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Abstract—This paper describes image processing methods for 
identifying the position and orientation of a rover mock-up in 
images taken during a Mars Science Laboratory field test 
campaign. Identification targets were affixed to the top deck of 
the mock-up, and the methods discussed involve the detection of 
these targets, followed by associating them with the known 
positions of the targets. 

I. INTRODUCTION 

Mars Science Laboratory Terminal Descent Sensor, the 
rover’s landing radar, underwent a field test campaign in the 
Mojave Desert. One purpose of the field test was to gauge how 
the rover’s position during the sky crane descent phase might 
impact the return of the radar signal during this crucial phase of 
landing operations. To test this, the landing radar was affixed to 
a helicopter, and a mock up of the rover, with targets attached 
to the top deck, was attached to a wench underneath the 
helicopter. The radar was operated while the position of the 
rover mock up was varied. A camera was positioned near the 
wench, facing down, to image the rover as the test was 
underway. Time-tagged images were captured at a rate of 6 
frames per second, which will be used to estimate the position 
of the rover during the test and matched with specific times of 
radar test data. 

II. PROBLEM STATEMENT 

The identification targets affixed to the rover top deck will 
be the primary means of solving for the rover position and 
orientation in the imagery.  

 
Figure 1: The rover mock-up with targets. 

The targets are black circles on various places on the rover 
top deck. The contrast between the targets and the rover top 
deck should aid in proper identification, however the task is 
made more difficult by the extra clutter of the white square 
shape around the target, and the dark-colored tape used to 
attach them to the rover. 

Similarly, the highly-reflective nature of the rover surface 
may cause unwanted side effects such as glare that can cause 
problems in identifying some of the targets. It would be more 
desirable if the rover surface was painted a non-reflective white 
and the targets did not have the extra clutter of tape around 
them. However, as the images are this way and nothing can be 
done about it, these problems must be dealt with in post-
processing. Shadows cast by the helicopter and the rover mast 
may also cause contrast issues that will pose problems for 
target identification. 

In each image, the rover can be considered to have 
undergone three translations: 

1. Translated along the X and Y axes. 

2. Scaled in size depending on the distance from the 
camera. 

3. Rotated due to helicopter maneuvers, wind, and other 
factors. 

Roll and pitch effects are present, but assumed to be 
minimal due to the nature of the test and will be ignored in 
processing. 

III.  PROPOSED SOLUTION 

It is proposed to implement a three step process to identify 
the targets in each image.  

A. Edge Detection via the Sobel Operator 

The first step in detecting the targets is to separate them 
from the background and the rover shape. The proposed 
method to do this is to perform edge detection via the Sobel 
Operator [1] applied in both the horizontal and vertical axes. 
Detection in both directions is necessary to properly detect 
circular edges. 

The Sobel Operator is a 3x3 convolution kernel that is 
applied to each pixel in an image to approximate the derivative 
of the image along a direction. For the horizontal direction, the 
kernel is defined as: 
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         (1)

For the vertical direction, the kernel is defined as:�� �	 ��1 �2 �10 0 0�1 �2 �1
         
 

The kernels defined in (1) and (2) are convolved with every 
pixel in the image to detect edges. A threshold is applied to thin 
the edges as well as avoid detection of non
which will aid in further steps. For this problem, a threshold 
value of 0.08 was used, which provided good performance.

Figure 2: The rover mock-up after Sobel edge detection.

 

Figure 3: The close-up of one of the targets.

 

As is shown in figures 2 and 3, this method does an 
adequate job at detecting the circular targets, while rejecting 
some of the more linear edges, such as the sides of the rover 
deck against the background. It is also noted, however, that in 
this case the three targets visible at the bottom of the deck in 
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As is shown in figures 2 and 3, this method does an 
adequate job at detecting the circular targets, while rejecting 
some of the more linear edges, such as the sides of the rover 

t the background. It is also noted, however, that in 
this case the three targets visible at the bottom of the deck in 

figure 1 that are obscured by the shadow of the mast are not 
detected because the contrast between the foreground targets 
and background deck is not high enough. This 
limitation for the following reasons. 

First, there are a large number of targets on the rover deck, 
so missing only a few should not completely prevent successful 
detection of the rover position and orientation.
frame rate at which the images is taken is high enough 
compared to how much the rover is able to move in between 
images that occasional failures to track are OK. With these 
factors in mind, edge detection via the Sobel operator is an 
adequate first step in the processing chain.

B. Circle Detection via the Circular Hough Transform

Although Sobel edge detection can successfully extract 
most of the targets from the image, as is evident by Figure 3, 
there is still plenty of clutter that must be dealt with. Because 
the targets are practically the only circular shapes in the 
images, we must now focus on extracting
shapes, and their positions, from the edge

The proposed method for this is the Circular Hough 
Transform [2]. The Circular Hough Transform is useful for 
detecting circles of known radius 
image, but can be iterated to detect circles of various radii. The 
method to find a circle of radius R is as follows.

