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Abstract—We propose a multihop diffusion strategy for a sensor
network to perform distributed least mean-squares (LMS) estima-
tion under local and network-wide energy constraints. At each it-
eration of the strategy, each node can combine intermediate pa-
rameter estimates from nodes other than its physical neighbors via
a multi-hop relay path. We propose a rule to select combination
weights for the multi-hop neighbors, which can balance between
the transient and the steady-state networkmean-square deviations
(MSDs). We study two classes of networks: simple networks with
a unique transmission path from one node to another, and arbi-
trary networks utilizing diffusion consultations over at most two
hops. We propose a method to optimize each node’s information
neighborhood subject to local energy budgets and a network-wide
energy budget for each diffusion iteration. This optimization re-
quires the network topology, and the noise and data variance pro-
files of each node, and is performed offline before the diffusion
process. In addition, we develop a fully distributed and adaptive
algorithm that approximately optimizes the information neighbor-
hood of each node with only local energy budget constraints in the
case where diffusion consultations are performed over at most a
predefined number of hops. Numerical results suggest that our pro-
posed multi-hop diffusion strategy achieves the same steady-state
MSD as the existing one-hop adapt-then-combine diffusion algo-
rithm but with a lower energy budget.
Index Terms—Combination weights, convergence rate, dis-

tributed estimation, energy constraints, mean-square deviation,
multihop diffusion adaptation, sensor networks.

I. INTRODUCTION

D ISTRIBUTED estimation arises in a wide range of con-
texts, including sensor networks [1]–[3], smart grids [4],

[5], machine learning [6], [7], and biological networks [8]–[10].
Several useful distributed solutions have been developed for
this purpose, such as consensus strategies [2], [11]–[13], incre-
mental strategies [14], [15], and diffusion strategies [16]–[19].
The diffusion strategies are particularly attractive because they
are scalable, robust, fully-distributed, and endow networks with
real-time adaptation and learning abilities [19]. They have su-
perior stability ranges and transient performance compared to
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the consensus strategies when constant step-sizes are necessary
to enable continuous adaptation under varying network condi-
tions [20]. The mean-square stability of diffusion has also been
shown to be insensitive to topological changes caused by asyn-
chronous cooperation among the network nodes [21].
In each iteration of a diffusion strategy, each node obtains

intermediate parameter estimates from its neighbors,1 which
are those nodes within communication range of itself. We call
these neighboring nodes the physical neighbors of the node.
The communication cost per iteration of each node in a static
network is thus fixed, and the total communication cost can be
large if the diffusion algorithm converges slowly. To reduce the
number of communication links, [22] and [23] limit each node
to selecting only one of its neighbors for consultation based
on the neighbors’ current mean-square deviation (MSD) esti-
mates and a variance-product metric, respectively. Simulations
showed that in the steady state these two strategies outper-
form the probabilistic or gossip alternatives where a single
neighbor is randomly selected for consultation at each iteration
[24]–[26]. The [27] proposed a heuristic algorithm to discount
physical neighbors with large excess mean-square errors, while
[28], [29] suggested diffusing only a part of the intermediate
estimate vector at each iteration so as to reduce the amount of
information exchanged, and consequently the communication
cost. A game theoretic approach with provable stability was
proposed in [30] for each node to learn in a distributed manner
whether to diffuse its estimate based on a utility function that
captures the trade-off between its contribution and energy
expenditure. A similar idea was also presented in [31] with
numerical validation.
When designing or upgrading a cooperative sensor network,

the strategies in the aforementioned literature are unable to ac-
count for predefined node energy budgets even though they are
more energy-efficient overall. This prevents energy efficiency
planning even if we have knowledge about the network oper-
ating environment (which may be inferred periodically from
historical data). Moreover, as these strategies only allow a node
to exchange information with its physical neighbors, this limits
the estimation performance that a network can achieve. For ex-
ample, consider an undirected network, as shown in Fig. 1, in
which all edges have the same communication length, and the
data model, except for the node noise variances, is the same as
in the example in Section VI.A. Relying on one-hop commu-
nications, the traditional adapt-then-combine (ATC) diffusion

1If a node receives and incorporates an intermediate parameter estimate from
another node into its own estimate, we say that the former node consults the
latter node.
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Fig. 1. A toy example to motivate the use of multi-hop diffusion. Other data
used is referred to Section VI.A.

strategy [19] invokes 8 broadcasts2 per iteration and results in
an average steady-state network MSD of dB. In contrast,
if we allow two-hop consultations, then the steady-state network
MSD can be improved by 2 dB with the same number of broad-
casts, or kept the same with only 4 broadcasts by letting nodes
3, 6, and 7 broadcast their intermediate estimates, and node 3
relay the intermediate estimate from node 6 to nodes 1, 2, 4, and
5 at every iteration. In the latter case, the communication cost
per iteration is halved compared to the ATC diffusion strategy,
but the steady-state network MSD remains the same since “high
quality” information from node 6 is diffused to more nodes than
in the ATC strategy. Although the implementation complexity
is somewhat increased (node 3 needs to be programmed to re-
broadcast what it receives from node 6), this example shows
that to achieve an optimal network MSD-communication cost
trade-off requires the use of multi-hop diffusions.
In this paper, we consider diffusion estimation with local

and network-wide energy budgets per iteration, and the use
of multi-hop consultations, i.e., a node that is not a physical
neighbor can transmit its intermediate estimate to another node
via a relay path in the network within the same iteration step.
This is in sharp contrast to all aforementioned literature, which
considers only single-hop consultations in each iteration. Our
main contributions are the following:

i) We generalize the concept of single-hop diffusion from
physical neighbors to multi-hop diffusion from a set
of information neighbors. In particular, we propose a
multi-hop version of the ATC diffusion algorithm, which
we call mATC. We formulate and apply mATC to a dis-
tributed estimation problem with local and network-wide
energy constraints.

ii) For a given set of information neighbors, we provide a
rule to select combination weights for mATC that opti-
mizes an approximate trade-off between the convergence
rate of the algorithm and the steady-state network MSD.

iii) Given the network topology and data and noise variance
profiles of each node, we show how to select information
neighbors to minimize an upper bound of the steady-state
network MSD, subject to local and network-wide energy
budgets per iteration, in two network classes: simple net-
works with a unique transmission path from one node to
another, and arbitrary networks utilizing diffusion consul-
tations over at most two hops. We formulate the problem
as an offline centralized mixed integer linear program

2In this paper, a broadcast means communication of a node with all of its
directly reachable neighbors as defined in Section II.

