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a b s t r a c t 

The classical result of Vandermonde decomposition of positive semidefinite Toeplitz matrices, which dates 

back to the early twentieth century, forms the basis of modern subspace and recent atomic norm meth- 

ods for frequency estimation. In this paper, we study the Vandermonde decomposition in which the fre- 

quencies are restricted to lie in a given interval, referred to as frequency-selective Vandermonde decom- 

position. The existence and uniqueness of the decomposition are studied under explicit conditions on 

the Toeplitz matrix. The new result is connected by duality to the positive real lemma for trigonometric 

polynomials nonnegative on the same frequency interval. Its applications in the theory of moments and 

line spectral estimation are illustrated. In particular, it provides a solution to the truncated trigonometric 

K -moment problem. It is used to derive a primal semidefinite program formulation of the frequency- 

selective atomic norm in which the frequencies are known a priori to lie in certain frequency bands. 

Numerical examples are also provided. 
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. Introduction 

A classical result discovered by Carathéodory and Fejér in 1911

1] states that, if an N × N Hermitian Toeplitz matrix T is positive

emidefinite (PSD) and has rank r ≤ N , then it can be factorized as

 = A P A 

H 
, (1) 

here P is an r × r positive definite diagonal matrix and A is an

 × r Vandermonde matrix whose columns are discrete sinusoidal

aves with distinct frequencies. Moreover, such a decomposition

s unique if r < N . This Vandermonde decomposition result has be-

ome important for information and signal processing since the

970s when it was rediscovered by Pisarenko and used for fre-

uency estimation by interpreting the Toeplitz matrix T as the

ata covariance matrix. The Vandermonde decomposition in (1) is

herefore also referred to as the Carathéodory–Fejér–Pisarenko de-

omposition. As a result of this rediscovery, a class of methods

ave been developed for frequency estimation based on the signal

ubspace of a data covariance estimate, known as the subspace-

ased methods. Prominent examples are multiple signal classifi-
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ation (MUSIC), estimation of parameters by rotational invariant

echniques (ESPRIT) and various variants of them (see the review

n [2] ). Besides, this decomposition result is important in moment

heory, operator theory and system theory [3,4] . As an example,

t can be applied to give a solution to the truncated trigonomet-

ic moment problem (a.k.a. the moment problem on the unit circle

iven a finite moment sequence) [5] . 

In the past few years, a new class of methods for frequency

stimation have been devised, namely the gridless sparse meth-

ds (see the review in [6] ), in which the Vandermonde decom-

osition is evoked and plays an important role. It is well-known

hat sparse methods for frequency estimation developed in the

ast two decades exploit the signal sparsity, which arises natu-

ally from the fact that the number of frequencies is small, and

ttempt to find, among all candidates consistent with the observed

ata, the solution consisting of the smallest number of frequencies.

ince frequency estimation is a highly nonlinear problem and to

vercome such nonlinearity, gridding in the continuous frequency

omain used to be a standard ingredient of early sparse meth-

ds, which transforms approximately the original nonlinear con-

inuous parameter estimation problem as a problem of sparse sig-

al recovery from a linear system of equations (see, e.g., [7,8] ). The

ewly developed gridless sparse methods completely avoid grid-

ing, work directly in the continuous domain, and have strong the-

retical guarantees. These methods have been developed based on

http://dx.doi.org/10.1016/j.sigpro.2017.07.024
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the atomic norm [9–13] —a continuous analogue of the � 1 norm

used in the early sparse methods—and covariance fitting [14] . A

main difficulty of applying these gridless sparse methods under-

lies in how to solve the nonlinearity problem, which makes the

resulting optimization problems nonconvex with respect to the

unknown frequencies. To do so, the key is to apply the Vander-

monde decomposition of Toeplitz matrices to cast these optimiza-

tion problems as semidefinite programs (SDP), in which the fre-

quencies are encoded in a PSD Toeplitz matrix, as T in (1) . Once

the SDP is solved, the frequencies are finally retrieved from the

Vandermonde decomposition of the solved Toeplitz matrix. Note

that the Vandermonde decomposition result has also been general-

ized to high dimensions and used for multidimensional frequency

estimation [15] . 

Notice that the frequencies in the Vandermonde decomposition

in (1) may take any value in the normalized band [0, 1] (or the unit

circle), in which 0 and 1 are identified. This paper is motivated by

various practical applications in which the (normalized) frequen-

cies can be known a priori to lie in certain frequency bands. For

example, when a signal is oversampled by a factor, the frequen-

cies will lie in a band narrowed by the same factor. Due to the

path loss effect, the maximum value of the range/delay, which can

be interpreted as a frequency parameter, of a detectable aircraft

can be estimated in advance. Similarly, the maximum Doppler fre-

quency can be obtained if the aircraft’s characteristic speed can be

known. In underwater channel estimation, the frequency parame-

ters of interest can reside in a known small interval [16] . Similar

prior knowledge might also be available given weather observa-

tions [17] . Therefore, it would be interesting to exploit such prior

knowledge in gridless sparse methods for frequency estimation,

and by doing so, the estimation accuracy is expected to improve. 

The important role of the Vandermonde decomposition in grid-

less sparse methods encourages us to incorporate the prior interval

knowledge into the decomposition. In other words, we ask the fol-

lowing question: Can the frequencies in the Vandermonde decompo-

sition of the Toeplitz matrix T , as in ( 1 ), be restricted to lie in a given

interval I ⊂ [ 0 , 1 ] , instead of the entire domain [0, 1], under explicit

conditions on T ? In fact, we also want the conditions to be convex

due to our interest in optimization problems. The resulting decom-

position is referred to as frequency-selective (FS) Vandermonde de-

composition. The question asked above is challenging since, by (1) ,

T is a highly nonlinear function of the frequencies and it is unclear

how to link T to a frequency interval I . 

It is interesting to note that similar questions have been in-

vestigated in a class of moment problems known as truncated K -

moment problems, a.k.a. truncated moment problems on a semial-

gebraic set K , instead of on an entire domain [18] . When K is in the

real or the complex domain, solutions to these problems have been

successfully obtained [19,20] . To the best of our knowledge, how-

ever, the problem is still open when K is defined on the unit circle

[0, 1], which is known as the truncated trigonometric K -moment

problem. In this paper, we show that the study of the FS Vander-

monde decomposition can provide a solution to this open problem.

In this paper, an affirmative answer is provided to the question

asked above. Concretely, it is shown that a PSD Toeplitz matrix T

admits an FS Vandermonde decomposition on a given interval if

and only if T satisfies another linear matrix inequality (LMI). In-

terestingly, this FS Vandermonde decomposition result is linked by

duality to the positive real lemma (PRL) for trigonometric polyno-

mials [21] . The usefulness of the new result is also demonstrated.

In the theory of moments, it provides a solution to the truncated

trigonometric K -moment problem. For frequency estimation with

prior interval knowledge, it is used to derive a primal SDP formu-

lation for the atomic norm exploiting the prior knowledge. Numer-

ical examples are also provided. 
f

.1. Related work 

This paper extends our conference paper [22] in which the FS

andermonde decomposition of Toeplitz matrices was studied. In

ddition to this, we show in this paper the connection between

he FS Vandermonde decomposition and the PRL for trigonometric

olynomials. Its applications to the moment theory and frequency

stimation are also studied in more detail. 

