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A B S T R A C T

Energy-efficient clustering protocols are much sought specially for low-power, multi-functional Wireless Sensor
Networks (WSNs). With the application of Computational Intelligence (CI) based approaches, various
metaheuristics have been developed for energy-efficient clustering in WSNs. Artificial Bee Colony (ABC) is
one such metaheuristic which arose much interest over other population-based metaheuristics for solving
optimization problems in WSNs due to its ease of implementation and adaptive nature. However, its solution
search equation, which is poor at exploitation process, contributes to its insufficiency. Thus, we present an
improved Artificial Bee Colony (iABC) metaheuristic with an improved solution search equation to improve its
exploitation capabilities. Additionally, in order to increase the global convergence of the proposed metaheur-
istic, an improved population sampling technique is introduced through Student's-t distribution. The proposed
metaheuristic maintains a good balance between exploration and exploitation search abilities with least memory
requirements, moreover the use of first of its kind compact Student's-t distribution makes it suitable for limited
hardware requirements of WSNs. Further, an energy efficient clustering protocol BeeCluster based on iABC
metaheuristic is introduced, which inherits the capabilities of the proposed metaheuristic to obtain optimal
cluster heads (CHs) and improves energy-efficiency in WSNs. Simulation results show that the proposed
clustering protocol outperforms other well known protocols on the basis of packet delivery, throughput, energy
consumption, network lifetime and latency as performance metric.

1. Introduction

WSNs contain self-configured, distributed and autonomous Sensor
Nodes (SNs) that monitor physical or environmental activities like
humidity, temperature or sound in a specific area of deployment (Yick
et al., 2008). SNs can have more than one sensor to capture data from
the physical environment wherever deployed. A sensor with limited
storage and computation capabilities receives the sensed data through
analogue to digital Converter (ADC) and process it further for
transmission to a main location, known as Base Station (BS), where
the data can be analysed for decision making in variety of applications
(Al-Karaki and Kamal, 2004). Every node also acts as a repeater for
passing information of other sensor nodes to the sink. The most
important part of the sensor node is its power supply, which caters to
the energy requirements of sensors, processors and transceiver, how-
ever, its limited battery life can lead to premature exhaust of the
network due to excessive usage (Akkaya and Younis, 2005). As manual
recharging of batteries is not possible in complex deployments, efficient
use of the energy becomes a tough challenge in applications where

prolonged life of the network is required (Gaura, 2010). A typical WSN
scenario is shown in Fig. 1.

Researchers are heavily involved in designing of energy efficient
solutions, however, on the other hand network life can also be extended
by planning energy efficient approaches. It is well accepted that cluster
based hierarchical approach is an efficient way to save energy for
distributed WSNs (Abbasi and Younis, 2007; Tyagi and Kumar, 2012),
which increase network life by effectively utilizing the node energy, and
supports dynamic WSNs environment. In a cluster based WSN, SNs are
divided into several groups known as clusters with a group leader
known as Cluster Head (CH). All the SNs sense data and send it to their
corresponding CH, which finally send it to the BS for further proces-
sing. Clustering has various significant advantages over classical
schemes (Abbasi and Younis, 2007). First, data aggregation is applied
on data, received from various SNs within a cluster, to reduce the
amount of data to be transmitted to BS thus energy requirements
decrease sharply. Secondly, rotation of CHs helps to ensure a balanced
energy consumption within the network, which prevent getting specific
nodes starved due to lack of energy (Chamam and Pierre, 2010).
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However, the selection of appropriate CH with optimal capabilities
while balancing energy-efficiency ratio of the network is a well defined
NP-hard optimization problem in WSNs (Khalil and Attea, 2011).
Thus, Computational Intelligence (CI) (Kulkarni et al., 2011) based
approaches such as Evolutionary algorithms (EAs), Reinforcement
learning (RL), Artificial immune systems (AIS), and more recently,
Artificial Bee Colony (ABC) have been used extensively as population
based metaheuristic for energy-efficient clustering protocols in WSNs
(Das et al., 2009). Results prove that the performance of the ABC
metaheuristic is competitive to other population-based algorithms with
the advantage of employing fewer control parameters, simplicity of use
and ease of implementation (Sabat et al., 2010).

However, similar to other population-based algorithms, the stan-
dard ABC metaheuristic also faces some challenges, as it is considered
to have poor exploitation phase than exploration, moreover conver-
gence rate is typically slower, specially while handling multi-modal
optimization problems (Karaboga and Akay, 2009). Therefore, we
propose an improved Artificial Bee Colony (iABC) metaheuristic, with
an improved solution search equation, which will be able to search an
optimal solution to improve its exploitation capabilities and an
improved technique for population sampling through the use of first
of its kind compact Student's-t distribution to enhance the global
convergence of the proposed metaheuristic. Further, to utilize the
capabilities of the proposed metaheuristic, an improved Artificial Bee
Colony based clustering protocol, BeeCluster, is introduced, which
selects optimal cluster heads (CHs) with energy-efficient approach in
WSNs.

2. Related work

We present the vital contributions of the researchers based on
Classical as well as CI based metaheuristic approaches as follows: Low-
energy adaptive clustering hierarchy (LEACH) (Heinzelman et al.,
2002) is a classical clustering protocol which combines energy-efficient
cluster-based routing to application oriented data aggregation and
achieves better lifetime for a WSN. LEACH introduces algorithm for
adapting clusters and rotating CHs positions to evenly distribute the
energy load among all the SNs, thus enables self-organization in WSNs.

