
Swarm and Evolutionary Computation xxx (2017) 1–20
Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo
MPSO: Modified particle swarm optimization and its applications

Dongping Tian a,*, Zhongzhi Shi b

a Institute of Computer Software, Baoji University of Arts and Sciences, Baoji, Shaanxi, 721007, PR China
b Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, PR China
A R T I C L E I N F O

Keywords:
Particle swarm optimization
Maximal focus distance
Inertial weight
Premature convergence
Local optima
Logistic map
Wavelet mutation
* Corresponding author.
E-mail addresses: tdp211@163.com, tiandp@ics.ict.ac

https://doi.org/10.1016/j.swevo.2018.01.011
Received 30 August 2017; Received in revised form 28 J
Available online xxxx
2210-6502/© 2018 Elsevier B.V. All rights reserved.

Please cite this article in press as: D. Tian, Z
Computation (2017), https://doi.org/10.1016
A B S T R A C T

Particle swarm optimization (PSO) is a population based meta-heuristic search algorithm that has been widely
applied to a variety of problems since its advent. In PSO, the inertial weight not only has a crucial effect on its
convergence, but also plays an important role in balancing exploration and exploitation during the evolution.
However, PSO is easily trapped into the local optima and premature convergence appears when applied to
complex multimodal problems. To address these issues, we present a modified particle swarm optimization with
chaos-based initialization and robust update mechanisms. On the one side, the Logistic map is utilized to generate
uniformly distributed particles to improve the quality of the initial population. On the other side, the sigmoid-like
inertia weight is formulated to make the PSO adaptively adopt the inertia weight between linearly decreasing and
nonlinearly decreasing strategies in order to achieve better tradeoff between the exploration and exploitation.
During this process, a maximal focus distance is formulated to measure the particle's aggregation degree. At the
same time, the wavelet mutation is applied for the particles whose fitness value is less than that of the average so
as to enhance the swarm diversity. In addition, an auxiliary velocity-position update mechanism is exclusively
applied to the global best particle that can effectively guarantee the convergence of MPSO. Extensive experiments
on CEC013/15 test suites and in the task of standard image segmentation validate the effectiveness and efficiency
of the MPSO algorithm proposed in this paper.
1. Introduction

Inspired by social behavior observed in nature, such as schools of fish,
flocks of birds, swarms of bees, and even human social behavior, particle
swarm optimization was first introduced in 1995 for the task of optimi-
zation of continuous nonlinear functions [31]. PSO is similar to other
population based evolutionary algorithms (EAs) [78] in that it is
initialized with a population of random solutions (here refers to the
positions of each particle), such as genetic algorithm (GA) [29], ant
colony optimization (ACO) [21], firefly algorithm (FA) [79,82,84,86]
and cuckoo search (CS) [16,97], etc. It is unlike most of other population
based evolutionary algorithms, however, in that PSO is motivated by the
simulation of social behavior instead of survival of the fittest, and each
candidate solution is associated with a velocity rather than the evolu-
tionary operators like selection, crossover and mutation. Compared with
other EAs, it's obvious that PSO has the advantages of fewer control
parameters, better convergence and easy implementation. Due to these
desirable merits, PSO has attractedmuch attention worldwide in the field
of evolutionary computation since its advent. At present, it becomes one
.cn (D. Tian).

anuary 2018; Accepted 28 January 20

. Shi, MPSO: Modified partic
/j.swevo.2018.01.011
of the most preferred choices for optimization problems and has been
extensively applied to a wide range of application areas such as neural
networks [8,36], engineering design [18,65], optimal scheduling [69,
76], and so on. However, similar to other nature-inspired evolutionary
algorithms, PSO also suffers from the bane of premature convergence and
being trapped into local optima when solving complex multimodal
problems [27]. Based on this recognition, a huge amount of particle
swarm optimization variants have been proposed to deal with these
issues. As the representative work, HCLPSO was developed in Ref. [47]
which adopted the comprehensive learning particle swarm optimizer
[40] to enhance the exploration and utilized the global version of PSO to
enhance the exploitation. Subsequently, the ensemble PSO (EPSO) [48]
was proposed to solve real-parameter optimization problems by inte-
grating the merits of a pool of particle swarm optimization strategies.
Experiments on CEC005 bore out that the superiority of the EPSO
algorithm. From the literature, it can be clearly observed that most of the
current existing PSOs can be roughly divided into four categories: swarm
initialization, parameter selection, topology structure and hybrid
versions respectively.
18

le swarm optimization and its applications, Swarm and Evolutionary

mailto:tdp211@163.com
mailto:tiandp@ics.ict.ac.cn
www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
https://doi.org/10.1016/j.swevo.2018.01.011
https://doi.org/10.1016/j.swevo.2018.01.011
https://doi.org/10.1016/j.swevo.2018.01.011

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
● Swarm initialization. Like other swarm based stochastic optimiza-
tion algorithm, PSO is initialized with a population of random solu-
tions (position of each particle) in the search space, and subsequently
begins to enter a loop in order to continue to search for optimal
solutions by updating the particle's velocities and positions until some
termination conditions are satisfied. The early notable work [74]
used two kinds of chaotic maps to attempt to improve the quality of
initial population for PSO with promising results. Subsequent work
[26] came up with a similar chaotic opposition-based population
initialization instead of the purely random strategy to improve PSO
performance. In Ref. [37], two kinds of chaotic maps have been
applied to initialize the swarm in which Logistic map was for posi-
tions while Cubic map was for velocities of the particles. Note that
both of the two PSOs, to some extent, can achieve certain success
compared to the PSO with usual random initialization in the same
conditions. Particularly, the recent work of Tian et al. [75] introduced
chaotic map based initialization and Gaussian mutation as well as a
local re-initialization strategies into the standard PSO. Extensive
experiments on several well-known benchmark functions demon-
strated its effectiveness. In the context of swarm initialization for PSO,
there has been very little research on this topic. However, it is
reported that PSO tends to the characteristics of low stability due to
the non-uniformly distributed initial particles [28]. Moreover, it's
obvious that the convergence speed of the particle swarm also
depends on the initial population. So how to generate high-quality
initial particles is a worthy research direction in the PSO field. This
is one of the original intentions of this work, which will be discussed
in detail in the following sections.

● Parameter selection. The proper selection of control parameters,
such as inertia weight and acceleration coefficient, can significantly
influence the convergence of PSO. Concerning the acceleration
coefficient, it has been studied for many years because of its effect on
the self and social cognitions for the convergence of particle swarm
optimization [11,12,14,60,70]. As a pioneer work on this topic, Clerc
et al. [14] introduced a constriction factor into the standard PSO
that was a function of c1 and c2 to insure the convergence of particle
swarm optimization. Subsequent work [60] put forward a
self-organizing hierarchical particle swarm optimizer (HPSO) with
time-varying acceleration coefficients (TVAC) to control the local
search and convergence to the global optimum solution. Conducted
experiments revealed that the performance of HPSO with TVAC was
markedly better than that of HPSO with fixed acceleration coefficients
(c1 ¼ c2 ¼ 2). In Ref. [70], a modified particle swarm optimization
was brought forward by exploiting the exponential time-varying ac-
celeration coefficients. Besides, various acceleration coefficients [11,
12] have been formulated for PSO to improve its performance in
recent years, and more details of them can be gleaned from the cor-
responding literature. Note that with regard to different inertia weight
strategies, they will be comprehensively reviewed in the next section.

● Topology structure. To enhance the performance of PSO, different
types of topology structures have been studied in the literature. In
Ref. [53], a fully informed particle swarm (FIPS) was presented based
on an information flow process to update the position of each particle.
In FIPS, all members in the neighborhood could fairly offer their
search information and the velocity adjustment was not only influ-
enced by the best position in the particle's neighborhood but also by
the positions in other neighborhoods. Followed by Liang et al. [43]
constructed the DMSPSO by exploiting a dynamic neighborhood
strategy rather that a fixed one to improve PSO, which involved a
random selection of small swarms with small neighborhood in the
early stage to provide better exploration and then dynamically
increase the neighborhood by regrouping the swarms to incorporate
social interaction and perform better exploitation in the later stage of
the search process. In Ref. [51], a PSO with expanding neighborhood
topology was developed by combining particle swarm optimization
with variable neighborhood search to solve the well-known
2

constrained shortest path problem. In recent work [49], the fluid
neural network was employed to create dynamic neighborhood to-
pologies. As a result, the fluid neural network PSO was introduced
with a dynamic neighborhood mechanism. Experiments indicated
that this PSO outperformed the standard PSO algorithm and the other
PSOs based on partially connected grid topologies. In addition, a
hybrid topology scale free Gaussian-dynamic PSO was proposed for
real power loss problem involving the fully connected topology and
ring topology [80] simultaneously. Besides, a dynamic tournament
topology strategy was also exploited to improve particle swarm
optimization (DTT-PSO) in Ref. [85] apart from the other PSO vari-
ants [5,44]. In sum, a suitable topology has been shown to be able to
effectively improve the performance of PSO.

● Hybrid versions. It is expected that the performance of PSO can be
improved by integrating it with other search techniques, such as chaos
search [59], differential evolution (DE) [64], genetic algorithm (GA)
[63], simulated annealing (SA) [68], and neighborhood search [81].
The work of [19] combined a quantum-behavior PSO with the simplex
algorithm to solve the load flow problem. In literature [38], a hybrid
PSO with artificial bee colony (ABC) was proposed (PS-ABC). Simula-
tion results on 13 high-dimensional benchmark functions validated
that PS-ABC had the ability to accelerate the convergence and avoid the
local optima. Besides, notice that integrating PSO with other evolu-
tionary paradigms like selection [1], crossover [54] and mutation [83]
has become a popular research topic in the community of particle
swarm optimization in recent years. Since both PSO and evolutionary
algorithms (evolution strategy, evolution programming, GA and ge-
netic programming) are based on population, as a result such hybrid-
ization can be readily formulated. This is a desirable strategy to achieve
better tradeoff between exploration and exploitation as well as to
prevent stagnation and premature convergence by harnessing the
strengths of each of the components in the corresponding algorithm.

Despite the PSO variants mentioned above belonging to different
categories, most of them can achieve encouraging performance and
motivate us to better explore PSO methods with the help of their excel-
lent experiences and knowledge. From the literature, it is clearly
observed that researchers have paid less attention to the topic on swarm
initialization even though it has a direct effect on the performance of
PSO. Besides, most existing inertia weights behave either linear or non-
linear to attempt to keep the balance between exploration and exploi-
tation. Integrating the characteristics of linear and non-linearly inertia
weight together seems to be more efficient for PSO to enhance its search
ability and keep fast convergence. Finally, although some PSO variants
propose to conduct search process in the context of dynamic environ-
ment, they usually lack a certain measure strategy to be followed. To this
end, a modified PSO with chaos-based initialization and robust update
mechanism is proposed in this paper. On the one hand, the Logistic map
is utilized to generate uniformly distributed particles to improve the
quality of the initial population. On the other hand, the sigmoid-like
inertia weight is formulated to make the PSO adaptively adopt the
inertia weight between the linear decreasing and nonlinear decreasing
strategies based on the maximal focus distance, which is able to effec-
tively prevent the PSO from plunging into local optima and make the
particles proceed with searching in other regions of the solution space. At
the same time, the wavelet mutation is applied for the particles whose
fitness value is less than that of the average so as to enhance the popu-
lation diversity. In addition, an auxiliary velocity-position update
mechanism is introduced exclusively for the global best particle to ensure
the convergence of MPSO. Extensive experiments bear out the effec-
tiveness and efficiency of the proposed PSO algorithm.

The rest of this paper is organized as follows. Section 2 introduces
some background and related work, especially various kinds of inertia
weight from the aspects of the linear, nonlinear, fuzzy rules, random and
other strategies respectively. Section 3 elaborates the MPSO algorithm,
including the chaos-based swarm initialization, formulated sigmoid-like

Fig. 1. Graphical representation of the particle evolution.

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
inertia weight, maximum focus distance, exclusive update strategy and
the wavelet mutation respectively. Experiments on CEC013/15 test suites
and in the task of standard image segmentation are reported in Section 4.
Finally, we end this paper with some important conclusions and future
work in Section 5.

2. Background and related work

2.1. Standard PSO

Particle swarm optimization is a population-based stochastic opti-
mization algorithm. It is known that PSO maintains two populations: a
population of particle's current positions (i.e. pbest) and a population of
particle's best positions (i.e. gbest) achieved to date. The former is
regarded as the candidate solutions in the search space while the latter is
used to guide the former's update. In PSO system, each particle is asso-
ciated with two properties (velocity vector V and position vector X) and it
moves in the search space with a velocity that is dynamically adjusted
according to the particle's experience and the particles companion's
experience simultaneously. Mathematically, the velocity and position of
the particles are updated according to the following formula:

vidðtþ1Þ¼ω�vidðtÞþc1�r1�½pidðtÞ�xidðtÞ�þc2�r2�
�
pgdðtÞ�xidðtÞ

�
(1)

xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ (2)

where c1 and c2 are acceleration coefficients reflecting the weight of the
stochastic acceleration terms that pull each particle toward pbest and
gbest positions respectively. r1 and r2 denote two random numbers uni-
formly distributed in the range (0,1). It has characteristics that are
reminiscent of the temperature parameter in the simulated annealing
(SA). ω is the inertia weight used for balancing the global and local
search. In general, a large inertia weight facilitates the global exploration
while a small inertia weight tends to facilitate the local exploitation. The
position of the ith particle can be represented by a D-dimensional vector
Xi ¼ ½xi1; xi2;⋯; xij;⋯; xiD� where xij 2 ½xmin; xmax� denotes the position of
the jth dimension of the ith particle, and the corresponding velocity is
Vi ¼ ½vi1; vi2;⋯; vij;⋯; viD� where vij 2 ½vmin; vmax� is used to reduce the
likelihood of the particles leaving the search space. The best previous
position (the position giving the best fitness value) of the ith particle is
recorded pbest and denoted by Pi ¼ ðpi1; pi2;⋯; pij;⋯; piDÞ, while the
global best position of the whole swarm achieved so far is recorded gbest
and indicated as Pg ¼ ðpg1; pg2;⋯; pgj;⋯; pgDÞ. The pseudocode of the
standard PSO algorithm can be succinctly described as follows:
3

Fig. 1 illustrates the graphical representation of the particle evolution
in PSO system.

