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Abstract—New network architectures, such as the Internet of
Things (IoT), 5G, and next-generation (NextG) cellular systems,
put forward emerging challenges to the design of future wireless
networks toward ultra-high data rate, massive data processing,
smart designs, low-cost deployment, reliability and security in
dynamic environments. As one of the most promising techniques
today, artificial intelligence (AI) is advocated to enable a data-
driven paradigm for wireless network design. In this paper,
we are motivated to review existing Al techniques and their
applications for the full wireless network protocol stack toward
improving network performance and security. Our goal is to
summarize the current motivation, challenges, and methodology
of using Al to enhance wireless networking from the physical to
the application layer, and shed light on creating new Al-enabled
algorithms, mechanisms, protocols, and system designs for future
data-driven wireless networking.

Index Terms—Wireless network, AI, Machine learning, Per-
formance, Security.

I. INTRODUCTION

The rapid advancement of wireless technology leads to a
revolution in daily life. The deployment of Internet of Things
(IoT) [IL], [2], intelligent networking [3l], [4], cloud computing
[S], [6]], 5G and next-generation (NextG) cellular networks [[7]],
[8] make new demands on the capabilities for efficient and
secure network operations. Conventional methods for wireless
networking have been generally based on theoretical models,
pre-defined operational procedures, or empirical guidelines
[9], [10]. Considering the complicated structures and oper-
ational protocols of modern wireless networks, conventional
methods may not be always efficient, robust, or secure in han-
dling dynamic network operational environments with massive
data exchange [9]], [LL]], [12].

Recently, the wide applications of artificial intelligence (AI)
and machine learning have drawn increasing attention in the
area of wireless networking. New research areas have already
emerged to apply Al techniques to enhance wireless network
performance and security [13[]-[20]. In particular, network op-
erations generate various data of large volume. Without relying
on specific mathematical modeling or operational guidelines,
Al techniques have enabled a data-driven paradigm to process
wireless signals and network traffic in an efficient and secure
manner. For example, Al has been adopted in different network
layers to improve the network throughput, communication
efficiency, and reduce energy consumption and various costs
[L3]-[15]; and many system designs have also embraced Al

to enhance the confidentiality, integrity, and availability of
wireless networks [16]—[18].

In this paper, we aim to provide an overview of existing
applications of data-driven Al in the wireless network. We
study them from two perspectives: performance and security,
and discuss the advantages of using data-driven Al approaches
compared with conventional approaches toward wireless net-
work performance and security. In particular, we discuss the
following major topics in this paper.

o« We classify existing popular Al techniques into super-
vised learning, unsupervised learning, and reinforcement
learning, and briefly introduce common algorithms asso-
ciated with them.

« We comprehensively present the use of Al techniques to
improve the performance and security in wireless network
designs throughout the full protocol stack. We begin with
the physical (PHY) and medium access control (MAC)
layers, which are the main focuses of the recent Al-
enabled research. Then, we summarize substantial efforts
that have recently applied Al techniques to mechanisms
at the network layer and above.

o Based on the state-of-the-art, we discuss what the chal-
lenges lie on the path ahead in adopting and creating Al
techniques for future wireless network designs.

The remaining sections of this paper are organized as
follows. In Section [ we briefly summarize AI techniques.
In Sections [[II] and V] we discuss the use of Al for wireless
networking in lower layers (PHY and MAC) and higher layers
(network layer and above), respectively. We summarize the
future challenges of Al for wireless networking in Section
and conclude this paper in Section

II. BRIEF SUMMARY OF Al TECHNIQUES

Before we discuss Al techniques for wireless network
designs, we briefly introduce and classify Al and machine
learning techniques. Fig. [Tl shows the classification of machine
learning techniques into three main categories: supervised
learning, unsupervised learning, and reinforcement learning
[21], [22], along with common algorithms in each category.