The problem of frequency estimation with restriction on the

requency band was studied in [23–25] . In [23] , an FS atomic norm

ormulation (or constrained atomic norm in the language of [23] )

as proposed and a dual SDP formulation was presented by apply-

ng the theory of positive trigonometric polynomials. In contrast to

his, we show in this paper that a primal SDP formulation of the

S atomic norm can be obtained by applying the new FS Vander-

onde decomposition. In [24] , the interval prior was interpreted as

 prior distribution of the frequencies and a weighted atomic norm

pproach was then devised that is an approximate but faster im-

lementation of the FS atomic norm. Although the paper [25] does

ot provide or imply the FS Vandermonde decomposition result, it

btained independently a primal SDP formulation of the FS atomic

orm based on a different technique. 

The paper [26] studied the super-resolution problem on semi-

lgebraic sets in the real domain and provided an SDP formula-

ion of the resulting atomic norm. To do so, the key is to apply

he moment theory on semialgebraic sets in the real domain (a.k.a.

he truncated K -moment problem in the real domain). In contrast

o this, we provide a first solution to the truncated trigonomet-

ic K -moment problem and then apply this result to study super-

esolution on semi-algebraic sets on the unit circle. 

.2. Notations 

Notations used in this paper are as follows. R and C denote the

et of real and complex numbers, respectively. T := [0 , 1] denotes

he unit circle, in which 0 and 1 are identified. Boldface letters are

eserved for vectors and matrices. | · | denotes the amplitude of a

calar or the cardinality of a set. ‖ · ‖ 1 , ‖ · ‖ 2 and ‖ · ‖ F denote the

 1 , � 2 and Frobenius norms respectively. A 

T and A 

H are the matrix

ranspose and conjugate transpose of A respectively. rank( A ) de-

otes the rank and tr( A ) is the trace. For PSD matrices A and B ,

 ≥ B means that A − B is PSD. � and � return the real and the

maginary parts of a complex argument respectively. 

A Hermitian trigonometric polynomial of degree one is defined

s: 

(z) = r 1 z 
−1 + r 0 + r −1 z, r −1 = r 1 , r 0 ∈ R , (2)

here z is a complex argument and · denotes the complex con-

ugate operator. When z is on the unit circle, i.e., when z = e i 2 π f ,

f ∈ T , we write without ambiguity g ( f ) := g ( e i 2 π f ). It follows that 

( f ) = r 1 e 
−i 2 π f + r 0 + r 1 e 

i 2 π f = r 0 + 2 � 

{
r 1 e 

−i 2 π f 
}
, (3)

nd g ( f ) is real on T . 

An N × N Toeplitz matrix T := T ( t ) := T ( N , t ) is formed by using

 complex sequence t = 

[
t j 
]
, j = 1 − N, . . . , N − 1 and defined by

 mn = t n −m 

, 0 ≤ m, n ≤ N − 1 . Given t and a degree-1 trigonometric

olynomial g as defined in (2) , an (N − 1) × (N − 1) Toeplitz matrix

 g := T g ( t ) := T g ( N , t ) is defined by 

 

T g ] mn = r 1 t n −m +1 + r 0 t n −m 

+ r −1 t n −m −1 , (4)

 ≤ m, n ≤ N − 2 . Also, let a ( f ) := a ( N, f ) := [1 , e i 2 π f , . . . ,

 

i 2 π(N−1) f ] 
T 

denote a size- N discrete complex sinusoid with

requency f ∈ T . 



Z. Yang, L. Xie / Signal Processing 142 (2018) 157–167 159 

1

 

d  

t  

S  

o  

t  

l  

t

2

 

m  

b  

h  

d

T  

a

T

w  

M

P  

i  

s

N  

T

a  

V  

U  

t

t  

N

U

w  

k  

w

t  

U  

t  

c

 

i  

 

a

t  

I

T

B[

i  

m

T

M

r

s  

i

1

r

F  

t  

a  

N

 

(
 

a  

c  

1

A

T  

A

A

T  

s  

a  

 

I

 

t  

c  

T  

w  

o(
f  

v  

n  

|  

r  

d

3

 

s  

d  

i  

W  

[  

I  

d  

t

g

.3. Paper organization 

The rest of the paper is organized as follows. Section 2 intro-

uces the standard Vandermonde decomposition of Toeplitz ma-

rices. Section 3 presents the new FS Vandermonde decomposition.

ection 4 shows connections between the new result and the the-

ry of trigonometric polynomials. Section 5 illustrates its applica-

ion in the theory of moments. Section 6 turns to the application in

ine spectral estimation with prior knowledge. Section 7 concludes

his paper. 

. Vandermonde decomposition of Toeplitz matrices 

The standard Vandermonde decomposition theorem of Toeplitz

atrices [1,2] is summarized in this section. Although its proof can

e found in, e.g., [2] , a new proof, inspired by [27] , is provided

ere which will form the basis of the proof of the FS Vandermonde

ecomposition given in Section 3 . 

heorem 1. A Toeplitz matrix T ∈ C 

N×N admits the following r-

tomic, r = rank ( T ) , Vandermonde decomposition: 

 = 

r ∑ 

k =1 

p k a ( f k ) a 

H ( f k ) , (5) 

here f k ∈ T , k = 1 , . . . , r are distinct and p k > 0, if and only if T ≥ 0 .

oreover, the decomposition is unique if T is rank-deficient. 

roof. Suppose that T can be written as in (5) , where p k > 0, it

s evident that T is PSD. This completes the ‘only if’ part. We next

how the ‘if’ part. To do so, we start with the case of r = rank ( T ) ≤
 − 1 . Since T ≥ 0 , there exists V = 

[
v T 

1 
, . . . , v T 

N 

]T ∈ C 

N×r satisfying

 = V V 

H , where v j ∈ C 

1 ×r , j = 1 , . . . , N. Let V U = 

[
v T 1 , . . . , v 

T 
N−1 

]T 

nd V L = 

[
v T 

2 
, . . . , v T 

N 

]T 
. By the structure of T , we have that V U V 

H 
U =

 L V 

H 
L . By [28, Theorem 7.3.11] , there exists an r × r unitary matrix

 satisfying V L = V U U . It follows that v j = v 1 U 

j−1 , j = 2 , . . . , N and

herefore, 

 j = v 1 U 

− j v H 1 , j = 1 − N, . . . , N − 1 . (6)

ote that U has the following eigen-decomposition: 

 = ̃

 U diag ( z 1 , . . . , z r ) ̃  U 

H 
, (7) 

here ˜ U is also an r × r unitary matrix and z k = e i 2 π f k with f k ∈ T ,

 = 1 , . . . , r. Insert (7) into (6) and let p k = | v 1 ̃  u k | 2 > 0 , k = 1 , . . . , r,

here ̃  u k denotes the k th column of ˜ U . Then we have that 

 j = 

r ∑ 

k =1 

p k e 
−i 2 π j f k . (8)

sing the identity above, T can be written as in (5) . It is evident

hat f k , k = 1 , . . . , r are distinct since otherwise, rank( T ) < r , which

annot be true. 