LEACH remains a paradigm architect for designing clustering proto-
cols for WSNs till date. HEED (Hybrid Energy-Efficient Distributed
clustering) (Younis and Fahmy, 2004), is another classical clustering
protocol that selects CHs based on hybridization of node residual
energy and node proximity to its neighbours or node degree thus
achieves uniform CH distribution across the network. HEED approach
can be useful to design WSN protocols that require scalability,
prolonged network lifetime, fault tolerance, and load balancing but it
only provides algorithms for building a two-level hierarchy and no idea
is presented for designing protocol to multilevel hierarchies. Power-
efficient and adaptive clustering hierarchy (PEACH) (Yi et al., 2007)
selects CHs without additional overhead of wireless communication
and supports adaptive multi-level clustering for both location-unaware
and location-aware WSNs but with high latency and low scalability thus
making it suitable only for small networks. T-ANT (Selvakennedy et al.,
2007), a swarm-inspired clustering protocol, exploits two swarm
principles, namely separation and alignment, through pheromone
control to obtain a stable and near uniform distribution for selection
of CHs. Energy-Efficient Multi-level Clustering (EEMC) (Jin et al.,
2008) achieves less energy consumption and minimum latency in
WSNs by forming multi-level clustering with minimum algorithm
overhead. However, it ignores the issue of channel collision which
happens frequently in wireless networks. Energy efficient heteroge-
neous clustered scheme (EEHC) (Kumar et al., 2009) selects CHs based
on weighted election probabilities of each node which is a function of
the residual energy and further support node heterogeneity in WSNs.
Multi-path Routing Protocol (MRP) (Yang et al., 2009) is based on
dynamic clustering with Ant colony optimization (ACO) metaheuristic.
A CH is selected based on residual energy of nodes and an improved
ACO algorithm is applied to search multiple paths that exist between
the CH and BS. MRP prolonged the network lifetime and reduces the
average energy consumption effectively using proposed metaheuristic.
Energy Efficient Cluster Formation protocol (EECF) (Chamam and
Pierre, 2010) presents a distributed clustering algorithm where CHs
are selected based on a three-way message exchange between each
sensor and its neighbours while possessing maximum residual energy
and degree. However the protocol does not support multi-level
clustering and considers small transmission ranges. Mobility-based
clustering (MBC) protocol (Deng et al., 2011) supports node mobility,
hence CHs will be selected based on nodes residual energy and
mobility, whereas a non-CH node maintains link stability with its CH
during set-up phase. UCFIA (Mao and Zhao, 2011) is a novel energy
efficient unequal clustering algorithm for large scale WSNs, which uses
fuzzy logic to determine node's chance to become CH based on local
information such as residual energy, distance to BS and local density of
nodes. In addition, an adaptive max–min ACO metaheuristic is used to
construct energy-aware inter-cluster routing between CHs and BS, thus
balances the energy consumption of CHs. Distributed Energy-Efficient
Clustering with Improved Coverage (DEECIC) (Liu et al., 2012) selects
minimum number of CHs to cover the whole network based on nodes
local information and periodically updates CHs according to nodes
residual energy and distribution. By reducing overheads of time
synchronization and geographic location information, it prolongs net-
work lifetime and improves network coverage. Energy-Aware
Evolutionary Routing Protocol (ERP) (Attea and Khalil, 2012) is based
on Evolutionary algorithms (EAs) and ensures better trade-off between
lifetime and node stability period of a network with efficient energy
utilization in complex WSNs environment. Harmony search algorithm
based clustering protocol (HSACP) (Hoang et al., 2014) is a centralized
clustering protocols based on Harmony search algorithm (HSA), a
music-inspired metaheuristic, which is designed and implemented in
real time for WSNs. It is designed to minimize the intra-cluster
distances between the cluster members and their CHs thus optimize
the energy distribution for WSNs. BeeSensor (Saleem and Farooq,
2012) is an energy-aware, event driven, reactive and on-demand
routing protocol for WSNs. Inspired from biological system of bees
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Fig. 1. A typical WSN scenario.
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and based on a typical bee agent model, which works with four types of
agents namely packers, scouts, foragers and swarms, BeeSensor
demonstrates good performance over other CI based protocols with
least communication and processing cost. One major drawback of the
protocol is its flat nature or non-cluster based approach, which affects
its performance on various fronts. Kuila and Jana (2014) present a
Linear/Nonlinear Programming (LP/NLP) formulation of energy effi-
cient clustering and routing problems in WSNs, followed by two
algorithms for the same based on a Particle swarm optimization
(PSO). Their proposed algorithms demonstrate their proficiency in
terms of network life, energy consumption, and delivery of data packets
to the BS. Further, some of the authors (Alfi and Khosravi, 2012,
Jordehi, 2015a,b; Jordehi et al., 2015; Wu et al., 2015; Heidari et al.,
2015) highlighted the need of CI based metaheuristic to diverse areas
of application. In Table 1, we present a relative comparison of these
protocols, highlighting their features and limitations for a better
insight.

It is very much clear from the comparison that classical as well as CI
based approaches have their own features as well as limitations.
Classical approaches are better in self-organization, load balancing
with minimum overhead but average in energy-efficiency whereas CI
based metaheuristic are shown to be good in energy-efficiency with
prolonged network life. Therefore, CI based metaheuristic approaches
need to be further explored and improved for energy-efficient solutions
in WSNs.