(MILP), and show that the selection is invariant to ho-
mogeneous scaling of node observation noise variances.

iv) Our MILP requires knowledge of the network topology,
and data and noise variance profiles of each node, which
may be impractical in some applications. To overcome
these requirements, we develop an approximate dis-
tributed and adaptive optimization algorithm to select
the information neighbors for arbitrary networks uti-
lizing diffusion consultations over at most hops, in the
absence of a network-wide energy budget constraint.

The concept of multi-hop diffusion unifies non-cooperative,
distributed diffusion and centralized estimation strategies into a
single framework, and allows us to study the trade-offs amongst
these strategies easily. Our proposed strategy has the advantage
that it achieves good trade-offs between estimation accuracy
and predefined hard energy budgets, which the standard diffu-
sion strategy or the approaches in [22], [23], [27], [30] cannot
incorporate. This is also different from [26], which considers
average energy budget constraints, and single-hop diffusions.
As wireless sensor networks with renewable energy sources be-
come more popular in applications, energy constraints need to
be accounted for explicitly in the estimation algorithm [32]. We
also note that multi-hop diffusion is different from geographic
gossip [33] (or path averaging gossip [34]), which relies on ran-
domized pair-wise (or relay path-wise) cooperation that exploits
geographic knowledge (but not data and noise variance profiles)
of the network to achieve more efficient average consensus.
Different from one-hop information transmission in the

standard diffusion strategy, our proposed multi-hop diffusion
strategy requires information relaying. If each multi-hop re-
laying is to be completed within each diffusion iteration, as is
assumed in our analysis, this may require the nodes to take ob-
servations at a slower rate due to a longer communication delay
at each iteration. The extra delay, however, can be minimized if
one can perform the relaying over multiple diffusion iterations,
so that intermediate estimates of information neighbors more
than one hop away are combined only in a later diffusion
iteration (we call this asynchronous mATC). Our simulation
results in Section VI demonstrate that asynchronous mATC has
similar MSD performance as mATC.
A major drawback of our proposed MILP solution in contri-

bution (iii) is the need for a centralized optimizer and knowl-
edge of the network topology, and data and noise variance pro-
files. This typically holds only in applications in which the net-
work topology is static (e.g., in sensor networks used for struc-
tural health monitoring [35], [36]), and in which sensors’ data
and noise variance profiles do not change frequently. Each node
in the network monitors its empirical data and noise variances,
and trigger the centralized optimizer to re-calibrate the network
whenever a significant change in variance profile is detected.
Note however that even if the network is not re-calibrated, the
parameter estimation procedure does not diverge as a result, but
there is a loss in energy efficiency. Our proposed distributed and
adaptive procedure in contribution (iv) avoids these issues, but
works only in applications in which there are no network-wide
energy budget constraints. This last requirement can be some-
what mitigated by imposing sufficiently tight local energy bud-
gets at each node in the network design stage.
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This paper is an extension of our conference paper [37],
which assumes a simple network with a unique transmission
path from one node to another. We have extended the results to
cover a network with an arbitrary topology while restricting the
information neighbors to be within two hops away from a node.
We also derive valid inequalities by exploiting the problem
structures to enhance the MILP solution processes in both
network cases. To deal with large-scale networks, we further
present an efficient procedure for obtaining an approximate
solution. In addition, to overcome the limitation of searching
for a centralized solution, we develop a real-time algorithm that
yields an approximate, distributed and adaptive solution.
The rest of this paper is organized as follows. In Section II,

we introduce our data model and notations, and formulate
the energy-constrained distributed optimization problem. In
Section III, we introduce the concept of multi-hop diffusion
adaptation. In Section IV, we propose a combination weight
to optimize an approximate trade-off between the convergence
rate and the steady-state network MSD, and in Section V, we
show how to choose an approximately optimal set of infor-
mation neighbors for every node in two classes of networks
using an offline optimization, and also general networks with
only local energy budget constraints in an adaptive procedure.
Numerical results and conclusions follow in Sections VI and
VII, respectively.
Notations: The notation denotes the space of non-neg-

ative real numbers, denotes the cardinality of a discrete set
represents a vector of size with all entries equal to

one, is an identity matrix, is the transpose of the
matrix , and and are the largest eigenvalue and
the largest absolute eigenvalue of the matrix , respectively.
The operation denotes the Kronecker product of the two
matrices and . The relation means that the
matrix is positive (or negative) semi-definite, and sim-
ilarly means the matrix is positive (or
negative) definite. The notation denotes a column vector
in which its arguments are stacked on top of each other,
denotes a diagonal matrix constructed from its arguments. We
use boldface letters to denote random quantities (e.g., ) and
normal letters to denote their realizations or deterministic quan-
tities (e.g., ). The symbol denotes the expectation of the
random variable , and “s.t.” is abbreviation for “subject to”.

II. PROBLEM FORMULATION

We adopt the same notations as in [19], [20] for our problem
formulation. Consider a network represented by a directed graph

, where is the set of nodes, and
is the set of communication links between nodes.3 Node is

said to be a physical neighbor of node if either or
, and is said to be within the multi-hop neighborhood of

node if there is a path in from node to node . Let the
physical neighborhood of node be , and its multi-hop
neighborhood be . We have .
On the other hand, we say that node is within the reachable

neighborhood of node if there is a path in from node
to node . We say that node is directly reachable from node
if . We let be the set of directly reachable

neighbors of node , and be the reachable neighborhood of

Fig. 2. The different types of neighbors of a node.