We now consider the case of r = N, in which T is positive def-

nite. To obtain a decomposition as in (5) , we choose arbitrarily

f N ∈ T and let p N = 

(
a 

H ( f N ) T 
−1 a ( f N ) 

)−1 
> 0 . After that, we define

 new sequence t ′ = 

[ 
t ′ 

j 

] 
, | j | ≤ N − 1 as: 

 

′ 
j = t j − p N e 

−i 2 π j f N . (9)

t follows that 

 

(
t ′ 
)

= T − p N a ( f N ) a 

H ( f N ) . (10) 

y the choice of p N , the matrix 

p −1 
N 

a 

H ( f N ) 
a ( f N ) T 

]
= 

[
a 

H ( f N ) T 
− 1 

2 

T 
1 
2 

][
a 

H ( f N ) T 
− 1 

2 

T 
1 
2 

]H 
s PSD and rank-deficient. Notice that T ( t ′ ) is the Schur comple-

ent of T in the above matrix, and therefore 

 

(
t ′ 
)

≥ 0 . (11) 

oreover, it holds that 

ank 
(
T 
(
t ′ 
))

< N (12) 

ince, otherwise, 

[
p −1 

N 
a 

H ( f N ) 
a ( f N ) T 

]
has full rank. Combin-

ng (12) and rank 
(
T 
(
t ′ 
))

≥ rank ( T ) − rank 
(

p N a ( f N ) a 

H ( f N ) 
)

= N −
 results in 

ank 
(
T 
(
t ′ 
))

= N − 1 . (13) 

ollowing from (11), (13) and the result in the case of r ≤ N − 1

hat we just proved, T ( t ′ ) admits a Vandermonde decomposition

s in (5) with r = N − 1 . It then follows from (10) that T admits an

 -atomic Vandermonde decomposition. 

We finally show the uniqueness in the case of r ≤ N − 1 . Write

5) in matrix form as T = A ( f ) P A 

H 
( f ) , where P = diag ( p 1 , . . . , p r )

nd A ( f ) = [ a ( f 1 ) , . . . , a ( f r ) ] . Suppose that T has another de-

omposition: T = A 

(
f ′ 
)
P ′ A 

H 
(

f ′ 
)
, in which, similarly, f ′ 

j 
∈ T , j =

 , . . . , r are distinct and p ′ 
j 
> 0 . It is evident that 

 

(
f 
′ )

P ′ A 

H 
(

f 
′ ) = A ( f ) P A 

H 
( f ) . (14) 

herefore, there exists an r × r unitary matrix U 

′ satisfying

 

(
f ′ 
)
P ′ 1 2 = A ( f ) P 

1 
2 U 

′ . It follows that 

 

(
f 
′ ) = A ( f ) P 

1 
2 U 

′ P ′−
1 
2 . (15) 

his means that for every j = 1 , . . . , r, a ( f ′ 
j 
) lies in the range space

panned by { a ( f k ) } r k =1 . By the fact that r ≤ N − 1 and that any N

toms a ( f k ) with distinct f k ’s are linearly independent, we have that

f ′ 
j 
∈ { f k } r k =1 and thus the two sets { f ′ 

j 
} r 

j=1 
and { f k } r k =1 are identical.

t follows that the two decompositions of T are identical. �

We next discuss how to obtain the Vandermonde decomposi-

ion, to be specific, how to solve for f k and p k in (5) . In fact, a

omputational approach can be provided based on the proof of

heorem 1 . In the case of r ≤ N − 1 , using Cholesky decomposition,

e can compute V ∈ C 

N×r satisfying T = V V 

H . By the arguments

f the proof, it is easy to show the following equation: 

V 

H 
U V L − z k V 

H 
U V U 

)˜ u k = 0 , (16) 

rom which z k and ̃

 u k , k = 1 , . . . , r can be computed as the eigen-

alues and eigenvectors of the matrix pencil 
(
V 

H 
U V L , V 

H 
U V U 

)
. Fi-

ally, the parameters are obtained as: f k = 

1 
2 π � ln z k ∈ T and p k =

 

v 1 ̃  u k | 2 , k = 1 , . . . , r, where v 1 is the first row of V . In the case of

 = N, f N ∈ T can be chosen arbitrarily first, and the rest can be

one following from the proof. 

. FS Vandermonde decomposition of Toeplitz matrices 

We present the FS Vandermonde decomposition result in this

ection. To encode the interval information into the Vandermonde

ecomposition, we first construct a trigonometric polynomial that

s nonnegative on the interval I and negative on its complement.

e first clarify some notations. For f L � = f H ∈ T , if f L < f H , then I =
 

f L , f H ] denotes a closed interval as usual. Otherwise, we define

 = [ f L , f H ] := T \ ( f H , f L ) . By this definition, we can conveniently

eal with the case in which 0 (or 1) is an interior point of I . The

rigonometric polynomial, g , is defined as: 

(z) = 

1 

z 
√ 

z L z H 
( z − z L ) ( z − z H ) sgn ( f H − f L ) , (17) 
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where z L := e i 2 π f L , z H := e i 2 π f H and sgn( · ) is the sign function.

With simple derivations, we have 

g(z) = r 1 z 
−1 + r 0 + r 1 z, (18)

where 

r 0 = − z L + z H √ 

z L z H 
sgn ( f H − f L ) 

= −2 cos [ π( f H − f L ) ] sgn ( f H − f L ) , (19)

r 1 = 

√ 

z L z H sgn ( f H − f L ) 

= e iπ( f L + f H ) sgn ( f H − f L ) . (20)

It is evident that g ( z ) is a Hermitian trigonometric polynomial that

is real-valued on T . By the way that g ( z ) is constructed, we know

that g ( z ) has two single roots z L and z H , and equivalently, g ( f ) has

two single roots f L and f H . Therefore, g ( f ) flips its sign around f L and

f H . Two possibilities are: g ( f ) is positive on ( f L , f H ) and negative on

( f H , f L ), or negative on ( f L , f H ) and positive on ( f H , f L ). To determine

which one is true, we check the value at f = 

1 
2 ( f L + f H ) : 

g 

(
1 

2 

( f L + f H ) 

)
= r 0 + 2 � 

(
r 1 e 

−iπ( f L + f H ) 
)

= { 2 − 2 cos [ π( f L − f H ) ] } sgn ( f H − f L ) . (21)

Consequently, the sign of g at f = 

1 
2 ( f L + f H ) is identical to that of

f H − f L , meaning that g ( f ) is always positive on ( f L , f H ) and negative

on ( f H , f L ) whenever f L < f H or f L > f H . 

Now we are ready to present the FS Vandermonde decomposi-

tion result, which is summarized in the following theorem. 1 

Theorem 2. Given I ⊂ T , a Toeplitz matrix T ∈ C 

N×N admits an FS

Vandermonde decomposition, as in (5) , with f k ∈ I, if and only if 

T ≥ 0 , (22)

T g ≥ 0 , (23)

where g is defined by (18) –(20) and T g by (4) . Moreover, the decom-

position is unique if either T or T g is rank-deficient. 

Proof. We first show the “if” part. Consider the case of r ≤ N − 1 .

It then follows from (22) and Theorem 1 that T admits a unique

Vandermonde decomposition as in (5) . So, it suffices to show f k ∈
I, k = 1 , . . . , r under the additional condition (23) . To do so, note

by (5) that 

 n −m 

= T mn = 

r ∑ 

k =1 

p k e 
i 2 π(m −n ) f k . (24)

It immediately follows that 

[ T g ] mn = 

1 ∑ 

j= −1 

r j t n −m + j 

= 

1 ∑ 

j= −1 

r j 

r ∑ 

k =1 

p k e 
i 2 π(m −n − j) f k 

= 

r ∑ 

k =1 

p k e 
i 2 π(m −n ) f k 

1 ∑ 

j= −1 

r j e 
−i 2 π j f k 

= 

r ∑ 

k =1 

p k g ( f k ) e 
i 2 π(m −n ) f k , (25)
1 Part of the FS Vandermonde decomposition result was extended to a general 

form in the recent preprint [29] , which appeared online after our conference paper 

[22] was accepted. 

w  

p  

h  

i  

c

nd hence 

 g = 

r ∑ 

k =1 

p k g ( f k ) a ( N − 1 , f k ) a 

H ( N − 1 , f k ) 

