
Modeling of Energy Losses During Cornering for Electric City Buses

Camiel J.J. Beckers1, Igo J.M. Besselink1 and Henk Nijmeijer1

Abstract— Accurate energy consumption prediction is essen-
tial for optimal operation of battery electric buses. Conventional
prediction algorithms do not consider energy losses during
turning of the vehicle, which is especially relevant for city buses
driving curvy routes. This paper presents a model describing
steady-state cornering of such buses and analyses the additional
energy consumption. The model includes multiple nonlinear
effects, such as large steer angles, double rear wheels, and
lateral load transfer. The resulting four nonlinear equilibrium
equations are solved iteratively to obtain steady-state solutions.
These reveal that both cornering resistance at the front wheels
and tire scrub of the double rear wheels cause energy losses,
varying as function of vehicle velocity and corner radius.
Combination of the results with a recorded city trip of a battery
electric bus reveals that these effects combined may account for
2.3% of the driveline energy consumption.

Index Terms— EV energy prediction, heavy-duty vehicle, tire
energy losses, cornering

I. INTRODUCTION

In the past decade, Battery Electric Buses (BEBs) have
emerged as an alternative for diesel-powered public road
transport. BEBs are more environmentally friendly, without
local pollution, and have the potential for a low total cost
of ownership, due to the low running expenses [1]. How-
ever, efficient usage of the vehicles is essential to counter
the high initial purchase costs. This poses a challenge for
timetable schedulers, who have to take into account the
charging strategies and limited driving range of the vehicles.
This driving range is often uncertain and is influenced by
several environmental and vehicle parameters, resulting in
conservative, sub-optimal time tables and use of redundant
vehicles.

A solution to this challenge is offered by developing more
accurate energy consumption prediction algorithms. These
algorithms reduce the uncertainty regarding the remaining
driving range and possibly enable energy efficient dynamic
scheduling. While procedures for prediction of energy con-
sumption are extensively described in the literature, for
example [2], [3], [4], [5], [6], almost all algorithms - often
implicitly - assume straight line driving of the vehicle. This
assumption is not always valid, especially when electric city
buses are considered. The city routes contain many corners,
which cause additional energy losses in the tires.

There are some studies that do consider corners in the
energy consumption prediction. One example is found in
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the paper of L. L. Ojeda, A. Chasse, and R. Goussault
[6], where the effects of road curvature are included in the
velocity profile construction. Still, the applied vehicle energy
consumption model assumes straight-line driving.

Early literature indicates that cornering energy losses can
be significant for articulated trucks [7]. There are several
studies that aim to estimate and minimize these losses using
vehicle dynamic models. Kobayashi et al. [8] describe a lin-
earized single track model to analyze the cornering resistance
of a vehicle with rear in-wheel motors. Likewise, Bhat et al.
[9] derived the cornering resistance from a linearized single
track model, with the objective to minimize energy losses
by actively optimizing camber settings and steer angles.
Maclaurin [10] analyzed the steering characteristics of six-
wheel military vehicle. In this study, a more complex double
track cornering model was adopted to compare skid steer to
Ackermann steer, also considering energy consumption. A
nonlinear double track model was used by Rill [11] to devise
a torque vectoring strategy for passenger cars that is optimal
in an energy consumption sense. However, this model still
assumes linear tire forces and no load transfer.

Even though these studies quantify the cornering losses
for particular cases to some extent, the contribution of these
losses to the overall energy consumption is rarely considered.
Furthermore, the models used are either entirely or partially
linearized and do not consider load transfer between the tires
of the vehicle. The assumptions underlying these models
are no longer valid in small-radius corners, where tire side-
slip angles can become large and lateral load transfer is
significant. Furthermore, little of the literature on cornering
losses is focussed specifically on buses.

In this paper, the energy losses that occur during cornering
of a BEB are assessed by development of a nonlinear steady-
state cornering model. Two physical effects that contribute to
the energy consumption are considered: cornering resistance
due to side-slip of the tires and vehicle, and tire scrub of the
double rear tires. Real-world vehicle data is used to assess
the relative impact of cornering energy losses on the total
energy consumption of the vehicle driveline.