node . We have . The various types of neighbors
are illustrated in Fig. 2.
At every iteration , each node is able to observe real-

izations of a scalar random process and a
vector random process with a positive definite co-

variance matrix, . The random processes
are related via the linear regression model [19]:

where is an parameter to be estimated, and
is measurement noise with variance , and assumed to be
temporally white and spatially independent, i.e.,

where is the Kronecker delta function. The regression data
are likewise assumed to be temporally white and spatially

independent. The noise and the regressors are as-
sumed to be independent of each other for all . All
random processes are assumed to be zero mean. The above data
model has been frequently used in the parameter estimation lit-
erature [19], and are useful in studies of various adaptive filters
[38].
The objective of the network is to estimate in a dis-

tributed and iterative way subject to certain energy constraints.
During the iterative estimation process, the energy cost of
node per iteration consists of sensing cost, computing cost
and communication cost (incurred to disseminate or relay
intermediate estimates to the physical neighbors of a node4).
While the sensing and computing costs are almost the same for
all nodes, the communication cost depends on the information
that is disseminated or relayed by a node in every iteration
and forms the major cost incurred in the estimation process.
For simplicity, we ignore the sensing and computing costs and
use the terms “energy cost” and “communication cost” inter-
changeably throughout the paper. Denote the communication
cost per iteration of a node as . The nodes estimate by
solving a constrained least mean-squares (LMS) problem:

(1)

3An undirected graph is treated as a directed graph by replacing each undi-
rected edge with two edges of opposite directions.

4We assume that the energy cost of receiving an estimate is negligible com-
pared to that of transmitting an estimate.
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where and are the node- and network-wide energy budgets
imposed in each iteration, respectively.
The ATC diffusion strategy solves (P0) without the energy

constraints by using the following update equations [18], [19]:

(2)

where is a positive step-size parameter, and are combi-
nation weights satisfying

Here, is the combination weight matrix. The
strategy consists of two steps, the adaptation step and the con-
sultation (also known as the combination or diffusion) step. In
the adaptation step, each node adapts its local estimate to an in-
termediate estimate by using the new data available, and
the consultation step combines the intermediate estimates from
the physical neighborhood of a node through a weighted sum
to obtain a local estimate for the current iteration. In this
paper, we consider only the ATC form of diffusion since it out-
performs other alternative diffusion strategies under mild tech-
nical conditions [20].
The ATC strategy however does not have the flexibility to

take into account the hard energy constraints in (1), because
for a given network, the ATC strategy invokes a fixed commu-
nication cost at every node in each iteration. Although an ATC
variant proposed in [26] uses controlled probabilistic on/off
links at each node to satisfy an average (and hence soft) energy
constraint in each iteration, it does not handle hard energy
budget constraints. This motivates us to consider a flexible
diffusion strategy, which allows multi-hop consultations under
predefined energy budgets.

III. MULTI-HOP DIFFUSION ADAPTATION

In this section, we extend theATC strategy by allowing a node
to consult any node in its multi-hop neighborhood. The resulting
mATC strategy uses the following update equations,

(3)

where the combination weights satisfy

(4)

The only difference between mATC and ATC is in the combi-
nation step: the node consults its multi-hop neighbors ,
which include the physical neighbors as a subset. If
, we say that node is an information neighbor of node (cf.
Fig. 2 for an illustration).
This simple modification to the ATC strategy generalizes

the diffusion concept to cover centralized estimation at one
extreme, and non-cooperative estimation at the other extreme.
This unifies the centralized, non-cooperative, and distributed
strategies into a single framework, which allows us to study the
trade-offs amongst them easily.

The mATC strategy inherits all stability and performance re-
sults of the ATC strategy because the generalization introduced
in the combination matrix does not affect the analysis. Specif-
ically, the network estimation is mean stable for any choice of
if and only if . The same condition holds for

mean-square stability if the step sizes are sufficiently
small. Interested readers are referred to [18]–[20] for proofs of
these stability results. Here we only summarize the mean-square
performance results of the mATC strategy as these will be used
in the sequel.
Denote the estimation error vector of an arbitrary node at

iteration as . Collect all error vectors and step-
sizes across the network into a block vector and block matrix in

and let . We further define the block diagonal
matrix and the block matrix with blocks of size

each, as follows:

Then, the mean network error evolves as .
For any Hermitian nonnegative-definite weighting matrix , we
have the following approximation up to first order in :

(5)

where with being the
initial estimation error, and

The recursive relation (5) can be used to compute the theoretical
transient and steady-state network MSDs.
By specifying as , the above variance

gives the MSD of the network estimate , which is an
average MSD across the network at the th iteration, i.e.,

. In particular, as the
steady-state network MSD is obtained from (5) as

(6)

The node and network MSDs are controlled by the quantities
and , both of which are dependent on the combination matrix
. Selection of the combinations weights can be done in

two steps:
Step 1: Given an arbitrary set of information neighbors for

each node to consult, we derive analytical forms of the combi-
nation weights that optimize the network performance.
Step 2: Given the analytical combination weights derived in

Step 1, we optimize the information neighbor set to be consulted
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by each node such that the network MSD is minimized subject
to predefined energy budget constraints.
The two steps together determine which nodes are consulted

by each node and to what extent it is weighted if a consulta-
tion happens. The next section presents a combination rule for
determining the weights in Step 1, while we discuss Step 2 in
Section V.

IV. SELECTING THE COMBINATION WEIGHTS

In this section, we aim to select the combination weight ma-
trix to optimize the steady-state networkMSD in (6), given ar-
bitrary information neighbors of each node in the network. The
optimization, however, does not admit an analytical solution and
has to be solved numerically in general, which prevents finding
an adaptive solution under varying network conditions. To keep
the adaptation ability of the network, we make a compromise by
seeking for an analytical solution that approximately minimizes
an upper bound of the steady-state network MSD, given by

The first inequality above uses the positive semi-definiteness
of the matrix and the last equality is due to the fact that

is necessary to ensure mean and mean-square
stability [18]–[20].
The upper bound can be minimized by minimizing

an auxiliary variable so that . This inequality is
equivalent to and the eigenvalue constraint

. This approach however does not admit a
closed-form solution. To obtain an explicit solution for the com-
bination matrix , we approximate and decompose the equiv-
alent problem into two subproblems: Firstly, we solve for an
approximate solution of by strengthening the eigenvalue con-
straint into . We can solve for an ap-
proximate solution of using the following semi-definite pro-
gram (SDP), which is derived in Appendix A:

(7)

where , which is independent of
the combination weight matrix to be optimized. The SDP is
convex and hence readily solvable by standard SDP solvers.
Secondly, given the solution of , we derive an analytical

solution of the weight matrix by minimizing
, which is an upper bound of the original eigenvalue

constraint. This leads to the optimization problem in (8).
Theorem 1: Suppose that the information neighbor set for

each node is is the solution of the
SDP (7), and . The combination weights that
solve the following optimization problem