= A ( N − 1 , f ) diag ( p 1 g ( f 1 ) , . . . , p r g ( f r ) ) A 

H 
( N − 1 , f ) , (26)

here A ( N − 1 , f ) := [ a ( N − 1 , f 1 ) , . . . , a ( N − 1 , f r ) ] is an ( N − 1 ) ×
Vandermonde matrix and diag ( p 1 g ( f 1 ) , . . . , p r g ( f r ) ) denotes a di-

gonal matrix with p k g ( f k ), k = 1 , . . . , r on the diagonal. Note that

 ( N − 1 , f ) has full column rank since r ≤ N − 1 . Using (26) and

23) , we have that 

iag ( p 1 g ( f 1 ) , . . . , p r g ( f r ) ) = A 

† 
( N − 1 , f ) T g A 

† H 
( N − 1 , f ) ≥ 0 , 

(27)

here · † denotes the matrix pseudo-inverse operator. This means

hat p k g ( f k ) ≥ 0, and since p k > 0, we have g ( f k ) ≥ 0, k = 1 , . . . , r. By

he property of g ( f ), finally, we have f k ∈ I, k = 1 , . . . , r. 

We next consider the case of r = N in which T is positive

efinite. Let f N = f L and p N = 

(
a 

H ( f N ) T 
−1 a ( f N ) 

)−1 
> 0 . Similar to

hat in the proof of Theorem 1 , we define a new sequence t ′ =
 

t ′ 
j 

] 
, | j | ≤ N − 1 as in (9) , which therefore satisfies (10), (11) and

13) . Moreover, we have 

T g 
(
t ′ 
)]

mn 
= 

1 ∑ 

j= −1 

r j t 
′ 
n −m + j 

= [ T g ] mn − p N g( f N ) e 
i 2 π(m −n ) f N , (28)

nd hence 

 g 

(
t ′ 
)

= T g − p N g ( f N ) a ( N − 1 , f N ) a 

H ( N − 1 , f N ) . (29)

y (23) and the fact that g ( f N ) = g ( f L ) = 0 , we have 

 g 

(
t ′ 
)

= T g ≥ 0 . (30)

ow consider T ( t ′ ) that satisfies (11), (13) and (30) . Following from

he “if” part of Theorem 2 in the case of r ≤ N − 1 that we just

roved, T ( t ′ ) admits a unique decomposition as in (5) , with f k ∈ I,

 = 1 , . . . , r = N − 1 . Therefore, it follows from (10) that 

 = T 
(
t ′ 
)

+ p N a ( f N ) a 

H ( f N ) (31)

as a decomposition as in (5) , with f k ∈ I, k = 1 , . . . , r = N. So we

omplete the “if” part. 

The “only if” part can be shown by similar arguments. In par-

icular, given T as in (5) , it is evident that (22) holds. Moreover,

23) also holds, since we still have (26) , in which g ( f k ) ≥ 0, k =
 , . . . , r by the property of g . 

We finally shown the uniqueness under the additional condi-

ion that T or T g is rank-deficient. When T is rank-deficient, this is

 direct consequence of Theorem 1 . In the other case when T has

ull rank and T g is rank-deficient, note first that there are at least N

istinct f k ’s in the FS Vandermonde decomposition of T , since, oth-

rwise, T loses rank. We now recall (26) , in which A ( N − 1 , f ) has

ull row rank and g ( f k ) ≥ 0. To guarantee that T g is rank-deficient,

 ( f k ) � = 0 must hold for maximally N − 2 , f k ’s and the other f k ’s

ust be either f L or f H . This means that the decomposition con-

ists of exactly N atoms and two of them are located at f L and f H .

herefore, the other N − 2 frequencies are fixed as well, and the FS

andermonde decomposition is unique. �

The FS Vandermonde decomposition can be computed similarly

s the standard Vandermonde decomposition provided that the

onditions of Theorem 2 are satisfied. More concretely, in the case

hen T is rank-deficient, it admits a unique Vandermonde decom-

osition that can be computed as in Section 2 . In the case when T

as full rank, an N -atomic decomposition can be computed follow-

ng from the proof of Theorem 2 , to be specific, fix f N = f L first and

ompute the other parameters following the proof. 
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Finally, note that the FS Vandermonde decomposition result can

e extended straightforwardly to the multiple frequency band case.

et K = 

⋃ J 

l=1 
[ f Ll , f Hl ] , where [ f Ll , f Hl ] ⊂ T , l = 1 , . . . , J ≥ 2 are dis-

oint. We have the following corollary of Theorem 2 , the proof of

hich is straightforward and thus is omitted. 

orollary 1. Given K = 

⋃ J 

l=1 
[ f Ll , f Hl ] , a Toeplitz matrix T ∈ C 

N×N 

dmits an FS Vandermonde decomposition, as in (5) , with f k ∈ K, if

nd only if there exist sequences t l , l = 1 , . . . , J satisfying 

J 
 

l=1 

t l = t , (32) 

 ( t l ) ≥ 0 , (33) 

 g l ( t l ) ≥ 0 , l = 1 , . . . , J, (34) 

here g l , l = 1 , . . . , J are g defined with respect to [ f Ll , f Hl ], respec-

ively. 

. Duality 

Using the FS Vandermonde decomposition result presented in

he previous section, we can explicitly characterize the cone of

oeplitz matrices admitting such decompositions. Due to the inter-

st in optimization problems, we naturally look at the dual cone,

hich, as we will see, enables us to link the FS Vandermonde de-

omposition to the theory of trigonometric polynomials, to be spe-

ific, the PRL given in [30,31] (see also [21] ). 

For a sequence t = 

[
t j 
]
, | j | ≤ N − 1 with t − j = t j , let t R =

 

� t N−1 , . . . , � t 1 , 
√ 

2 
2 t 0 , � t 1 , . . . , � t N−1 

] T 
∈ R 

2 N−1 be a representation

f t in the real domain, where the coefficient 
√ 

2 
2 for t 0 is cho-

en for convenience. It is obvious that all N × N Toeplitz matrices

dmitting an FS Vandermonde decomposition on a given interval

 ⊂ T form a cone that can be identified with 

 VDF := 

{ 

t R : T = 

∑ 

k 

p k a ( f k ) a 

H ( f k ) , p k ≥ 0 , f k ∈ I 

} 

. (35) 

efine 

 VDM 

:= { t R : T ≥ 0 , T g ≥ 0 } , (36) 

here g is defined in Theorem 2 . A direct consequence of

heorem 2 is that 

 VDF = K VDM 

. (37) 

We next consider the dual cone of K VDF defined as [32] 

 

∗
VDF := 

{
α ∈ R 

2 N−1 : t T R α ≥ 0 for any t R ∈ K VDF 

}
. (38) 

efore proceeding to the main result of this section, we first intro-

uce some notations. Let 

 PolF := 

{ 

γR : 

N−1 ∑ 

j=1 −N 

γ j e 
i 2 π j f ≥ 0 , f ∈ I 

} 

(39) 

enote the cone of trigonometric polynomials of order N − 1 and

onnegative on I, where γR is similarly defined as t R . Let also

j , | j | ≤ N − 1 be an N × N elementary Toeplitz matrix with ones

n its j th diagonal and zeros elsewhere. With respect to �j and

he trigonometric polynomial g defined by (18) –(20) , we define the

(N − 1) × (N − 1) Toeplitz matrix �gj , like T g with respect to T . By

efinition, it is easy to verify that 

 = 

N−1 ∑ 

j=1 −N 

� j t j , (40) 
Q  
 g = 

N−1 ∑ 

j=1 −N 

�g j t j . (41) 

e also define the cone 

 PolM 

:= 

{ 

γR : γ− j = tr 
(
� j Q 0 

)
+ tr 

[
�g j Q 1 

]
, 

| j | ≤ N − 1 , 

Q 0 ∈ C 

N×N , Q 1 ∈ C 

(N−1) ×(N−1) , 

Q 0 ≥ 0 , Q 1 ≥ 0 

} 

. (42) 

he main result of this section is given in the following theorem. 

