2.2.3 Electromagnetic waves at a boundary and Fresnel's equations

We have studied wave propagation through an unbounded medium so
far. In this section, we discuss wave propagation through a boundary
between two semi-infinite media sharing a common interface.
Specifically, we first investigate the effects of wave polarization upon
reflection and transmission at the interface between two linear, isotropic
and homogeneous media and derive the Fresnel's equations. We then
include a discussion on fotal internal reflection and establish the
properties of evanescent waves.

We consider a plane polarized wave incident on the interface at
an angle #; with respect to the normal of the interface as shown in Fig.
2.2. The plane containing the incident propagation vector k; and the
normal to the interface is called the plane of incidence. Since a vector
field lying on a plane in an arbitrary direction always can be decomposed
into two orthogonal directions. We choose to decompose the £ field into
a direction perpendicular and the other parallel to the plane of incidence.
We consider these two cases separately, and the general situation is
obtained by superposing the results of the two cases.



Parallel polarization

With reference to Fig. 2.2, we take the fields of the incident, reflected,
and transmitted waves to be of the following forms, respectively
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Fig. 2.2 Parallel polarization.

FE; = E,-gexp[ -7 (kz . R)] = Eigexp[ — j(kﬁlll@ﬁ? + kiCOSHZ‘Z)],

E, = E,oexp[ — j (ky - R)] = Eppexp[ — j(k,sinb,z — k,cos6,.z)],
and
E; = Eyexp| — j (k; - R)] = Eygexp| — j{kisinbx + kicost;2)].

(2.2-41a)
Similarly, for the magnetic fields, we have

H; = Hyoexp| — j (ki - R)| = Hjoexp| — j(kisinf;z + k;cosb;2)],



H, = H gexp| — j (k. - R)| = Hppexp[ — j(k,sinb,.z — k,cos6,2)];
H, = Hypexp| — j (ks - R)] = Hygexp| — j(kisindyx + kicos6,z)].

(2.2-41b)
Note that these electric fields are on the plane of incidence and hence
their polarizations are parallel to the plane of incidence. According to the
electromagnetic boundary conditions at the interface between two linear,
1sotropic and homogeneous media with no surface charges and surface
currents at the interface, the tangential components of £ and H, and the
normal components of D and B are continuous across an interface.
Continuity of the tangential components of the electric fields at the
interface (z = 0) requires that

(Ez + ET)’ along interface — Etlalong interface » (2-2-42&)
which implies (with reference to Fig. 2.2)
Ejycosbiexp| — j(k;sinb;z)] — E.qcosb,exp| — j(k,sinf,x)] =

Eycosbrexp| — j(kesind;x)], (2.2-42b)
where, according to Fig. 2.2, we have
E; = Ejy(cosba, — sind;a,),

ET — ETO( — COS@THI - Sine’raz)n
and

E, = Eyy(costha, — sinfia,).

Now, the boundary condition for the tangential component of the
magnetic field gives

(Hz + Hr)lalong interface — Ht ‘along interface » (22'433)
which is equivalent to

Hpexp[ — j(k;sinb;z)] + H.gexp[ — j(k,sind,x)] =

Hyexp| — 7(kssind;z)], (2.2-43b)

where H; = Hya,, H, = Hya,,and H; = Hya,. Now, in order to
satisfy Egs.(2.2-42b) and (2.2-43b) for all possible values of z along the



interface, all three exponential arguments must be equal and that gives
the so-called phase matching condition:

k;sinfd; = k,sinf, = k;sind;. (2.2-44)

Note that the first equality in the above equation leads to law of
reflection and the second equality leads to Snell's law. In light of Eq.
(2.2-44), the boundary conditions given by Egs. (2.2-42b) and (2.2-43b)
reduce to

Eipcos0; — Fgcost, = Eycosb;, (2.2-45a)

and
Hiy + Hyo = Hy, (2.2-45b)

respectively. Using Hyo = Eig/m, Hy = Erq/mand Hy = Ew/m2,
where n;and 79 are the intrinsic impedances for medium 1 and 2, Eqgs.
(2.2-45a) and (2.2-45b) can be solved simultaneously to obtain the
amplitude reflection and transmission coefficients, v and 71y,

respectively:

E.g  micostl — nacost;
Eyp 11 cosb; + nocosb;’

"=

(2.2-46a)

E 9 -
b =2 = M oos (2.2-46b)
Ez'() (il COSQi + T]QCOSgt

Perpendicular polarization

In this case, the electric field vectors are perpendicular to the plane of
incidence, as shown in Fig. 2.3. As we did previously in the parallell-
polarization case, we can obtain the following expressions for the
amplitude reflection and transmission coefficients:

ET[) N 79 COS@Z' — mcosﬁt

r, =

~ , 2.2-47
E; 12 c0s8; + 11c080; ( )

EtO o 27]2 COSgi
Eiy 1 cosb; + ncosb;

¢ = (2.2-47b)

Equations (2.2-46) and (2.2-27) are called the Fresnel's equations, which



dictate plane wave reflection and transmission at the interface between
two semi-infinite media characterized by #; and 7,.

