, in Fig. 6 , it is assumed that the patient has been stayed in states (rooms) R 1 and R 2 , at time t − 2 and t − 1 ,

respectively. If the predicted hidden state at time t is R 3 , the patient will move to the cell that Sensor 3 is located in its

center. 

To find unknown parameters of HMM model, the Baum-Welch algorithm is applied iteratively until the parameters in

two successive iterations change less than a predefined threshold and convergence occurs. The Baum-Welch algorithm takes

the initial estimates of the parameters and recalculates them using forward and backward routines (with the aid of forward

and backward probability) [26] . The aim is to obtain an accurate model with precise emission probability which can best

predict the future movements of a moving object. The initial probability of hidden state q i , π i , is estimated by Eq. (3) : 

πi = pr(q 0 = room i ) , (3)

where q t is the initial probability of being in each room (state) at time t. a ij in Eq. (4) is the probability of going from room i

to room j . Each room consists of one or more cells. 

a i j = pr(q t = room j | q t−1 = room i ) (4)

The second-order transition probability is computed by Eq. (5) . Eq. (5) determines the probability that a patient is in room k

at time t when he was in room i at time t − 2 and at time t − 1 the patient was in room j . 

a i jk = pr(q t = room k | q t−1 = room j , q t−2 = room i ) (5)
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Fig. 6. An abstract view of the proposed HMM model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The probability of being in each cell is determined by Eq. (6) . 

b i j = pr(Node t | q t = room j , q t−1 = room i ) (6) 

where b ij is the probability of being in Cell ( Node t ) when the patient is in room j and room i at time t and t − 1 , respectively.

Cell ( Node t ) specifies a cell in which the patient is located at time t and Node t is the static sensor node at the center of the

cell that the patient is staying. As shown in Eq. (7) , pr(Node t−1 ) is the probability in which the patient was located in one

of the neighboring cells at time t − 1 , where P t is the probability of going from Cel l (Node t−1 ) at time t − 1 to Cell ( Node t ) at

a time t . In other words, Eq. (7) shows the probability that a patient is in a cell that Node t is located in its center at time t

regarding that the patient was at cel l (Node t−1 ) at time t − 1 . 

pr(Node t ) = pr(Node t−1 ) × P t (7) 

With our proposed scheme, the two neighboring cells ( Cell ( Node t )) and Cel l (Node t−1 )) in DMP-IOT scheme have at least one

common node that is in their range. As an example, consider Fig. 4 , where the common node of two neighboring nodes 1

and 2 is node ( 1,2 ) and the common node of two neighboring nodes 2 and 3 is node A . The common node of two given

nodes is determined by Eq. (8) : 

pr(Cel l (Node t )) ∩ pr(Cel l (Node t−1 )) = node common : ∈ Range (cell Node t ) ∩ cell Node t−1 
: 

node common ∈ ancestor(Node t , Node t−1 ) ∨ 

node common = (parent(Node t ) ∨ parent(Node t−1 )) (8) 

The complete second-order HMM model is shown in Eq. (9) : 

λ = (πi , a i j , a i jk , b i j ) (9) 

Then, the forward and backward probability must be calculated. The forward probability α is the probability that a patient

was in room room 1 , room 2 , . . . , room i −1 while being in room i at a time t. room i is the i th room. Using forward routine, α is

estimated by Eqs. (10) , ( 11 ), and ( 12 ), respectively. T is the total number of the movements in the training phase. 

α1 (i ) = πi b i (Node 1 ) (10) 

αt ( j, k ) = 

∑ 

i 

αt−1 (i, j ) a i jk b k (Nod e t ) , 3 ≤ t ≤ T (11)

αt (k ) = 

∑ 

j 

αt ( j, k ) 3 ≤ t ≤ T (12) 

The backward probability parameter b k ( Node t ) in Eq. (11) is the probability of being in a cell centered by Node t and being

in room k at time t which is computed by Eq. (13) . The common node, node common , is determined by Eq. (8) . Rooms is the set

of all rooms in the monitoring area. 

b k (Node t ) = 

∑ 

s 
b s (Node t−1 ) × P t , s ∈ Rooms, b k (Node t ) ∩ b s (Node t−1 ) = node common (13) 
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Table 2 

The training algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The backward probability β is approximated by using second-order transition using Eqs. (14) and ( 15 ). 