2.2. Review of different inertia weights

As is well known, inertia weight plays an important role in controlling
the process of exploration (global search) and exploitation (local search)
by maintaining a balance in their capabilities. From the perspective of
statistical analysis, it is believed that the overall performance of PSO is
strongly affected by the inertia weight [58]. In view of this, several kinds
of inertia weight will be comprehensively reviewed in this section,
including the linear, nonlinear, fuzzy rules, random, and other strategies
based inertia weights. The ultimate goal is to gain the comparative
analysis and understanding of the merits and demerits of each inertia
weight so as to formulate more effective strategies for PSO algorithm. In
addition, it should be noted that for the sake of clarity and consistency,
the notations t and tmax appeared in this section denote the current
iteration and the maximum allowed number of iterations respectively.
ωðtÞ is used to represent the inertia weight of the tth iteration.

2.2.1. Linear strategies to adjust inertia weight
It is known that the tradeoff between global and local search during

the evolution is critical to the success of an optimization algorithm.
Considering this, the inertia weight was initially set as a constant (such as
0.4) during the search process in the early years of PSO research, but the
results illustrated that a constant inertia weight can hardly work due to
the failure of balancing exploration and exploitation. In themeanwhile, it
was found that a large inertia weight facilitates a global search while a
small inertia weight facilitates a local search. As a consequence, a large
number of inertia weights have been developed in the area of PSO
research. In Ref. [22], a linear decreasing inertia weight was introduced
and shown to be effective in improving the fine-tuning characteristic of
PSO. In this method, the value of ω is linearly decreased from an initial
value ωmax to a final value ωmin as the number of iterations increases
according to the following equation:

ωðtÞ ¼ tmax � t
tmax

ðωmax � ωminÞ þ ωmin (3)

As observed from the literature, this strategy based inertia weight has
been widely applied in the field of particle swarm optimization
researches.

In subsequent works [17,92,100], the inertial weight was dynami-
cally adjusted via increasing or decreasing mechanism. In the case of the
increasing, initially a small value of inertia weight increased linearly or
nonlinearly to be a larger value. On the contrary, a larger value of inertia
weight decreased linearly or nonlinearly to be a small one in the
decreasing situation. Specifically, Zheng et al. [100] constructed an
increasing inertia weight defined by Eq. (4) and confirmed its validity in

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
terms of the convergence speed and solution precision. Experiments
showed that PSO with the increasing inertia weight (increasing from 0.4
to 0.9) outperforms that with the decreasing inertia weight in all
benchmark functions used in their tests.

ωðtÞ ¼ 0:5� t
tmax

þ 0:4 (4)

Enlightened by the pros and cons of the increasing and decreasing
strategies, an inertia weight that first increased and then decreased has
been proposed by Ref. [17], in which the value of inertia weight along
the line of linearly increased from 0.4 to 0.9, and then linearly decreased
to 0.4 again.

ωðtÞ ¼

8>><
>>:

1� t
tmax

þ 0:4; 0 � t
tmax

� 0:5

�1� t
tmax

þ 1:4; 0:5 <
t

tmax
� 1

(5)

In addition, a linear function relationship between inertia weight and
the average distance amongst points was established through analyzing
the dynamic relationship between the inertia weight and the population
diversity [92].

ωðtÞ ¼ ωmax � ωmin

Dmax � Dmin
� DðtÞ þ Dmaxωmin � Dminωmax

Dmax � Dmin
(6)

where DðtÞ denotes the average distance amongst particles and
Dmin � DðtÞ � Dmax, ωmin � ωðtÞ � ωmax.

2.2.2. Nonlinear strategies to adjust inertia weight
Inspired by the basic idea of the decreasing inertia weight, Chen et al.

[9] proposed two natural exponent inertia weights (as shown in Table 1).
Experiments validated that PSO with these two strategies was able to
converge faster than that with the linear ones during the early period of
Table 1
Summary of nonlinear inertia weights mentioned in this subsection.

Literature Different inertia weights

Ref. [9]
ωðtÞ ¼ ωmin þ ðωmax � ωminÞ⋅e

�t=

�
tmax
10

�

ωðtÞ ¼ ωmin þ ðωmax � ωminÞ⋅e
�
h
t=

�
tmax
4

�i2

Ref. [10]
ωðtÞ ¼ �ðωstart � ωendÞ⋅

�
t

tmax

�2

þ ωstart

ωðtÞ ¼ ðωstart � ωendÞ⋅
�

t
tmax

�2

þ ðωend � ωstart Þ
�

2t
tmax

ωðtÞ ¼ ωend

�
ωstart
ωend

�1=ð1þc3 t=tmax Þ

Ref. [25] ωðtÞ ¼ tmax�t
tmax

ðωmax � ωminÞ þ ωmin⋅z

Ref. [30] ωðtÞ ¼ ωstart � ut

Ref. [37]
ωðtÞ ¼

�
ðtmax�tÞn
ðtmax Þn

	�
ωstart � ωendÞ þ ωend

Ref. [39]
ωðtÞ ¼ ðωstart � ωendÞ⋅tan

(
0:875*

"
1�

�
t

tmax

�k1
#)

ωðtÞ ¼ ðωstart � ωendÞ⋅arctan
(
1:56*

"
1�

�
t

tmax

�k2
#

Ref. [50] ωðtÞ ¼ ωmax�ωmin
1þe�u�ðt�n�tmax Þ þ ωmin

Ref. [71] ωðtÞ ¼ ωiðtÞ � Δω

ωðtÞ ¼ ωiðtÞ þ ηΔω

Ref. [88]

ωðtÞ ¼

8>>>>><
>>>>>:

ðωs � ωmÞðt1 � tÞ
t1

þ ωm

ωm

ðωm � ωeÞðtmax � tÞ
tmax � t2

þ ωe

0 � t � t1
t1 < t � t2
t2 < t � tmax

4

the search process. In the meantime, they came up with another group of
three nonlinear decreasing strategies to adjust inertia weight [10],
including a parabola opening upwards, a parabola opening downwards
and an exponential curve respectively. Simulation results showed that for
most continuous optimization problems, the performance of the concave
function based decreasing inertia weight surpasses that of the linear
strategy, and the linear strategy is superior to the convex function based
strategy.

Subsequently, a sigmoid increasing inertia weight was developed by
combining the sigmoid function with the linear increasing inertia weight
[50] to produce a great improvement in quick convergence and aggres-
sive movement narrowing towards the solution space. Feng et al. [25]
made use of a chaotic model (Logistic map) of inertia weight in which a
chaotic term was introduced into the linear decreasing inertia weight to
improve the performance of PSO. Note that in Ref. [93], a PSO with an
adaptive inertia weight was presented for designing IIR digital filter. In
this PSO, the modified Versoria function was employed in the new
relation of the adaptive inertia weight factor function instead of the
commonly used sigmoid function for avoiding the exponential compu-
tation and ensuring the small final misadjustment. In addition, a group of
nonlinear strategies with multi-stage linear decreasing inertia weight
(MLDW) [88] have been put forward for the purpose of easily refining the
decreasing process of the inertia weight. A recent work by Tanweer et al.
[71] proposed a self regulating particle swarm optimization (SRPSO) that
incorporated the self-regulating inertia weight determined by the best
particle for better exploration and the self-perception on the global
search direction determined by the rest particles for exploitation in the
search space. Experiments confirmed that SRPSO has the capability of
achieving faster convergence and better solutions in most of the prob-
lems. All in all, these nonlinear inertia weights mentioned above were
shown to be able to improve the search ability of PSO to some extent, but
they still struggled to obtain a good balance between the global
convergence and the convergent efficiency. Table 1 summarizes several
Related description

–

–

convex function based ω

�
þ ωstart

concave function based ω

exponential function based ω

z: formula of Logistic map

u 2 ½1:0001;1:005�
n: nonlinear modulation index

þ ωend

k1 ¼ 0:6

)
þ ωend

k2 ¼ 0:4

u ¼ 10ðlog tmax�2Þ

Δω ¼ ωstart�ωend
Nt

η: a constant

ωs, ωm, ωe, t1 and t2: parameters predefined

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
nonlinear inertia weights mentioned in this subsection.

2.2.3. Fuzzy rules to adjust inertia weight
As a pioneer work on this topic, Shi et al. [67] first constructed a

two-input and one-output fuzzy logic controller (FLC) to improve the
performance of PSO. The basic idea behind this fuzzy PSO (FPSO) algo-
rithm is to adjust the inertia weight by applying adaptive FLC to
dynamically optimize the inertia weight. To be specific, the two-input
variables include the current best performance evaluation (CBPE) and
the current inertia weight, while the only one-output variable is the
change of inertia weight (Δω). The obtained results indicated that the
performance of this FPSO can be satisfactory on many issues, but it is
difficult to implement due to various factors.

In literature [46], a two-input and two-output FLC was developed.
One of the input variables is the normalized CBPE whereas the other is
the current velocity (CV) of particles. In addition, one of the output
variables is ρ, the scaling factor to control the domain of the particle's
oscillation, another is Vck used to control the change of the velocity
threshold according to the following Eq. (7):

Vc ¼ e� ½10ð1þ VckÞ� (7)

Correspondingly, a new velocity update strategy was formulated as
below:

Vijðt þ 1Þ ¼ ωv
^ þ c1r1

�
x#ij ðtÞ � xijðtÞ

�
þ c2r2

�
x*j ðtÞ � xijðtÞ

�
(8)

v
^ ¼

�
vij; if

vij

 � vc
uð � 1; 1Þvmax

�
ρ; if

vij

 < vc
(9)

where uð�1; 1Þ is the random number uniformly distributed in the
interval [�1,1]. vc is the minimum velocity threshold, a tunable
threshold parameter to limit the minimum of the particle's velocity.
Through numerical experiment, it validated that the performance of the
FPSO does not degrade drastically as the problem dimension increases.

Subsequent work [89] presented a two-input (t and ΔvðtÞ) and
one-output (ω) FLC based particle swarm optimization. In our previous
studies [72,73], two fuzzy PSOs were developed based on the two-input
and two-output FLC, in which the increment of global optimum (IGO) in
successive generations and deviation (Dev) of particle fitness values as
well as the fitness variance (Delt) andmean extremal deviation (Total) are
considered as the input parameters of FLC respectively, while the
two-output variables in both methods include the inertia weight and the
acceleration coefficients. Simulation results revealed that the increase of
the problem dimension cannot significantly deteriorate the performance
of these fuzzy PSOs. Besides, in the work of [61], a balanced fuzzy
particle swarm optimization (BF-PSO) was put forward to solve the
fundamental optimization problem entitled traveling salesman problem.
Table 2
Summary of fuzzy rules based inertia weights mentioned in this subsection.

Literature Input variables

Ref. [46] normalized CBPE
CV

Ref. [67] CBPE
current inertia weight

Ref. [72] IGO ¼ pgðt � 1Þ � pg ðtÞ
Dev ¼

ffi
1
N

PN
i¼1ðfi � favg Þ2

q

Ref. [73] Delt ¼ 1
N

PN
i¼1ðfi � faveÞ2

Total ¼ 1
Pop

PPop
i¼1ðpbest � gbestÞ2

Ref. [89] current iteration
ΔvavðtÞ ¼ jvavðtÞ � vavðt � 1Þj

5

At the same time, a fuzzy logic based multi-objective PSO was developed
to efficiently solve the distributed local area networks topology design
problem [33]. Especially in themore recent work [55], to make up for the
drawbacks of the trapping into local optima and the premature conver-
gence, a fuzzy adaptive informed particle swarm optimization (FAIPSO)
was formulated based on six-input and two-output FLC with ten fuzzy
rules. Note that all the FPSO methods mentioned above possess respec-
tive advantages and disadvantages, and their common goal is to
dynamically adjust the control parameters of PSO during the search
process so as to achieve better optimization performance. Table 2 sum-
marizes the fuzzy rules based inertia weights described in this subsection.

2.2.4. Random strategies to adjust inertia weight
Considering the dynamic nature of the most real-world applications, a

random inertia weight was proposed for PSO to track the optima in
dynamic systems [23]. To be specific, the inertia weight was set to
change randomly according to Eq. (10).

ω ¼ 0:5þ randð⋅Þ=2 (10)

where randð⋅Þ denotes a random number uniformly distributed within the
range [0,1].

Alternatively, it is difficult to predict whether in a given time the
exploration or exploitation would be better in the dynamic environment.
So a random value of the inertia weight is selected to address this
problem. Note that when the random inertia weight is employed the
acceleration coefficients are generally kept constant at 1.494 that
coincides well with literature [14]. In view of this, the random strategy
was widely applied by the other researches [98,99]. Among these, a
strategy developed in literature [98] could tune the expectations of the
inertia weight adaptively when they are selected randomly and thus lead
to effective balance between the global and local search abilities.