II. METHODOLOGY

Figure 1 shows a schematic top view of a BEB, with all rel-
evant dimensions, individual tire velocities, and the resulting
tire forces indicated. Additional to a standard double track
model [12], the considered vehicle has double rear tires. The
two sets of double rear tires each have angular velocities ωL

for tires 3 and 4, and ωR for tires 5 and 6. In the depicted
steady-state cornering situation, the vehicle velocity v = |~v|
is constant, as well as the cornering radius R. The front
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Fig. 1. Schematic top view of the vehicle. The vehicle chassis and tires are indicated with relevant dimensions lf , lr, s1, s2, and ∆s. For each of the
six tires (i = 1, ..., 6), the velocity vector ~vi, the longitudinal force ~Fx,i, and the lateral force ~Fy,i are indicated, together with the respective side-slip
angle αi. A vehicle fixed axis system (~ex, ~ey) has its origin in the CoG. The normal acceleration vector is indicated with ~an.

wheels have a constant steer angle δ1 and δ2, respectively,
which is averaged as δ = 1

2 (δ1 + δ2). This results in a
constant yaw-rate ωz , a constant vehicle side-slip angle β,
and a constant lateral acceleration an = |~an|. The goal of the
steady-state cornering model is to determine the individual
tire forces in this situation.

A. Kinematics

Given the degrees of freedom of the model s =
[δ, β, ωL, ωR]

T and the corner parameters (v,R), the velocity
components of the Center of Gravity (CoG) are given by

vx = v cos(β) vy = −v sin(β) ωz =
v

R
(1)

with vx the longitudinal vehicle velocity and vy the lateral
vehicle velocity. For further calculations, a multibody dy-
namics approach is applied. The velocity components are
stored in a column v such that

~v = vT ~e =
[
vx vy 0

] ~ex~ey
~ez

 , (2)

where v indicates the column containing the coordinates that
describe the velocity vector ~v, and ~e is the column of unit
vectors that describe a vehicle-fixed axis system that has its
origin in the CoG. Using the same notation, the position of
each of the six tires with respect to the CoG is expressed as

~pi = pT
i
~e i = 1, 2, ..., 6 , (3)

where the columns p
i
, containing the tire position coordi-

nates, solely depend on the vehicle dimensions lf and lr
which define the distance between the vehicle CoG and the
front and rear axle respectively, and the track widths defined
by s1, s2, and ∆s, which are indicated in Fig. 1.

The local tire velocity vector coordinates can be expressed
in each of the tire-fixed axis systems according to

vi = A(δi)

v +

 0
0
ωz

× p
i

 i = 1, 2, ..., 6 , (4)

where A(δi) denotes the direction cosine matrix that rotates
the velocity vector from the vehicle-fixed frame to the tire-
fixed frame as function of the steer angle δi and is defined
by

A(δi) =

 cos(δi) sin(δi) 0
− sin(δi) cos(δi) 0

0 0 1

 . (5)

The front wheel steer angles δ1 and δ2 are assumed to be
related through the Ackermann steering relation [13, p. 33],
which allows for the kinematic relations

δ1 = tan−1

(
l

(
l

tan δ
− s1

)−1
)

(6)

δ2 = tan−1

(
l

(
l

tan δ
+ s1

)−1
)

(7)

with l = lf+lr the wheelbase of the vehicle. The steer angles
of the rear wheels are zero, resulting in A(δ3) = A(δ4) =
A(δ5) = A(δ6) = I , where I is the 3× 3 unity matrix.

The column vi contains the coordinates of the local
velocity vector with respect to the tire-fixed axis system,
where the first and second component are denoted as vx,i
and vy,i, respectively. From these velocity components, the
tire side-slip angle can be determined, according to

αi = tan−1

(
−vy,i
|vx,i|

)
i = 1, 2, ..., 6 . (8)



Furthermore, the longitudinal slip ratio is calculated as

κi = −vx,i − re,i(Fz,i)ωi

|vx,i|
i = 1, 2, ..., 6 , (9)

where the effective tire radius re,i is considered to be
a function of the vertical force Fz,i acting on the tire.
Longitudinal slip on the front wheels, which are not driven,
is assumed to be zero. Therefore, κ1 = κ2 = 0.

B. Dynamics

In the calculation of the vertical tire forces, load transfer
due to the longitudinal and lateral acceleration acting on the
elevated CoG of the vehicle is taken into account. These
accelerations are defined respectively as

ax = sin(β)
v2

R
ay = cos(β)

v2

R
. (10)

Subsequently, a pitch moment Mpitch and roll moment Mroll

are defined that are perceived in the vehicle fixed axis system:

Mpitch = −h axm Mroll = h aym , (11)

where h is the height of the center of gravity with respect tot
the ground, and m is the total vehicle mass. A positive pitch
moment Mpitch would shift part of the total vertical force
from the rear axle to the front. This difference in vertical
force is indicated by

∆Fz,pitch =
Mpitch

lf + lr
. (12)