(8)

are given as follows:

(9)

where the composite variance is defined by

(10)
Proof: Substituting the expression of into the objective

function of problem (8), we have

Therefore problem (8) can be decoupled into separate opti-
mization problems of the form:

from which (9) follows, and the proof is complete.
We call the closed-form solution of the combination weights

given in (9) as the “balancing rule”, since it optimizes a
trade-off between the diffusion convergence rate (measured
through ), and the steady-state network MSD (mea-
sured through ). This is further explained as follows.
We observe that the steady-state network MSD can be further

upper bounded by

(11)
where the two positive scalars and are given by

These two upper bounds can be shown to be minimized by
and , respectively. There-

fore the composite variance is a summation of theminimizers
of the two looser upper bounds in (11). Observing that
is an upper bound of , we can alternatively interpret
the term as an approximate minimizer of
the transient network MSD. The balancing rule can then be in-
terpreted as balancing between minimizing the steady-state and
the transient network MSDs, with the balance tuned by varying
the coefficient .
To apply the balancing rule (9), each node needs to know

the composite variances , which depend on the two
components of each se-
lected information neighbors. Without knowing them a priori,
each node needs to gather their estimates from its information
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neighbors and use them to update the combination rule adap-
tively. The desired estimates can be obtained as moving aver-
ages of their realizations using real-time data (a similar method
was used in [39] to obtain the adaptive relative-variance rule):

(12)

where the symbol indicates an adaptive estimate and and
are the estimates of the aforementioned two components of

. The quantity is a chosen discount factor, and
is a balancing coefficient usually chosen close to

one. The balancing coefficient can also be obtained through the
SDP in Theorem 1 by replacing the noise variances with em-
pirical estimates. This however requires sending the empirical
estimates to a central processor, which can be costly for the net-
work, and is therefore done only infrequently. By the adapta-
tion equation in (3), we can verify that

, and we arrive at an adaptive implementation
of the balancing rule:

(13)

Note that the estimates of each information
neighbor are transmitted to node before it applies the rule.
Remark 1: The balancing rule reduces to the relative-vari-

ance rule of [39] if the coefficient is set to 1. This implies
that the relative-variance rule minimizes the bound .
The balancing rule is also related to the two-phase rules pro-
posed in [40], where separate combination rules adopted for the
transient and the steady-state phases approximately minimize

and , respectively. In that case, a switching
point between the two-phase rules needs to be estimated online
by, e.g., using the technique developed in [41].

V. SELECTING THE INFORMATION NEIGHBORS

Given the closed-form combination weights derived in
the last section, we now proceed to optimize the informa-
tion neighbor set of each node so that the upper bound of
the steady-state network MSD, given as

, is minimized under predefined energy constraints.
With the combination weights given in (9), the cost function
in (8) becomes an explicit function of the composite vari-
ances , which can be further optimized by selecting
appropriate information neighbors for each node under the
energy budget constraints. This yields, after some algebraic
manipulations, the following optimization problem:

where indicates that the communica-
tion cost of node in one iteration depends on its multi-hop
neighbors and reachable neighbors since it may be required to
relay estimates from its multi-hop neighbors to its reachable
neighbors.
Problem (P1) is intractable in its current form because of the

unknown information neighbor sets and the im-
plicit communication costs for all

. To obtain a tractable form of (P1), we first introduce bi-
nary variables to represent the sets , and then model
the in-network communications to get an explicit expression for

. This turns out to be very complex if
the network has an arbitrary topology where there are multiple
paths from one node to another. To reduce the complexity and
make (P1) tractable, we consider two special cases separately:
• Case 1 (Simple topology): For any pair of nodes, there is
at most one directed simple path connecting them.

• Case 2 (Two-hop consultations): The network has an arbi-
trary topology but the information neighbors of every node
are restricted to be within two hops away.

In the sequel, we derive an explicit form of (P1) for each of
the two cases as anMILP, which is solved offline before running
mATC on the network. We also show that the general problem
(P1) admits an approximate and distributed solution that can be
obtained online if only local energy budget is imposed on each
node.

A. Explicit Formulation as an MILP

In this subsection, we introduce binary and auxiliary con-
tinuous decision variables to reformulate problem (P1) into an
MILP that is solvable using standard solvers.
Before reformulating (P1), we first derive an explicit expres-

sion for the communication cost by
introducing two classes of binary variables. The first class of
binary variables are the selection variables , for all

and , where if and only if node is
selected to be an information neighbor of node . We note that

if and only if . The second class of binary vari-
ables are the relay variables , for all and

, where if and only if node relays the infor-
mation originating from node . We have if and only if
node broadcasts its own intermediate estimate. We make the
following assumptions.
Assumption V.1: Every broadcast conveys information from

a single node, and incurs a communication cost (which may
be different for different nodes). All nodes having the broad-
cast node as a physical neighbor receives the information being
broadcast.
Assumption V.2: At every iteration, each node relays the

same piece of information at most once.
With the above two assumptions, the communication cost,

, of node in a single iteration is
equal to the number of intermediate estimates it needs to relay
and diffuse, multiplied by the energy cost incurred in each
broadcast, i.e.,

(14)
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where is the constant cost per broadcast by node . Note
that is a function of .
We now investigate the relationships amongst the relay vari-

ables and the selection variables and then reformulate
(P1) into an MILP, under the two special cases alluded to above.
1) Case 1 (Simple Topology): In this case, the unique di-

rected path from a node to a reachable neighbor is charac-
terized by a set of binary constants, , where

if and only if node is on the path from node to
node . Then, the selection variables and the relay variables

are related to each other as follows:

(15)

which implies that node relays node ’s information if and
only if node is consulted by some node , and node is
on the directed path from node to node . The bound by 1 in
the relation (15) is due to Assumption V.2, in which we assume
that node ’s estimate is relayed at most once by node in each
iteration. The above relation (15) can be further written in the
linear form (23) ahead.
The objective function of (P1) can be transformed into a

linear function by introducing a couple of linear constraints.
Using the selection variables , we express the objective
function equivalently as , where
the candidate information neighbor set is replaced by
the multi-hop neighbor set with the help of selection
variables. We then introduce auxiliary optimization variables

(16)

which allows us to rewrite the objective as , and to per-
form McCormick linearization [42] on the bilinear constraints

without loss of optimality.
Consequently, (P1) is equivalent to an MILP problem defined

in (17)–(29), which is called (P2) hereafter. The data and vari-
ables of problem (P2) are referred to Table I, which also con-
tains those used in the later problem (P3) for Case 2. Constraints
(18)–(22) arise from the linearization of the nonlinear objective
of (P1). Constraints (23) describe the relation between the relay
and the selection variables. Constraints (24) and (25) charac-
terize the energy costs and their budgets for the distributed esti-
mation in a single iteration.