�
ω ¼ α1 þ r=2:0; k � 0:05
ω ¼ α2 þ r=2:0; k < 0:05

(11)

where k ¼ ðf ðtÞ � f ðt � 10ÞÞ=f ðt � 10Þ denotes the change rate of the
optimal adaptive value, r is a random number uniformly distributed in
the range [0,1]. Letα1 > α2, if k � 0:05 then the expectation
EðωÞ ¼ α1 þ 0:25, otherwise EðωÞ ¼ α2 þ 0:25. Note that the expectation
value of ω varies adaptively with the change rate of the optimal adaptive
value. As a result the balance between the global search and local search
can be flexibly adjusted.

In recent work [99], a simplified PSO was developed based on the
stochastic inertia weight. It is clearly seen that this variant removes
the velocity parameter and obtains the inertia weight by means of the
random distribution to enhance the global and local search abilities of
PSO algorithm. Meanwhile, the learning coefficients are based on the
asynchronous change strategy to improve the search ability of particles.
Output variables Related description

ρ, Vck –

Δω –

ω, c1, c2 fi: fitness value of the ith particle
favg : average fitness value of the swarm
pgðtÞ: global optimum in tth iteration

ω,c1,c2 N: number of particles
Pop: swarm size
pbest: individual extremum
gbest: global extremum

ω vavðtÞ ¼ 1
m⋅D

P
m

P
D
vid

Table 3
Adaptive inertia weight constructed in literature [24].

The value of ωi – The value of jFij=jVij
– small middle large

The directions of V
!

i and F
!

i
same small middle large
opposite large middle small

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
ω ¼ mmin þ ðμmax � μminÞ � randðÞ þ σ � randnðÞ (12)
here μmin and μmax are the minimum and maximum of the random inertia
weight, randðÞ denotes a random number uniformly distributed in the
interval [0,1] while randnðÞ represents the normally distributed numbers.
σ is used to measure the deviation degree between the random variable
weight and its average value. To sum up, it has been identified experi-
mentally that the random inertia weight has the advantage of rapid
convergence in the early stage of evolution, and it is shown to be able to
find fairly good solutions for most of the well-known benchmark
functions.

2.2.5. Other strategies to adjust inertia weight
Different from previous proposals to improve PSO by utilizing an

adaptive value of the inertia weight in each iteration, an adaptive inertia
weight was expressed as the function of the evolution speed and aggre-
gation degree of the swarm in Ref. [95]. Similarly, almost the same
strategy was proposed by Ref. [90] in which inertia weight was given by
a function of evolution speed and aggregation degree factors, and the
value of inertia weight was dynamically adjusted according to the
evolution speed and aggregation degree of particles. At the same time,
Feng et al. [24] put forward an inertia weight depending on the particle's
search states including its location and velocity instead of the iteration
times. Table 3 describes the adaptive inertia weight strategy applied in
this PSO algorithm. Note that many other PSO variants belonging to this
category can be available in Refs. [56,91]. For more details and a more
complete explanation on them, please refer to the corresponding
literature.

3. Modified particle swarm optimization

In this section, the modified particle swarm optimization is discussed
from five aspects of the chaos-based initialization, formulated sigmoid-
like inertia weight, maximal focus distance, exclusive update strategy,
and position mutation mechanism respectively. More details of them will
be elaborated in sequence in the following subsections.

3.1. Chaos-based swarm initialization

As discussed in Section 1, to generate uniformly distributed initial
particles in the search space plays a critical role in particle swarm opti-
mization. From the literature, it can be observed that a huge number of
chaos-based PSOs have been proposed [2,13,15,26,53,74,77]. Among
these PSO variants, most of them can be roughly classified into three
categories, that is, chaotic sequence based initialization for PSO [26,74,
75], chaotic sequence based parameters update for PSO [2,13,15], and
hybrid PSO and chaotic search techniques [20,53,77]. As the represen-
tative work of the first category, Tian et al. [74] exploited two kinds of
chaos (Tent and Logistic map) to attempt to improve the quality of the
initial population for standard PSO in 2010. Gao et al. [26] employed a
similar chaotic opposition-based population initialization instead of a
pure random initialization for PSO to improve its performance. Con-
ducted experiments verified that these two PSO methods can achieve
promising results compared to those with usual random initialization in
the same conditions. Besides, it should be noted that both the standard
PSO and various improved PSOs, such as HPSO [60], AEPSO [14] and
other PSO variants, behave the characteristics of low stability. One of the
main reasons, just as proved in literature [28], is that the initial popu-
lation is non-uniformly distributed. He et al. [28] have just pointed out
6

the reasons of low stability for PSO, but no specific strategies were given
to solve this problem. Based on this recognition, our recent work [75]
attempted to deal with the foregoing issue by applying chaotic map based
initialization for the standard particle swarm optimization. Extensive
experiments demonstrated the merits of the PSO method. In sum, the
application of chaotic sequence rather than random sequence in PSO is a
powerful strategy to diversify the swarm of particles and improve the
performance of PSO by preventing the premature convergence. In addi-
tion, as for the latter two kinds of chaos-based PSO algorithms, we will
not go into much detail here since it is beyond the scope of our focus in
this paper.

To summarize, most of these methods can achieve encouraging per-
formance and motivate us to better explore PSOs with the help of their
excellent experiences and knowledge. Without loss of generality,
following the core idea of our prior work [75], the chaos-based initiali-
zation is exploited here to improve the quality of initial particles. As one
of the simplest chaos, Logistic map [52] has been paid much attention by
researchers over the last two decades. It can be described as follows:

xnþ1 ¼ f ðμ; xnÞ ¼ μxnð1� xnÞ; n ¼ 0; 1; 2;⋯ (13)

where xn represents the nth chaotic variable, xn 2 ð0; 1Þ under the con-
ditions that the initial x0 2 ð0;1Þ except for some periodic fixed points
(0,0.25,0.5,0.75,1). μ is a predetermined constant, also called bifurcation
coefficient. When μ increases from zero, the dynamic system generated
by Eq. (13) will change from one fixed point to two, and until 2n. During
this process, a large number of multiple periodic components will locate
in the narrower and narrower intervals of μ as it increases. This phe-
nomenon is obviously free from constraint. But μ has a limit value
μt ¼ 3:569945672. Note that whenμ approaches the μt , the period will
become infinite or even non-periodic. At this time, the whole system
evolves into the chaotic state. On the other hand, when μ is greater than
4, the whole system becomes unstable. Hence the range ½μt ;4� is generally
considered as the chaotic region of the whole system. Its bifurcation
diagram is illustrated in Fig. 2.

Note that the key idea of Logistic map based initialization is to
generate the same number of chaotic variables corresponding to the
optimization problem. More specifically, when a preset number of
chaotic iterations are executed, the chaotic variables will be generated
accordingly. Afterwards remapping these variables into the optimization
space, it will yield the real initial variables for the original optimization
problem. Here, Eq. (13) is chosen as the chaotic signal generator, in
which μ is set to be 4. As previously mentioned, the pseudocode of
Logistic map can be described as below, which is able to generate
uniformly distributed data sequence and avoid plunging into the small
periodic cycles effectively.

To further illustrate the distribution performance of chaos-based
initialization, Fig. 3 shows the histogram comparison of the Logistic
map and random map for 3000 iterations in the range [0,1] respectively.
It should be noted that the histogram of Logistic map is depicted under
the condition that its initial value and the number of iteration are set to

Fig. 2. Bifurcation diagram of Logistic map.

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
0.4567 and 3000 respectively. By comparing the histograms illustrated
below, it can be clearly observed that in Logistic map, the maximal fre-
quency is 216 while the minimal frequency is 11, corresponding to 42
and 19 in random map. In addition, the overall average frequency of
Logistic map is about 30 in the range [0.2,0.8] whereas it approximates
27 between [0.3,0.5] for random map, which fully demonstrates that the
Logistic map based initialization can yield more uniformly distributed
particles in more wider ranges. On the other hand, it is obvious that the
histogram trend of Logistic map is intuitively superior to that of random
map. This can be easily validated by the empirical cumulative distribu-
tion function (ECDF) in case they are stochastically ordered. In sum, the
Fig. 3. Histograms of 3000 observations for Logistic and random maps.

7

Logistic map based initialization is able to generate more uniformly
distributed particles in the allowable search space to enhance the sta-
bility of PSO algorithm. This is one of the main motivations for this study.

3.2. Formulated sigmoid-like inertia weight

As is known, the most common method for constructing neural acti-
vation functions is the sigmoid (φðvÞ ¼ 1=ð1þ expð�avÞÞ) in the neural
network, which is able to get excellent balance between linear and
nonlinear behavior as displayed in Fig. 4(a). Note that φðvÞ ¼ 0 when
av < �9:903438. On the contrary, φðvÞ ¼ 1when av � �9:903438.
Based on this recognition, a novel sigmoid-like inertia weight is formu-
lated as follows. The key idea behind this strategy is to achieve the
smooth transition from linear inertia weight to nonlinear inertia weight.
It can be defined as below:

ωðtÞ ¼
8<
:

0:9; t � αtmax
1

1þ eð10t�2tmaxÞ=tmax þ 0:4; otherwise
(14)
Fig. 4. Curves of sigmoid function and different inertia weights.

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
where t denotes the current iteration, tmax is the allowable maximal
number of iterations, α is a constant predefined.

It should be noted that in the early stage of evolution ω ¼ 0:9 when
t � αtmax while in the end stage ω approximates to 0.4 when t is equal to
tmax. Except for these two cases, the values of ω calculated by Eq. (14) at
any time during the process of evolution will be ranging from 0.4 to 0.9,
which coincide well with the conclusions obtained in Ref. [22] because
the performance of PSO can be significantly improved at the time of the
inertia weight belonging to the interval [0.4,0.95]. Fig. 4(b) illustrates
several characteristic curves of the inertia weight with tmax ¼ 1000 and
α ¼ 0:2 for example, where ω0, ω1, ω2, ω3 and ω4denote the linear
decreasing, convex function decreasing, concave function decreasing,
exponential function decreasing and the sigmoid-like inertia weight
formulated in this paper respectively. Compared with ω0, ω1, ω2 and ω3,
it can be clearly observed that in the early stage of particles evolution, the
inertia weight ω4 keeps a larger value so as to speed up the search pro-
cess. Quite the reverse, the inertia weight keeps a smaller value in the
later stage in order to prevent the PSO from falling into local optima and
make the particles proceed with searching in other regions of the solution
space. The curve illustrated between these two cases behaves the smooth
transition from the early stage to the end stage. Note that with respect to
the superiority of the sigmoid-like inertia weight, it will be discussed in
detail in the experiment section.

3.3. Maximal focus distance

As one of the inherent drawbacks of PSO, to suffer entrapment in
local optima should be given priority to except for the premature
convergence. Considering this, how to appropriately measure the
swarm diversity or the aggregation degree of swarm plays a crucial role
in balancing the exploration and exploitation for PSO. A recent work by
Ruan et al. [62] exploited population density to estimate the particle's
distribution in the search space by introducing the swarm size, the size
of the solution space and a saturated population density respectively.
In addition, an aggregation degree (AD) of particles [37] was defined
to evaluate the particle's current state of the swarm as

AD ¼

minðfbestðtÞ; favgðtÞÞ

=

maxðfbestðtÞ; favgðtÞÞ

, in which fbestðtÞ and

favgðtÞ denote the best and average fitness of particles in the tth iteration
respectively, and in general, the larger the value is, the higher the
aggregation degree. Different from the above-mentioned strategies, in
this work, the maximal focus distance (MFD) is formulated to reflect the
particle's aggregation degree so as to judge whether PSO algorithm gets
stuck in the local optima or not:

MFD ¼ max
i¼1⋯m

0
@

ffiXD
d¼1

ðpld � xidÞ2
D

vuut
1
A (15)

where m is the number of neighborhood particles, pld is the previous best
position, and xid denotes the sub-vector of the dth dimension of the ith
particle in the search space.

According to the MFD calculated during the search process, the
proposed particle swarm optimization is expected to be able to identify
the forthcoming search strategy. That is, either to execute wavelet
mutation for the particles whose fitness is less than or equal to the
average fitness of the whole swarm, or to reinitialize the same number
of particles by the Logistic map based on the average fitness of particles,
or to directly update the velocity and position of particles by Eqs.
(1)–(2) and (16)–(17) based on the newly formulated inertia weight
respectively. By this way, the modified particle swarm optimization can
be guaranteed to obtain the global optima without sacrificing too much
of its convergence speed, and this is another key motivation for our
work.
8

3.4. Exclusive update strategy

In order to ensure the convergence of PSO, Clerc et al. [14] intro-
duced a constriction factor into the standard particle swarm optimiza-
tion. Just as discussed in Section 1, this method actually guaranteed the
convergence of PSO algorithm via the parameter selection. Similar to our
prior work [75], another set of velocity-position update strategy is
exploited to keep the global best particle moving until it has reached a
local minimum under the assumption of minimization [4], which is able
to guarantee the convergence of theMPSO effectively. The corresponding
update strategy is described as below:

vξdðt þ 1Þ ¼ �xξdðtÞ þ pgdðtÞ þ ωvξdðtÞ þ ρðtÞð1� 2r2dðtÞÞ (16)

xξdðt þ 1Þ ¼ xξdðtÞ þ vξdðt þ 1Þ ¼ pgdðtÞ þ ωvξdðtÞ þ ρðtÞð1� 2r2dðtÞÞ (17)

where ξ denotes the index of the global best particle, �xξdðtÞ resets the
particle's position to the global best position pgdðtÞ, ωvξdðtÞ indicates the
current search direction, ρðtÞð1� 2r2dðtÞÞ generates a random sample
from a sample space with side lengths 2ρðtÞ. ρ is a scaling factor defined
below that determines the size of an area surrounding the global best
position to proceed with search.