« Supervised learning involves techniques that are trained

by explicit labels. Supervised learning includes classi-
fication and regression algorithms. Common algorithms
include support vector machines (SVM), K-nearest neigh-
bors (K-NN), random forest, linear regression, neural
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Fig. 1. Taxonomy of Al/machine learning techniques, along with commonly
used models.

network (NN) based deep learning such as feedforward
neural network (FNN), recurrent neural network (RNN),
and convolutional neural network (CNN) [23]].

o Unsupervised learning does not need labeled data, which
is classified into dimension reduction, clustering, and gen-
erative algorithms. Principal component analysis (PCA)
and autoencoder are two common dimension reduction
algorithms. Autoencoder has a similar nature to wire-
less communication because it has an encoding-decoding
structure [24]. K-means is a widely used clustering algo-
rithm. Unlike discriminative classification, generative ad-
versarial network (GAN) is a generative machine learning
algorithm [23]].

« Reinforcement learning is categorized into model-based
and model-free algorithms. One of the most common
models for model-based reinforcement learning is based
on the Markov decision process (MDP). Model-free algo-
rithms are categorized into value-based algorithms such
as the Q-learning, and policy-based algorithms such as
the actor-critic algorithm. Besides, deep reinforcement
learning is an algorithm that combines reinforcement
learning with deep learning. Multi-agent reinforcement
learning enables multiple agents in the environment.

IITI. AT IN PHY AND MAC LAYERS

In a wireless network, the lower layers, including the PHY
layer and the MAC layer, are responsible for interacting
with the spatially and temporally varying wireless medium to
ensure efficient, reliable, and secure wireless communication.
Studies have demonstrated that machine learning designs have
been successfully integrated into lower-layer designs, enabling
wireless networks to (i) adapt to fluctuating environmental
conditions (e.g., signal propagation, attenuation, interference)
[25]-[33]], and (ii) enhance security against various threats,
such as the identification of unauthorized access to wireless
networks, suspicious behavior, or protecting the confidential-
ity, integrity, and availability of wireless networks [34]—[40].
In this section, we elaborate on how existing approaches
integrate machine learning into wireless networks from two
aspects: (i) improving the performance and (ii) enhancing the
security.
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Fig. 2. Machine learning for different mechanisms to improve the PHY and
MAC performance

A. Using Al for Performance

Fig. 2| summarizes how AI has been applied to different
designs at the PHY and MAC layers to improve the commu-
nication performance.

1) Improving PHY Layer Performance: In the PHY layer,

we discuss how machine learning can be utilized to 1) op-
timize channel coding, 2) detect high-dimensional signals,
3) advanced channel estimation, 4) optimize CSI feedback
procedures, 5) detect modulation without decoding, and 6)
improve beam management.
Channel Coding: Channel coding is an essential technique
to improve the reliability of wireless communication over a
noisy channel (e.g., mitigating wireless collisions [41]). Some
studies have used machine learning to design advanced coding
processes [13], [24]-[26], [42]. For example, the work of
[13] introduced an RNN-based decoder for polar codes in
5G radio. RNN decomposes the iterative operations of the
conventional decoder into layers that can significantly reduce
memory consumption by sharing the weights of different
iterations. Deep learning can train a Tanner graph for error-
correcting codes [42]. The deep learning framework improves
the performance of the belief propagation decoding algorithm
with little extra complexity. Autoencoders have also gained
broad attention [24]-[26]. By using autoencoder in the deep
generative model, [26] was able to reconstruct the Gray coding
before decoding by using the prior information obtained from
the channel model.

In addition, machine learning-based modulation and coding
schemes for link adaptation were proposed in [43], [44].
Parameters for modulation and coding scheme have a proba-
bilistic model based on signal-to-interference-plus-noise ratio
(SINR) [44]). This model is formulated as a multi-armed bandit
problem under the reinforcement learning framework. Efficient
solutions are used to learn the optimal parameters given the
channel state.

Signal Detection: The conventional signal detection method
based on the maximum-likelihood estimation can be an
NP-hard problem [10]. Recent advances in multiple-input
multiple-output (MIMO) technology with high-dimensional
signals have even exacerbated the complexity problem at the
receiver. To address this issue, existing research has focused
on developing Al-based methods for detecting MIMO signals



(L1, [271-[30], [45], [46]. The authors in [46] proposed a
deep learning-based MIMO detection called MMNet. MMNet
aims to learn the parameter models of an iterative decoder,
which eliminates the need to make an impractical assumption
that one knows the MIMO channel matrix distribution. In
MMNet, parameters can be adaptively adjusted by measuring
the channel matrix continuously. Many existing studies on
signal detection always assumed that the channel is linear
with perfect channel state information (CSI). However, in
practice, this assumption does not always hold. The work
in [11] replaced the traditional iterative detection algorithm
with deep learning to enhance resilience against CSI error and
channel non-linearity.