Brewster angle

The incident angle for which the reflection coefficient is zero is called
the Brewster angle 0, also called the polarizing angle. For perpendicular
polarization, we set r; = 0 to get
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Fig. 2.3 Perpendicular polarization.
12 cosf; = 11c0sb;. (2.2-48)

Using Egs. (2.2-12) and (2.2-44), we solve for ¢; in Eq. (2.2-48) to
obtain

. — (pea/poer)
sinf; = = sind,, . 2.2-49
\/ 1= (p1/p2)? " ( )

When p; = pg, the denominator of Eq. (2.2-48) goes to zero. It means
that 6, does not exist for nonmagnetic materials. Similarly, we find the



Brewster angle for parallel polarization by setting ; = 0 to obtain

SinGPH _ \/1 - (PJ2€1/N1€2) . (2’2_50)

1 — (€1/€9)?

For nonmagnetic materials, 1.e., j; = pg ,

€9 2
Op) = \/ 1T (61/62 \f = tan~ —~). (2.2-51)

Figure 2.4 plots the reflection and transmission coefficients for
incident fields with parallel and perpendicular polarization as a function
of the incident angle #; for an air-glass interface (n; = 1, ns = 1.5,
pt1 = p2 = 1), where we have used n = /p/e and n = ,/pre, to re-

express Egs. (2.2-46) and (2.2-47) in terms of n; and no. In this case, the
coefficients are real as indicated in Fig. 2.4a). Figure 2.4a) can be
represented by two figures, Figs. 2.4b) and 2.4c), where in Fig. 2.4¢) we
sec a phase jump from zero degree to -180 degrees at the Brewster angle
for the rp, (r)) curve.
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Fig. 2.4 Reflection and transmission coefficients for an air-glass interface
(n1 = 1.0, ny = 1.5): ty, and tp. correspond to the cases of transmission coefficient
of parallel and perpendicular polarization, respectively. r,, and 1, corresponds to
the cases of reflection coefficient of parallel and perpendicular polarization,
respectively. These plots are generated using the m-file in Table 2.1.



Reflectivity and transmissivity

It is useful to relate the cocfficients of reflection and of transmission to
the flow of energy across the interface. Using Eq. (2.2-34), we write the
averaged power densities carried by the incident, retflected and
transmitted beams, respectively as follows:

|Ejol? |Eol”

|Ero?
—a;, <&§>= a., and <8§>=

<8,> =
' m 2m 219

a; ,

where a;, a, and a, are the unit vectors of k;, k, and k; as shown in Figs.
2.2 and 2.3. The coefficients of reflection R and transmission T are
defined as the ratios of the average power across the interface. ForR, it is
given by

_|<8r>-a,|  |Enffcost,

R = = : 2.2-52
|<S'i> . azi 1E50|20050i ( )

Hence, for parallel and perpendicular polarization, we have
R” = "T'|||2 and R_j_ = "I"J_|2, (2.2-53)

respectively asf; = 6,. Ry and R, are also called reflectivity or

reflectance in optics. The coefficient of transmission (also called
transmissivity or transmittance in optics) is

T <S> -a.| _ |E,0|27710059,. (2.2-54)
[<8;>-a,|  |EjpPnacost;
Hence, for parallel and perpendicular polarization, we have
T = Z;zgzg’ t)?and T, = lezzg’ It 12 (2.2-55)
Note that conservation of power requires that
Ry +T, =1 and Ry+Ty=1 (2.2-56)

As a practical example, for normal incidence (#; = 6, = 0) from air
(n1 = 1) to glass (ny = 1.5),



Ry = Ry =|rl> = |r,]? = [(n1 — n2)/(n1 + n2)]* = 0.04,

and T, = Ty = 0.96. Hence, about 4% of the light is reflected and 96%
1s transmitted into glass.