βT (i ) = 

{
1 for the final room that the patient stays 
0 otherwise 

}
(14)

βt ( j) = 

∑ 

i 

a ji b i (Node t+1 ) βt+1 (i ) (15)

In Eq. (15) , b i (Node t+1 ) = 

∑ 

s b s (Node t ) × P t . As shown in Eq. (8) , it is the probability of observing node common on the common

line of two cells where node common could be the ancestor of both nodes or the parent of only one of them. For instance, the

common node of two nodes 24 and 25 is the node ( 23,24 ) which is the parent of node 24 . The common node of two nodes

6 and 7 is node B which is the ancestor of the both nodes. 

In the next step, the parameter of the model is recalculated. Eq. (16) shows the re-estimation of the initial state proba-

bility. 

πl = 

α1 (i ) β1 (i ) ∑ 

i 

α1 (i ) β1 (i ) 
(16)

In Eq. (16) , α1 ( i ) is the initial probability of being in each cell when the patient is in room room i and β1 ( i ) is the

probability of being in a sequence of neighboring rooms from time 2 until T when the patient is in room i at the initial

time. T is the total training time. 

a i j = 

α1 (i ) a i j b j (Node 2 ) β2 ( j) ∑ 

j 

α1 (i ) a i j b j (Node 2 ) β2 ( j) 
(17)

a i j in Eq. (17) represents the probability of transition from room i to room j divided by the expected number of times a patient

goes from room i to any neighboring rooms. Eq. (18) shows the probability of transition from room q j to q k if the room that

the patient is there before room j is room i . 

a i jk = 

T −2 ∑ 

t=1 

αt+1 (i, j) a i jk b k (Node t+2 ) βt+2 (k ) 

T −2 ∑ 

t=1 

∑ 

k 

αt+1 (i, j) a i jk b k (Node t+2 ) βt+2 (k ) 

(18)

b j (k ) = 

T ∑ 

t=1 ,Node t = v k 
αt (i ) βt (i ) 

T ∑ 

t=1 

αt (i ) βt (i ) 

(19)

b j (k ) in Eq. (19) , is the probability of being in a cell centered by node Node k in room i divided by the expected number of

times in which the patient is in room i . node common is determined in Eq. (8) . As mentioned earlier, we choose second-order

HMM assuming that the probability of each movement depends on the room where the patient stays as well as two rooms

he stayed before at time t − 1 and t − 2 . This happens because the previous location of the patient affects the next place

she/he might walk. The algorithm of model training at the gateway is shown in Table 2 . A, B in Table 2 , as defined in the

first paragraph of this section are the matrices of transition and emission probability, respectively. During the training and

data collection phase, the movement direction detection in the network is done by calculating RSSI along with LQI. 

The algorithm for testing the model is shown in Table 3 . According to this algorithm, the most probable hidden state is

determined in each step. The most probable output(cell) is estimated, accordingly. 
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Table 3 

The algorithm for Applying and testing the constructed model. 

Table 4 

Movement management algorithm (movement detection, identifying movement direction, recovery from false 

prediction). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2. Distributing data model 

After the HMM model is constructed in the training phase, it must be divided into sub-models and each sub-model

should be downloaded into the corresponding static leaf node. The sub-model of each leaf node holds data required for de-

ciding the next probable cell to move at each time slot. The leaf static node in each cell holds the sub table, so-called Hidden

State table ( HSTable ) with the following columns: previous hidden state (PHiddenState), current hidden state (CHiddenState),

next hidden state (NHiddenState), and next observation (nextObservation). 

In Fig. 4 , the initial probability is generated based on the patient’s daily tracking in the elderly house. The table has 8 ×
8 × 8 memory size at maximum. 

The maximum number of neighbors for each cell is eight. This happens because each room has eight rooms in neighbors.