(17)

(18)

(19)
(20)
(21)
(22)

TABLE I
SYMBOLS USED IN FORMULATING (P2) AND (P3)

(23)
(24)

(25)

(26)
(27)
(28)
(29)

Note that problem (P2) is solved offline before the mATC
diffusion procedure. It requires a centralized processor to have
prior knowledge of the network topology, and data and noise
variance profiles of every node, which restricts the frequency
that this optimization can be performed. This restriction is how-
ever alleviated to some extent by the following result.
Lemma 1: The optimal solution

for (P2) is invariant to a homogeneous scaling of the
composite variances for all .

Proof: Let the optimal solution of (P2) be
. If , for every

, is scaled by a constant to , then it is easy to verify
that the optimal solution becomes

, so that
remains unchanged. The lemma is now proved.
Lemma 1 shows that if changes in the data and noise vari-

ances happen uniformly over all network nodes, then the op-
timal information neighbor configuration remains unchanged.
In general, the offline or centralized optimization in (P2) is per-
formed infrequently, and is based on historical estimates of the
data and noise variance profiles maintained by every node in the
network.
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Fig. 3. The relay customer and server sets of a node. Node 5 is not a relay
customer of node 2 because it can reach all its reachable neighbors without node
2’s help. Node 3 is not a relay server of node 2 because none of its reachable
neighbors needs node 3’s help to obtain information from node 2.

2) Case 2 (Two-Hop Consultations): In this case, we do not
make any assumptions about the network topology but restrict
the selection of information neighbors to amongst the multi-hop
neighbors that are at most two hops away from each node. We
denote the set of neighbors of node within two hops away as

.
With the above restriction, each node is only able to relay in-

formation originating from its physical neighbors. We use to
denote the set of physical neighbors of node that have reach-
able neighbors who may need node to relay information to.
We call these the relay customers of node . On the other hand,
suppose that is a directed path so that node is
reachable but not directly reachable from node . Then, we say
that node is a relay server of node . Let denote the set of
relay servers of node . We have

which are illustrated in Fig. 3. Then, it is sufficient to define the
relay variables for all , and the
selection variables for all .
Next we model the relations between these two sets of vari-

ables. We note that, if node consults node , then firstly
node must broadcast its information and secondly, at least one
of its relay servers must relay the information to node if it is
two hops away from node . These observations are represented
mathematically by

(30)
(31)

The first inequality excludes because the inequality does
not hold in that case. The second inequality is defined for nodes
and that are two hops away from each other, because it is

trivially true due to the first inequality if the two nodes are one
hop away from each other. These two sets of inequalities give a
complete description of the relations between the relay variables
and the selection variables.
Consequently, the information neighbor selection problem

(P1) can again be reformulated into an MILP in the form of
(P2) with some changes: the constraints (23) are replaced with
the new ones in (30)–(31), the information neighbor set
is replaced with everywhere, and furthermore, the relay

variables are defined only for all . We name
the new formulation as (P3), to distinguish it from (P2).
Lemma 1 similarly holds for the MILP (P3). We also remark

that (P3) is applicable to a network having the simple topology
assumed in (P2), in which case the constraints (23) (applied to
the two-hop neighborhoods) can be treated as valid inequalities
for (P3) to enhance the solution process.
3) Valid Inequalities to Enhance the MILPs: As combina-

torial problems, problems (P2) and (P3) are NP-hard in gen-
eral. A typical way to speed up the solution process is by ex-
ploiting valid inequalities (i.e., constraints that maintain the op-
timal solution), which reduce the search space and enhance the
branch-and-cut algorithm used by MILP solvers [43], [44]. The
following property of (P2) and (P3) at optimality is useful for
deriving such valid inequalities.
Lemma 2: Given a feasible solution of (P2) or (P3), a better

solution can be obtained if more information neighbors can be
included without violating the energy budgets (24)–(25).

Proof: The conclusion is clear from the objective func-
tion of (P1), which is decreasing in the size of the information
neighbor set for each node. Since the objectives of (P1) and (P2)
(or (P3)) are equivalent, the conclusion follows immediately.
Corollary 1: The following equalities and inequalities are

valid for (P2) or (P3):

(32)
(33)
(34)

Proof: The equalities (32) are because for optimality, a
node always consults itself, which is evident from Lemma 2.
The inequalities (33) (or (34)) mean if a node relays a piece
of information, then every node that has the node as a phys-
ical neighbor must use the information in order to achieve op-
timality. This is proved as follows. By Assumption V.1, if a
node relays a piece of information, then every node that has the
node as a physical neighbor will receive the information; then
by Lemma 2, every node receiving the information must use it
to ensure optimality. This completes the proof.
An additional set of valid inequalities holds for (P2), which

states that if node relays information originating from node
, then any predecessor of node on the unique transmis-

sion path must relay the same information towards . Mathe-
matically this means the following:
Lemma 3: The following inequalities hold for (P2):

(35)

Proof: We prove the lemma by contradiction. Let there be
a pair of nodes in the defined set with .
This implies that there is a simple path that transmits the infor-
mation from node to node while not traversing node . Since
by the definition, there is another path that transmits the same
information to node while traversing node , this contradicts
with the topological condition in Case 1 that there is a unique
transmission path from node to node . This completes the
proof.
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Algorithm 1: An approximate LP solution for (P2) or (P3)

1: For each , let and for (P2)
and (P3), respectively.

2: Relax all binary variables in (P2) or (P3) to continuous
variables in [0, 1]. Solve the resulting LP to obtain

as the optimal relay and
selection variables for the relaxed LP.