Channel Estimation: In wireless networks, channel inter-
ference generally incurs a negative impact, particularly in
MIMO systems. The interference can significantly reduce the
accuracy of channel estimation. Deep learning has been used
for improving the channel estimation performance in [7], [31],
[47], [48]. While minimum mean square error estimation
is the most accurate, it has a high level of complexity,
whereas least squares estimation is faster but less accurate.
To combine the advantages of both methods, a deep learning
method has been proposed in [31], which theoretically proved
that noise can be effectively filtered so that least squares
estimation can approach the close performance of minimum
mean square error estimation. The work in [7] considered
a 5G vehicular network where conventional methods use
Doppler rate estimation to estimate decision-directed channels,
but these methods do not work well in a highly dynamic
environment. The work proposed to use deep learning to learn
a channel without knowing the exact Doppler rate, enabling
more accurate decision-directed channel estimation.

CSI Feedback: It is necessary to perform the sounding
process in a beamforming-based multiuser MIMO system, in
which each wireless station feedbacks its CSI to the access
point for precoding to mitigate interference across different
stations. It has been shown that the use of compressed sensing
in deep learning can further improve the efficiency of CSI
feedback [12], [32], [49]], [50]. The CNN-based CsiNet+
framework in [12]] has an encoder-decoder structure to com-
press and quantize the CSI matrix. As opposed to the tradi-
tional quantization in deep learning, which requires retraining
when changing the bit quantization rate, CsiNet+ is trained by
optimizing quantization offset, thus CNN parameters can be
fixed without retraining. In [32], a deep learning framework is
proposed for extracting CSI features at different resolutions.
CSI matrices with different densities require different kernels
and resolutions. To extract features at different resolutions, two
different convolutional layers are applied in parallel.

Modulation Recognition: Automatic modulation recognition
(AMR) is a term used to describe the identification of the
modulation scheme used in a communication system without
decoding signals. Recently, Al techniques have shown their
promising potential in this application [4], [S1]. The work
in [52] used K-NN combined with genetic programming to

identify four common modulation schemes. K-NN evaluates
the fitness of new features generated by genetic program-
ming based on input features. Due to the simplicity of K-
NN, the design is low in complexity without compromising
the classification accuracy. It is also possible to recognize
signal waveforms by transforming complex-valued signals into
contour stellar images, then using deep learning methods for
image recognition [51], in which the amplitude, frequency,
phase, noise, and error are represented by colors and shapes.
Simulation results in [S1] also validated that such computer
vision technology can be applied to AMR.

Beam Management: In 5G/NextG wireless networks,
millimeter-wave (mmWave) has been used to support higher
data rate transmissions. Due to the directional nature of the
mmWave technology, each device uses a dedicated beam to
communicate with its connected peer. However, this leads
to a complex beam management procedure between the
transceivers. Machine learning methods have been proposed
for solving a variety of beam management problems. For ex-
ample, considering the beam selection in a vehicle-to-vehicle
network, the dynamic nature of such a network makes it
difficult to find a beamforming solution that can accommodate
its changes [33[], [S3], [54]. The work in [33] uses iterative
SVM to classify beamforming and select the optimal one.
Iterative SVM uses signal power, path loss, and angle of
arrival/departures (AoA/AoD) as features for model training,
and predicts the analog beam when the link between vehicles
is changed.

Tracking beams in a dynamic network is also challenging
[SS]-[57]. For beam tracking in an unmanned aerial vehicle
(UAV) system, drones need to quickly switch beam directions
to maximize the SINR when they fly around. Therefore, a fast
beam tracking technique is necessary. Although it is difficult to
obtain an accurate channel model in a UAV system, Q-learning
can learn from the tracking experience without a model to
predict tracking [S5] by optimizing beam selection by using
the SINRs from different beams as rewards.