3. Artificial Bee Colony (ABC) metaheuristic

Original Artificial Bee Colony (ABC) metaheuristic is proposed by
Karaboga and Akay (2009) for optimizing multi-variable and multi-
modal continuous functions, which has aroused much interest in
research community due to its less computational complexity with
the use of few number of control parameters. Moreover, optimization
performance of ABC is competitive to the well-known state-of-the-art
meta-heuristics (Karaboga and Basturk, 2008). In ABC, there are three
type of bees: employed bees, onlookers and scout bees (Zhang and Wu,
2011). The employed bee carries exploitation of a food source and
shares information like direction and richness of food source with the
onlooker bee, through a waggle dance, there after onlooker bee will
select a food source based on a probability function related to the
richness of that food source, whereas scout bee explore new food
sources randomly around the hive. When a scout or an onlooker bee
finds a new food source, they become employed again; on the other
hand, when a food source has been fully exploited, all the employed
bees will abandon the site and may become scouts again. In ABC
metaheuristic, a food source corresponds to a possible solution to the
optimization problem and the number of employed bees is equal to the

number of food sources.
Below we present the detailed procedure of ABC metaheuristic in

different phases.

3.1. Initialization phase

ABC metaheuristic starts with initial population number (PN),
randomly generated through D-dimensional real set of vectors. Let
x x x x= { , , …… }ij i i iD1 2 is the i-th food source, where j D= 1, 2…… ,
which is obtained by:

x x rand x x= + (0, 1)( − )ij min max minj j j (1)

where xminj and xmaxj denote for lower and upper limits respectively.

3.2. Employed bee phase

In this phase, each employed bee obtains a new solution vij from xij
using expression:

v x ϕ x x= + ( − )ij ij ij ij kj (2)

where k is randomly obtained from SN{1, 2….. } and ϕij is a uniform
random number between [−1, 1]. The value of vij is obtained and
compared to xij, further if the fitness of vij comes out better than xij,
then the bee will forget the old solution and remember the new one.
Otherwise, it will keep exploiting xij.

3.3. Onlooker bee phase

All employed bees share the nectar information of their food
sources with the onlookers through a waggle dance performed at their
hive, after which they select a food source depending on a probability pi
as:

p
f

f
=

∑
,i

i

n
SN

i=1 (3)

where fi is the fitness of xij. Onlooker bee chooses a food source with
higher fitness and search xij according to Eq. (2), now if the new
solution has a better fitness, it will replace xij.

3.4. Scout bee phase

After a number of trials, called Maximum cycle number (MCN), if a
solution cannot be improved further then food source is abandoned,
and the corresponding employed bee becomes a scout again. The scout
will then produce a new food source randomly by using Eq. (1) again.

Table 1
Relative comparison of protocols in WSNs.

Protocol Classification Energy-efficiency Features Limitations

LEACH (Heinzelman et al., 2002) Classical Average Self-organization High communication cost
HEED (Younis and Fahmy, 2004) Classical Average Low communication cost High latency
PEACH (Yi et al., 2007) Classical Average Load balancing High latency, low scalability
T-ANT (Selvakennedy et al., 2007) Computational Intelligence Good Fast convergence, low overhead Low coverage
EEMC (Jin et al., 2008) Classical Average Minimum overhead, low latency Only uniform node distribution
EEHC (Kumar et al., 2009) Classical Good Support node heterogeneity Low scalability
MRP (Yang et al., 2009) Computational Intelligence Good Prolong network lifetime Need parameters adjustment
EECF (Chamam and Pierre, 2010) Classical Average Prolong network lifetime Low transmission range
MBC (Deng et al., 2011) Classical Average High node mobility, low packet loss High communication cost
UCFIA (Mao and Zhao, 2011) Computational Intelligence Good Prolong network lifetime Need parameters adjustment
DEECIC (Liu et al., 2012) Classical Average Better network coverage Low scalability
ERP (Attea and Khalil, 2012) Computational Intelligence Average Better network lifetime Non-cluster based approach
HSACP (Hoang et al., 2014) Computational Intelligence Good Fast convergence No load balancing
BeeSensor (Saleem and Farooq, 2012) Computational Intelligence Good Low processing cost Non-cluster based approach
PSO (Kuila and Jana, 2014) Computational Intelligence Good Better packet delivery Network overhead
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4. Artificial Bee Colony variants

Various modifications have been proposed to inculcate efficiency in
the existing original version of the ABC metaheuristic. One of the
factors which affect the outcome of the metaheuristic is influenced by
its solution search equations and thus requires many modifications.
Advising an improved solution search equation tries to set a balance
between the exploitation and exploration capabilities of the metaheur-
istic. Gao and Liu (2011) introduced search equations which are based
on Differential evolution (DE) (Ferrante Neri, 2001) algorithms to
solve numerous real-world optimization problems

v x ϕ x x= + ( − )ij bj ij ij rj (4)

v x ϕ x x= + ( − )ij r j ij ij r j1 2 (5)

where ϕi j, is a uniform random number and xr j, is the jth component of
a random solution. In addition, Gao et al. (2012) introduced another
variant later as

v x ϕ x x= + ( − )ij bj ij r j r j1 1 (6)

Other search equations are proposed by Abro and Mohamed-Saleh
(2012) and Gao et al. (2013):

v x ϕ x x= + ( − )ij r j ij r j r j1 2 3 (7)

v x ϕ x x ψ x x= + ( − ) + ( − )ij bj ij r j r j ij r j r j1 2 3 4 (8)

v x ϕ x x ψ x x= + ( − ) + ( − ),ij bj ij r j r j ij sbj ij1 2 (9)

where xsbj is the jth coefficient of the second best solution. However,
the effectiveness of these DE based equations critically depends on the
appropriate setting of population size and strategy parameters.
Therefore, to obtain optimal solution, the parameters setting must be
required.