ρðt þ 1Þ ¼
8<
:

2ρðtÞ; if #successes > sc
0:5ρðtÞ; if #failures > fc
ρðtÞ; otherwise

(18)

where the terms #successes and #failures denote the number of consec-
utive successes and failures respectively. Here, a failure is defined as
f ðpgðtÞÞ ¼ f ðpgðt � 1ÞÞwhile a success is just the opposite. sc and fc denote
the preset thresholds. In common cases, a default initial value ρð0Þ ¼ 1:0
has been found empirically to produce acceptable results.

3.5. Position mutation strategy

From the literature, it can be clearly observed that some evolutionary
operators such as selection [1], crossover [54] andmutation [3,34,45,75,
87] are widely exploited to sustain the diversity of the particle swarm. In
Ref. [3], an adaptive mutation mechanism was introduced into the
conventional particle swarm optimization to enhance the global search
ability, in which an extended mutation step size was recommended to
facilitate a search phase at new regions when the search population was
far away from the optimum point. Alternatively the mutation step size
was reduced to initiate local exploration about the isolated search region
at the concluding stages of the optimization cycle. In the work of [34], a
Gaussian based operator was implemented to induce particle search
diversity with probability through mutation. More recent works [45,75,
87] exploited Cauchy mutation [87], wavelet mutation [45], Gaussian
mutation [75] and random strategies [7] to maintain the swarm diversity
respectively. Thus, without loss of generality, the wavelet mutation
rather than Cauchy, Gaussian, Levy or other mutation mechanism is
employed here to retain the swarm diversity in this paper due to its
fine-tuning ability in terms of the performance under the same settings
compared to other mutation operators.

It is known that the mutation operation is usually used to mutate the
position of particles. The details of the wavelet mutation can be described
as follows. Each particle has a chance to mutate that is controlled by a
probability of mutation pm 2 ½0;1�. For the position of each particle, a
random number between 0 and 1 will be generated such that if it is less
than or equal topm, the mutation will take place on that position of the
particle. Specifically, let xiðtÞ ¼ ½xi1ðtÞ; xi2ðtÞ;⋯; xijðtÞ;⋯; xiDðtÞ� be the
current selected particle, where xijðtÞ denotes the position of the jth
dimension of the ith particle in the tth iteration, and it should not exceeds
the allowable search range for this dimension, viz. xijðtÞ 2 ½pjmin; pjmax�.

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
Hence the resulting particle can be expressed as:

xijðtÞ ¼
�
xijðtÞ þ σ �

pjmax � xijðtÞ
�
; if σ > 0

xijðtÞ þ σ �

xijðtÞ � pjmin

�
; if σ � 0

(19)

with

σ ¼ 1ffiffiffi
a

p e
�
�

φ
a

�2�
2
cos

�
5�

�φ
a

��
(20)

where a denotes the dilation parameter, it is usually set to vary with the
iteration of particles so as to meet the fine-tuning purpose.

So far, the pseudocode of MPSO algorithm can be succinctly described
as follows.
To better understand the proposed MPSO algorithm described above,
we provide a concise yet complete flowchart to illustrate it as shown in
Fig. 5.

4. Experimental results and analysis

4.1. Experiments based on basic numerical functions

To validate the effectiveness of the MPSO proposed in this paper, we
first conduct experiments on four well-known benchmark functions in
this section to determine the related optimal parameters. In particular,
the performance of PSO with different initialization methods and
different inertia weights is compared and investigated respectively. Note
that all the test functions are shown in Table 4, including their expres-
sions, dimensions, search space, allowable search range and global
optimum values respectively.
9

Fig. 6 depicts the graphical shows of the test functions with 2-
dimensional decision variables respectively.

To illustrate the effect of the sigmoid-like inertia weight formulated in
subsection 3.2, note that PSOs that are randomly initialized but with
different inertia weights are compared with each other. For the sake of
fair comparison, the parameters are set as follows: the linearly decreasing
inertia weight varies from ωmax ¼ 0:9 at the beginning of the search to
ωmin ¼ 0:4 at the end, the number of neighborhood particles m ¼ 15, the
acceleration coefficients c1 ¼ c2 ¼ 2, and the swarm size is 40. Besides,
the dimension of the test functions is set to 10 except for Schaffer with 2.
The success and failure thresholds are sc ¼ 15 and fc ¼ 5 respectively,
which implies that the algorithm is quicker to punish a poor ρ setting
than it is to reward a successful ρ value to produce acceptable results.
In addition, the threshold of MFD is predetermined to be
MFD*¼ 2.80e�006 by trial and error. It is shown that the performance of
MPSO encounters a sharp decline whenMFD* is less than or greater than
2.80e�006. For each test function, 30 independent runs are performed
by each PSO variant, and each run is with 1000 iterations. The PSO
algorithm terminates when it reaches the maximum allowed number of
iterations. Without loss of generality, the best solution, average solution
and standard deviation are employed to measure the performance of
different PSOs.

Table 5 presents the optimization results of PSO with different inertia
weights. It should be noted that ω0-PSO, ω1-PSO, ω2-PSO, ω3-PSO and ω4-
PSO denote the PSO with linear decreasing inertia weight, convex
function decreasing based inertia weight, concave function decreasing
based inertia weight, exponential function decreasing based inertia
weight and the sigmoid-like inertia weight respectively. As expected, ω4-
PSO is apparently superior to all the other PSO variants on these four
benchmark functions except for the standard deviation of the Griewank,

Fig. 5. Flowchart of the MPSO algorithm.

Table 4
Basic benchmark functions employed in this subsection.

Function Expression Search space Xmax Vmax Global optimum

Sphere Pd
i¼1x

2
i

[�100,100]n 100 100 0

Rastrigin Pd
i¼1½x2i � 10 cosð2πxiÞ þ 10� [�10,10]n 10 10 0

Griewank
1

4000

Pd
i¼1ðxiÞ2 �

Yd
i¼1

cos
�
xiffiffi
i

p
�
þ 1

[�600,600]n 600 600 0

Schaffer 0:5þ sin2
ffiffiffiffiffiffiffiffiffiffi
x21þx22

p
�0:5

ð1:0þ0:001ðx21þx22 ÞÞ
2

[�100,100] 100 100 0

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
which validates the promising performance of MPSO over the test
functions. In other words, this further indicates the importance of the
sigmoid-like inertia weight during the search process of particles for the
better tradeoff between exploration and exploitation.

Fig. 7 illustrates the convergence curves of PSO with different inertia
weights for the four test functions. To show the evolutionary processes
clearly, here, the y axes adopt the fitness logarithm values. From the
results shown in Fig. 7, one can see that ω4-PSO is an effective method
with fast convergence speed at the early stage of evolution in almost all
cases. Especially in Fig. 7(b), it can be clearly observed that, compared
with its counterparts, ω4-PSO evolves slightly slower for the first 100
iterations, but after that it quickly converges to the global optimum very
significantly. Besides, it should be noted that the former part of Fig. 7(b)
is specially scaled up to a certain extent so as to illustrate the variation
trends of each curve more clearly. In actual fact, each PSO corresponding
to each evolution curve is still run for 1000 iterations. Likewise, it is clear
to observe that ω0-PSO, ω2-PSO and ω4-PSO in Fig. 7(d) can achieve the
global best solution without being trapped in the local optima. Although
the convergence of ω4-PSO in the later period is slightly worse than that
of ω0-PSO, its optimizing speed markedly outperforms ω0-PSO in the first
100 iterations. At the same time, both ω0-PSO and ω4-PSO are apparently
superior to the ω2-PSO. Another interesting observation comes from the
evolution curve of ω1-PSO, note that which evolves very slowly before
the first 400 iterations, followed by even occurs deterioration in
convergence performance. After that ω1-PSO improves consistently
10
before 750 generations with the increase of iterations, subsequently it
almost keeps in a smooth state until the end of the search process.
Besides, it can be obviously seen that ω3-PSO has the worst performance
throughout the iteration. To sum up, PSO with the sigmoid-like inertia
weight formulated in this paper is able to get the best performance in
most cases by adaptively regulating the balance of exploration and
exploitation in the solution space.

To better understand the effectiveness of the chaos-based initializa-
tion and the formulated sigmoid-like inertia weight strategies proposed
in this paper, different combinations for PSO with an initial population of
random map or Logistic map and a constant inertia weight (ω ¼ 1), a
linearly decreasing inertia weight or the formulated sigmoid-like inertia
weight are exploited respectively. To increase the readability of different
PSO paradigms, acronyms PSORC, PSORL, PSORS, PSOLC, PSOLL and
PSOLS are specified by Table 6.

From Table 7, it can be clearly observed that PSOLS outperforms all
the others. That is to say, PSO with the Logistic map based initialization
and the formulated sigmoid-like inertia weight can get the best optimi-
zation performance. To be specific, the performance of PSO with the
Logistic map based initialization is far superior to that of the corre-
sponding PSOs with random particles, which means that the distribution
of initial particles can be improved by the Logistic map. As can be seen
from Table 7, the standard deviations of PSOLS are consistently smaller
than that of other PSO variants, which implies that the PSOwith an initial
population of Logistic map solutions can alleviate its inherent defects of

Fig. 6. Graphical shows of the test functions.

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
low stability. In other words, this further illustrates the importance of the
uniformly distributed initial particles to the convergent performance of
PSO and the non-linearly sigmoid-like decreasing inertia weight to the
tradeoff of exploration and exploitation. At the same time, note that PSO
with the formulated sigmoid-like inertia weight also surpasses the
corresponding PSO algorithms with a constant inertia weight and a lin-
early decreasing inertia weight respectively. Meanwhile, the premature
convergence is avoided by adopting the wavelet mutation and the local
re-initialization strategies based on the maximal focus distance among
particles. By this way, the performance of the standard PSO algorithm
can be improved to a large extent. To summarize, the Logistic map based
initialization, formulated sigmoid-like inertia weight and the newly up-
date mechanism, to some extent, play a good complementary role each
other in the particles evolution and should be used together to obtain
better optimization performance.

Fig. 8 displays the evolution curves of theMFD in each PSO algorithm
for the four test functions. As can be seen from Fig. 8, at the points where
11
the curves of different PSO variants encounter a sharp decline imply that
particles tend to trap into the local optima. Subsequently the wavelet
mutation as well as the local re-initialization strategy based on the Lo-
gistic map is timely leveraged to help PSO escape from the local optima
and make the particles proceed with searching in other regions of the
solution space. In particular, the introduced velocity-position update
mechanism for the global best particle, which is able to keep the search
proceeding and effectively guarantee the convergence of MPSO. By
comparison, the curves of PSORC and PSORL decrease slowly as the
search proceeds. Moreover, both of them behave to be interweaved with
each other except for the Sphere function. On the contrary, the curves of
PSOLL and PSOLS descend rapidly than that of PSORS and PSOLC for
Sphere, Rastrigin and Schaffer functions respectively. In addition, it is
noticeable that the evolution curve of the maximal focus distance by
PSOLC for Griewank function declines quickly than that of the other PSO
algorithms. Particularly, the turning point appears when the iteration
approximates 200. On the whole, all the curves of theMFD corresponding

Table 5
Optimization results comparison of PSO with different inertia weights.

Functions PSO
algorithm

Best
solution

Average
solution

Standard
deviation

Sphere ω0-PSO 1.39e�187 1.45e�179 0.00e�000
ω1-PSO 1.13e�058 7.62e�017 2.21e�016
ω2-PSO 1.40e�058 2.06e�036 5.44e�036
ω3-PSO 3.65e�244 4.01e�221 0.00e�000
ω4-PSO 1.65e�266 4.13e�261 0.00e�000

Rastrigin ω0-PSO 0.00e�000 0.00e�000 0.00e�000
ω1-PSO 0.00e�000 6.36e�231 8.31e�230
ω2-PSO 0.00e�000 1.63e�271 8.31e�168
ω3-PSO 0.00e�000 0.00e�000 0.00e�000
ω4-PSO 0.00e�000 0.00e�000 0.00e�000

Griewank ω0-PSO 1.61e�001 5.28e�001 5.32e�001
ω1-PSO 1.77e�001 1.02e�000 5.46e�001
ω2-PSO 1.97e�001 1.15e�000 2.95e�001
ω3-PSO 2.86e�001 8.74e�001 4.22e�001
ω4-PSO 4.51e�003 9.90e�002 3.16e�001

Schaffer ω0-PSO 0.00e�000 0.00e�000 0.00e�000
ω1-PSO 3.41e�018 1.11e�017 2.22e�017
ω2-PSO 0.00e�000 1.11e�016 4.44e�014
ω3-PSO 3.72e�002 1.77e�002 1.09e�014
ω4-PSO 0.00e�000 0.00e�000 0.00e�000

Fig. 7. The convergence curves of PS

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20

12
to different PSO variants on the test functions remain in a downward
trend, which further demonstrates the fact that PSO tends to trap into the
local optima especially in the later stage of evolution. In the meanwhile,
it also shows the necessity of adopting some effective strategies to help
the PSO algorithm escape from the local optima.

4.2. Experiments based on CEC013 test suite

As observed from the experimental results shown above, our method
is remarkably superior to the others in most cases, which verifies the
effectiveness and efficiency of it in the task of the basic function opti-
mization. To investigate its performance in relatively complex multi-
modal problems, a series of experiments are conducted on CEC013 test
suite [41] in this subsection, which consists of 28 functions, including 5
unimodal functions, 15 multimodal functions and 8 composition func-
tions respectively. Note that nearly half of CEC013 functions are used to
test and analyze here, viz., 4 unimodal functions, 4 multimodal functions
and 4 composition functions, resulting in 12 benchmark functions
described in Table 8.

To make a fair comparison with several state-of-the-art PSO variants,
including GPSO [66], OLPSO-L [94], DMPPSO [35], SRPSO [71] and
O with different inertia weights.

Table 6
Each acronym and its corresponding PSO variant.