heorem 3. We have the following identities: 

 

∗
VDF = K PolF , (43) 

 

∗
PolM 

= K VDM 

. (44) 

herefore, provided that K VDF = K VDM 

we can conclude that K PolF =
 PolM 

, and vice versa. 

roof. We first show (43) . Note that t R ∈ K VDF if and only if 

 j = 

∑ 

k 

p k e 
−i 2 π j f k , j = 1 − N, . . . , N − 1 , (45)

here p k ≥ 0 and f k ∈ I . For any α = [ α1 −N , . . . , αN−1 ] 
T ∈ R 

2 N−1 ,

e define γ ∈ C 

2 N−1 such that γ0 = 

√ 

2 α0 , γ j = α− j + iα j and

− j = α− j − iα j , j = 1 , . . . , N − 1 . It follows that α = γR and 

 

T 
R α = 

√ 

2 

2 

t 0 ·
√ 

2 

2 

γ0 + � 

N−1 ∑ 

j=1 

t j γ j 

= 

1 

2 

N−1 ∑ 

j=1 −N 

t j γ j . (46) 

nserting (45) into (46) , we have that 

 

T 
R α = 

1 

2 

∑ 

k 

p k 

N−1 ∑ 

j=1 −N 

γ j e 
i 2 π j f k . (47) 

y (47) and the definition of the dual cone, α = γR ∈ K 

∗
VDF 

if

nd only if the right hand of (47) is nonnegative for any p k ≥ 0

nd any f k ∈ I . The above condition holds if and only if h ( f ) :=
 N−1 
j=1 −N γ j e 

i 2 π j f is nonnegative on I, or equivalently, α ∈ K PolF by

39) . 

To show (44) , we can similarly define t for α ∈ R 

2 N−1 such that

= t R . It follows that T and T g are Hermitian. For any γR ∈ K PolM 

,

hich can be expressed as in (42) , we have that 

T 
R α = 

1 

2 

N−1 ∑ 

j=1 −N 

γ j t j 

= 

1 

2 

N−1 ∑ 

j=1 −N 

γ− j t j 

= 

1 

2 

N−1 ∑ 

j=1 −N 

t j 
{

tr 
(
� j Q 0 

)
+ tr 

[
�g j Q 1 

]}
. (48) 

sing the identities in (40) and (41) , we have that 

T 
R α = 

1 

2 

tr ( T Q 0 ) + 

1 

2 

tr ( T g Q 1 ) . (49) 

y the definition of the dual cone, α ∈ K 

∗
PolM 

if and only if γT 
R 
α ≥

 for any γR ∈ K PolM 

. Using (42) and (49) , the above condition

olds if and only if tr ( T Q 0 ) + tr 
(
T g Q 1 

)
≥ 0 for any Q 0 ≥ 0 and

 ≥ 0 , which holds if and only if tr( TQ ) ≥ 0 for any Q ≥ 0 and
1 0 0 
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tr( T g Q 1 ) ≥ 0 for any Q 1 ≥ 0 , and is further equivalent to the condi-

tion T ≥ 0 and T g ≥ 0 . The last condition is equivalent to α = t R ∈
K VDM 

by (36) . 

Finally, provided that K VDF = K VDM 

and using (43) and (44) , we

have that 

K PolF = K 

∗
VDF = K 

∗
VDM 

= K 

∗∗
PolM 

. (50)

Using the identify that K 

∗∗
PolM 

= K PolM 

, which follows from the fact

that K PolM 

is convex and closed [32] , we conclude that K PolF =
K PolM 

. By similar arguments we can also show that K VDF = K VDM 

provided that K PolF = K PolM 

. �

By Theorem 3 , the FS Vandermonde decomposition on I is

linked via duality to the trigonometric polynomials nonnegative on

the same interval. Moreover, the identity that K PolF = K PolM 

pro-

vides a matrix form parametrization of the coefficients of these

polynomials. In fact, this is exactly the Gram matrix parametriza-

tion concluded by the PRL in [30,31] (see also [21] ). This means

that the PRL in [30,31] can be obtained from the FS Vandermonde

decomposition; conversely, the PRL also provides an alternative

way to characterize the set of Toeplitz matrices admitting an FS

Vandermonde decomposition. 2 Therefore, it will not be surprising

that, as we will see, for certain convex optimization problems the

two techniques can be applied to give the primal and the dual

problems, respectively. But note that there are indeed scenarios in

which one technique can be applied while the other cannot. Ex-

amples will be provided in the ensuing sections to demonstrate

the usefulness of the FS Vandermonde decomposition. 

Remark 1. The trigonometric polynomial g(z) = r −1 z + r 0 + r 1 z 
−1 

that is nonnegative on I and negative on its complement plays

an important role in both the FS Vandermonde decomposition of

Toeplitz matrices and the Gram matrix parametrization of trigono-

metric polynomials. It is worth noting that the polynomial defined

in the present paper (recall (18) –(20) ) is different from those in

[21,30,31] . As a matter of fact, while the polynomial we define

applies uniformly to all intervals I ∈ T , certain modifications to

the polynomial or additional operations such as sliding the inter-

val have to be taken in [21,30,31] when I contains certain critical

points such as 0 (or 1) and 

1 
2 . 

5. Application in the theory of moments 

5.1. Problem statement 

For a given sequence t j , | j | ≤ N − 1 and a given domain F , a

truncated moment problem entails determining whether there ex-

ists a positive Borel measure μ on F such that [5] 

 j = 

∫ 
F 

z j d μ( z ) , | j | ≤ N − 1 . (51)

The problem is further referred to as a truncated K -moment prob-

lem if μ is constrained to be supported on a semialgebraic set

K ⊂ F , i.e., [18] 

supp ( μ) ⊂ K. (52)

A measure μ satisfying (51) is a representing measure for t ; μ is a

K -representing measure if it satisfies (51) and (52) . 

The truncated moment and K -moment problems have been

solved when F is the real or the complex domain (note that the

complex moment problem is defined slightly differently from (51) )

[19,20,33] . The truncated moment problem is also solved when

F is the unit circle, known as the truncated trigonometric mo-

ment problem [3,33] . In fact, the solution is given by evoking the
2 Note that Theorem 2 is stronger in the sense that it concludes that all such 

Toeplitz matrices always admit a decomposition containing N atoms or less. 

C

f  

f

andermonde decomposition of Toeplitz matrices: A representing

easure μ exists if and only if the Toeplitz matrix T formed us-

ng t admits a Vandermonde decomposition, or equivalently, T ≥ 0

y Theorem 1 . To the best of our knowledge, however, the trun-

ated trigonometric K -moment problem is still open. This section

s devoted to a solution to this problem by applying the FS Van-

ermonde decomposition. 