Beam alignment aims to find and maintain the optimal beam
direction between transceivers [38]-[60]. Due to the small
antennas used in 5G devices, conventional beam alignment
techniques may not be feasible for small devices. The work
in [58] uses two machine learning classifiers, i.e., random
forest and multilayer perceptron (MLP), for beam alignment.
Given a user’s location, the work uses exhaustive search to find
optimal access points and beamforming, then uses locations as
features to train the classifiers. After training, classifiers only
need the user’s location to predict optimal access points and
beamforming. The classifiers are shown robust to the general
urban outdoor environment.

2) Improving MAC Layer Performance: Machine learning
has been used at the MAC layer to optimize the performance
by managing a variety of resources as follows.

Power Allocation and Energy Management: Several studies
have adopted AI methods for power allocation and energy
management [6], [61]-[67]. The work in [64] considered a



cognitive radio network that consists of sensors, primary users,
and secondary users. The primary and secondary users share
the same spectrum resource. Primary users can adjust their
power allocation based on their rules. However, secondary
users can not obtain primary users’ power allocation infor-
mation and have to use the strength of the received signal
from sensors to change their power allocation. As a result,
[64] designed a deep reinforcement learning framework for
secondary users to predict primary users’ transmission power
allocation. In [67], a deep Q-network was developed to learn
the optimal sleeping rules for mobile networks to reduce
energy consumption. In the proposed deep Q-network method,
data traffic from different time periods can be effectively
learned, thus reducing the bias caused by current traffic. The
method has been shown stable and adaptable in a dynamic
environment than conventional Q-learning.

Spectrum and Access Management: Spectrum and chan-
nel access management can also leverage Al to improve
its efficiency [14]], [68]-[79]. For example, non-orthogonal
multiple access (NOMA) has become a popular design for
5G/NextG networks, which requires comprehensive manage-
ment of power and spectrum, such that the receiver can
successfully decompose signals from users. A multi-task deep
learning-based NOMA was proposed in [[1], which is able to
modulate, spread symbols, and detect. The design is to create a
new structure of autoencoder. Each user’s bits are modulated to
a symbol independently by one of the isolated sublayers. The
symbol is spread to a sequence, and then multiple sequences
are jointly detected by a neural network. The design was
further improved in [[74] by introducing a balancing technique
among users to avoid some users getting trapped in local
optima. Targeting the dynamic spectrum access scenario where
wireless devices dynamically and autonomously access and
use available spectrum resources in a given frequency band,
[69] considered a probability model in multichannel wireless
networks. In the model, each user accesses a channel to
send data packets with a probability, and will be informed
whether the packets are received successfully. A multi-agent
deep reinforcement learning was created to learn the best time
slot for spectrum access and maximize the data rate on the
channel. The study investigated several cases with different
rewards and objective functions, including cooperative rewards
and global rewards.

User Association: User association is a process to associate a
user with an appropriate access point based on geographical,
channel, interference, and bandwidth information. Machine
learning techniques for user association have been investigated
in [80]-[82]. In particular, [80] proposed a multi-agent rein-
forcement learning model to optimize the association decision.
In this model, each user is associated with an agent, and
the SINR is used to evaluate the goodness. The experimental
results show that this model can achieve up to 99.8% of
the optimal performance. In [82]], the user association and
resource allocation were considered jointly in a large-scale
heterogeneous cellular network. When users are associated
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with different base stations, both network resources and com-
munication quality can be optimized. It is assumed that users
do not know the network environment and are selfish to benefit
themselves, which is formulated as a stochastic game. By
defining the network utility as the reward of each user, their
multi-agent deep reinforcement learning framework can find
the Nash equilibrium among users.

B. Using Al for Security

In addition to using Al to improve the communication per-
formance, the literature also investigated how to leverage Al
to enhance wireless network security against various attacks.
Fig. Bl summarizes related major topics at the PHY and MAC
layers, which will be discussed in the following.

1) Security at PHY Layer: At the PHY layer, various
machine learning-based mechanisms have been proposed to
enhance authentication, combat spoofing attacks and jamming,
and detect anomaly and eavesdropping.