Initialization method Inertia weight Acronym

Random map constant inertia weight PSORC
linearly decreasing inertia weight PSORL
sigmoid-like inertia weight PSORS

Logistic map constant inertia weight PSOLC
linearly decreasing inertia weight PSOLL
sigmoid-like inertia weight PSOLS

Table 7
Optimization results comparison among different PSO variants.

Function Methods Best solution Average solution Standard deviation

Sphere PSORC 1.30e�006 1.57e�004 1.42e�004
PSORL 2.13e�181 2.94e�171 0.00e�000
PSORS 2.59e�223 2.41e�217 0.00e�000
PSOLC 5.08e�007 1.02e�004 1.25e�004
PSOLL 7.86e�192 2.76e�179 0.00e�000
PSOLS 3.65e�244 4.01e�221 0.00e�000

Rastrigin PSORC 1.64eþ001 3.15eþ001 1.33eþ001
PSORL 0.00eþ000 0.00eþ000 0.00eþ000
PSORS 0.00eþ000 0.00eþ000 0.00eþ000
PSOLC 1.40eþ001 2.56eþ001 9.18eþ000
PSOLL 0.00eþ000 0.00eþ000 0.00eþ000
PSOLS 0.00eþ000 0.00eþ000 0.00eþ000

Griewank PSORC 4.62eþ001 6.21eþ001 4.32e�001
PSORL 2.95eþ001 7.36eþ001 3.09e�001
PSORS 1.24eþ000 1.72eþ000 9.44e�002
PSOLC 1.53eþ000 1.72eþ000 1.41e�001
PSOLL 0.00eþ000 5.33e�062 0.00e�000
PSOLS 0.00eþ000 0.00e�000 0.00e�000

Schaffer PSORC 2.40e�003 1.76e�002 1.32e�002
PSORL 5.55e�017 1.69e�004 3.38e�004
PSORS 2.36e�017 1.86e�009 3.24e�009
PSOLC 5.77e�014 1.96e�012 2.58e�012
PSOLL 0.00e�000 0.00e�000 0.00e�000
PSOLS 0.00e�000 0.00e�000 0.00e�000

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
IDE-PSO [27], the fitness mean (Mean) and standard deviation (Std) of
the fitness errors are utilized to estimate their performance. It should be
noted that the fitness error denotes the fitness deviation between the
solution yielded by MPSO and the ideal solution. Likewise, each PSO is
run 30 times on every test function with 1000 iterations for each run, and
the stopping criterion is set as reaching the total number of iterations.
Besides, it's worth noting that all the experimental parameters are the
same as those in subsection 4.1 except for the function dimension with 10
and 30, and the failure thresholdfc ¼ 3.

From Tables 9 and 10, we can find that MPSO is superior or highly
competitive to several state-of-the-art PSO variants. Specifically, there
exist the following aspects can be easily observed. First, the smallerMean
value can be obtained by MPSO for most functions with D¼ 10 except for
f1 tested by GPSO, OLPSO-L, DMPPSO-L and SRPSO as well as f4 tested by
OLPSO-L and SRPSO respectively. In particular, compared with the most
competitive particle swarm optimization variants SRPSO and IDE-PSO,
the Mean value of our method is consistently smaller than that of IDE-
PSO despite with the marginal difference for f10 and obviously out-
performs that of SRPSO except for f1 and f4. Besides, it should be noted
that the Std value is markedly superior to that of IDE-PSO, especially for
the f6 and f9 with one order of magnitude lower, which implies that the
PSO with an initial population of Logistic map based solutions can alle-
viate its inherent shortcomings of low stability. Second, with regard to
the experimental results comparison under D¼ 30, MPSO is also able to
achieve good performance with smaller Mean value such as for f2, f3, f5,
f7, f8 and f10 out of the twelve test functions. As for other PSO variants
with higher Mean value, however, all of them have obtained the better
Std, such as for f1, f4, f9 and f11 with one or more orders of magnitude
13
lower than the competitive IDE-PSO and other PSO variants respectively.
This further demonstrates the effect of the chaos-based particle swarm
initialization. Third, without exception, it is noticeable that the perfor-
mance of each PSOmentioned above declines as the function's dimension
scale increasing from 10 to 30. At the same time, there is no doubt that
the computational time increases accordingly. In addition, it is worth
noting that like other studies, it seems that the difference of the experi-
mental results among some PSO variants is relatively small, but as far as
the intelligent computation itself is concerned, even though a little
improvement from the experiments on the surface, they are still of great
significance in the field of population based meta-heuristic search algo-
rithm, at least on the experimental results reported in this subsection. To
this end, we have validated it from the perspective of statistical analysis
by trial and error, and the results indicated that MPSO outperforms the
other PSO variants such as SRPSO and IDE-PSO with a 95% confidence
level.

4.3. Experiments based on CEC015 test suite

To further investigate the effect of MPSO, extensive experiments are
also conducted on the latest CEC015 test suite [42], which consists of 15
learning-based benchmark functions that have several shift vectors and
rotation matrices. As a result, it's very difficult to get the optimal solu-
tions with lower minor errors. In Tables 11 and 2 unimodal functions, 3
multimodal functions, 3 hybrid functions and 4 composition functions
are selected to be tested in this subsection. Note that all of the problems
can be treated as the black-box issues. To ensure a fair comparison with
the counterparts such as GPSO [66], LPSO [32], SPSO [6], CLPSO [40],
FIPS [53] and DMSPSO [43], the swarm size is set to 40, the maximum
number of iterations of MPSO is the same as that used in literature [96],
that is, 2500 and 7500 for 10- and 30-dimensional problems respectively.
Without loss of generality, the performance is also estimated in terms of
the fitness mean (Mean) and standard deviation (Std) of the fitness errors.

The comparison of Means and Stds between MPSO and the other PSO
variants is illustrated in Tables 12 and 13. Note that the results of the
other six PSO methods to be compared here are directly referenced from
literature [96], and the lowest mean and standard deviation values in
each line are highlighted in boldface. From the results, one can see that
MPSO is able to obtain better Mean values for most of the test functions
with 10 dimensions except for f2, f7, f8, f10 and f11. As for Std, the pro-
posed method still performs significantly better than the others for
almost all cases with the exception of DMSPSO on f8, CLPSO on f10 and f11
as well as SPSO and CLPSO on f12 respectively, which indicates that
MPSO has better solution stability owing to the Logistic map based
swarm initialization that yields uniformly distributed initial particles
together with the wavelet mutation that enriches the swarm diversity.
Similarly, compared with other PSO variants on the selected CEC015
functions under D¼ 30, even though the Std performance of MPSO is
worse or slightly worse than that of DMSPSO on f7, CLPSO and SPSO on f7
and f12, MPSO is still advantageous in its robustness and stability, which
is largely ascribed to the initialization strategy and the update mecha-
nism adopted in the PSO algorithm. In sum, compared with other PSO
variants mentioned in this subsection, the proposed MPSO is quite
competitive in terms of the stability, robustness and scalability.

In addition, to thoroughly and fairly discern the experimental results
of different PSOs mentioned in this subsection, the nonparametric Wil-
coxon rank sum test is conducted with significance level¼ 0.05 between
MPSO and its competitors to judge the significance of performance.
Table 14 summarizes the experimental results under D¼ 10 and D¼ 30
respectively. Note that the number of benchmark functions (out of the 12
tests) that MPSO is significantly better than (Better), almost the same as
(Same) and significantly worse than (Worse) its peer algorithm, and the
total score (Merit) is calculated by subtracting Worse from Better. From

Fig. 8. The evolution curves of MFD with different experimental settings.

Table 8
CEC013 functions employed in this subsection.

Type No. Function name Search
range

Unimodal
functions

1 rotated high conditioned elliptic
function

[�100,100]

2 rotated bent cigar function
3 rotated discus function
4 different powers function

Multimodal
functions

5 rotated Rosenbrock's function
6 rotated Weierstrass function
7 rotated Schwefel's function
8 rotated Katsuura function

Composition
functions

9 composition function 1 (n¼ 5, rotated)
10 composition function 6 (n¼ 5, rotated)
11 composition function 7 (n¼ 5, rotated)
12 composition function 8 (n¼ 5, rotated)

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20

14
Table 14, it can be seen that the number of functions that MPSO out-
performs its peers is much larger than the number of functions in which it
significantly performs worse than the compared PSO methods. In
particular, the Merit values shown here apparently demonstrate the sig-
nificance of MPSO over other selected particle swarm optimization
algorithms.

4.4. Experiments based on standard image segmentation

To further illustrate the effect of the proposed MPSO algorithm, we
apply it in the task of standard image segmentation. Note that the
threshold segmentation is a basic method in the field of image segmen-
tation, and the most commonly used threshold method is the Otsu al-
gorithm [57] whose core idea can be described as follows: let the pixels of
a given image be represented in l gray levels f0;1;⋯; l� 1g, suppose that
the pixels are dichotomized into two classes: object and background,
denoted byC0with gray levelsf0;1;⋯; tgand C1 with gray levels ft þ
1; t þ 2;⋯; l� 1g respectively by a threshold at level t. pi ¼ ni=N, where

Table 9
Comparison of Means and Stds of MPSO and the other six PSO variants under D¼ 10.

Func. Item GPSO OLPSO-L DMPPSO-G DMPPSO-L SRPSO IDE-PSO MPSO

f1 Mean 7.30eþ05 1.52eþ04 2.77eþ06 5.82eþ05 1.54eþ05 3.64eþ06 1.82eþ06
Std 1.17eþ06 8.62eþ03 3.33eþ06 6.33eþ05 1.72eþ05 3.17eþ06 2.68eþ05

f2 Mean 3.39eþ08 9.12eþ07 5.54eþ08 8.85eþ07 4.65eþ07 2.68eþ07 2.12eþ07
Std 7.44eþ08 2.46eþ08 1.10eþ09 2.84eþ08 1.33eþ08 3.31eþ07 2.39eþ07

f3 Mean 2.63eþ03 1.52eþ04 1.46eþ04 5.20eþ03 3.61eþ02 1.34eþ02 1.32eþ02
Std 2.76eþ03 5.99eþ03 5.72eþ03 9.57eþ03 6.08eþ02 1.43eþ02 1.29eþ02

f4 Mean 2.02eþ01 0.00eþ00 6.58eþ00 3.68e�02 0.00eþ00 6.18e�04 4.37e�04
Std 2.19eþ01 0.00eþ00 1.76eþ01 2.11e�02 0.00eþ00 2.79e�04 1.06e�04

f5 Mean 3.21eþ01 1.11eþ01 2.22eþ01 6.91eþ00 4.34e�01 1.89e�01 1.41e¡01
Std 3.72eþ01 1.35eþ01 3.23eþ01 3.71eþ00 1.12eþ00 3.23e�02 1.82e¡02

f6 Mean 9.14eþ00 7.15eþ00 9.16eþ00 7.12eþ00 8.82eþ00 6.11eþ00 4.05eþ00
Std 1.42eþ00 1.15eþ00 1.87eþ00 2.38eþ00 5.30e�01 1.17eþ00 3.33e¡01

f7 Mean 1.29eþ03 1.37eþ03 1.33eþ03 8.63eþ02 8.34eþ02 7.85eþ02 6.96eþ02
Std 3.25eþ02 2.40eþ02 3.47eþ02 4.25eþ02 2.83eþ02 2.32eþ02 1.85eþ02

f8 Mean 8.97e�01 8.99e�01 1.59eþ00 1.43eþ00 0.00eþ00 0.00eþ00 0.00eþ00
Std 2.94e�01 2.32e�01 3.36e�01 4.05e�01 0.00eþ00 0.00eþ00 0.00eþ00

f9 Mean 3.88eþ02 3.92eþ02 3.74eþ02 3.72eþ02 3.75eþ02 2.39eþ02 2.13eþ02
Std 4.45eþ01 4.08eþ01 6.42eþ01 6.80eþ01 6.76eþ01 1.54eþ02 6.68eþ01

f10 Mean 2.45eþ02 1.67eþ02 2.08eþ02 1.71eþ02 2.11eþ02 1.41eþ02 1.37eþ02
Std 7.22eþ01 2.59eþ01 5.10eþ01 5.56eþ01 5.25eþ01 2.04eþ01 2.15eþ01

f11 Mean 6.79eþ02 4.72eþ02 6.06eþ02 6.01eþ02 4.52eþ02 3.80eþ02 3.39eþ02
Std 1.20eþ02 4.24eþ01 4.77eþ01 4.45eþ01 3.93eþ01 4.69eþ01 2.58eþ01

f12 Mean 6.54eþ02 4.66eþ02 5.27eþ02 2.52eþ02 3.30eþ02 3.23eþ02 2.14eþ02
Std 2.60eþ02 2.04eþ02 2.70eþ02 1.42eþ02 1.14eþ02 1.31eþ02 1.17eþ02

Bold values indicate the method which achieves the best performance on each function.

Table 10
Comparison of Means and Stds of MPSO and the other six PSO variants under D¼ 30.