Thus, in second-order HMM that each state is dependent on two previous states, it is multiplied by 8, two times. As we

mentioned earlier, we assume the number of hidden states equals to the number of the rooms in the monitoring area. 

A HS sub-table is forwarded to each leaf node. For each leaf node a , the sub-table contains those rows of the HSTable

for which their nextObservations column value is a (assume NHiddenState is sn ) in addition to the rows whose CHiddenState

value is equal to sn . 

3.3. Movement management 

In this section, we only focus on part of the mobility management that is related to movement prediction. Table 4

presents the movement management algorithm (movement detection, identifying the movement direction and recovery 

from false prediction parts). The following sub-sections correspond to the parts of the presented algorithm. 

3.3.1. Movement detection 

In order to detect the movement of a mobile sensor node, the candidate node sends a message to the mobile sensor node

in a specific time interval and computes RSSI. Whenever the RSSI of the message comes below a threshold, the candidate

node detects that the mobile sensor node is about to move (Line 1) of Table 4 . 

3.3.2. Identifying movement direction 

When the current candidate node detects that the mobile sensor node is about to move, it sends the current hidden state

value and the next hidden state (room) to the next probable cell (new candidate node). These two values are required to

predict the direction of the patient’s next movement. According to these two values, the current candidate node determines
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Table 5 

The parameters of the experiment. 

Mobility model Mobile sensor node speed (m/s) Mobile sensor node count Mobile sensor node direction 

Random 0 .5–10 128 0–2 π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the new candidate node by looking up in HSTable for determining the next hidden state (room) and the ID of the new candi-

date node of the mobile sensor node in the next movement. The previous candidate node sends NN message to the predicted

candidate node (Line 2) to wake it up. The current candidate node also sends the current and next hidden state value to

the predicted candidate node. When the predicted candidate node receives NN message, it sends a CandidateReq message to

the mobile sensor node (Line 3). If the mobile sensor node receives the CandidateReq message it sends CandidateRes to the

predicted candidate node and it sends NNACK message to the previous candidate node (Line 5–6). 

3.3.3. Recovery 

To compensate false prediction, DMP-IOT contains an innovative recovery mechanism, depicted in Table 4 . When the

mobile sensor node does not receive a message from the predicted candidate node for specific time threshold, it detects

a false prediction and the recovery process is started (line 9–12). If the mobile sensor node does not receive CandidateReq

message during a specific time, it broadcasts FindCandidReq message containing the ID of previous candidate node (Line

7–8). The neighboring static nodes that receive this message, considering that the RSSI of the message is above a certain

threshold, send FindCandidRes to the mobile sensor node. At the mobile sensor node side, a node with greatest RSSI is chosen

(based on the received messages ) to be a new candidate node of the mobile sensor node and sends NNACK message to the

previous candidate node (Line 9–12). The previous candidate node sends the previous and current hidden state (room) to

the new identified candidate node as this data is required for predicting the next cell in the next movement of the mobile

sensor node (Line 13). 

4. Simulation 

To evaluate DMP-IOT, we have simulated the environment using Cooja [27] . There are various COTS operating systems

implemented for low-power wireless networks. Among them, TinyOS and Contiki are the most popular as they provide var-

ious functionalities [28] . The Contiki operating system is initially designed for IP-based networks and it is well-known as

Internet of Things emulator [29] . It has more facilities and extensions for IP-based protocols. Cooja is Java-based simula-

tor developed for simulations of sensor nodes running Contiki operating system. The simulation parameters are shown in

Table 5 . 

The movement data of a given patient is synthetically generated after studying the lifestyle of several elders. Whenever

a patient moves from one cell to another, the data is sent to the gateway. Thus, the time resolution is the minimal duration

of staying in one cell. For each static sensor node at the center of each cell, the current candidate node, the next candidate

node after patient’s movement, their corresponding rooms, and a time stamp is sent to the gateway at training phase. Each

static sensor sends data to the predecessors in DMP-Tree until it reaches the gateway. 