Physical Layer Authentication: It has been demonstrated
that secret information can be coupled with random chan-
nel responses for secure information exchange without using
conventional cryptography. Typically, these designs mainly
involve physical-layer authentication (PLA). Some implemen-
tations of machine learning on PLA were discussed in [3],
[34]-[38]. For example, [37] used logistic regression to predict
unique features in the channel matrix as a way for user
authentication, showing better performance than using the
conventional received signal strength indicators. In [38], a
method was proposed to allow Bob using Alice’s packets
to train one class nearest neighbor algorithm. Packets not
classified as belonging to Alice are marked as suspicious.
The work in [3] developed a CNN-based radio frequency
fingerprinting model by using baseband error signals in the
time domain. This method utilizes the frequency offset as a
feature during the training process, which is difficult to spoof
and therefore can be used to identify attackers.

Signal Spoofing Attacks: Spoofing attack is a common attack
to compromise the authentication process [16], [83]—[85].
There are studies specifically targeting spoofing attacks in
wireless networks based on Al techniques. For example, the
authentication scheme in [[16] models the virtual channels
of a MIMO system. The sparsity and total energy of users’
virtual channels are considered features used by a logistic
regression classifier to distinguish spoofing attacks. As the



spoofing attacker can be smart and try to learn from waveform
and channel status information to improve the spoofing success
probability, [84] proposed a GAN model that allows the
spoofing attacker trains deep learning to obtain the best signals
against the defense mechanism obtained by training another
deep learning model. This GAN-based attacker can generate
signals that are easily misidentified as normal users.

Jamming: Jamming is a common strategy of sending wireless
signals with the same frequency in order to disrupt ongo-
ing communication [86]. Some machine learning-based anti-
jamming methods have been developed in [17], [87]-[92].
In [17], the attacker’s goal is to disrupt secondary users in
a cognitive radio network. Secondary users leverage spatial
diversity to transmit signals at different locations to avoid
attackers. This study proposes to use deep reinforcement
learning to learn the optimal location for the secondary user at
each time slot. The work in [87] investigated a multi-channel
cognitive radio network where secondary users’ access is not
protected, thus making them vulnerable to jamming attacks.
The secondary user’s defense strategy is to switch channels in
order to hide from the attacker when the attacker is searching
for different channels. In this study, the channel hopping is
modeled as a Markov decision process (MDP) where the
transition probability describes the action of the secondary
user.

Combating Wireless Key Attacks: The varying wireless
channel state can be leveraged to generate a random secret
key. A defense method against wireless key attack was con-
sidered in [93]. In a wireless network, the wireless secret
key generation technique enables key agreement protocols to
ensure safe encryption. The performance of wireless secret
key generation can be evaluated by the secret key rate.
However, both hardware impairment and the forged signal can
downgrade the secret key rate. Secret key generation requires
randomness distillation that uses pilot signals, thus attackers
can inject forged pilot signals. Hardware impairment leads
to the mismatch of randomness observation, which can be
fixed by deep learning. The attacker is defended against by
using RNN to predict the source of common randomness and
enhance the randomness distillation. The defense method in
[93] has up to 30% improvement compared with others.

2) Security at MAC Layer: At the MAC layer, we discuss
how Al techniques have been used in security topics related to
spoofing, data poisoning, denial-of-service (DoS), and eaves-
dropping.

MAC Spoofing: Spoofing attacks at the MAC layer have
been studied for years [94], such as using machine learning
[39], [40]. When two packets are sent from different MAC
addresses, the proposed deep learning classifier in [39] can
identify whether MAC addresses are associated with the same
device by CSI even when two devices of the same model are
sending messages at the same location and their CSI still has
variances. The work in [40] uses sequence numbers of frames
associated with identifies features to train a machine learning
model. The experiment conducted in a real-world environment

shows it is effective in noisy IEEE 802.11 networks.

DoS Attacks: DoS attacks targeting the MAC layer are
discussed in [93] to undermine the frame formatting and flow
control. The study showed that attackers can flood forged IEEE
802.11 management frames in WiFi. Management frames are
essential for the initialization of WiFi setup. A forged man-
agement frame can de-authenticate and disconnect devices.
Without upgrading protocol or hardware, machine learning-
based classifiers can classify de-authentication frames based
on the traffic features, such as the number of different frames
and their exchange.