Likewise, a roll moment would result in a difference in
the vertical force between the left and right track. The roll
moment is distributed between the front and rear axle of
the vehicle according to the roll moment distribution kdist,
resulting in separate expressions for the lateral load transfer
at the front and rear axle:

∆Fz,front = kdist
Mroll

2s1
(13)

∆Fz,rear = (kdist − 1) Mroll

2s2
. (14)

The total vertical force on each of the tires is a result of the
static vertical force plus the effects of the two types of load
transfer, resulting in

Fz,i = lr
2lmg ±∆Fz,front + ∆Fz,pitch/2 i = 1, 2 (15)

Fz,i =
lf
4lmg ± 1

2∆Fz,rear −∆Fz,pitch/4 i = 3, 4, 5, 6

with l = lf + lr and g the gravitational acceleration.
A simplified version of Pacejka’s Magic Formula [12, p. 7]

is used to express both the longitudinal tire force Fx,i and
the lateral tire force Fy,i of each tire as function of the slip
conditions and the vertical force Fz,i, according to

Fx,i = fMF,x(κi, Fz,i) i = 1, 2, ..., 6 (16)
Fy,i = fMF,y(αi, Fz,i) i = 1, 2, ..., 6 . (17)

Note that in this formulation fMF,x and fMF,y are con-
sidered to be independent. Thus, combined slip conditions
are not taken into account. Furthermore, the longitudinal
force expressions in fMF,x are slightly altered with respect

to the original Magic Formula to ensure monotonicity with
respect to the slip ratio. This aids the convergence of Newton
scheme, which will be described in Section II-C. Analysis
shows that the alterations only effect extreme slip situations
that do not occur in the final solutions of the model.

To describe the equilibrium equations governing the vehi-
cle, the tire forces are transformed back to the vehicle axis
system ~e and are summed:∑Fx∑

Fy∑
Fz

 =

6∑
i=1

F i =

6∑
i=1

A−1(δi)

Fx,i

Fy,i

Fz,i

 . (18)

Four equilibrium equations are applicable. The first being the
moment equilibrium around the vertical axis:∑

Mz =

6∑
i=1

p
i
× F i = 0 . (19)

Secondly, the steady-state force equilibrium should hold for
both the longitudinal and lateral direction:∑

Fy −may = 0 (20)∑
Fx −max = 0 . (21)

The last equilibrium equation results from the assumption
that a mechanical differential distributes the torque produced
by the driveline evenly and lossless between a torque on the
left rear axle TL and a torque on the right rear axle TR:

TL = (Fx,3re,3 + Fx,4re,4) TR = (Fx,5re,5 + Fx,6re,6)

TL − TR = 0 . (22)

C. Newton Iterations

To find the steady-state solution of the model, (19), (20),
(21), and (22) are solved simultaneously for the degrees of
freedom s = [δ, β, ωL, ωR]

T . The solution is found itera-
tively, using adapted Newton iterations [14] to minimize the
error in each of the four equilibrium equations. Specifically,

sk+1 = sk + γ
(
−J(sk)−1ε(sk)

)
k = 0, 1, 2, ... . (23)

is evaluated repeatedly. In this equation, εk is the column
containing the errors in the four equilibrium equations in
respectively [N] and [Nm] as function of the current degrees
of freedom sk. J is the Jacobian matrix of εk with respect to
the degrees of freedom sk, which is determined numerically
using a finite difference method. The factor γ determines the
adapted Newton step size and is in this case chosen inversely
proportional to |εk|

2.
As starting point for the iterative scheme, the solution of

the linearized single track model at low velocity is used:

s0 =


tan−1(l/

√
R2 − lr)

tan−1(−lr/
√
R2 − lr)

v/re
v/re

 . (24)

When, after repeated evaluation of (23), the errors of the four
equilibrium equations reach a certain tolerance the solution
sk is considered to describe a steady-state situation.



III. MODEL RESULTS

The methods described in the previous section allow for the
calculation of the individual tire forces of all six tires for any
realistic cornering situation defined by the vehicle velocity
v and the cornering radius R. A cornering situation of

TABLE I
VEHICLE PARAMETERS OF A TYPICAL BEB.