1) Create an accumulator matrix the size of the original 
image to be processed. This accumulator matrix will be used 
to store data that is used in the peak

2) For every bright-level pixel position
a circle of radius R in the accumulator matrix. 
effect of incrementing the value of the accumulator by one 
every time a drawn circle intersects a pixel in the accumulator 
matrix. 

3) After all circles have been drawn, search for peaks in 
the accumulator matrix. Peaks in the accumulator matrix 
represent a circle in the original image being cenetered at this 
pixel. The reasoning of this is as follows:

 
Consider a circle in an image: 

 

Figure 4: A circle in the original image

 
For every pixel in this circle, additional

the accumulator matrix, as illustrated
more of these circles are drawn, they all have 
intersect at the center of the circle in the original image, as 
illustrated in figure 6.  

This result of the Circular Hough Transform is how we will 
find the centers of the targets in the edge detected image. As 
the accumulator matrix is created, we are left wi
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Circle Detection via the Circular Hough Transform 

on can successfully extract 
most of the targets from the image, as is evident by Figure 3, 
there is still plenty of clutter that must be dealt with. Because 
the targets are practically the only circular shapes in the 
images, we must now focus on extracting only the circular 
shapes, and their positions, from the edge-detected image. 

The proposed method for this is the Circular Hough 
The Circular Hough Transform is useful for 

 in a black-and-white level 
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is as follows. 

Create an accumulator matrix the size of the original 
This accumulator matrix will be used 

s used in the peak-finding step. 
position in the image, draw 

radius R in the accumulator matrix. This has the 
effect of incrementing the value of the accumulator by one 
every time a drawn circle intersects a pixel in the accumulator 

After all circles have been drawn, search for peaks in 
Peaks in the accumulator matrix 

present a circle in the original image being cenetered at this 
pixel. The reasoning of this is as follows: 

 
A circle in the original image. 

additional circles are drawn in 
illustrated in figure 5. As more and 

more of these circles are drawn, they all have pixels that 
intersect at the center of the circle in the original image, as 

This result of the Circular Hough Transform is how we will 
find the centers of the targets in the edge detected image. As 
the accumulator matrix is created, we are left with peaks at the 



center of each circle in the original image. We now are left 
with the simple task of searching for peaks in this accumulator 
matrix. 

 

Figure 5: Circles centered at each pixel of the original circle are drawn in 
the accumulator matrix. 

Figure 6: All of the circles intersect at the center of the circle.

 

An edge detected image processed through the Circular 
Hough Transform is shown in figure 7, with a close up of a 
single target shown in figure 8. As is pictured, the targets 
definitely stand out more than any other feature of the rover, 
exactly what we wanted. 

Figure 7: An image of the accumulator matrix values.

center of each circle in the original image. We now are left 
with the simple task of searching for peaks in this accumulator 
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All of the circles intersect at the center of the circle. 

An edge detected image processed through the Circular 
ansform is shown in figure 7, with a close up of a 

single target shown in figure 8. As is pictured, the targets 
definitely stand out more than any other feature of the rover, 

 
An image of the accumulator matrix values. 

Figure 8: A close-up of a single target. Notice the strong peak in the center 
of the circle, what we are looking for.

Peak-finding in 2-dimensions can be done quickly and 
simply by just comparing the value of each pixel with the 
values of the eight pixels that border it. This me
itself to be fast enough for our purposes, and was selected.

However, peak-finding alone cannot be used. This is 
because the Circular Hough Transform really only detects 
perfect circles. As is evident by figur
from the edge detection stage are not perfect. The side
this is the Circular Hough Transform produces a set of peaks 
near the center of the circle. Similarly, if the circle is not the 
exact radius of that being searched for, we will get a cluster of 
smaller peaks near the center of the target.

To resolve this issue, after peak-
that are within an R radius distance from the peak being 
analyzed. For all peaks within an R radius of each other,
collapse them into a single peak located at the mean positi
all the peaks. This process is illustrated in figure 9.

Figure 9: Multiple peaks (top) within a circl
more centered at the middle of the target.

 
f a single target. Notice the strong peak in the center 

of the circle, what we are looking for. 

dimensions can be done quickly and 
simply by just comparing the value of each pixel with the 
values of the eight pixels that border it. This method has shown 
itself to be fast enough for our purposes, and was selected. 

finding alone cannot be used. This is 
because the Circular Hough Transform really only detects 
perfect circles. As is evident by figure 3, the circles resulting 
from the edge detection stage are not perfect. The side-effect of 
this is the Circular Hough Transform produces a set of peaks 
near the center of the circle. Similarly, if the circle is not the 

ed for, we will get a cluster of 
smaller peaks near the center of the target. 

-finding we find other peaks 
R radius distance from the peak being 

analyzed. For all peaks within an R radius of each other, we 
collapse them into a single peak located at the mean position of 
all the peaks. This process is illustrated in figure 9. 