Data Poisoning: Data poisoning attacks have been proposed
in [96]-[98] to circumvent multi-access mechanisms. In par-
ticular, in a cooperative spectrum sensing scenario, in which
sensing devices can send their results to a data fusion server
to determine whether a channel is free. Malicious devices can
send poisonous data to the fusion center, which may lead to the
server making incorrect decisions. Different from traditional
statistics-based methods, this line of research has developed
surrogate models based on adversarial machine learning for
attackers to mimic the fusion center’s decision process, based
on which to generate poisonous data in a precise way. Experi-
mental results show that the success probability of adversarial
machine learning-based attacker achieves up to 82% attack
success rate.

Anomaly Detection and Defending against Eavesdropping:
Anomaly detection is a method against malicious access
or anomalous phenomena [99], [100]. In [99], an anomaly
detection algorithm for a wireless sensor network implemented
in a microgrid is considered. The algorithm adopts machine
learning to detect data integrity with a low false alarm rate
during the experiments. The study in [[101] trained a machine
learning model with the traffic features under IEEE 802.11
protocol to detect an anomaly. Detecting eavesdropping [[102],
[1O3] is a challenge because it is a passive attack and does
not need to actively transmit signals. Some anti-eavesdropper
defense strategies were developed in [104]], [105]. The idea
in [104] is to mix signals with artificial noise to confuse any
eavesdropper. FNN is used to optimize the secrecy throughput,
which is evaluated by the power of artificial noise power,
the time taken by transferring power, and the redundancy of
wiretap code.

IV. AT IN NETWORK LAYER AND ABOVE

While the PHY and MAC layers are always the focus
of wireless network research, considerable efforts have also
been devoted to using Al for the wireless network layer and
above. In this section, we aim to summarize such research
efforts toward improving the wireless performance and se-
curity. Fig. 4l summarizes existing machine learning-based
mechanism designs toward improving the performance and
enhancing security at the network layer and above.

A. Al for Performance

We first review existing methods of applying Al techniques
to improve the network performance.
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1) Network and Transport Layers: Existing studies have
been focused on Al-enabled routing, traffic engineering, and
data aggregation at the network layer and intelligent conges-
tion control at the transport layer.

Routing and Traffic Engineering: Routing is one of the
major tasks in the network layer. Leveraging machine learning
methods can help routers determine when and where the data
traffic should be sent efficiently [19], [L06]]. For example, the
work in [19] considered that an IoT network serves High
Volume Flexible Time (HVFT) applications. HVFT needs to
transfer a large volume of data to the cloud server such as
prefetching videos with ultra-high bit rate. A deep reinforce-
ment learning-based policy was created to coordinate HVFT
with other time-sensitive applications such as video streaming
for the IoT network. HVFT is scheduled to avoid time-
sensitive applications by deep reinforcement learning with the
reward set to be the total HVFT throughput. This design is
able to transmit 14.7% more data without downgrading time-
sensitive applications.

Data Aggregation: Data aggregation can improve the ef-
ficiency of wireless networks by reducing redundant data
[LO7]], [108]. Conventional aggregation techniques may not be
flexibly efficient as they were generally built on fixed routes. In
[LO8], a reinforcement learning-based data aggregation design
was created for a mobile vehicular network (VANET) scenario.
Every vehicle in the VANET uses distributed MDP model to
learn from nearby vehicles’ actions and rewards. Every vehicle
adds a delay before transmitting data as action. The reward is
the distance between data in different route nodes. Therefore,
data from different vehicles can arrive at the same time and
then be aggregated, achieving a good trade-off between delay
and redundancy with the number of redundant data reduced
without causing a long delay.

Congestion Control: A variety of machine learning algo-
rithms have been applied for congestion control at the transport
layer, including K-means [109], SVM [110], neural network
[L11], and reinforcement learning [15], [L12]-[116]. Rein-

forcement learning has received more attention recently. For
example, [112] considered a mobile network with varying link
bandwidths. Users can switch between links with different
channel capacities, which leads to a large-scale dynamic rein-
forcement learning state space. The congestion window size
is defined as the action and network throughput as the reward.
Then, Kanerva coding in reinforcement learning is applied to
speed up the convergence rate by adequately choosing a part
of the state space to approximate the full space.

2) Application Layer: We briefly discuss common applica-
tions where machine learning techniques have been proposed
to improve the performance.