3: Initialize the threshold , the threshold decrement
size ,
and set .

4: while do
5: For all and , let if

and otherwise.
6: while network-wide energy budget (25) not satisfied do
7: Find . Set

and .
8: end while
9: Update the threshold as .
10: end while
11: for each do
12: if local energy budget (24) not satisfied for node then
13: Find . Set .
14: For (P2), set , for all nodes reachable from

node via node . For (P3), if , set , for
all nodes .

15: end if
16: end for
17: Determine values of from .
18: Return as the approximately

optimal solution of the binary relay and selection variables
for the original MILP.

Within the two-hop neighborhoods, similar inequalities
, are valid for (P3). They are,

however, implied by the valid inequalities (34) and the model
inequalities (30)–(31), and hence not treated as independent
valid inequalities for (P3).
The valid inequalities (32)–(35) are added to (P2) or (P3) to

reduce the search space and hence speed up the solution process.
However, the computational time may still be prohibitively long
if the network has a large size and each node has many reachable
neighbors. In that case, we provide in the following subsection,
approximate solutions for (P2) and (P3) that can be obtained
efficiently by solving linear programs.

B. Approximate Solutions via Relaxations

In this subsection, we present a linear programming (LP) ap-
proach to solving the MILPs (P2) and (P3) approximately. A
typical way of finding an approximate solution for (P2) or (P3)
(including all valid inequalities in Corollary 1 and Lemma 3)5 is
by relaxing the binary variables as continuous variables taking

5It is useful to include all valid inequalities into the relaxed problem, because
they maintain the structural information of the original problem which may oth-
erwise be lost after relaxation.

Algorithm 2: Approximate, distributed and adaptive solution
for (P1) with only local energy budget constraints

1: Each node initializes the estimates
and (cf. (12)) as a zero scalar,

vector and matrix, respectively, and sets .
2: Each node uses its own measurement

to update and by (3) and (12), respectively.
3: If its energy budget permits, each node broadcasts

its estimates to its directly reachable
neighbors, and then chooses to rebroadcast
if is among the smallest empirical composite
variances it received in the -th iteration. This
process continues for a predefined period of time
proportional to the maximum number of hops of
consultation, .

4: Each node uses the empirical composite variances
received in Step 3 to compute the combination weights
using (13), and then combines the received intermediate
estimates by (3) to get its own estimate .

5: Each node completes the -th iteration, sets and
goes to repeat the above procedure from Step 2.

values in [0, 1], and then solving the resulting LP. The contin-
uous solution is then translated back into binaries via thresh-
olding. The choice of the threshold needs to ensure that the
binary solution obtained satisfies the hard energy budget con-
straints. In the following, we propose a procedure to determine
the threshold iteratively for both (P2) and (P3).
A common procedure to translate the solutions of relaxed

(P2) and (P3) is summarized in Algorithm 1. The procedure de-
creases the threshold gradually (from the maximal value of 1)
in lines 4 to 10 until it cannot be smaller without violating the
network-wide energy budget. Then, in lines 11 to 16, the relay
variables are adjusted so that local node energy budgets are sat-
isfied. The validity of Algorithm 1 is proven in the following
theorem.
Theorem 2: Algorithm 1 returns a feasible solution for the

relay and selection variables of (P2) and (P3).
Proof: See Appendix B.

Remark 2: The optimization formulation (P2) or (P3) pro-
vides a flexible platform to include additional constraints that
may appear in various applications. For example, in (P2), we
can easily restrict the information neighbors of a particular node
to be within a given number of hops. For another example, the
mATC strategy determined by (P3) can lead to improvements
over various modified ATC strategies [18], [22], [23] by simply
imposing constraints on the hops for gathering consultations or
on the number of active links associated with each node.

C. Heuristic Distributed Solution Satisfying Local Energy
Budgets

In this subsection, we present an online distributed algorithm
to heuristically solve problem (P1) without the network-wide
energy budget, for an arbitrary network in which consultations
are restricted to at most hops. In this case, by Lemma 2
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every node will try to use up its energy budget in each iteration
to diffuse intermediate estimates, such that the global cost

is minimized, where is a subset
of multi-hop neighbors at most hops away from node .
Since each node contributes to a cost that is decreasing in
the size of its information neighborhood and increasing
in the composite variance of each information neighbor ,
heuristically, we see that each node should broadcast its current
intermediate estimate and empirical estimate of its composite
variance at each iteration, as well as information from its
-hop neighborhood corresponding to nodes with the smallest

empirical composite variances, up to its local energy budget.
The distributed and adaptive mATC diffusion algorithm is
described formally in Algorithm 2.
In Algorithm 2, the maximum number of consultation hops
controls the length of time consumed to diffuse information

over the network in each iteration. By applying the procedure
of Algorithm 2, each node is able to combine intermediate esti-
mates from a subset of its -hop neighborhood adaptively. This
holds even if the parameter vector and the data and noise statis-
tics change slowly in time. We evaluate the performance of this
algorithm in Section VI.B.

D. An Approximate Asynchronous Implementation

If each multi-hop relaying is to be completed within each
diffusion iteration, as is assumed in our analysis, this may re-
quire the nodes to take observations at a slower rate due to a
longer communication delay at each iteration. To avoid this ad-
ditional delay, one can perform the relaying over multiple dif-
fusion iterations, so that intermediate estimates of multi-hop
information neighbors are combined only in later diffusion it-
erations. We call this asynchronous mATC. The asynchronous
mATC avoids waiting to receive the multi-hop information, and
allows the mATC strategy to perform each combination step in
the same time scale as the ATC strategy. Our simulation results
in Section VI demonstrate that asynchronous mATC has similar
MSD performance as mATC.

VI. SIMULATION RESULTS

We illustrate the application of the mATC strategy to a tree
and general graph network, and compare its performance with
those of the non-cooperative, ATC diffusion and the centralized
strategies. In the simulations, the step sizes and the discount
factors are set as and , respectively, for
all , and the numerical results are averaged over 1000
instances unless otherwise indicated.