These equations are further modified in Li et al. (2013) into Eq.
(10), where wij is the relative weight and θ1, θ2 are parameters to
control step size:

v w x ϕ θ x x ψ θ x x= + ( − ) + ( − )ij ij bj ij ij rj ij bj ij1 2 (10)

Although the above-mentioned solution search equation may refine
the exploitation process using two different control parameters some-
times leads to oscillation.

The search equations introduced above can be utilized in onlooker
bee phase as well, however in that case neighbourhood search will be
performed on most anticipating solutions with best fitness.

Scout bee phase also witnessed some improvements (Guo et al.,
2011) in the following form of new solution search equations:

v x ϕ x x= + ( − )ij ij ij bj ij (11)

v x ϕ x x= + ( − )ij ij ij sbj ij (12)

In addition, some improved versions of the ABC metaheuristic
(Akay and Karaboga, 2012) include some parameters, like Modification
Rate (MR) and Scale Factor (SF), MR controls the neighbourhood
search whereas SF controls the length of the search.

However, most of the above-mentioned works do not control the
adaptation of the population and do not specify any means to improve
sampling space, which is a significant measure to improve the effec-
tiveness of ABC metaheuristic.

5. Author's contribution

The main contributions of this paper are listed as follows:

1. Improved Artificial Bee Colony iABC( ) metaheuristic: In an attempt
to improve the convergence rate and attain a perfect balance
between exploitation and exploration capabilities of existing ABC

metaheuristic, we propose an improved Artificial Bee Colony iABC( )
metaheuristic with better sampling technique using Student's-t
distribution; a compact probability density function (cPDF), which
requires only one control parameter to be stored on memory.
Student's-tdistribution is being introduced first time from the widely
acclaimed family of Estimation of Distribution Algorithms (EDAs)
framework. Further, an improved solution search equation named
ABC/rand-to-opt/1 is proposed, which is motivated by the existing
Differential evolution (DE) family framework, and educes an optimal
solution from the current best solutions thus improving convergence
rate of the proposed metaheuristic.

2. BeeCluster – an improved Artificial Bee Colony based clustering
protocol: Utilizing capabilities of the proposed metaheuristic, we
introduce BeeCluster, an improved Artificial Bee Colony based
clustering protocol for optimal cluster head (CH) selection, which
is a well identified NP-hard optimization problem in WSNs.

6. Improved Artificial Bee Colony iABC( ) metaheuristic

Like standard ABC metaheuristic, its variants too face some
challenges, like the convergence rate is typically slow since they find
difficulty in choosing the most promising search solution, while solving
complex multi-modal optimization problems. To overcome these
limitations we propose an improved Artificial Bee Colony iABC( )
metaheuristic with an improved initialization phase for better sampling
and improved solution search equation, named ABC/rand-to-opt/1
with optimal search abilities. The details of the proposed metaheuristic
are as follows.

6.1. Improved initialization phase

Population initialization is an important step in evolutionary
algorithms as it can affect the convergence rate and quality of the final
solution. Moreover, a large amount of the memory is needed either to
store the trial solutions or control parameters of the problem. To
reduce the memory requirements, the concept of virtual population has
been introduced (Mininno et al., 2008) through family of Estimation of
Distribution Algorithms (EDA) (Larranaga and Lozano, 2001) frame-
work by considering compact probability density functions (cPDFs).
Therefore, we propose Student's-t distribution (Walck, 2007); a cPDF
which needs only one vector to be stored in the memory thus reduces
storage and steps-up convergence rate. The proposed distribution can
be described by Eq. (13) where f x( )ij is the value of the cPDF
corresponding to variable xij, the (−∞, ∞) domain of the proposed
cPDF is truncated to [−1,1] and B represents a Beta function. By
applying this cPDF, only vector κ needed to be stored on memory. This
cPDF is being introduced first time in population-based metaheuristic
due to its compact nature:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

f x

x
κ

κ B κ
( ) =

1 +

1
2

,
2

ij

ij
κ2 −( +1)/2

(13)

Further, we suggested a new alternative with Cumulative distribu-
tion function (CDF) of the proposed Student's-t distribution, where a
pair of cPDFs that share the same parameters is derived through
Student's-t CDF by taking integral from x− to x with respect to dx for
function f x( ) as mentioned below:

P.S. Mann, S. Singh Engineering Applications of Artificial Intelligence 57 (2017) 142–152

145



⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫ ∫

∫

∫

∫

f x dx
κ B κ

x
κ

dx

κ B κ
x
κ

dx

κ B κ
x κ x

x κ x
dx

B κ
x x dx

B κ
B κ

B κ I κ I κ

( ) = 1
1
2

,
2

1 +

= 2
1
2

,
2

1 +

= −2
1
2

,
2

2 ( 1 − )

= 1
1
2

,
2

(1 − ) = 1
1
2

,
2

2
,

1
2

−
2

, 1
2

= 1 −
2

, 1
2

= 1
2

,
2

x

x

x

x κ

x κ

κ κ x κ

κ κ x
κ

κ
κ x

κ
κ x

x
κ x

− −

2 −( +1)/2

0

2 −( +1)/2

1

/ + +1/2

2

/ +

1
−1/2 /2−1

+ + +

2

2

2 2
2

2 (14)

where I corresponds to incomplete Beta function. Therefore, the search
space corresponding to variable xij is now divided into [−1,0] and [0,1]
and instead of applying one cPDF, a pair of cPDFs Pj(x) (15) and Q x( )j
(16) are employed for better sampling based on a parameter ξ that
controls the probability of sampling:

⎛
⎝⎜

⎞
⎠⎟P x I κ x( ) = 1

2
− 1

2
1
2

,
2

for − 1 < < 0j x

κ x+
ij

ij

2

2 (15)

⎛
⎝⎜

⎞
⎠⎟Q x I κ x( ) = 1

2
+ 1

2
1
2

,
2

for 0 ≤ < 1j x

κ x+
ij

ij

2

2 (16)

These equations are employed to refine the sampling process which
ultimately enhance the convergence rate of the proposed metaheuristic
globally.