Context-aware Applications: Context-aware applications can
adapt to serve users based on the context of users. Various
machine learning-based applications have been proposed in
[2], [117]-[120]. For example, [[L17] proposes a location-based
mobile computing application by using deep learning. It can
predict users’ tracking or user identification based on biometric
motion. Global interactions are obtained by merging local
interactions from different sensing modalities. Features such as
frequency are extracted to train deep learning. It can handle
both regression and classification in a unified way. Another
popular context-aware application is indoor localization [[118].
Multiple machine learning algorithms are trained, and their
predictions are fused to improve accuracy.

Caching: Machine learning-based content caching methods
have been proposed in [8], [121], [122]. One of the imple-
mentations is the intelligent base station with caching [122].
It has a placement delivery array system in the base station
that uses the double-coded caching technique. It is formulated
as an optimization problem that minimizes the delay and
power consumption. The wireless network is modeled as an
MDP with unknown transition probabilities because it is not
available in a real-world scenario. Deep reinforcement learning
is used to solve the MDP by taking the action of scheduling
decisions and optimizing the reward of the transmission delay
and power.

Application Functionality and Management: Traffic clas-
sification is another important application of Al techniques
[106], [123]. The work in [123]] developed Atlas on wireless
networking at HP Labs. Atlas is a traffic classifier that can
check the data traffic and identify its source software and
applications. However, it is challenging to obtain training
datasets for machine learning because massive and various
network flow samples are hard to label. Atlas addresses
this problem by using the mobile agents installed on some
dedicated testing devices to collect the network logs, which
are then used as the training data.

Network function virtualization (NFV) is a key function in
a software-defined network (SDN) [20], [124]. A software-
defined radio was proposed in [20] to control IoT network
parameters. NFV maps the transmission requests to virtual
requests at the software level, which is modeled as MDP.
MDP is solved by multi-agent deep reinforcement learning
where every agent learns to select devices to form optimal



routes and allocate proper power to devices. The study in
[125] considered SDN management to support mobile edge
clouds for video streaming. The functions of SDN such as
video quality, transcoding, and caching are controlled by the
virtual appliances of NFV. Both bandwidth allocation and
power consumption of virtual appliances are optimized by
deep reinforcement learning.

Computational Resource Management: Al techniques can
also help computational resource allocations in wireless net-
works [126]-[129]. In mobile edge computing, it is important
to determine how to allocate the workload to mobile edges
based on their available computing resources. A reinforcement
learning-based framework for each edge to maximize each
user’s energy consumption and computing time is proposed in
[128]. The work of [[127] considered an energy-saving model
in IoT networks to reduce energy consumption based on a
reinforcement learning model that allows every edge device
to learn offloading decisions locally without accurate global
information.

B. Al for Security

We then review existing studies related to using Al tech-
niques to enhance the wireless network performance.

1) Network Layer: At the network layer, attacks mainly
focus on disruptions to normal operations of network traffic.
DoS Attacks: The DoS attack is a common attack at the
network layer [18], [130], [131]. 5G network slicing is a
technology that divides a network into multiple virtual net-
works, which can be targeted by DoS attacks [18]. A deep
learning framework has been proposed in [[18] to jointly predict
DoS attacks and slice traffic. The detection of DoS attacks
is based on packet features including flow duration, internet
protocol (IP) addresses, ports, and protocols. Deep learning
with Kalman backpropagation was also proposed to detect
DoS attacks in [130]. Features used in [130] include flow
duration and flow inter-arrival time. The Kalman filter shows
its capability to predict and detect DoS attacks by adjusting
deep learning weights.

Loophole Attacks: A new insider attack called loophole attack
was proposed in [132]. The attacker can be launched at a
malicious gateway node. By intercepting and rerouting data in
a loop to delay traffic, it can attack the IPv6 routing protocol
for low-power and lossy networks. To counter attackers, traffic
features such as rank, topology inconsistency, and rerouting
procedures are used to train a deep learning framework.
Simulations in [[132]] show that the deep learning framework
achieves more than 90% accuracy to identify such attackers.