Func. Item GPSO OLPSO-L DMPPSO-G DMPPSO-L SRPSO IDE-PSO MPSO

f1 Mean 5.94eþ07 6.37eþ05 2.22eþ07 7.03eþ07 1.75eþ09 5.16eþ07 6.28eþ07
Std 3.34eþ07 1.97eþ05 1.99eþ07 3.10eþ08 7.09eþ08 3.47eþ07 7.06eþ06

f2 Mean 3.71eþ15 3.06eþ09 1.50eþ10 1.80eþ15 7.73eþ19 5.46eþ07 4.31eþ07
Std 1.82eþ16 3.63eþ09 7.73eþ09 8.76eþ15 2.50eþ20 7.14eþ07 8.01eþ06

f3 Mean 4.21eþ04 9.93eþ04 6.36eþ04 1.48eþ04 4.61eþ05 8.20eþ03 6.85eþ03
Std 1.01eþ04 1.72eþ04 1.38eþ04 3.54eþ04 3.12eþ05 6.09eþ03 5.26eþ03

f4 Mean 8.79eþ02 0.00eþ00 3.17eþ01 1.28eþ03 3.71eþ04 2.44eþ01 3.76eþ01
Std 2.83eþ02 0.00eþ00 6.70eþ01 4.28eþ03 1.18eþ04 9.23eþ01 6.81eþ00

f5 Mean 5.29eþ02 7.75eþ01 8.49eþ01 6.80eþ01 1.75eþ04 2.45eþ01 2.29eþ01
Std 2.57eþ02 2.19eþ01 4.33eþ01 3.49eþ01 6.13eþ03 2.31eþ01 2.18eþ01

f6 Mean 4.13eþ01 3.83eþ01 4.15eþ01 3.97eþ01 4.38eþ01 3.11eþ01 3.64eþ01
Std 3.35eþ00 2.29eþ00 2.20eþ00 6.01eþ00 1.22eþ00 3.56eþ00 1.75eþ00

f7 Mean 5.44eþ03 7.16eþ03 7.59eþ03 4.81eþ03 9.42eþ03 4.59eþ03 4.38eþ03
Std 8.38eþ02 5.67eþ02 1.35eþ03 1.74eþ03 5.17eþ02 1.03eþ02 8.16eþ01

f8 Mean 2.33eþ00 2.23eþ00 3.14eþ00 2.76eþ00 0.00eþ00 0.00eþ00 0.00eþ00
Std 5.77e�01 3.74e�01 5.01e�01 3.91e�01 0.00eþ00 0.00eþ00 0.00eþ00

f9 Mean 1.34eþ03 1.30eþ03 3.39eþ02 3.08eþ02 5.33eþ03 2.87eþ02 3.17eþ02
Std 5.29eþ02 4.63eþ02 8.74eþ01 9.87eþ01 7.52eþ02 1.49eþ02 9.32eþ01

f10 Mean 3.72eþ02 2.34eþ02 2.82eþ02 2.83eþ02 4.13eþ02 2.03eþ02 1.98eþ02
Std 8.81eþ01 7.18eþ01 1.06eþ02 1.03eþ02 2.36eþ01 3.56eþ00 2.81eþ00

f11 Mean 1.61eþ03 1.25eþ03 1.44eþ03 1.45eþ03 1.47eþ03 1.21eþ03 1.72eþ03
Std 1.82eþ02 7.90eþ01 3.81eþ01 4.63eþ01 4.42eþ01 1.03eþ02 3.06eþ01

f12 Mean 4.80eþ03 3.56eþ03 2.86eþ03 8.23eþ02 8.87eþ03 3.15eþ02 5.39eþ02
Std 9.73eþ02 5.47eþ02 9.95eþ02 1.62eþ03 1.42eþ03 6.46eþ01 3.66eþ01

Bold values indicate the method which achieves the best performance on each function.

Table 11
CEC015 functions employed in this subsection.

Type No. Function name Search range

Unimodal functions 1 rotated high conditioned elliptic function [�100,100]
2 rotated cigar function

Multimodal functions 3 shifted and rotated Ackley's function
4 shifted and rotated Rastrigin's function
5 shifted and rotated Schwefel's function

Hybrid functions 6 hybrid function 1 (n¼ 3)
7 hybrid function 2 (n¼ 4)
8 hybrid function 3 (n¼ 5)

Composition functions 9 composition function 1 (n¼ 3)
10 composition function 3 (n¼ 5)
11 composition function 6 (n¼ 7)
12 composition function 7 (n¼ 10)

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20

15

Table 12
Comparison of Means and Stds of MPSO and the other six PSO variants under D¼ 10.

Func. Item GPSO LPSO SPSO CLPSO FIPS DMSPSO MPSO

f1 Mean 5.05eþ06 1.17eþ05 2.78eþ04 5.53eþ05 2.51eþ05 9.64eþ04 2.63eþ04
Std 2.31eþ07 7.30eþ04 1.01eþ04 7.42eþ04 3.50eþ04 2.46eþ05 6.61eþ03

f2 Mean 6.02eþ08 2.94eþ07 6.15eþ03 4.73eþ04 6.49eþ03 1.38eþ04 6.36eþ03
Std 1.05eþ09 7.79eþ07 2.83eþ04 8.12eþ04 3.86eþ02 5.47eþ03 2.12eþ02

f3 Mean 2.03eþ01 2.02eþ01 2.02eþ01 2.02eþ01 2.03eþ01 2.01eþ01 1.87eþ01
Std 1.12e�01 4.07e�02 2.99e�02 2.41eþ00 1.51e�01 1.64e�01 1.18e¡02

f4 Mean 1.48eþ01 1.35eþ01 4.87eþ00 1.02eþ01 6.75eþ00 9.19eþ00 3.23eþ00
Std 1.12eþ01 9.61eþ00 4.98eþ00 3.73e�01 1.72eþ00 6.16eþ00 1.76e¡02

f5 Mean 5.76eþ02 2.91eþ02 4.14eþ02 6.11eþ02 5.14eþ02 3.34eþ02 1.89eþ02
Std 9.36eþ01 8.95eþ02 6.49eþ02 1.46eþ02 4.58eþ02 1.76eþ02 8.85eþ01

f6 Mean 4.69eþ03 5.83eþ03 1.13eþ03 1.72eþ03 7.11eþ02 1.78eþ03 5.20eþ02
Std 6.41eþ03 1.04eþ04 5.75eþ03 3.96eþ02 7.15eþ02 1.38eþ04 3.17eþ02

f7 Mean 5.56eþ00 3.60eþ00 1.34eþ00 1.53eþ00 8.87e¡01 1.96eþ00 8.99e�01
Std 2.12eþ00 4.30e�01 1.99e�01 4.24e�01 2.39e�01 4.07e�01 1.23e¡01

f8 Mean 6.53eþ03 1.81eþ03 1.27eþ03 4.87eþ02 6.89eþ02 1.79eþ02 4.46eþ02
Std 4.98eþ04 3.51eþ03 2.54eþ03 2.88eþ02 1.67eþ03 6.33eþ01 1.28eþ02

f9 Mean 1.07eþ02 1.01eþ02 1.00eþ02 1.00eþ02 1.00eþ02 1.00eþ02 1.00eþ02
Std 1.79eþ01 1.01eþ00 7.99e�02 1.39e�02 1.92e�01 5.41e�01 1.06e¡02

f10 Mean 3.14eþ02 2.59eþ02 2.15eþ02 1.62eþ01 4.64eþ01 1.31eþ02 1.90eþ02
Std 2.22eþ01 1.11eþ02 5.62eþ02 5.15eþ00 1.13eþ02 4.49eþ02 2.66eþ01

f11 Mean 6.25eþ03 5.47eþ03 6.19eþ03 2.45eþ03 2.29eþ03 3.17eþ03 2.71eþ03
Std 4.37eþ03 6.32eþ03 8.62eþ03 4.51eþ02 1.70eþ03 2.89eþ03 7.25eþ02

f12 Mean 1.25eþ02 1.06eþ02 1.00eþ02 1.00eþ02 1.00eþ02 1.00eþ02 1.00eþ02
Std 8.43eþ00 4.05eþ01 0.00eþ00 0.00eþ00 1.73e�12 2.63e�13 5.68e�19

Table 13
Comparison of Means and Stds of MPSO and the other six PSO variants under D¼ 30.

Func. Item GPSO LPSO SPSO CLPSO FIPS DMSPSO MPSO

f1 Mean 2.72eþ08 3.52eþ07 2.23eþ05 5.56eþ06 4.00eþ06 6.72eþ06 1.79eþ06
Std 3.54eþ08 5.92eþ07 2.42eþ05 5.80eþ06 2.42eþ05 1.15eþ07 2.38eþ05

f2 Mean 2.23eþ10 1.91eþ09 3.70eþ03 4.48eþ03 6.29eþ03 3.37eþ03 1.46eþ03
Std 1.96eþ09 2.09eþ09 2.44eþ04 1.70eþ03 1.43eþ04 2.92eþ03 7.28eþ01

f3 Mean 2.08eþ01 2.08eþ01 2.09eþ01 2.09eþ01 2.10eþ01 2.05eþ01 2.03eþ01
Std 7.54e�03 3.58e�01 8.30e�02 1.90e�02 9.90e�02 1.53e�01 2.33e¡03

f4 Mean 1.55eþ02 1.03eþ02 3.55eþ01 9.02eþ01 1.54eþ02 8.32eþ01 1.91eþ01
Std 8.14eþ01 1.29eþ01 3.38eþ00 3.63eþ00 4.96eþ01 1.54eþ01 4.06e¡01

f5 Mean 3.54eþ03 3.19eþ03 3.97eþ03 4.62eþ03 6.31eþ03 3.79eþ03 2.62eþ03
Std 3.22eþ02 8.32eþ02 1.39eþ02 6.03eþ02 1.51eþ03 5.40eþ02 1.24eþ02

f6 Mean 1.00eþ07 1.30eþ06 1.14eþ05 3.53eþ05 4.37eþ05 1.70eþ05 4.41eþ04
Std 7.16eþ07 5.56eþ05 3.13eþ04 1.71eþ05 5.05eþ05 8.56eþ04 7.17eþ03

f7 Mean 4.77eþ01 2.46eþ01 9.20eþ00 9.10eþ00 1.24eþ01 1.29eþ01 9.98eþ00
Std 3.55eþ01 3.69eþ01 1.25eþ00 8.60e�01 4.09eþ00 9.84e¡02 3.15eþ00

f8 Mean 1.73eþ06 2.36eþ05 3.22eþ04 6.36eþ04 4.73eþ04 7.95eþ04 2.64eþ04
Std 2.05eþ07 4.11eþ05 2.60eþ04 9.24eþ04 9.13eþ03 1.91eþ05 3.36eþ03

f9 Mean 2.15eþ02 1.29eþ02 1.03eþ02 1.04eþ02 1.03eþ02 1.04eþ02 1.03eþ02
Std 8.37eþ01 5.08eþ00 1.98e�01 1.81e�01 8.50e�02 7.00e�02 8.07e¡03

f10 Mean 1.24eþ03 1.04eþ03 5.91eþ02 3.55eþ02 4.39eþ02 5.98eþ02 6.03eþ02
Std 3.88eþ02 2.09eþ02 7.22eþ01 4.81eþ01 8.05eþ01 7.56eþ02 1.88eþ01

f11 Mean 4.86eþ04 3.85eþ04 3.36eþ04 2.89eþ04 2.73eþ04 3.07eþ04 2.73eþ04
Std 4.47eþ04 4.23eþ03 3.82eþ03 3.80eþ02 2.97eþ03 1.27eþ03 9.13eþ02

f12 Mean 7.58eþ02 1.22eþ02 1.00eþ02 1.00eþ02 1.00eþ02 1.00eþ02 1.00eþ02
Std 3.01eþ03 2.77eþ01 0.00eþ00 1.88e�13 3.50e�10 1.59e�05 2.12e�10

Table 14
Statistical analysis of Wilcoxon test between MPSO and its competitors.

Dim. Item GPSO LPSO SPSO CLPSO FIPS DMSPSO

10 Better 12 12 9 8 7 8
Same 0 0 2 2 2 2
Worse 0 0 1 2 3 2
Merit 12 12 8 6 4 6

30 Better 12 12 8 9 8 10
Same 0 0 2 1 3 1
Worse 0 0 2 2 1 1
Merit 12 12 6 7 7 9

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20

16

Fig. 9. The original and segmented images of Lena.

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
ni represents the number of pixels at level i while N denotes the total
number of pixels appeared in the image. As a result, the probabilities of
class occurrence and the class mean levels for C0 can be defined as below:

ωoðtÞ ¼
Xt

i¼0

pi; μ0ðtÞ ¼
Xt

i¼0

ipi=ω0 (21)

Similarly, the probabilities of class occurrence and the class mean levels
for the background can be described as:

ω1ðtÞ ¼
Xl�1

i¼tþ1

pi; μ1ðtÞ ¼
Xl�1

i¼tþ1

ipi=ω1 (22)

Note that the variance formula between these two groups (object and
background) can be defined by dðtÞ ¼ ω0ðtÞω1ðtÞðμ0ðtÞ � μ1ðtÞÞ2. The
corresponding gray level value t* is the best threshold when the variance
function achieving the maximum value, i.e., t* ¼ ArgmaxfdðtÞg. So it can
be seen that how to determine the threshold value of Otsu method is the
key to the task of image segmentation. Here, we exploit the MPSO
algorithm proposed in this paper to solve the segmentation threshold.
Note that due to the limited space, the standard images Lena and Peppers
with 512*512 pixels are employed here to validate the performance of
the MPSO. At the same time, we compare it with the standard PSO
(SPSO) and genetic algorithm (GA) respectively. The main parameter
settings of GA are as follows: elite selection strategy, crossover rate is 0.7,
mutation rate is 0.4, migration fraction is 0.2, population size is 50 and
17
the maximum generation is 100 served as the stopping criteria. Figs. 9
and 10 illustrate the original images and segmented results yielded by
GA, SPSO and the proposedMPSO respectively, which further verifies the
superiority of our method over other swarm intelligence based
approaches in the task of image segmentation.