6.2. Improved solution search equation

Differential evolution (DE) (Storn and Price, 2010) employs most
powerful stochastic real-parameter algorithms to solve multi-modal
optimization problems with the optimal combination of population size
and their associated control parameters. In other words, a well-contrive
parameter adaptation approach can effectively solve various optimiza-
tion problems and convergence rate can improve further if the control

parameters are adjusted to appropriate values with improved solution
search equations at different evolution stages of a specific problem.
There are various DE variants which are different in their mutation
strategies but DE/rand-to-best/1 (Das and Suganthan, 2011;
Gonuguntla et al., 2015) is one of its kind which explore best solutions
to direct the movement of the current population and can effectively
maintain population diversity as well:

DE rand to best v x SF x x SF x x/ − − /1: = + ( − ) + ( − )t t bes t r s1 2 (17)

where SF1 and SF2 are scaling factors for neighborhood search.
Inspired by this DE variant (17) and inculcating properties of the
ABC metaheuristic, we propose a new solution search equations ABC/
rand-to-opt/1 as follows:

ABC rand to opt v x ϕ x x ψ x x/ − − /1: = + ( − ) + ( − )ij ij ij opt j ij ij r j r j, 1 2

(18)

where r1 and r2 are random variables from SN1, 2,…, , xopt is the
optimal individual solution with optimal fitness in the current popula-
tion with ϕij and ψij being scaling factors.

The proposed solution search equation ABC/rand-to-opt/1, which
utilizes the information of only optimal solutions in the current
population, can improve the convergence rate of the proposed meta-
heuristic.

To increase the multifariousness of the population further, a
crossover operation is performed as:

⎧⎨⎩u
v r CR
x

=
if [0, 1] ≤ ,
otherwiseij

ij

opt j, (19)

Then a selection operation will be performed as:

⎧⎨⎩x
u f u f x
x

=
if ( ) ≤ ( ),
otherwisei j

ij ij ij

opt j
,

, (20)

where f x( )ij is the fitness function, if the new solution seems to have
high fitness value, then it replaces the corresponding old solution;
otherwise the old solution is retained in the memory. Therefore, with
the proposed improved solution search equation, optimal solution is
obtained with optimal exploration and exploitation ability thus con-
tributing to a better convergence rate.

We have evaluated the convergence rate of our proposed iABC
metaheuristic with the standard ABC metaheuristic using set of eight
scalable benchmark functions f1 to f8, where functions f1 to f4 are uni-
modal and functions f5 to f8 are multi-modal functions as shown in
Table 2.

Graphs (Figs. 2 and 3) show that the proposed iABC metaheuristic
convergence fast with optimal or closer-to-optimal solutions on the
uni-modal as well as complex multi-modal functions over to its
standard ABC variant. Therefore, the proposed metaheuristic can
improve searching abilities, increase convergence rate and possess

Table 2
Benchmark functions used in experiment.

Function Search range

f x x( ) = ∑i
n

i1 =1
2 [−100, 100]n

f x ix( ) = ∑i
n

i2 =1
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f x x( ) = ∑ | |i
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i
i

3 =1
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f x x x( ) = ∑ | | + ∏ | |i
n

i i
n

i4 =1 =1
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Fig. 2. Convergence rate of iABC.
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more computational efficiency.

7. BeeCluster – proposed clustering protocol

We inherit the capabilities of our proposed metaheuristic to solve
well known NP-hard optimization problem of energy-efficient cluster-
ing in WSNs by proposing BeeCluster, an improved Artificial Bee
Colony based clustering protocol with an optimal CH selection ability.
Additionally, we also determine the optimal location of the BS through
analytical evaluation of energy equations, which reduce the energy
consumption of the network and help to enhance the network life of
existing WSN.

7.1. Network model

The network model is based on following notations in our proposed
work:

1. S is the set of sensor nodes S s s s= { , , …… }n1 2 , which are randomly
distributed over a geographical area of defined dimensions m m× ,
whereas sn+1 denotes the BS. Each sensor node has a communication
radius r.

2. L is the set of bidirectional wireless links between two sensor nodes,
where l L∈i j, represents wireless link between node si and sj.

3. Set of Cluster Heads (CH's) are denoted by S ch ch ch= { , , …… }ch k1 2
where Sch ∈ S.

4. Ds
s
i
j(max) denotes the maximum distance between a senor node si

and sj which is calculated by squared Euclidean distance between
them as

∑
D dis s s s

s S s s s s s s S

(max) = Max{ ( , )} | ∀ ,

∈ = ∥ − ∥ = ( − ) | ∀ , ∈

s
s

i j i

j i j i j i j
2 2

i
j

(21)

5. Ds
s
i
n+1(max) denotes the maximum distance between a senor node si

and BS which is calculated by squared Euclidean distance between
them as

∑
D dis s

s s S s s s s s S

(max) = Max{ ( ,

)} | ∀ ∈ = ∥ − ∥ = ( − ) | ∀ ∈
s
s

i

n i i n i n i+1 +1
2

+1
2

i
n+1

(22)