Parameter Symbol Value
Vehicle mass m 15000 kg
Wheelbase l 6 m
Longitudinal CoG position lf 3.5 m
CoG height above road h 1.5 m
Average trackwidth 2s1 = 2s2 + ∆s 2 m
Roll moment distribution kdist 1/4

v = 20 km/h and R = 10 m is considered for a typical BEB,
of which the parameters are shown in Table I. Compared
to conventional buses, BEBs are significantly heavier and
have a higher CoG. By applying the methods in Section II-
C to this situation, errors in the equilibrium equations of the
model are minimized as displayed in Fig. 2. Furthermore,
the starting solution of the linearized model and the final
solution of the nonlinear model are summarized in Table II.
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Fig. 2. Error in each of the four equilibrium equations as function of
iteration number in the adapted Newton scheme.

TABLE II
COMPARISON OF THE EQUILIBRIUM SOLUTION OF THE LINEARIZED

SINGLE TRACK MODEL AND THE NONLINEAR DOUBLE TRACK MODEL.

Model δ [deg] β [deg] ωL [RPM] ωR [RPM]
Lin. single track 31.0 -13.1 96.8 96.8
NL double track 31.8 -9.7 88.2 111.6

Difference 0.8 3.4 -8.6 14.8

The results show that the initial degree of freedom values,
obtained from the linear single track model, serve as a suit-
able initial guess for the Newton scheme, but differ from the
final results of the nonlinear model. The solution converges
in 20 iterations and takes roughly 0.07 s to compute.

The model results for this small radius cornering situation,
displayed in Fig. 3, show that the resulting vehicle side-
slip angle and front wheel steering angles are significant.
Consequently, the lateral tire force, indicated by red arrows
originating from the center of these front wheels, is partially
directed in the rearward direction. The tangential rearward
components of these front wheel tire forces slow the vehicle
down and are often referred to as cornering resistance.
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Fig. 3. Schematic top view of the vehicle and wheels (gray) with the
solution of the steady-state cornering model for the parameters v = 20 km/h
and R = 10 m. The dashed line indicates the path of the CoG of the BEB.
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Fig. 4. Vertical tire force of the steady-state solution for each of the six
tires in case v = 20 km/h and R = 10 m.

A second effect that is visible in Fig. 3 is tire scrub, due
to the double rear wheels at each rear axle having a slightly
different radius with respect to the corner center. This effect
is visible as the opposing direction of the longitudinal tire
forces on each of the sets of rear wheels. The inner wheel
of each set creates a forward force, while the outer wheel
creates a smaller rearward force. Together, the forces are
positive and oppose the front wheel cornering resistance.

The figure also indicates the side-slip angles of the tires,
highlighting the difference between the left and right side of
the vehicle. Furthermore, the effects of lateral load transfer
are evident in the vertical tire forces, displayed in Fig. 4.

A. Varying Cornering Situations

Due to both cornering resistance and tire scrub, extra power
is required to corner a BEB, additional to the existing road-
loads, such as rolling resistance and aerodynamic drag. Using
the described model, this additional power due to both tire
effects can be calculated for a range of cornering situations
(v,R). The results for the cornering resistance power PcRes,
in Fig. 5a, show that this power is highest for high velocity,
low radius cornering situations, and lower for either low
velocity or large radius corners. The cornering resistance
power can reach values of up to 20 kW. The power lost due to
tire scrub Pscrub, displayed in Fig. 5b, is generally lower than
PcRes and shows less velocity dependence. Nevertheless, for
R < 20 m values in excess of 0.4 kW are visible.

The powerlosses due to cornering resistance and tire
scrub are summed and displayed in Fig. 6 as the combined
cornering loss Ploss. The results are comparable to the results
of solely the cornering resistance power (Fig. 5a), but with
slightly higher values in the low velocity, small radius region.
At large radii (straight line driving) the total cornering losses
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Fig. 5. Resulting energy losses due to cornering resistance (5a) and rear wheel tire scrub (5b) for a range of vehicle velocities and corner radii. Solutions
for lateral accelerations of ay > 0.4g are not considered as the vehicle is close to roll over in this region.
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Fig. 6. Combined cornering losses as calculated by the model for various
cornering situations. Recorded data from a city trip with a BEB indicates the
occurrence of these situations. Solutions for lateral accelerations of ay >
0.4g are not considered due to vehicle roll.

are negligible, while at the minimal cornering radius of the
vehicle (10 m), values in excess of 20 kW are reached.

Figure 6 also includes measured vehicle data to indicate
whether the occurrence of these high-power cornering situ-
ations is realistic. The data was obtained from a monitored
BEB, driving a city route. During the 60 minute trip, the
vehicle velocity and GPS-position were recorded with a
sampling rate of 1 Hz. In absence of both acceleration and
yaw-rate sensors, the cornering radius is derived from the
curvature of the recorded GPS-route. To this end, the raw
GPS data is pre-processed by removing data-points with little
intermediate distance and by applying a Savitzky-Golay low-
pass filter [15] in the distance domain. Thereafter, the corner
radius is calculated as the radius of the circle circumscribing

TABLE III
MEASURED DRIVELINE ENERGY Edriveline , CORNERING RESISTANCE

ENERGY EcRes , AND TIRE SCRUB ENERGY EScrub .