Note that a semialgebraic set K on the unit circle T can be

dentified with the union of finite disjoint subintervals [ f Ll , f Hl ] ⊂
 , l = 1 , . . . , J. Therefore, the moment problem of interest can

e restated as follows. For a given sequence t j , | j | ≤ N − 1 , the

runcated trigonometric K -moment problem entails determining

hether there exists a K -representing measure μ on T satisfying

hat 

 j = 

∫ 
T 

e −i 2 π j f d μ( f ) , | j | ≤ N − 1 , (53)

upp ( μ) ⊂ K = 

J ⋃ 

l=1 

[ f Ll , f Hl ] ⊂ T . (54)

.2. Proposed solution 

Let T be the N × N Toeplitz matrix formed using the moment

equence t j , | j | ≤ N − 1 . Suppose that an r -atomic K -representing

easure μ for t exists that satisfies (53) and (54) . It follows from

54) that 

( f ) = 

r ∑ 

k =1 

p k δ f k 
, f k ∈ K, (55)

here δf is the Dirac delta function and p k > 0 denotes the density

t f k . Inserting (55) into (53) , we have that 

 j = 

r ∑ 

k =1 

p k e 
−i 2 π j f k , | j | ≤ N − 1 , f k ∈ K. (56)

t follows that 

 = 

r ∑ 

k =1 

p k a ( f k ) a 

H ( f k ) , f k ∈ K. (57)

his means that T admits an r -atomic FS Vandermonde decompo-

ition on K . It is easy to show that the above arguments also hold

onversely. So we conclude the following result. 

emma 1. An r-atomic K-representing measure μ for t exists if and

nly if T admits an r-atomic FS Vandermonde decomposition on K. 

We next provide explicit conditions on T by applying

heorem 2 . In the case when K is a single interval, the follow-

ng theorem is a direct consequence by combining Lemma 1 and

heorem 2 . 

heorem 4. Given K = [ f L , f H ] , an r-atomic K-representing measure

for t exists if and only if (22) and (23) hold, where r = rank ( T ) ,

nd g is defined by (18) –(20) . Moreover, μ can be found by computing

he FS Vandermonde decomposition of T on K, and it is unique if T or

 g is rank-deficient. 

In the multiple frequency band case in which K = 

⋃ J 

l=1 
[ f Ll , f Hl ] ,

orresponding to Corollary 1 , we have the following corollary of

heorem 4 . The proof is trivial and is omitted. 

orollary 2. Given K = 

⋃ J 

l=1 
[ f Ll , f Hl ] , a K-representing measure μ

or t exists if and only if there exist sequences t l , l = 1 , . . . , J satis-

ying (32) –(34) . 
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Fig. 1. Solved representing measures μj , j = 2 , . . . , 5 given a moment sequence 

generated from μ1 and a semialgebraic set K (indicated by the line segments on 

the x -axis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 5 
Corollary 2 provides a numerical approach to finding a K -

epresenting measure, if it exists, by solving the following feasi-

ility problem that is a SDP: 

ind t l , l = 1 , . . . , J, 

ubject to (32)-(34) . (58) 

f a solution, denoted by t ∗
l 
, l = 1 , . . . , J, can be found, then we can

nd representing measures for t ∗
l 

on each corresponding interval

y Theorem 4 , the sum of which finally form a K -representing mea-

ure for t . If (58) is infeasible, then no K -representing measure for

 exists. 

emark 2. In the case when T has full rank, the representing mea-

ure μ might not be unique, if it exists. By solving (58) , we actu-

lly find one among them. In this case the obtained measure μ
ay consist of as large as NJ atoms. To possibly reduce the num-

er of atoms (a.k.a. to simplify the obtained measure), we can find

he one minimizing certain convex function of t l , l = 1 , . . . , J, e.g.,

tr( T ( t 1 )). By doing so, it is expected that certain T ( t l )’s are rank-

eficient and thus result in a small number of atoms. 

Finally, it is interesting to note that the dual problem of

58) can be easily obtained using the result in Section 4 . Using the

one notations (58) can be written as: 

ind t R,l ∈ K VDM ,l , l = 1 , . . . , J, 

ubject to 

J ∑ 

l=1 

t R,l = t R , (59) 

here t R, l := [ t l ] R , and K VDM ,l denotes K VDM 

in (36) with g being

 l . The Lagrangian function is given by: 

 

(
t R, 1 , . . . , t R,J , α

)
= 

( 

J ∑ 

l=1 

t R,l − t R 

) T 

α

= 

J ∑ 

l=1 

t T R,l α − t T R α, (60) 

here t R,l ∈ K VDM ,l , l = 1 , . . . , J, and α is the Lagrangian multiplier.

sing the knowledge of the dual cone, we have that 

min 

 R,l ∈K VDM ,l 

L = 

{
−t T R α, if α ∈ K 

∗
VDM ,l 

, l = 1 , . . . , J;
−∞ , otherwise. 

(61) 

herefore, the dual problem is given by: 

ax 
α

t T R α, subject to α ∈ 

J ⋂ 

l=1 

K PolM ,l , (62) 

here we have used the identity that K 

∗
VDM ,l 

= K PolM ,l given by

heorem 3 . Note that (62) can be cast as SDP following from (42) . 

xample 1. Suppose that the moment sequence t j , | j | ≤ N − 1 is

enerated from its 3-atomic representing measure 

1 = 0 . 7 δ0 . 1 + 2 δ0 . 25 + δ0 . 7 , (63)

hich is plotted in Fig. 1 together with μj , j = 2 , . . . , 5 that will be

olved for. 

1) In the case of N ≥ 4, we can form the Toeplitz matrix T using

t , having that rank ( T ) = 3 < N. By Theorem 1 , μ1 is the unique

representing measure for t . 

2) Suppose that N = 3 and K = [ 0 . 05 , 0 . 75 ] . Since K includes all

the frequencies in μ1 , one representing measure on K has al-

ready been given by μ1 . By the existence of the represent-

ing measure, it follows from Theorem 4 that T and T g are both
PSD. Applying the proposed FS Vandermonde decomposition al-

gorithm to the solution, the following 3-atomic K -representing

measure is obtained: 

μ2 = 0 . 4630 δ0 . 05 + 2 . 2485 δ0 . 2383 + 0 . 9885 δ0 . 6927 , 

which is somehow similar to μ1 . Note that the frequency 0.05

in μ2 is nothing but the staring point of K , which has been

deliberately chosen in the presented decomposition algorithm.

Note that 

3) Suppose that N = 3 and K = [ 0 . 05 , 0 . 3 ] ∪ [ 0 . 65 , 0 . 75 ] . One rep-

resenting measure for t is also given by μ1 . To possibly find

another one, we solve (58) using SDPT3 [34] in Matlab and a

solution is successfully found. Applying FS Vandermonde de-

composition to the solution, a 6-atomic K -representing measure

is given by: 

μ3 = 0 . 1825 δ0 . 05 + 1 . 2284 δ0 . 1764 + 1 . 2713 δ0 . 2722 + 0 . 1546 δ0 . 65

+ 0 . 5088 δ0 . 6917 + 0 . 3545 δ0 . 7436 . 

In μ3 , 0.05 and 0.65 are the starting points of the two intervals

of K . The first three frequencies are located on the first interval

and the other three frequencies are on the other interval. 

4) Suppose that N = 3 . We want to check whether one repre-

senting measure exists on K = [ 0 . 2 , 0 . 3 ] ∪ [ 0 . 6 , 0 . 8 ] . To do so,

we also solve (58) and a solution is successfully found. This

means that a K -representing measure exists for t by Corollary 2 .