6. Ds
ch
i

j(max) denotes the maximum distance between a senor node si
and cluster head chj which is calculated by squared Euclidean
distance between them as

∑
D dis s ch s

ch S s ch s ch s ch S

(max) = Max{ ( , )} | ∀ ,

∈ = ∥ − ∥ = ( − ) | ∀ , ∈

s
ch

i j i

j i j i j i j
2 2

i
j

(23)

7. Dch
s

j
n+1(max) represents the maximum distance between a cluster

head chj and BS, is calculated by squared Euclidean distance
between them as

∑
D dis ch

s j S ch s ch s j S

(max) = Max{ ( ,

)} | ∀ ∈ = ∥ − ∥ = ( − ) | ∀ ∈

ch
s

j

n ch j n j n ch+1 +1
2

+1
2

j
n+1

(24)

8. Transmission power of a sensor node si is calculated as:

⎛
⎝⎜

⎞
⎠⎟P

k
γ T

dc
= 1 ·

tran
delay

α

i
(25)

where Tdelay is the sum of three delay components:

T T T T= + +delay que tran ack (26)

The first component, Tque, is the queuing delay; the second compo-
nent, Ttran, is the transmission delay; and the third one, Tack, is the
delay due to acknowledgement packet. γ, α, and dc are signal to noise
ratio, path loss exponent, and delay constraint respectively whereas k is
a power constant.

7.2. Energy model

The energy model is assumed to be same which has been used in
earlier work (Heinzelman et al., 2002) in which CHs receive data
packets from SNs for aggregation but include an additional acknowl-
edgment packet (ACK) in return to the source node after receiving a
correct packet. This is first time we incorporate the significance of
energy consumption by the exchange of a ACK in WSNs. The radio
hardware which include a transmitter dissipates energy to run trans-
mitter radio electronics and power amplifier whereas the receiver
dissipates energy to run the receive radio electronics as shown in Fig. 4.

Therefore, the energy consumption for transmission of l bits of data
is composed of three parts: the energy consumed by the transmitter
Etrans, by the receiver Erec and by the ACK packet exchange Eack:

E l d E l d E l d E( , ) = ( , ) + ( , ) +total trans rec ack (27)

now, energy consumed for transmitting l bits of data is given by:

E l d l E E l d( , ) = · + ( , )trans elec amp (28)

further, if the distance between transmitter, and receiver is d, then

⎪

⎪⎧⎨
⎩

E l d
lE l d d d
lE l d d d

( , ) =
+ ϵ if < ,
+ ϵ if ≥ ,trans

elec fs

elec mp

2
0

4
0 (29)

where d0 is the threshold distance and to receive l bit message, the
radio spends E l d( , )rec as follows:

E l d l E( , ) = ·rec elec (30)

Energy consumed for ACK packet exchange is given by

E τ E E= ( + )ack ack trans rec (31)

where τ =ack
l

l
ack is the ratio between length of acknowledgement packet

to data packet.
Therefore, the residual energy of each senor node is calculated as:

Fig. 3. Convergence rate of ABC.

Fig. 4. Radio Model for energy analysis.
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E E E E E= − ( + + )res total trans rec ack (32)

If there will be n nodes uniformly distributed in an m m* field with k
clusters, then there will be n

k
nodes per cluster. Out of these, there will

be one CH node and remaining − 1n
k non-CH nodes.

Now energy consumed by a non-CH node is given by:

E l d E l d( , ) = ( , )non ch trans− (33)

E l d l E E l d( , ) = · + ( , )non ch elec amp− (34)

and energy consumed by a CH node is given by:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟E l d E l d n

k
l E n

k
l E n

k
E( , ) = ( , ) + − 1 · · + . + − 1ch trans elec da ack

(35)

where Eda is the energy consumed by CH for data aggregation at its
end.

Now, the total energy consumed in a cluster is given by:

⎛
⎝⎜

⎞
⎠⎟E E l d n

k
E= ( , ) + − 1cluster ch non ch−

(36)

Therefore, energy consumed in whole network per round is given
as:

∑E E j= ( )round
j

k

cluster
=1 (37)

7.3. Optimal CH selection phase

CH selection is one of the crucial task for cluster formation in WSNs
as it affects the overall performance of the network. CH will be
responsible for the collection of data coming from various SNs and
transmission of aggregated data to the BS. Selection of appropriate
node as a CH will remain a challenging multi-modal optimization
problem. Therefore, we propose an optimal CH selection algorithm
based on our proposed iABC metaheuristic for an improved energy-
efficient clustering protocol. The working of proposed algorithm is as
follows.

7.3.1. Initialization phase
The population number (PN) and corresponding food sources (SN)

are initialized along with control parameters Maximum cycle number
(MCN), control parameter ξ and Crossover rate (CR).

We employ the proposed improved sampling technique of iABC
metaheuristic to generate the i-th food source xij, for which we
generate r ∈ [0, 1] according to uniform distribution and obtain xij as:

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎛
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⎞
⎠⎟

x

I κ r ξ

I κ r ξ
=

1
2

− 1
2

1
2

,
2

if ≤ ,

1
2

+ 1
2

1
2

,
2

if > ,
ij

xij
κ xij

xij
κ xij

2

+ 2

2

+ 2
(38)

7.3.2. Fitness function derivation
Now, we construct a fitness function to evaluate the fitness of

individual food source of the population. There are three objectives in
our proposed CH selection algorithm, firstly the node elected as CH will
have maximum residual energy, i.e.

f E∝ Max( )i res (39)

Secondly, we ensure to minimize the maximum distance between
elected node as CH and BS with minimum transmission power to
transmit aggregated data from CH to BS:

f
D P

∝ 1
Min( (max) + )i

ch
s

tranj
n

i
+1

(40)

Aggregating Eqs. (39) and (40) as

f E
D P

∝ Max( )
Min( (max) + )i

res

ch
s

tranj
n

i
+1

(41)

f K E
D P

= Max( )
Min( (max) + )i

res

ch
s

tranj
n

i
+1

(42)

where K is the constant of proportionality, assuming K=1,

f E
D P

= Max( )
Min( (max) + )i

res

ch
s

tranj
n

i
+1

(43)

Therefore, Eq. (43) will determine the fitness value of each solution
of population.