At the first step, we compare the accuracy of second-order HMM movement prediction with the ANN. The input of the

ANN is the last cell where the patient is entered, the number of considered hidden layers is 7,8, and 9, and the output

of the neural network is the predicted cell where the patient will choose in the next movement. The learning rate is 0.2,

and the number of backward steps is 10. The best prediction accuracy is achieved when the number of hidden layers is

set to be 8. Fig. 7 shows the total prediction accuracy regarding different cell sizes for both HMM and ANN. The cell size

demonstrates the granularity of observations. As it is depicted in Fig. 7 , the best prediction accuracy that we achieved is

when the cell size is about 50 m 

2 . With this cell size, the average prediction accuracy that we achieved is 83%. With the

same cell size, the best achieved prediction accuracy is 94%. The best result is obtained when the lifestyle of the moving

object in the training phase is very similar to the one during the prediction period. As shown in Fig. 7 , if the cell size is too

small or too large, the false prediction rate increases. If the cell size becomes too small, it means that in each room there

could be at least two cells. Since in each state (room), the probability of a single observation (cell) is more than the other

cells, a larger number of cells in a room results in a higher false prediction rate. If the cell size becomes larger, predicting

the next movement becomes more complicated as the next movement covers a larger area and predicting the exact location

in larger area results in increasing the false prediction rate. Furthermore, larger cells may not be covered by a single static

node at the center of the cell, and it also increases the false prediction too. 

We have compared the handoff cost of DMP-IOT with MLOWPAN [9] . The reason to choose MLOWPAN is that it has a

tree-like scheme like our solution and like us, the routing is done in the link layer. The movement prediction in MLOWPAN

is based on AOA, assuming that each node knows its position as well as other neighbors’ positions. 

Fig. 8 shows handoff delay in terms of prediction accuracy. Our proposed method has less delay compared to MLOWPAN.

This happens because if the patient suddenly changes his movement direction, The mobility management approaches that

use AOA method (such as MLOWPAN) may fail to detect the correct direction. Furthermore, due to noise and environmental

factors, the direction prediction of AOA method may not always be correct. It is worth mentioning that it needs to exchange
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Fig. 7. Total prediction accuracy regarding cell size. 

Fig. 8. Delay regarding movement prediction accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

more packets for computing the correct orientation. The cost of a wrong prediction includes delay and packet loss because

the right direction of the mobile sensor node is lost. 

Fig. 9 shows packet loss in terms of prediction accuracy. As shown in Fig. 9 , due to the delay caused by false prediction,

whenever the false prediction increases, the packet loss grows, as well. The wrong prediction happens when the patient

changes the direction suddenly or when the speed is high, and there is not enough time that AOA runs, accurately. Noise

and environmental factors also have a great negative impact on the AOA method. But due to our recovery mechanism, this

delay is limited, and it is less than MLOWPAN algorithms. 

Fig. 10 shows handoff cost (delay) regarding the patient’s speed. As shown in the figure, our algorithm works significantly

better than MLOWPAN as the speed of patient increases. This happens because in high speeds, determining the direction of

movement with AOA method cannot be accurate. 

Fig. 11 shows the total handoff cost in bits regarding false prediction rate. As can be seen, if the false prediction rate

grows, the handoff cost increases as well. This happens because the recovery procedure is invoked more frequently, which

consequently causes more message exchanges between the mobile sensor node and the corresponding neighboring leaf

static nodes. However, the handoff cost is less than MLOWPAN since AOA also depends on environmental factors including

noise. For MLOWPAN, this cost is constant because it does not have a recovery mechanism whenever false prediction of the

movement direction of mobile sensor nodes occurs. 
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Fig. 9. Packet loss regarding movement prediction accuracy. 

Fig. 10. Handoff cost (delay) regarding s peed. 

 

 

 

 

 

 

 

 

 

 

Fig. 12 shows the average prediction accuracy regarding different time resolutions for each of HMM and ANN methods.