A. A Simple Tree Network

An undirected tree network is shown in Fig. 4 together with
the noise and data profiles of each node. The quantities are
randomly generated such that and the regres-
sion covariance matrix is diagonal with entries equal to

. Each node aims to estimate a 3 1 vector
with every entry equal to . We impose a maximum number

Fig. 4. Network topology and data and noise profiles of every node. The
number next to a node denotes the node index.

Fig. 5. MSD performance of the ATC and the mATC diffusion strategies im-
plementing the balancing rule of Theorem 1. (a) non-adaptive implementation,
(b) adaptive implementation.

of broadcasts allowed in the network per iteration as the net-
work-wide energy constraint.
We illustrate the flexibility and usefulness of the proposed

balancing rule in Theorem 1 for assigning the combination
weights. We set to 8, the same as that invoked by the
ATC strategy. Both the ATC and the mATC strategies adopt
the balancing rule with the balancing coefficient equal
to the optimal value 0.9978, or the extreme value of 0 or 1.
The simulation results under the non-adaptive and adaptive
implementations are shown in Fig. 5(a) and (b), respectively.
We observe that while the balancing rule with gives
the best transient network MSD, the rule with gives
the minimum steady-state network MSD. In comparison, the
optimal balancing rule using finds a good balance
between these two extremes. The results also show that the
mATC strategy outperforms the ATC strategy in the steady
state when is optimal or equal to 1.
We next investigate the trade-off between the network per-

formance and the energy budget available per iteration. We de-
fine the convergence rate as the quotient of the decrease in
the network MSD till 90% of its steady-state value divided by
the number of iterations to achieve that decrease. When the
mATC adopts the optimal balancing rule, the theoretical (based
on the recursive equation (5)) and numerical results are shown
in Fig. 6. We observe a sharp increase in the convergence rate
when the strategy transits from a non-cooperative mode (with

) to the cooperative modes (with ). In the coop-
erative modes, the steady-state network MSD decreases almost
monotonically as the number of broadcasts increases, while the
convergence rate first decreases and then increases. (The zig-zag
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Fig. 6. The steady-state value and the convergence rate of the network MSD
as functions of the number of broadcasts per iteration in the network (where
0 and 29 broadcasts correspond to non-cooperative and centralized estimation,
respectively).

variations in the curves are due to the limitations of minimizing
the upper bound of the steady-state network MSD, and not a
simulation artifact.) Once sufficient number of broadcasts are
invoked, the marginal benefit brought by more consultations is
small to the steady-state network MSD, but still notable to the
convergence rate.
A specific solution of the information neighbor configuration

is shown in Fig. 7, which invokes 3 or 37.5% less broadcasts
in each iteration compared to the ATC strategy. The figure also
shows results obtained with an asynchronousmATC strategy, in
which intermediate estimates from two-hop information neigh-
bors arrive and are combined only in the next iteration. The es-
timation performance turns out to be close to the synchronous
mATC strategy.

B. An Arbitrary Network
We randomly generated an undirected network with 20

nodes within a 10 10 square area, as shown in Fig. 8 together
with the noise and data power profiles, where the data power

is equally distributed over the parameter components
of each node . Each node aims to estimate a 2 1 vector

with every entry equal to . To mimic a heterogenous
environment, we assume that the communication cost incurred
is proportional to the square distance of a node to its farthest
directly reachable neighbor, i.e., the communication cost coef-
ficient of node in (14) is given by

where is a given scalar and is the distance between
node and node .Without loss of generality, we set , and
we study the energy-performance trade-off when the network is
subject to a network-wide energy budget and the information
neighbors of every node are restricted to be within two hops
away.
Fig. 9 shows the energy-performance trade-off when the

mATC diffusion strategy adopts the balancing rule of Theorem
1. We show the performances of both the exact solution found

Fig. 7. Comparison of the ATC andmATC diffusion strategies adopting the op-
timal balancing rule: (a) consultations in each iteration with the mATC strategy
limited to 5 broadcasts per iteration; (b) network MSD curves obtained from
simulations.

Fig. 8. The topology of a random network, and the data and noise profiles at
each node. The number next to a node is the node index.

Fig. 9. The energy-performance trade-offs and convergence rates of mATC and
ATC strategies.

using the MILP (P3) and the approximate solution found
through relaxations using Algorithm 1. We observe that the
steady-sate network MSD decreases almost monotonically
with the energy budget, while the convergence rate of the
network MSD first increases as cooperation is enabled, and
then fluctuates and becomes steady as more energy budget
is available. The corresponding changes in the information
neighbor configuration are illustrated in Fig. 10(a)–(c). The
performance gain turns out to be very small if the energy budget
is large enough (larger than 250 in this case). The approximate
solutions give similar energy-performance trade-offs, but have
uniformly worse steady-state network MSDs.
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Fig. 10. Three optimal configurations of information neighbors and related net-
work MSD curves obtained from simulations. The arrows in (a)–(c) indicate the
diffusion directions. The thicker green arrows in (b) indicate new diffusions rel-
ative to those in (a), and the light blue dashed arrows in (c) represent two-hop
diffusions that require neighbors’ relay. (a) Optimal info neighbor configuration
with . (b) Optimal info neighbor configuration with . (c) Optimal
info neighbor configuration with . (d) Network MSD curves for dif-
ferent energy costs.

In addition to ATC, we also compare the mATC strategy with
the game theoretic combine-then-adapt diffusion strategy pro-
posed in [30]. We call this the CTA-game strategy for short.
This strategy requires the setting of a couple of parameters, and
we refer the reader to [30] for the full details. Specifically, the
local and global utility gains and are chosen to be 1, the
local energy price is given a value in the range of [0, 0.5]
for every sensor (the network steady-state MSD and the con-
vergence rate are found to remain the same once in
this case), the “exploration” factor is set to 0.1, and the other
parameters and are fixed as 1. For the CTA-game strategy,
we average the simulations results over 300 random instances,
each using 2000 iterations.
In Fig. 11, we compare the CTA-game strategy with two

versions of the mATC strategy: one implemented using full
knowledge of the noise and input data statistics, and another in
an adaptive manner per Algorithm 2 (where the local energy
budgets correspond to the configurations that yield the optimal
performance-energy trade-off curve shown in Fig. 9). We also
compare against an adaptive implementation of an energy-con-
strained ATC strategy, which we call cATC, in which each node
diffuses only its own intermediate estimate if its energy budget
permits. We see that both versions of mATC require much
less total energy to converge to 90% of the same steady-state
network MSD as the CTA-game strategy. For example, for
a steady-state MSD of dB, the adaptive mATC strategy
consumes about units of energy. In contrast, the
CTA-game strategy consumes about units of energy,
which is six times of that used by the adaptive mATC. The
higher total energy consumption of the CTA-game strategy is