Energy [kWh] 1/Edriveline

Edriveline 8.59
EcRes 0.171 1.99%
EScrub 0.029 0.34% +

EcRes + EScrub 0.200 2.33%

the triangle spanned by a GPS measurement and its two
neighbouring GPS points. The vehicle data in Fig. 6 shows
that various combinations of corner radii and velocities up
till 50 km/h occur.

During the recorded trip, the total driveline energy con-
sumption was also measured. The combined cornering losses
calculated for the measurement points shown in Fig. 6, can be
summed over the length of the trip. This approach allows for
a comparison between the total driveline energy consumption
and the energy presumably dissipated by cornering losses, as
displayed in Table III. The comparison reveals that during
this particular city trip, approximately 2.3% of the driveline
energy is dissipated by the cornering effects described here.

IV. DISCUSSION

The final results indicate that the cornering effects described
by the model account for a significant 2.3% of the total
driveline energy during the trip. It is also shown that the
cornering losses can momentarily reach values of several
kWs during tight, fast corners. This is in accordance with
the findings of Maclaurin [10], who simulated a vehicle of
comparable weight and dimensions, and with the research
performed by Gyenes, Williams, and Simmons [7], who
simulated and measured the cornering losses of articulated
trucks. The latter study concludes that for long freight trucks,



a maximum of 3% of the total energy consumption can be
ascribed to cornering losses.

While the results appear plausible, some uncertainty in
recorded cornering radius is expected, as the calculation
relies on noisy GPS-data only. Nevertheless, the resulting
corner situation distribution is assumed to be realistic.

The model results show that the cornering resistance
losses are relatively large compared to the tire scrub losses.
This indicates that even in heavy-duty vehicles that are not
equipped with double rear tires, cornering losses might play
an important role. It is therefore also surprising that these
effects are hardly ever included in most energy consumption
prediction algorithms for single-tire vehicles.

The equilibrium equations of the proposed model are
solved using an iterative numerical method, where the so-
lution of a simplified, linearized model is used as an initial
guess. Even though this linearized model provides a decent
starting point for the iterative scheme, the final solution of the
nonlinear model differs from the solution of the linearized
model. This indicates the importance of using a nonlinear
model, without small angle assumptions, to simulate these
tight cornering situations. Furthermore, the importance of
using a double track model is highlighted by the simulation
results in Fig. 3 and Fig. 4, where the difference in side-
slip angles of the individual wheels and the difference in tire
forces of the left and right track are evident.

Even though the presented model contains many nonlin-
earities, not all physical effects are taken into account. The
tire model does not include turn slip or camber dynamics.
Although these effects could be included in the Magic
Formula [12, p. 183], they are assumed to have a negligible
effect on the power losses. Additionally, turn slip is small
when R is large compared to the tire width. Furthermore, the
current model presented here does not include aerodynamic
resistance or rolling resistance. Instead of quantifying the to-
tal resistance force, the model exclusively determines the tire
losses additional to these conventional road-loads. Therefore,
the model also does not account for the energy losses due to
the deceleration and subsequent acceleration of the vehicle
before and after the turn. Lastly, it is assumed that the losses
during a dynamic corner situation can be represented by a
summation of different steady-state cornering results.

While the main results indicate that the cornering losses
are significant in one particular city trip with a BEB in
city driving, more data from a variety of trips will have
to be evaluated to obtain more conclusive results regarding
the route-dependency of the results. Furthermore, dedicated
steady-state cornering tests with a full size vehicle are
considered as future work to match the outcome of the model
with a measured energy consumption during cornering.

V. CONCLUSIONS

In this paper, the energy losses that occur during cornering
of a BEB are modeled. The equations for a nonlinear
steady-state cornering model for a BEB are derived and
a solution method is proposed. The results indicate that
during cornering of a BEB, both cornering resistance and

tire scrub contribute to additional power losses, where the
former effect is more profound for most cornering situations.
Combining the cornering model analysis outcome with the
measured driveline energy consumption of a BEB reveals
that the mentioned effects constitute a significant 2.3% of
the total energy. Therefore, these effects should be taken into
account to improve energy consumption prediction accuracy
for BEBs.
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