Applying the FS Vandermonde decomposition, a 6-atomic K -

representing measure is given by: 

μ4 = 1 . 9614 δ0 . 2 + 0 . 1296 δ0 . 2290 + 0 . 4456 δ0 . 2891 + 0 . 2437 δ0 . 6 

+ 0 . 3637 δ0 . 6467 + 0 . 5561 δ0 . 7962 . (64) 

5) With the same settings as in 4), instead of solving (58) , we

find the one maximizing tr( T ( t 1 )) among all feasible repre-

senting measures on K , following Remark 2 . The obtained so-

lution 

(
t ∗1 , t 

∗
2 

)
satisfies that rank 

(
T 
(
t ∗1 

))
= rank 

(
T 
(
t ∗2 

))
= 2 < N,

resulting in the following 4-atomic representing measure: 

μ5 = 2 . 0837 δ0 . 2 + 0 . 4726 δ0 . 3 + 0 . 6218 δ0 . 6382 + 0 . 5219 δ0 . 8 . 

(65) 

Compared to μ , the number of atoms of μ is reduced. 
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6) Suppose that N = 3 and K = [ 0 . 2 , 0 . 3 ] ∪ [ 0 . 6 , 0 . 75 ] . Then (58) is

infeasible. This means that no K -representing measure for t ex-

ists by Corollary 2 . 

6. Application in line spectral estimation 

6.1. Problem statement 

Line spectral estimation can be found in wide applications such

as communications, radar, sonar, and so on [2] . In particular, we

have the following data model in the absence of noise: 3 

y o = 

r ∑ 

k =1 

a ( f k ) s k = A ( f ) s , (66)

where y o ∈ C 

N is a uniformly sampled signal (at a Nyquist rate),

f k ∈ T and s k ∈ C are the normalized frequency and the complex

amplitude of the k th sinusoid respectively, and r is the number

of sinusoids. To estimate the frequencies, we are given a part of

the entries of y o that form the subvector y o 
�

∈ C 

M , where � de-

notes the set of sampling indexes and is of cardinality M < N . This

frequency estimation problem is referred to as off-grid/continuous

compressed sensing in [13] in the sense that we have compressive

data as in the pioneering work of compressed sensing [35] , but

differently, the frequencies can take any continuous value in T as

opposed to the discrete setting in [35] . 

In this section, we consider the case when the frequencies are

known a priori to lie in an interval I ⊂ T . Inspired by the recent

atomic norm techniques [10–14] , the paper [23] proposed an FS

atomic norm approach (or constrained atomic norm in the lan-

guage of [23] ) that was shown to achieve better performance than

the standard atomic norm by exploiting the prior knowledge. In

particular, define the (FS) set of atoms 

A ( I ) := { a ( f k , φk ) = a ( f ) φ : f ∈ I, | φ| = 1 } . (67)

The FS atomic norm is the atomic norm induced by A ( I ) : 

‖ 

y ‖ A ( I ) := inf 
c k > 0 , a k ∈A ( I ) 

{ ∑ 

k 

c k : y = 

∑ 

k 

c k a k 

} 

= inf 
f k ∈I,s k 

{ ∑ 

k 

| s k | : y = 

∑ 

k 

a ( f k ) s k 

} 

. (68)

The following FS atomic norm minimization (FS-ANM) problem

was proposed in [23] : 

min 

y 
‖ 

y ‖ A ( I ) , subject to y � = y o �. (69)

This means that, among all candidates y which are consistent with

the acquired samples y o 
�

, we find the one y ∗ with the minimum FS

atomic norm as the signal estimate, and the frequencies compos-

ing y ∗ form the frequency estimates. Note that the noisy case can

be dealt with similarly following a standard routine (by replacing

the equality constraint in (69) by 
∥∥y � − y o 

�

∥∥
2 

≤ η given the upper

bound η on the noise energy). Note also that (67) –(69) degenerate

to the existing standard forms in the case of I = T . 

Since the FS atomic norm defined in (68) is inherently semi-

infinite programming (SIP), a finite-dimensional formulation of it

is required to practically solve (69) , which is dealt with in the en-

suing section by applying the FS Vandermonde decomposition. 
3 Note that the noisy case can be dealt with similarly with minor modifications 

on the presented solution. Discussions will be provided later. 

v  

A

a  

(

.2. SDP formulation of FS atomic norm 

By applying the FS Vandermonde decomposition, the FS atomic

orm is cast as SDP in the following theorem. 

heorem 5. It holds that 

 

y ‖ A ( I ) = min 

x, t 

1 

2 

x + 

1 

2 

t 0 , 

subject to 

[
x y H 

y T 

]
≥ 0 and T g ≥ 0 , (70)

here g is as defined previously. 

roof. Let F ∗ be the optimal objective value of (70) . We need to

how that ‖ y ‖ A ( I ) = F ∗. 

We first show that F ∗ ≤ ‖ y ‖ A ( I ) . To do so, let y = 

∑ 

k c k a ( f k , φk )
e an FS atomic decomposition of y on I . Then let t be such that

 ( t ) = 

∑ 

k c k a ( f k ) a 

H ( f k ) and x = 

∑ 

k c k . By Theorem 2 , we have

hat T g ≥ 0 . Moreover, it holds that 

x y H 

y T 

]
= 

∑ 

k 

c k 

[
φk 

a ( f k ) 

][
φk 

a ( f k ) 

]H 

≥ 0 . (71)

herefore, x and t constructed above form a feasible solution to the

roblem in (70) , at which the objective value equals 

1 

2 

x + 

1 

2 

t 0 = 

∑ 

k 

c k . (72)

t follows that F ∗ ≤
k c k . Since the inequality holds for any FS

tomic decomposition of y on I, we have that F ∗ ≤ ‖ y ‖ A ( I ) by the

efinition of ‖ y ‖ A ( I ) . 
On the other hand, suppose that ( x ∗, t ∗) is an optimal solution

o the problem in (70) . By the fact that T ( t ∗) ≥ 0 and T g ( t 
∗) ≥ 0 and

pplying Theorem 2 , we have that T ( t ∗) has an FS Vandermonde

ecomposition on I as in (5) with ( r, p k , f k ) denoted by 
(
r ∗, p ∗

k 
, f ∗

k 

)
.

y the fact that 

[
x ∗ y H 

y T ( t ∗) 

]
≥ 0 , we have that y lies in the range

pace of T ( t ∗) and thus has the following FS atomic decomposition:

 = 

r ∗∑ 

k =1 

c ∗k a 

(
f ∗k , φ

∗
k 

)
, f ∗k ∈ I. (73)

oreover, it holds that 

 

∗ ≥ y H [ T ( t ∗) ] † y = 

r ∗∑ 

k =1 

c ∗2 
k 

p ∗
k 

, (74)

 

∗
0 = 

r ∗∑ 

k =1 

p ∗k . (75)

t therefore follows that 

 

∗ = 

1 

2 

x ∗ + 

1 

2 

t ∗0 

≥ 1 

2 

∑ 

k 

c ∗2 
k 

p ∗
k 

+ 

1 

2 

∑ 

k 

p ∗k 

≥
∑ 

k 

c ∗k 

≥ ‖ 

y ‖ A ( I ) . (76)

ombining (76) and the inequality that F ∗ ≤ ‖ y ‖ A ( I ) as shown pre-

iously, we conclude that F ∗ = ‖ y ‖ A ( I ) and complete the proof.

t last, it is worth noting that by (76) it must hold that p ∗
k 

= c ∗
k 

nd ‖ y ‖ A ( I ) = 

∑ 

k c 
∗
k 
. Therefore, the FS atomic decomposition in

73) must achieve the FS atomic norm. �
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emark 3. Note that the SDP formulation of the FS atomic norm

resented in Theorem 5 can be easily extended to the multiple fre-

uency band case by applying Corollary 1 , to be specific, by replac-

ng the constraints in (70) resulting from (22) and (23) by those in

32) –(34) . The proof of Theorem 5 can still be applied in this case

ith minor modifications. 