7.3.3. Employed bee phase
Now each employed bee selects a new solution vij using proposed

improved search equation (19) of proposed iABC metaheuristic as:

v x ϕ x x ψ x x= + ( − ) + ( − )ij ij ij opt j ij ij r j r j, 1 2 (44)

The obtained value of vij is compared to xij and if the fitness of vij
comes out better than xij, the bee will forget the previous old solution
and retain the new optimal solution xopt j, found so far, otherwise, it will
keep working on xij.

7.3.4. Onlooker bee phase
Now, employee bee will share the information of their food source

with the onlooker bee, through awaggle dance performed at their hive,
each of whom will then generate a food source uij according to
distribution as:

⎧⎨⎩u
v r CR
x

=
if [0, 1] ≤ ,
otherwiseij

ij

opt j, (45)

where CR is the crossover rate, further fitness of generated food source
f u( )ij is calculated and compared with the previous food source as:

⎧⎨⎩x
u f u f x
x

=
if ( ) ≤ ( ),
otherwisei j

ij ij ij

opt j
,

, (46)

where f x( )ij is the fitness value of xij. Onlooker bee will then choose a
food source with higher fitness and conduct a local search on xij, if the
new solution has a better fitness, then it will replace xij with optimal
solution xopt j, and assigned as a CH, otherwise the old solution will be
retained.

7.3.5. Scout bee phase
Now, if the fitness cannot improve further, after a number of trials

then the corresponding employed bee becomes a scout to produce a
new food source randomly by using Eq. (38) again.

The detail Cluster Head (CH) Selection Algorithm is discussed as
below.

Optimal Cluster Head CH Selection Algorithm( )
Input:
PN Population number← ,
MCN Maximum cycle number← ,
D Dimension of vector to be optimized← ,
SN Food sources← ,
x Lower bound of each element←min ,
x Upper bound of each element←max ,
ξ Control parameter← ,

CR Crossover rate← .
Output:
Ch x←j opt j,
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begin
round ← 0
for i SN= 1 → do

Generate r according to uniform distribution∈ [0, 1] .
population initialization▹
if r ξ≤ then

Generate x according to PDF P x∈ [−1, 0] ( )ij j .

else
Generate x according to PDF Q x∈ [0, 1] ( ).ij j

Evaluate fitness f x( )i ij

trial s( ) ← 0
round ++

end if
end for
repeat
until
for i SN= 1 → do

Generate v according toij Eq. (44) Employed Bee Phase▹
Evaluate fitness f v( )i ij

round ++
if f x f v( ) < ( )i ij i ij then

x v←ij ij

f x f v( ) ← ( )i ij i ij

trial s( ) ← 0
else

trial s trial s( ) ← ( ) + 1
end if

end for
if round MCN== then

Memorize the optimal solution x achieved so far and exit repeat, opt j, .

Ch x←j opt j,

end if
repeat
until
for i SN= 1 → do OnlookerBeePhase▹

r rand← [0, 1]
if r CR≤ then

u v←ij ij

else
u x←ij opt j,

end if
Evaluate fitness f u and f x( ) ( )i ij i opt j,

if f u f x( ) ≤ ( )i ij i opt j, then
x u←i j ij,

if f u f x( ) > ( )i ij i opt j, then
x u←opt j ij,

f x f u( ) ← ( )i opt j i ij,

trial s trial s( ) ← ( ) + 1
end if

end if
if solution need to be abandoned
replace with a new solution produced using, Eq. (38)

ScoutBeePhase▹
round ++
end for
If round MCN== then

Memorize the optimal solution x achieved, opt j, .

Ch x←j opt j,

end if
end

7.4. Cluster formation phase

After selection of CHs, each CH will advertise a Join-Request (J-
REQ) message to all its neighbour nodes for cluster formation. Then
each non-CH node will join the nearest CH node based on squared
Euclidean distance between them (Eq. (24)) through a Join-
Acknowledgment (J-ACK) short message which will be transmitted
using a CSMA/CD MAC protocol, to become member of the cluster.
During this communication, all CH nodes must keep their receivers on
and listen to the channel. If a particular node receives multiple J-REQ
message from same CH then it discards the message to eliminate
duplicate frames. After receiving J-ACK messages from all the
surrounding nodes each CH must maintain a cluster member table
and create a TDMA schedule for each member node of the cluster for
data transmission. During cluster formation it is ensured that each
non-CH node must join a cluster under a CH to avoid node isolation.

7.5. Data transmission phase

After cluster formation, when TDMA schedule is communicated to
each member node for data transmission, SNs collect data and transmit
it to their CH during their allocated TDMA schedule. The non-CH
nodes can turn their radio transmitter off during other members
transmission turn to save energy consumption. After receiving all the
data, CH nodes aggregate it at its end using data aggregation
algorithms and route the aggregated data packets to the BS.