We can sample the patient’s position its cell number, in different time resolutions. The minimum value between the sam-

pling time and the patient’s presence duration in a cell is defined as time resolution. In this paper, we have sampled the

patient positions whenever he goes to another cell. But the resolution can be larger or smaller. As it is shown in Fig. 12 ,

if the time resolution becomes higher, the accuracy would be higher, too. The accuracy of HMM is higher than ANN. This

happens because unlike ANN, the sequence of movements is considered in HMM. 

4.1. Analytical verification 

As mentioned in the previous section, we trained the model with the data of the patient’s movement in 31 days and we

have gained 83% accuracy, in average ( μ). In this section, our aim is to show that the accuracy of the movement prediction

would not go below 83% if we increase the population size. Here, the population is the number of days that the accuracy

is measured base on. In other words, we want to show that our result is valid for the population by null hypothesis testing

technique. To this end, we determine two speculations ( H 0 ) and ( H 1 ) and the data is analyzed with the goal of determining

whether the stated speculation is unreasonable. We define H 0 and H 1 as Eq. (20) : 

H 0 : μ ≤ 83 
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Fig. 11. Handoff cost regarding false movement prediction. 

Fig. 12. Prediction accuracy in terms of time resolution. 

 

 

 

 

 

 

 

H 1 : μ > 83 (20) 

The question is: is there an empirical evidence indicating that the speculation ( H 0 ) is probably incorrect? If we prove that

( H 0 ) is incorrect, then the alternative speculation ( H 1 ) which is our correct speculation, could be verified [30] . As we do

not know the variance of the whole population, the distribution of our population obeys t − St udent . We run the prediction

scheme for thirty patients, hence n = 30 . We assume Type I error α to be 0.01%. According to Student ’s t -distribution, t

distribution with degree of freedom 29 and error 0.01 is 2.462. The t − St udent distribution is shown in Eq. (21) : 

t n −1 = 

X − μ
S √ 

n 

(21) 

The average accuracy and variance that we achieved for movement prediction of 30 patients is 85.6 and 4.69, respectively.

If we substitute the parameters in Eq. (21) , it would be 3.1 which is greater than 2.462. Therefore, H 0 assumption is not

correct and the prediction accuracy is more than 83%. The t − St udent distribution plot of our testing prediction accuracy is

shown in Fig. 13 . 
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Fig. 13. The T-distribution of prediction accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

In this paper, we have proposed a novel hierarchical network scheme for improving the cost and accuracy of detecting

the direction of mobile sensor nodes’ movement as part of the mobility management in IOT safety critical applications like

health-care. The aim is to achieve a data distribution scheme which predicts the movement direction of mobile sensor nodes

while simplifying routing and forwarding data of the mobile sensor node to/from the gateway. The prediction scheme is

based on second-order HMM that is trained with patient’s tracking data inside a building. Our proposed scheme reduces the

handoff delay compared to earlier works where RSSI is measured for detecting the direction of movement. DMP-IOT removes

the need for specific hardware (directional antennas, antenna arrays, etc.) which are alternative solutions for determining

the movement direction (AOA). Unlike directional antenna, DMP-Tree is capable of tolerating the failure of static nodes. The

proposed algorithm decreases handoff cost compared to the case that the movement direction is done based on RSSI or AOA

algorithms. We gain 83% prediction accuracy on average, and we have also decreased the handoff cost 25% at a minimum,

compared to the case that no prediction is made. To offset the false prediction, the suggested recovery mechanism prevents

the mobile sensor node disconnection from the network. 

In traditional WSNs, the current candidate node should communicate with the nodes in the neighboring cells to deter-

mine the direction of the movement imposing considerable overhead and power consumption of nodes. With the proposed

movement prediction scheme, there would be no need for communication between candidate nodes. DMP-IOT eliminates

the communication cost between the current and new candidate node. Furthermore, with accurate movement prediction of

the mobile sensor node, the power consumption of mobile sensor node(s) as well as handoff delay significantly decreases.

Since each leaf node maintains only a small part of the model, the mobility prediction is fast and profitable. 

Future works include studying other factors that may have a positive influence on increasing the accuracy of the move-

ment prediction in health-care environments. The multi-user problem and the scalability of the approach could also be

considered, in the future. 
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