5. Conclusions and future work

Due to the effect on particle swarm optimization, we have proposed a
modified PSO algorithm in this paper. The main contributions of this
work can be summarized as follows. First, the chaos-based (Logistic map)
solutions are utilized to initialize the uniformly distributed initial parti-
cles to enhance the stability of PSO. Second, a novel sigmoid-like inertia
weight is formulated to make the PSO adaptively adopt the inertia weight
between linear decreasing and nonlinear decreasing strategies based on
the maximal focus distance, which is able to keep the balance between
exploration and exploitation. Conducted experiments in subsection 4.1
validate its effectiveness and efficiency. Third, the wavelet mutation is
applied for the particles whose fitness value is less than that of the
average in order to effectively prevent the PSO from plunging into local
optima and make the particles proceed with searching in other regions of
the solution space. Besides, an auxiliary velocity-position update strategy
is introduced exclusively for the global best particle to guarantee the
convergence of the MPSO. Extensive experiments on the benchmark test
suites and in the task of standard image segmentation validate its effec-
tiveness, robustness and scalability.

Fig. 10. The original and segmented images of
Peppers.

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
For future work, we intend to compare MPSO with other state-of-the-
art PSO variants, such as HCLPSO and EPSO, in the task of solving
complex problems. More importantly, we will apply the novel initiali-
zation method proposed in this paper to these state-of-the-art PSOs in the
future research. In addition, we plan to introduce MPSO into some real-
world research fields, such as integrated circuit design, multi-objective
optimization, multimedia semantic understanding and engineering
optimal scheduling, etc. Besides, we also intend to delve deeper into the
parallelization of MPSO for large-scale optimization problems and
exploring the use of different inertia weights in different scenarios
simultaneously, especially for the adequate parameter tuning in a wide
range of problems. Lastly, and arguably most importantly, the qualitative
relationship between the chaos-based initialization and the convergence
of PSO algorithm, from the viewpoint of mathematics, will be elaborated
and proved comprehensively.

Acknowledgements

The authors would like to sincerely thank the editors and anonymous
reviewers for their valuable comments and insightful suggestions that
have helped us to improve the paper. In addition, this work is partially
supported by the National Program on Key Basic Research Project (973
Program) (No. 2013CB329502), National Natural Science Foundation of
China (No. 61035003, No. 61202212) and Key Research Project of Baoji
University of Arts And Sciences (No. ZK2018061).
18
References

[1] P. Agarwalla, S. Mukhopadhyay, Efficient player selection strategy based
diversified particle swarm optimization algorithm for global optimization, Inf. Sci.
397 (2017) 69–90.

[2] B. Alatas, E. Akin, A. Ozer, Chaos embedded particle swarm optimization
algorithms, Chaos Solit. Fractals 40 (4) (2009) 1715–1734.

[3] A. Alireza, PSO with adaptive mutation and inertia weight and its application in
parameter estimation of dynamic systems, Acta Autom. Sin. 37 (5) (2011)
541–549.

[4] F. Bergh, A. Engelbrecht, A new locally convergent particle swarm optimizer, in:
Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics (SMC'02), 2002, pp. 94–99.

[5] M. Bonyadi, X. Li, Z. Michalewicz, A hybrid particle swarm with a time-adaptive
topology for constrained optimization, Swarm Evol. Comput. 18 (2014) 22–37.

[6] D. Bratton, J. Kennedy, Defining a standard for particle swarm optimization, in:
Proceedings of the IEEE Swarm Intelligence Symposium (SIS'07), 2007,
pp. 120–127.

[7] X. Cai, X. Gao, Y. Xue, Improved bat algorithm with optimal forage strategy
and random disturbance strategy, Int. J. Bio-Inspired Comput. 8 (4) (2016)
205–214.

[8] E. Camci, D. Kripalani, L. Ma, et al., An aerial robot for rice farm quality inspection
with type-2 fuzzy neural networks tuned by particle swarm optimization-sliding
mode control hybrid algorithm, Swarm Evol. Comput. (2017), https://doi.org/
10.1016/j.swevo.2017.10.003.

[9] G. Chen, X. Huang, J. Jia, et al., Natural exponential inertia weight strategy in
particle swarm optimization, in: Proceedings of the World Congress on Intelligent
Control and Automation (WCICA'06), 2006, pp. 3672–3675.

[10] G. Chen, J. Jia, Q. Han, Study on the strategy of decreasing inertia weight in
particle swarm optimization algorithm, J. Xi'an Jiaotong Univ. 40 (1) (2006)
53–56.

[11] K. Chen, F. Zhou, L. Yin, et al., A hybrid particle swarm optimizer with sine cosine
acceleration coefficients, Inf. Sci. 422 (2018) 218–241.

http://refhub.elsevier.com/S2210-6502(17)30713-7/sref1
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref1
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref1
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref1
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref2
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref2
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref2
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref3
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref3
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref3
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref3
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref4
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref4
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref4
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref4
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref5
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref5
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref5
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref6
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref6
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref6
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref6
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref7
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref7
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref7
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref7
https://doi.org/10.1016/j.swevo.2017.10.003
https://doi.org/10.1016/j.swevo.2017.10.003
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref9
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref9
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref9
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref9
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref10
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref10
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref10
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref10
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref11
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref11
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref11

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
[12] M. Chih, C. Lin, M. Chern, Particle swarm optimization with time-varying
acceleration coefficients for the multidimensional knapsack problem, Appl. Math.
Model. 38 (4) (2014) 1338–1350.

[13] L. Chuang, C. Hsiao, C. Yang, Chaotic particle swarm optimization for data
clustering, Expert Syst. Appl. 38 (12) (2011) 14555–14563.

[14] M. Clerc, J. Kennedy, The particle swarm – explosion, stability, and convergence
in a multidimensional complex space, IEEE Trans. Evol. Comput. 6 (1) (2002)
58–73.

[15] L. Coelho, A quantum particle swarm optimizer with chaotic mutation operator,
Chaos Solit. Fractals 37 (5) (2008) 1409–1418.

[16] Z. Cui, B. Sun, G. Wang, et al., A novel oriented cuckoo search algorithm to
improve DV-Hop performance for cyber-physical systems, J. Parallel Distr.
Comput. 103 (2017) 42–52.

[17] H. Cui, Q. Zhu, Convergence analysis and parameter selection in particle swarm
optimization, Comput. Eng. Appl. 43 (23) (2007) 89–91.

[18] P. Das, H. Behera, B. Panigrahi, A hybridization of an improved particle swarm
optimization and gravitational search algorithm for multi-robot path planning,
Swarm Evol. Comput. 28 (2016) 14–28.

[19] E. Davoodi, M. Hagh, S. Zadeh, A hybrid improved quantum-behaved particle
swarm optimization-simplex method (IQPSOS) to solve power system load flow
problems, Appl. Soft Comput. 21 (2014) 171–179.

[20] S. Dey, S. Bhattacharyya, U. Maulik, Quantum inspired genetic algorithm and
particle swarm optimization using chaotic map model based interference for gray
level image thresholding, Swarm Evol. Comput. 15 (2014) 38–57.

[21] M. Dorigo, L. Gambardella, Ant colony system: a cooperative learning approach to
the traveling salesman problem, IEEE Trans. Evol. Comput. 1 (1) (1997) 53–66.

[22] R. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle
swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary
Computation (CEC'00), 2000, pp. 84–88.

[23] R. Eberhart, Y. Shi, Tracking and optimizing dynamic systems with particle
swarms, in: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC'01), 2001, pp. 94–100.

[24] C. Feng, S. Cong, X. Feng, A new adaptive inertia weight strategy in particle swarm
optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC'07), 2007, pp. 4186–4190.

[25] Y. Feng, Y. Yao, A. Wang, Comparing with chaotic inertia weights in particle
swarm optimization, in: Proceedings of the International Conference on Machine
Learning and Cybernetics (ICMLC'07), 2007, pp. 329–333.

[26] W. Gao, S. Liu, L. Huang, Particle swarm optimization with chaotic opposition-
based population initialization and stochastic search technique, Commun.
Nonlinear Sci. Numer. Simul. 17 (11) (2012) 4316–4327.

[27] J. Gou, Y. Lei, W. Guo, et al., A novel improved particle swarm optimization
algorithm based on individual difference evolution, Appl. Soft Comput. 57 (2017)
468–481.

[28] R. He, Y. Wang, Q. Wang, et al., An improved particle swarm optimization based
on self-adaptive escape velocity, J. Softw. 16 (12) (2005) 2036–2044.

[29] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

[30] B. Jiao, Z. Lian, X. Gu, A dynamic inertia weight particle swarm optimization
algorithm, Chaos Solit. Fractals 37 (2008) 698–705.

[31] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE
International Conference on Neural Networks (ICNN'95), 1995, pp. 1942–1948.

[32] J. Kennedy, R. Mendes, Population structure and particle swarm performance, in:
Proceedings of the IEEE Congress on Evolutionary Computation (CEC'02), 2002,
pp. 1671–1676.

[33] S. Khan, A. Engelbrecht, A fuzzy particle swarm optimization algorithm for
computer communication network topology design, Appl. Intell. 36 (1) (2012)
161–177.

[34] M. Khurana, K. Massey, Swarm algorithm with adaptive mutation for airfoil
aerodynamic design, Swarm Evol. Comput. 20 (2015) 1–13.

[35] R. Kundu, S. Das, R. Mukherjee, et al., An improved particle swarm optimizer with
difference mean based perturbation, Neurocomputing 129 (2014) 315–333.

[36] S. Leung, Y. Tang, W. Wong, A hybrid particle swarm optimization and its
application in neural networks, Expert Syst. Appl. 39 (1) (2012) 395–405.

[37] J. Li, Y. Cheng, K. Chen, Chaotic particle swarm optimization algorithm based on
adaptive inertia weight, in: Proceedings of the Chinese Control and Decision
Conference (CCDC'14), 2014, pp. 1310–1315.

[38] Z. Li, W. Wang, Y. Yan, et al., PS-ABC: a hybrid algorithm based on particle swarm
and artificial bee colony for high-dimensional optimization problems, Expert Syst.
Appl. 42 (22) (2015) 8881–8895.

[39] L. Li, B. Xue, B. Niu, et al., The novel non-linear strategy of inertia weight in
particle swarm optimization, in: Proceedings of the IEEE International Conference
on Bio-inspired Computing: Theories and Applications (BICTA'09), 2009,
pp. 183–187.

[40] J. Liang, A. Qin, P. Suganthan, et al., Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions, IEEE Trans. Evol.
Comput. 10 (3) (2006) 281–295.

[41] J. Liang, B. Qu, P. Suganthan, et al., Problem Definitions and Evaluation Criteria
for the CEC 2013 Special Session on Real-parameter Optimization, Technical
Report, Nanyang Technological University, Singapore, 2013.

[42] J. Liang, B. Qu, P. Suganthan, Problem Definitions and Evaluation Criteria for the
CEC 2015 Competition on Learning-based Real-parameter Single Objective
Optimization, Technical Report, Nanyang Technological University (Singapore)
and Zhengzhou University (China), 2014.
19
[43] J. Liang, P. Suganthan, Dynamic multi-swarm particle swarm optimizer, in:
Proceedings of the IEEE Swarm Intelligence Symposium (SIS'05), 2005,
pp. 124–129.

[44] W. Lim, N. Isa, Particle swarm optimization with increasing topology connectivity,
Eng. Appl. Artif. Intell. 27 (2014) 80–102.

[45] S. Ling, H. Iu, K. Chan, et al., Hybrid particle swarm optimization with wavelet
mutation and its industrial applications, IEEE Trans. Syst. Man Cybernet. Part B
Cybernet. 38 (3) (2008) 743–763.

[46] H. Liu, A. Abraham, Fuzzy adaptive turbulent particle swarm optimization, in:
Proceedings of the International Conference on Hybrid Intelligent Systems
(HIS'05), 2005, pp. 445–450.

[47] N. Lynn, P. Suganthan, Heterogeneous comprehensive learning particle swarm
optimization with enhanced exploration and exploitation, Swarm Evol. Comput.
24 (2015) 11–24.

[48] N. Lynn, P. Suganthan, Ensemble particle swarm optimizer, Appl. Soft Comput. 55
(2017) 533–548.

[49] S. Majercik, Using fluid neural networks to create dynamic neighborhood
topologies in particle swarm optimization, in: Proceedings of the International
Conference on Swarm Intelligence (ICSI'14), 2014, pp. 270–277.

[50] R. Malik, T. Rahman, S. Hashim, et al., New particle swarm optimizer with
sigmoid increasing inertia weight, Int. J. Comput. Sci. Secur. 1 (2) (2007) 35–44.

[51] Y. Marinakis, A. Migdalas, A. Sifaleras, A hybrid particle swarm optimization –

variable neighborhood search algorithm for constrained shortest path problems,
Eur. J. Oper. Res. 261 (3) (2017) 819–834.

[52] May R, Simple mathematical models with very complicated dynamics, Nature 261
(1976) 459–467.

[53] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler,
maybe better, IEEE Trans. Evol. Comput. 8 (3) (2004) 204–210.

[54] A. Meng, Z. Li, H. Yin, et al., Accelerating particle swarm optimization using
crisscross search, Inf. Sci. 329 (2016) 52–72.

[55] M. Neshat, FAIPSO: fuzzy adaptive informed particle swarm optimization, Neural
Comput. Appl. 23 (1) (2013) 95–116.

[56] A. Nickabadi, M. Ebadzadeh, R. Safabakhsh, A novel particle swarm optimization
algorithm with adaptive inertia weight, Appl. Soft Comput. 11 (4) (2011)
3658–3670.

[57] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans.
Syst. Man Cybernet. 9 (1) (1979) 62–66.

[58] Y. Peng, X. Peng, Z. Liu, Statistic analysis on parameter efficiency of particle
swarm optimization, Acta Electron. Sin. 32 (2) (2004) 209–213.