8. Simulation results and discussion

Now we evaluate the performance of proposed BeeCluster protocol
with the existing HSACP, PSO and LEACH protocols using ns-2
simulator. The protocols are simulated over two different BS position
scenarios to assess their behaviour towards packet delivery ratio,
throughput, energy consumption, network lifetime and average latency.
The simulation will be performed over standard MAC protocol with
Free space radio propagation and CBR traffic type, considering other
parameters as shown in Table 3.

In the first scenario WSN # 1, a network of sensor nodes ranging
from 100 to 700 is deployed randomly over an area of size 150*150 m2

with a BS, located at (75 m, 100 m ) within the network field, whereas
in the second scenario WSN # 2, a BS will be placed at position (100 m,
275 m) outside the network field. First, we execute the protocols to
compare Packet delivery ratio (PDR) in the network for both the
scenarios.

In scenario WSN # 1, Fig. 5 shows that the proposed protocol
delivers highest number of packets among its all peers, even at highest
density of nodes. BeeCluster delivers approximately 100% packets at
100 nodes in WSN # 1 scenario. Even in WSN # 2 scenario, Fig. 6
shows that BeeCluster has highest PDR among its peers. It is important
to mention that even when the BS is placed outside the network field, it

Table 3
Simulation Parameters.

Parameter Value

Terrain size 150 * 150 m2

MAC protocol 802.11
Radio propagation Free space
Traffic type CBR
ϵfs 8 pJ/bit/m

ϵmp 0.0015 pJ/bit/m4

Propagation limit −111 dBm
Receiver sensitivity −89
Data rate 3 Mbps
Packet size 5000 bits
Message size 300 bits
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Fig. 5. Packet delivery ratio in WSN # 1.

Fig. 6. Packet delivery ratio in WSN # 2.

Fig. 7. Throughput in WSN # 1.

Fig. 8. Throughput in WSN # 2.

Fig. 9. Energy consumption in WSN # 1.

Fig. 10. Energy consumption in WSN # 2.

Fig. 11. Network lifetime in WSN # 1.

Fig. 12. Network lifetime in WSN # 2.
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does not affect the performance of the proposed protocol, which deliver
the highest number of packets at BS.

Figs. 7 and 8 show that BeeCluster is delivering highest number of
packets per second even at highest number of nodes deployed in the
both the scenarios. LEACH is delivering the lowest number of packets
as it is a classical protocol and does not employ any optimization
algorithm. The throughput rate of HSACP and PSO is almost same in
both the scenarios but far behind BeeCluster which employs iABC
metaheuristic.

Fig. 9 shows that in scenario WSN # 1, energy consumption of the
proposed protocol is approximately 34%, 48%, and 69% less than
HSACP, PSO and LEACH protocols respectively, which is attributed to
the use of compact Student's-t distribution and improved solution
search equation to select optimal CHs, thus minimize energy con-
sumption in the network. Even in scenario WSN #2 (Fig. 10),
BeeCluster consumes 32% less energy as compared to its contender
HSACP, which clearly shows the effectiveness of the proposed meta-
heuristic iABC. In BeeCluster, optimal CHs are selected not only based
on their proximity to BS but also with the condition of minimum power
consumption in data transmission, moreover the SNs are assigned to
their nearest CH, thus consume less energy and as a result the overall
energy consumption of the network becomes lesser than other proto-
cols. In LEACH, all CHs are inevitably used as a relay node to forward
the data packets to the BS, therefore consume more energy.

Figs. 11 and 12 show that BeeCluster extends the average network
lifetime by approximately 47% and 56% compared to HSACP and PSO
in WSN # 1 and WSN # 2 respectively, which is the effect of nodes
surplus energy availability due to less computation and an optimal
selection of CHs with proposed metaheuristic. LEACH has smallest
network lifetime among its peers due to absence of a clear data
aggregation and communication framework, specially for WSN # 2
like scenarios.

The energy thus saved will prolong the network lifetime and the
nodes will be able to transmit data for a longer duration. In PSO, due to

unsymmetric data forwarding effects on the CHs, those near to the BS
will die quickly thus reduce network lifetime.

Figs. 13 and 14 compare the average latency in both scenarios after
number of pre-defined rounds. It is clearly visible that BeeCluster
delivers data packets with minimum latency in both the scenarios
among other protocols which ultimately increase reliability of the
network. In WSN #1, average latency decreases sharply with increase
in number of rounds in BeeCluster, which is due to the fact that the
proposed protocol delivers data packets to the BS with minimum relay
after calculating the optimal possible distance for the next hop. Also in
WSN #2, when the BS is located at a far distance from sensor nodes,
the proposed protocol will be able to deliver the data packets with
minimum delay successfully. In other protocols, data will be trans-
mitted to BS using maximum number of hop-count ultimately exhaust
the network with unnecessary end-to-end delay.

9. Conclusion

This paper presents BeeCluster, a clustering protocol for WSNs,
based on an iABC metaheuristic which uses first of its kind Student's-t
cPDF and DE inspired improved solution search equation ABC/rand-
to-opt/1 to improve exploitation capabilities as well as convergence
rate of existing ABC metaheuristic. The proposed protocol uses an
energy-efficient approach, which selects optimal CHs based on an
improved search equation and an efficient fitness function. We
evaluated the performance of the proposed protocol with other well
known cluster based protocols to prove its validness over various
performance metrics. Simulation results show that BeeCluster con-
sumes less energy as compared to other protocols and prolong network
life while delivering highest number of packets with minimum end-to-
end delay in diverse WSNs scenarios. In future, we want to implement
the network scenarios on real test bed of sensors with a specific
application domain.
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