 

 
Multiple peaks (top) within a circle collapsed into a single peak 

more centered at the middle of the target. 



After the processing techniques mentioned, we can 
successfully identify the locations of targets in the original 
image, as shown in figure 10. As is illustrated, this method is 
highly successful at extracting the locations of many of the 
targets in the images. 

 
Figure 10: The green stars represent the locations of the filtered peaks form 

the accumulator matrix. 

C. Target Alignment via Procrustes Method 
 

Now that we have some (or possibly all) of the targets 
identified in the image, the final step is to align them with the 
known actual targets. The proposes method to accomplish this 
task is an iterative Procrustes Alignment Method [3]. 

Procrustes Alignment is a method developed to compare 
the relative shape of objects in multiple images that differ by 
means of translation, scale, and rotation, which are the 
transformations we have assumed our rover to have been 
subjected to in each image. The detailed method chosen is as 
follows. 

1) Pre-process the known target locations by translating 
them along the X and Y axis such that the mean positions 
along both dimenions is zero. This effectively centers the 
image to be detected in the reference frame. If we have � 
known targets, for each ���, ���	… 	(��, ��)  points, we 
perform the operation: 

 ���� , ��� � = (�� − 	 �̅. �� − 	 ��)        (3) 
 

Where �̅ and �� are the mean known target positions. 

2) After translating the target positions, scale them in 
magnitude such that the RMS distance of all points to the 
origin is one. This operation makes the method scale invariant. 
We calculate a scaling factor: 
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Each translated point is divided by this scale factor, giving 

us the desired unity RMS distance of all points to the origin. 

3) For each image to be processed, perform steps 1 and 2 
to the detected target pixel locations. This puts the detected 
targets to be on the same scale as the known targets. 

4) After the detected targets are translated and scaled, 
perform an iterative rotation alignment. Sweep over a range of 
angles from 0° to 360°. In each iteration, for each detected 
target point, calculate the distance to all of the known target 
points. Choose as its pair the closest known target. Calculate 
as a cost function the sum of the square of these distances for 
all of the detected targets. The rotation angle to select is that 
which has the smallest cost function. 
 

We now should have a relatively close match of the 
detected targets to the known targets. However, because not all 
of the targets will have been detected, the translation and 
scaling will not have put the detected points at the same 
reference frame as the known targets. Therefore, we perform 
another series of iterations on the translated, scaled, and rotated 
points.  

The first iteration is to sweep over a small range of 
additional X and Y translations, re-calculating the cost function 
at each iteration and picking the additional translation that 
minimizes it. Next, we iterate over a small range of additional 
scale factors, calculating the cost function again at each 
iteration and again picking the additional scale factor that 
minimizes it.  

At this point, we will have good agreement between the 
detected and known targets. To match a detected target with a 
known target, we simply choose the known target that is the 
smallest distance away, and perform filtering by rejecting 
points that are too far away from a known point (indicative of 
the detected point being clutter and not an actual target) or 
rejecting points that share the same known target (pick only the 
target that is closest, and reject the rest). We are now able to 
associate some (or possibly all) of the known targets with a 
pixel number in the image, which can be used for further pose 
estimation to get exact measurements. Pose estimation will not 
be discussed here. 

IV.  RESULTS AND CONCLUSION 

An example result of this method is shown in figures 11 
and 12. In this example, we are able to successfully match all 
of the detected targets with a known target. However, because 
the edge detection and Circular Hough Transform stages are 
not perfect, some targets are not associated. As previously 
mentioned, this is acceptable because of the large number of 
targets. If desired, the locations of the missing targets can be 
interpolated to complete pose estimation. 



 
Figure 11: The detected targets matched with known targets 

Figure 11 shows each detected target assigned a numerical 
reference to known targets. In this case, of the detected targets, 
100% of them are correctly associated with known targets, 
although four of them were not detected prior to Procrustes 
alignment. 

Figure 12 shows the how the target positions are aligned. 
Their relative positions after Procrustes alignment are in very 
good agreement. Small errors do not prevent us from 
associating a known target with a pixel number in the image. 

 

 

Figure 12: The known and detected target locations after translation, 
scaling, rotation, and alignment via the Procrustes Method. 

Statistics were calculated for a small sample of 50 images 
run through this method. An average of 74.4% of the targets 
across the images were successfully aligned with a known 
target, plenty to later develop a good estimation of the rover 

position. Image quality differences, due to previously discussed 
effects of sun glare, shadowing, as well as excessive scale or 
translation cutting off some targets, does negatively impact 
performance. Some statistical plots are shown below. 

To conclude, this method has proven itself quite capable of 
performing the task at hand. Images are processed in the sub-
second time-frame with little optimization. The method is also 
fairly free of continual “fiddling” with parameters to get it to 
work, which is desirable for large sets of images. 

 

 

 
Figure 13: Statistical results of alignment. 
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