[59] M. Pluhacek, R. Senkerik, D. Davendra, Chaos particle swarm optimization with
ensemble of chaotic systems, Swarm Evol. Comput. 25 (2015) 29–35.

[60] A. Ratnaweera, S. Halgamuge, H. Watson, Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evol.
Comput. 8 (3) (2004) 240–255.

[61] A. Robati, G. Barani, H. Pour, et al., Balanced fuzzy particle swarm optimization,
Appl. Math. Model. 36 (5) (2012) 2169–2177.

[62] Z. Ruan, Y. Yuan, Q. Chen, et al., A new multi-function global particle swarm
optimization, Appl. Soft Comput. 49 (2016) 279–291.

[63] L. Sahoo, A. Banerjee, A. Bhunia, et al., An efficient GA-PSO approach for solving
mixed-integer nonlinear programming problem in reliability optimization, Swarm
Evol. Comput. 19 (2014) 43–51.

[64] A. Sedki, D. Ouazar, Hybrid particle swarm optimization and differential evolution
for optimal design of water distribution systems, Adv. Eng. Inf. 26 (3) (2012)
582–591.

[65] F. Sheikholeslami, N. Navimipour, Service allocation in the cloud environments
using multi-objective particle swarm optimization algorithm based on crowding
distance, Swarm Evol. Comput. 35 (2017) 53–64.

[66] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of the
IEEE Congress on Evolutionary Computation (CEC'98), 1998, pp. 69–73.

[67] Y. Shi, R. Eberhart, Fuzzy adaptive particle swarm optimization, in: Proceedings of
the IEEE Congress on Evolutionary Computation (CEC'01), 2001, pp. 101–106.

[68] H. Shieh, C. Kuo, C. Chiang, Modified particle swarm optimization algorithm with
simulated annealing behavior and its numerical verification, Appl. Math. Comput.
218 (2011) 4365–4383.

[69] K. Suresh, N. Kumarappan, Hybrid improved binary particle swarm optimization
approach for generation maintenance scheduling problem, Swarm Evol. Comput.
9 (2013) 69–89.

[70] Z. Tang, D. Zhang, A modified particle swarm optimization with adaptive
acceleration coefficients, in: Proceedings of the Asia-Pacific Conference on
Information Processing (APCIP'09), 2009, pp. 330–332.

[71] M. Tanweer, S. Suresh, N. Sundararajan, Self regulating particle swarm
optimization algorithm, Inf. Sci. 294 (2015) 182–202.

[72] D. Tian, N. Li, Fuzzy particle swarm optimization algorithm, in: Proceedings of the
International Joint Conference on Artificial Intelligence (JCAI'09), 2009,
pp. 263–267.

[73] D. Tian, T. Zhao, Particle swarm optimization algorithm based on fuzzy controller,
Comput. Eng. Des. 31 (24) (2010) 5335–5338.

[74] D. Tian, T. Zhao, Particle swarm optimization based on Tent map and Logistic
map, J. Shaanxi Univ. Sci. Technol. 28 (2) (2010) 17–23.

[75] D. Tian, Particle swarm optimization with chaos-based initialization for numerical
optimization, Intell. Autom. Soft Comput. (2017) 1293881, https://doi.org/
10.1080/10798587.2017.

[76] A. Verma, S. Kaushal, A hybrid multi-objective particle swarm optimization for
scientific workflow scheduling, Parallel Comput. 62 (2017) 1–19.

http://refhub.elsevier.com/S2210-6502(17)30713-7/sref12
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref12
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref12
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref12
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref13
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref13
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref13
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref14
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref14
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref14
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref14
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref14
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref15
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref15
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref15
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref16
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref16
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref16
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref16
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref17
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref17
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref17
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref18
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref18
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref18
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref18
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref19
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref19
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref19
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref19
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref20
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref20
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref20
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref20
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref21
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref21
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref21
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref22
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref22
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref22
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref22
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref23
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref23
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref23
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref23
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref24
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref24
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref24
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref24
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref25
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref25
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref25
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref25
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref26
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref26
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref26
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref26
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref27
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref27
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref27
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref27
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref28
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref28
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref28
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref29
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref29
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref30
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref30
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref30
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref31
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref31
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref31
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref32
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref32
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref32
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref32
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref33
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref33
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref33
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref33
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref34
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref34
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref34
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref35
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref35
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref35
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref36
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref36
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref36
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref37
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref37
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref37
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref37
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref38
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref38
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref38
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref38
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref39
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref39
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref39
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref39
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref39
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref40
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref40
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref40
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref40
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref41
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref41
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref41
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref42
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref42
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref42
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref42
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref43
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref43
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref43
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref43
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref44
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref44
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref44
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref45
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref45
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref45
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref45
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref46
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref46
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref46
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref46
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref47
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref47
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref47
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref47
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref48
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref48
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref48
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref49
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref49
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref49
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref49
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref50
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref50
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref50
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref51
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref51
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref51
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref51
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref52
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref52
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref52
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref53
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref53
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref53
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref54
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref54
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref54
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref55
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref55
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref55
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref56
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref56
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref56
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref56
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref57
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref57
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref57
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref58
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref58
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref58
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref59
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref59
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref59
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref60
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref60
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref60
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref60
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref61
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref61
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref61
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref62
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref62
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref62
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref63
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref63
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref63
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref63
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref64
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref64
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref64
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref64
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref65
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref65
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref65
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref65
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref66
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref66
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref66
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref67
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref67
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref67
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref68
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref68
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref68
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref68
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref69
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref69
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref69
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref69
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref70
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref70
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref70
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref70
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref71
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref71
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref71
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref72
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref72
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref72
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref72
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref73
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref73
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref73
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref74
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref74
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref74
https://doi.org/10.1080/10798587.2017
https://doi.org/10.1080/10798587.2017
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref76
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref76
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref76

D. Tian, Z. Shi Swarm and Evolutionary Computation xxx (2017) 1–20
[77] Z. Wan, G. Wang, B. Sun, A hybrid intelligent algorithm by combining particle
swarm optimization with chaos searching technique for solving nonlinear bilevel
programming problems, Swarm Evol. Comput. 8 (2013) 26–32.

[78] G. Wang, X. Cai, Z. Cui, et al., High performance computing for cyber physical
social systems by using evolutionary multi-objective optimization algorithm, IEEE
Trans. Emerg. Top. Comput. (2017), https://doi.org/10.1109/
TETC.2017.2703784.

[79] H. Wang, Z. Cui, H. Sun, et al., Randomly attracted firefly algorithm with
neighborhood search and dynamic parameter adjustment mechanism, Soft
Comput. 21 (2017) 5325–5339.

[80] C. Wang, Y. Liu, Y. Zhao, et al., A hybrid topology scale-free Gaussian-dynamic
particle swarm optimization algorithm applied to real power loss minimization,
Eng. Appl. Artif. Intell. 32 (2014) 63–75.

[81] H. Wang, H. Sun, C. Li, et al., Diversity enhanced particle swarm optimization with
neighborhood search, Inf. Sci. 223 (2013) 119–135.

[82] H. Wang, W. Wang, H. Sun, et al., Firefly algorithm with random attraction, Int. J.
Bio-Inspired Comput. 8 (1) (2016) 33–41.

[83] H. Wang, W. Wang, Z. Wu, Particle swarm optimization with adaptive mutation
for multimodal optimization, Appl. Math. Comput. 221 (2013) 296–305.

[84] H. Wang, W. Wang, X. Zhou, et al., Firefly algorithm with neighborhood
attraction, Inf. Sci. 382 (2017) 374–387.

[85] L. Wang, B. Yang, J. Orchard, Particle swarm optimization using dynamic
tournament topology, Appl. Soft Comput. 48 (2016) 584–596.

[86] H. Wang, X. Zhou, H. Sun, et al., Firefly algorithm with adaptive control
parameters, Soft Comput. 21 (17) (2017) 5091–5102.

[87] Q. Wu, Cauchy mutation for decision-making variable of Gaussian particle swarm
optimization applied to parameters selection of SVM, Expert Syst. Appl. 38 (5)
(2011) 4929–4934.

[88] J. Xin, G. Chen, Y. Hai, A particle swarm optimizer with multi-stage linearly-
decreasing inertia weight, in: Proceedings of the International Joint Conference on
Computational Sciences and Optimization (CSO'09), 2009, pp. 505–508.

[89] P. Yadmellat, S. Salehizadeh, M. Menhaj, A new fuzzy inertia weight particle
swarm optimization, in: Proceedings of the International Conference on
20
Computational Intelligence and Natural Computing (CINC'09), 2009,
pp. 507–510.

[90] X. Yang, J. Yuan, J. Yuan, et al., A modified particle swarm optimizer with
dynamic adaptation, Appl. Math. Comput. 189 (2007) 1205–1213.

[91] Z. You, W. Chen, G. He, et al., Adaptive weight particle swarm optimization
algorithm with constriction factor, in: Proceedings of the International Conference
on Information Science and Management Engineering (ISME'10), 2010,
pp. 245–248.

[92] H. Yu, L. Zhang, D. Chen, et al., Adaptive particle swarm optimization algorithm
based on feedback mechanism, J. Zhejiang Univ. Eng. Sci. 39 (9) (2005) 1286–1291.

[93] X. Yu, J. Liu, H. Li, An adaptive inertia weight particle swarm optimization
algorithm for IIR digital filter, in: Proceedings of the International Conference on
Artificial Intelligence and Computational Intelligence (AICI'09), 2009,
pp. 114–118.

[94] Z. Zhan, J. Zhang, Y. Li, et al., Orthogonal learning particle swarm optimization,
IEEE Trans. Evol. Comput. 15 (6) (2011) 832–847.

[95] X. Zhang, Y. Du, G. Qin, et al., Adaptive particle swarm algorithm with
dynamically changing inertia weight, J. Xi'an Jiaotong Univ. 39 (10) (2005)
1039–1042.

[96] Q. Zhang, W. Liu, X. Meng, et al., Vector coevolving particle swarm optimization
algorithm, Inf. Sci. 394 (2017) 273–298.

[97] M. Zhang, H. Wang, Z. Cui, et al., Hybrid multi-objective cuckoo search with
dynamical local search, Memet. Comput. (2017), https://doi.org/10.1007/
s12293-017-0237-2.

[98] L. Zhang, H. Yu, D. Chen, et al., Analysis and improvement of particle swarm
optimization algorithm, Inf. Control 33 (5) (2004) 513–517.

[99] Z. Zhao, S. Huang, W. Wang, Simplified particle swarm optimization algorithm
based on stochastic inertia weight, Appl. Res. Comput. 31 (2) (2014) 361–364.

[100] Y. Zheng, L. Ma, L. Zhang, et al., On the convergence analysis and parameter
selection in particle swarm optimization, in: Proceedings of the International
Conference on Machine Learning and Cybernetics (ICMLC'03), 2003,
pp. 1802–1807.

http://refhub.elsevier.com/S2210-6502(17)30713-7/sref77
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref77
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref77
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref77
https://doi.org/10.1109/TETC.2017.2703784
https://doi.org/10.1109/TETC.2017.2703784
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref79
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref79
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref79
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref79
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref80
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref80
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref80
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref80
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref81
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref81
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref81
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref82
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref82
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref82
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref83
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref83
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref83
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref84
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref84
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref84
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref85
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref85
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref85
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref86
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref86
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref86
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref87
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref87
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref87
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref87
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref88
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref88
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref88
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref88
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref89
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref89
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref89
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref89
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref89
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref90
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref90
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref90
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref91
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref91
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref91
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref91
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref91
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref92
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref92
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref92
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref93
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref93
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref93
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref93
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref93
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref94
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref94
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref94
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref95
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref95
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref95
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref95
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref96
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref96
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref96
https://doi.org/10.1007/s12293-017-0237-2
https://doi.org/10.1007/s12293-017-0237-2
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref98
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref98
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref98
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref99
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref99
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref99
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref100
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref100
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref100
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref100
http://refhub.elsevier.com/S2210-6502(17)30713-7/sref100

	MPSO: Modified particle swarm optimization and its applications
	1. Introduction
	2. Background and related work
	2.1. Standard PSO
	2.2. Review of different inertia weights
	2.2.1. Linear strategies to adjust inertia weight
	2.2.2. Nonlinear strategies to adjust inertia weight
	2.2.3. Fuzzy rules to adjust inertia weight
	2.2.4. Random strategies to adjust inertia weight
	2.2.5. Other strategies to adjust inertia weight

	3. Modified particle swarm optimization
	3.1. Chaos-based swarm initialization
	3.2. Formulated sigmoid-like inertia weight
	3.3. Maximal focus distance
	3.4. Exclusive update strategy
	3.5. Position mutation strategy

	4. Experimental results and analysis
	4.1. Experiments based on basic numerical functions
	4.2. Experiments based on CEC′13 test suite
	4.3. Experiments based on CEC′15 test suite
	4.4. Experiments based on standard image segmentation

	5. Conclusions and future work
	Acknowledgements
	References