Total internal reflection

Recall from Section 1.2 that for n; > no, any light ray incident at an
angle greater than the critical angle, ¢, = sin"'(n,/n,), experiences
total internal reflection. What is the picture in terms of wave theory? It
turns out Fresnel's equations are all applicable to total reflection if we
disregard the fact that sin¢; > 1 and for ¢; > ¢., we set

cosgy = — (1 — sin?¢;)?
— [1 - (2)?sins, |

= % 4{(:)sing, - 1]E

2l

(2.2-57)

Hence, from Eq. (2.2-41). We have, for reflected field,
E, = E.pexp| — j (k. - R)] = Eqgexp| — j(krsinf,x — k,cosb,z)],
and the transmitted field is
E, = Ewexp| — j (k: - R)] = Ewexp| — j(ktsinﬁt:ﬂ + kicost,z)]
~ Buexp| ~ g 2>sm¢>z slexp{ — kl(2)Psin”g; — 1132},

where we have only retained the real exponential in z with a negative
argument to prevent nonphysical solutions. We see that the transmitted
field is propagating along the z-direction, with an exponentially
decaying amplitude in the z-direction. Such a wave is called an
evanescent wave.

Taking the case that the incident wave 1s polarized with its
electrical field perpendicular to the plane of incidence [see Fig. 2.3], from
Fresnel's equations (2.2-47) and the fact that cos¢, is now an imaginary
quantity, 7, and ¢, become complex and we find



r1 = |ri|exp(jo) = exp(jo) (2.2-58)

and

t, = |t lexp(ja/2) = =exp(jor/2), (2.2-59)

\/1 — (’I’Lg/’nl)

where

1 \/sin2qbi — (ng/nl)Q)

o = 2tan~
COSQ;

is the phase angle of the reflection coefficient. We can now write,
assuming F;o = Fya,,
E, = E.gexp| — j (k. - R)]
= Eja,exp(jo)exp| — j (k, - R)] (2.2-60)

and
Et = Etoexp[ — j (kt . R)]
= Euoayt.[exp(jajexp| - jki(~)sing.

x exp{ — kt[(Z—:)Qsinzqﬁi —1]5z). (2.2-61)

We notice that the amplitude of the reflected wave 1s equal to that of the
incidence and hence the energy is totally reflected [see Fig. 2.5a)].
However, there is a phase change upon reflection, which varies from 0°
at the critical angle to 180° at grazing incidence as illustrated in Fig. 2.5
b). The results of Fig. 2.5 are plotted using the m-file shown in Table 2.2.
Now, the corresponding magnetic field for the transmitted field is, with
reference to Fig. 2.3 and using Eq. (2.2-57),

H; = Hyexp| — j(k; - R)]

) Eylt
= ( — cosf,a, + sinfa,) olt.|

exp(ja)exp| — jkt(Z—;)singbiw]

2

x exp{ — k(-2 sin’g; — 1)1},

and it becomes the following equation when we use Eq. (2.2-57):



xp(jo)
z}.

(2.2-62)

. Eylt
H, = {j[(%)zsmz@ —1]ta, + (Z—;)sinqbiaz)}%e
2

DI

x exp| = jh(; *)singialexpl — ki[( 7Y sin’g; — 1
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Fig. 2.5 Reflection coefficients for an glass-air interface (nqy = 1.5, ny = 1): rp, and
1. corresponds to the cases of reflection coefficient of parallel and perpendicular
polarization, respectively.



The time-averaged power density < S; > of the transmitted field is then
<8;> « Re[E; x H;).

= Re{[— j[(%)‘zsm?@ ~1]Fa, + (Z—;)sinqbiax]

2 2
o Bl g — 2k, [(22)2sin2y — 1021}, (22-63)

2 n2

Note that the transmitted field is obviously not zero (|t | # 0), despite
the fact that there is no power flowing along the z-direction (as the
Poynting vector in the z-direction is imaginary). However, there is power
flowing along the interface inside the less denser medium.

If we consider a collection of plane waves (such as a beam),
traveling in different directions, to be incident on the interface at angles
larger than the critical angle, each plane wave experiences total internal
reflection, and the reflection coefficient for cach is different. Upon
reflection, we can reconstruct the reflected beam by adding the complex
amplitudes of each reflected plane wave. The net result is a reflected
beam that is laterally shifted along the interface upon reflection. This
lateral shift can be interpreted as the energy of the beam entering the less
denser medium, traveling along the interface within the less denser
medium, and then re-emerging from the less denser medium to the denser
medium upon reflection. This lateral shift along the interface of the beam
is known as the Goos-Hdnchen shift.