Anomaly Detection: Machine learning-based anomaly detec-
tion has become a common way to detect anomaly in network
traffic based on packet features. A general comparison of
machine learning-based anomaly detection was given in [[133],
which tested various machine learning algorithms, including
SVM, decision tree, random forest, and K-means; and common
network attacks, including SYN flooding, land, UDP flood,
ping of death, smurf, IP sweeping, and port scan. Generally,

those machine learning algorithms can be used to detect
suspicious features of network traffic. Tree-based methods
were observed with better performance than others in [133].
2) Application Layer: Recently, there are also substantial
efforts focusing on using Al for application layer security.
Phishing and Malware: A strategy against phishing in fog
networks was designed in [134] and built upon a neural
network-based fuzzy detector. In the detector, 27 features are
selected from uniform resource locator information and web
information, and then are fuzzed as three classes and provided
to a neural network to detect phishing. Machine learning
has been proposed to detect malware at the application layer
[135]-[137]. For example, Q-learning has been used in [135]],
[137] for malware detection in mobile and IoT networks,
respectively.
Location Privacy: Location privacy [[138]], [139] has become
an increasingly important topic recently with new attacks
emerging to infer a mobile user’s location. For example,
[140] showed that attackers can target the application layer
to steal the geographical information of users. The use of
machine learning towards location privacy has been discussed
in [141]-[143]]. Anonymizing the spatiotemporal trajectory
data is an effective method to protect privacy before publishing
data [142], in which trajectories are clustered by k-means
to confuse adversaries without information loss measured by
generalization hierarchy trees.
Cross-layer Defenses: Some methods can work across layers
to defend against attacks [144], [145]]. In [[144], DDoS attacks
across the PHY layer and application layers were taken into
consideration. Three kinds of DDoS attacks were analyzed:
silent call attacks, message spamming attacks, and signaling
attacks, all leading to changes in network traffic features.
A deep learning framework in [144] was trained by a large
volume of data to accurately detect such attacks. In [145]],
distributed DoS of TCP, HTTP, and UDP protocols were
considered. Decision trees were used to distinguish the features
of flow because distributed DoS on different protocols will
lead to some specific changes, such as the TCP SYN, HTTP
GET, or POST requests.

V. SUMMARY OF CHALLENGES GOING FORWARD

Based on our review, we find that the application of Al on
wireless networks is under rapid development, and there still
exist challenges to be solved on the path ahead.

« Interpretability of operational wireless data. Many exist-
ing machine learning frameworks work like black boxes,
which lack interpretability. They need experts to deter-
mine which features are dominant and should be used
to train models [[19], [27], [51]. How to select wireless
network features, why these features are important, and
accordingly lead to accurate classification for an Al-based
design worth more research efforts.

« Model Adaptation to Dynamics. A distinguishing feature
of the wireless network is the dynamically-changing
environmental data, such as user mobility and time-
varying channel fading. They cause confusion, noise, and



unreliability in data. Some models are designed typically
to process certain kinds of data [13]], [42]. Generally,
it is worthy of more studies regarding how a trained
machine learning model based on wireless data for one
environment for a time period can be reliably applied to
a different environment at another time period.
Balancing between Complexity and Performance. Ma-
chine learning frameworks, in particular neural networks,
can incur a higher complexity than conventional methods,
indicating that IoT devices with limited cost budgets still
have difficulty in adopting them. Low-complexity neural
network implementation and deployment can provide one
feasible way for Al-empowered IoT devices.

Balancing between AI and Conventional Methods. Al
may not be the optimal choice for every wireless network
task as conventional methods can provide more stable
and interpretable results sometimes. Therefore, we think
adequately adopting Al to balance between Al-based and
conventional methods is important in wireless network
operations.

Adversarial Machine Learning and Effective Defense.
Using machine learning unfortunately creates a new di-
mension of security risks. Adversarial machine learning
can attack existing machine learning models by ma-
liciously manipulating the learning process with small
perturbations [97]. As a result, Al-based methods need to
be carefully reviewed to address the risk of adversarial
examples in wireless networking.

VI. CONCLUSION

In this paper, we surveyed the literature on a rapidly growing

area

of Al for wireless networking. We summarized the use

of Al techniques from the PHY layer to the application layer
in two major aspects: improving performance and enhancing
security. We also discuss the challenges on the path ahead.
As we have seen, different Al techniques can be applied
or re-designed for various wireless algorithms, mechanisms,
architectures, and systems, making Al for wireless networking
a challenging and promising research area.
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