Fig. 11. Average total energy cost required for the network to converge to 90%
of its steady-state MSD value.

found to be caused by its slow convergence, which does not
change much even if the parameters are tuned in the given
ranges. The simulation results also indicate that the adaptive
mATC diffusion strategy requires less energy for the network
to converge to the same MSD, as compared to the adaptive
cATC strategy.
We also examine the adaptability of the mATC strategy in

response to changes in the parameter , the measurement
noise variances and the locally available energy budgets. We
assume that the network starts with the configuration shown in
Fig. 10(c), where each node has the exact local energy budget
to support the transmissions shown. We implement an asyn-
chronous version of the adaptive mATC strategy in Algorithm
2 (i.e., intermediate estimates from two-hop neighbors arrive
and are combined only in the next diffusion iteration), and the
adaptive cATC strategy. After 1000 iterations, the parameter
vector changes from the original to the new

while the measurement noise variance is
doubled for all . After 2000 iterations, the local energy
budgets available to the nodes 3, 4, 13 and 18 all decrease
to support only one broadcast instead of two broadcasts per
iteration, and the local energy budgets available to nodes 7 and
8 are set to zero. We observe from Fig. 12 that ATC, mATC,
and the asynchronous mATC are all able to adapt to the changes
in network conditions, and that both mATC and asynchronous
mATC achieves steady-state MSDs better than cATC (except
after the last change when mATC becomes equivalent to ATC),
thanks to their selective multi-hop consultations that fully
exploit the local energy budgets.

VII. CONCLUSION
In this paper, we have considered the use of multi-hop diffu-

sion that allows nodes to exchange intermediate parameter esti-
mates with their selected information neighbors instead of just
the physical neighbors. For two classes of networks, we pro-
pose an MILP to select the information neighbors together with
the relay nodes for each node, which approximately optimizes
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Fig. 12. Performances of the cATC and mATC diffusion strategies in response
to changes in network conditions.

a trade-off between the available energy budgets for each itera-
tion, and the steady-state network MSD performance. For arbi-
trary networks in which there are only local energy budget con-
straints, and consultations constrained to within a fixed number
of hops, we propose a distributed and adaptive algorithm to se-
lect the information neighbors. Simulation results suggest that
our proposed methods achieve better MSD performance than
the traditional diffusion strategy, while having the same or lower
communication cost.
Our current optimization procedure for networks with a net-

work-wide energy budget requires knowledge of the network
topology as well as the data and noise variance profiles of every
node. This implies that the optimization can only be performed
at a centralized processor, and only infrequently. It would be of
future research interest to develop distributed optimization tech-
niques like those in [45] to perform online adaptive optimization
as the network conditions vary over time, and to study the fre-
quency at which such optimization needs to be run, in order to
maintain a reasonable level of optimality.

APPENDIX A
DERIVATION OF THE SDP IN (7) FOR MINIMIZING

Some well-known matrix results used by the derivation are
first given in the following lemma, in which (a) is proved
by using the singular value decomposition technique and the
proofs of (c)–(d) can be found in pages 399, 19 and 473 of [46],
respectively.
Lemma 4:
a) For any matrix if and only if

.
b) If is positive semi-definite, then for any

is positive semi-definite.
c) If matrices and are invertible, then

.
d) Suppose that a Hermitian matrix is partitioned as

, where and are positive definite. This ma-

trix is positive semi-definite if and only if
is positive semi-definite.

Let and , which are
positive definite matrices; and let , which is a
positive definite matrix, and so . The derivation
proceeds as shown in the equation at the bottom of the page
(other constraints on the combination weight matrix and the
constraint are not shown).

By left multiplying both sides of the SDP constraint with
and right multiplying with , the last optimization

implies that an approximate solution of can be solved from the
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equation shown at the bottom of the page. The last optimization
problem is an SDP, and can be solved by standard solvers to get
an approximate solution of for the original problem.

APPENDIX B
PROOF OF THEOREM 2

We first prove the theorem for (P2). The proof relies on the
following lemma, which can be shown by using the valid in-
equalities (35), and is omitted for brevity.
Lemma 5: Let the optimal relay and selection variables of the

relaxed LP corresponding to (P2) (including the valid inequal-
ities in (35)) be . For any relay
path from a node to another node such that , and any
pair of nodes , where is a successor of on the relay
path, we have .
To prove that the solution of the relay and selection vari-

ables returned by Algorithm 1 is feasible for (P2), we need to
show that: (i) the relay variables, obtained after thresholding
those from the relaxed LP, result in valid transmission paths (i.e.,
every path is able to deliver the information as desired); and (ii)
the local and network-wide energy budgets are satisfied by each
node and the whole network, respectively. These are proved as
follows.
Observe that line 5 of Algorithm 1 returns relay variables

feasible for (P2) without energy budget constraints. This is be-
cause the solution is able to indicate every information relay
path without ambiguity as shown by Lemma 5.
Lines 6–8 choose relays in non-decreasing order of their cor-

responding relay variable values, and removes them so as to sat-
isfy the network-wide energy budget constraint. By Lemma 5,
the operation only removes tails of certain relay paths sequen-
tially until the network-wide energy budget constraint is satis-
fied. Therefore, the remaining part of the relay path is still valid.
In lines 12–15, selected relays for each node are re-

moved in non-decreasing order of their values in order to
reduce node ’s energy consumption to not more than so that
(24) is satisfied. If node stops relaying information from node
, then we also set for all nodes that used to ob-

tain node ’s information through node . This ensures that the
relay path remains valid.
Since a feasible solution of the relay variables uniquely deter-

mines a feasible solution of the selection variables, the solution
of the selection variables obtained from line 5 is feasible for
(P2).
The theorem for (P3) can be proved in a similar way, because

the result in Lemma 5 remains true for the relaxed (P3) with the
valid inequalities (34). The proof is now complete.
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