It immediately follows from Theorem 5 that (69) can be written

s the following SDP: 

in 

y ,x, t 

1 

2 

x + 

1 

2 

t 0 , 

ubject to 

[
x y H 

y T 

]
≥ 0 , T g ≥ 0 and y � = y o �. (77) 

ote that (77) can be solved using off-the-shelf SDP solvers such

s SDPT3. Given its solution, the frequencies can be retrieved from

he FS Vandermonde decomposition of T . Moreover, as in the

tandard atomic norm method, the Toeplitz matrix T in (77) can

e interpreted as the “data covariance matrix” [14,15] . By solving

77) we actually fit the data covariance matrix T by exploiting its

tructures, e.g., PSDness (the first constraint), Toeplitz (explicitly

mposed) and low rank ( t 0 in the objective is proportional to the

uclear or trace norm of T ), and its connection to the acquired

ata y o 
�

(the first and the last constraints). But different from the

tandard atomic norm method, more precise knowledge of T is ex-

loited in the FS atomic norm method by additionally including

he constraint T g ≥ 0 . 

Before proceeding to the next subsection, we note that (69) was

olved by studying its dual in [23] . In particular, the dual of (69) is

iven by: 

ax 
z 

� 

(
y o �z �

)
, subject to ‖ 

z ‖ 

∗
A ( I ) ≤ 1 and z �c = 0 , (78)

here �c denotes the complement of � and ‖ z ‖ ∗A ( I ) is the dual

S atomic norm. By the fact that 

 

z ‖ 

∗
A ( I ) = sup 

a ∈A ( I ) 
� 

(
a 

H z 
)

= sup 

f∈I 

∣∣a 

H ( f ) z 
∣∣, (79) 

he constraint that ‖ z ‖ ∗A ( I ) ≤ 1 can be cast as the following: 

a 

H ( f ) z 
∣∣ ≤ 1 for any f ∈ I, (80) 

here 

 ( f ) := a 

H ( f ) z (81) 

s referred to as the dual polynomial [10,23] . It follows that 1 −
 

q ( f ) | 2 is a Hermitian trigonometric polynomial nonnegative on 

and, by the PRL, admits a Gram matrix parametrization as in

42) . With some further derivations that we will omit, it can be

hown that (80) holds if and only if the unit polynomial (the right

and side of the inequality in (80) ) has the following Gram matrix

arametrization: 

r 
(
� j Q 0 

)
+ tr 

[
�g j Q 1 

]
= 

{
1 , if j = 0 , 

0 , otherwise , 
(82) 

here Q 0 and Q 1 satisfy 

1 z H 

z Q 0 

]
≥ 0 and Q 1 ≥ 0 . (83) 

n fact, the characterization of (80) using (82) and (83) is nothing

ut the result of the bounded real lemma (BRL) for trigonometric

olynomials [21,30] . This can be viewed as a more precise result of

he PRL when dealing with bounded polynomials as in (80) . Finally,

78) is cast as the following SDP: 

max 
 , Q 0 , Q 1 

� 

(
y o �z �

)
, subject to (82) , (83) and z �c = 0 . (84)
ithout surprise, it follows from a standard Lagrangian analysis

hat (84) is the dual of (77) (note that the analysis uses (40) and

41) and will be left to interested readers). Since strong duality

olds [32] , the solution to (84) can be obtained for free when solv-

ng (77) using a primal-dual algorithm, and vice versa. 

In summary, the FS Vandermonde decomposition can be ap-

lied to provide a primal SDP formulation of (69) , while the

rigonometric polynomial based technique in [23] provides a dual

DP formulation. Moreover, the FS Vandermonde decomposition

lso provides a new method for frequency retrieval. In fact, it is

ound that the new method results in higher numerical stability,

s compared to the root-finding method in [10,23] . This can be

xplained as follows. By using the FS Vandermonde decomposi-

ion, we can always determine the number of frequencies first by

omputing rank( T ), which can effectively reduce the problem di-

ension and improve stability. In contrast to this, the root-finding

ethod requires to solve all, up to 2 N − 2 , roots of the polynomial

 − | q ( f ) | 2 , among which appropriate ones (those with unit mod-

lus) are then selected to produce the frequencies. 

.3. Computational complexity 

We next analyze the computational complexity of the presented

S atomic norm method, to be specific, the complexity of solving

he SDP in (77) . To do so, we consider the general multiple band

ase in which, according to Remark 3 , (77) becomes: 

in 

y ,x, t l 

1 

2 

x + 

1 

2 

J ∑ 

l=1 

t l0 , 

ubject to 

[
x y H 

y 
∑ J 

l=1 
T ( t l ) 

]
≥ 0 , 

T ( t l ) ≥ 0 , T g ( t l ) ≥ 0 , l = 1 , . . . , J, 

y � = y o �. (85) 

vidently, the SDP in (85) has n = O (J N ) free variables and m =
 J + 1 LMIs, and the i th LMI has size of k i × k i with k i = O (N) . It

ollows from [36] that a primal-dual algorithm for (85) has a com-

utational complexity on the order of 

 

1 + 

m ∑ 

i =1 

k i 

) 

1 
2 

n 

( 

n 

2 + n 

m ∑ 

i =1 

k 2 i + 

m ∑ 

i =1 

k 3 i 

) 

= O 

(
J 3 . 5 N 

4 . 5 
)
. (86) 

y arguments similar to those above, the standard atomic norm

ethod in the absence of prior knowledge has a computational

omplexity of O ( N 

4.5 ). This together with (86) indicates that, with a

xed number of intervals J , the presented FS atomic norm method

as a complexity higher than the standard atomic norm method

y a constant factor and the factor increases with J . 

.4. Numerical simulation 

We provide a simple illustrative example below to demonstrate

he advantage of using the prior knowledge for frequency estima-

ion. 

xample 2. Consider a line spectrum composed of K = 3 frequen-

ies f = [0 . 22 , 0 . 23 , 0 . 28] T as shown in Fig. 2 . To estimate/recover

he spectrum, M = 16 randomly located noiseless samples are ac-

uired among N = 64 uniform samples. The standard ANM and the

S-ANM methods are implemented using SDPT3 to estimate the

ine spectrum. In FS-ANM, the prior knowledge that the frequen-

ies lie in I = [ 0 . 2 , 0 . 3 ] is used. The estimation results are pre-

ented in Fig. 2 . It can be seen that FS-ANM exactly recovers the

pectrum but ANM does not. For both ANM and FS-ANM, the re-

overed frequencies retrieved using the Vandermonde decomposi-

ion match the locations at which the dual polynomials have unit
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Fig. 2. Line spectral estimation results of (a) ANM and (b) FS-ANM. 
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magnitude. For FS-ANM the frequencies computed using the FS

Vandermonde decomposition have recovery errors on the order of

10 −10 while those computed using the root-finding method have

errors on the order of 10 −6 . 

Note that the presented method can deal with noise with minor

modifications, as shown in [23] . In the noisy case, a simulation has

been included in [23] to compare the signal recovery errors of the

atomic norm method in cases with and without the prior knowl-

edge. It is shown that “the prior information formulation yields a

higher stability in presence of noise.” Readers are referred to [23,

Section VIII-B] for detail. 

6.5. Extension to FS atomic � 0 norm 

In this subsection, we provide an example in which the FS Van-

dermonde decomposition result is applicable but the theory of

trigonometric polynomials is not. In particular, we study the FS
tomic � 0 norm defined by: 

 

y ‖ A ( I ) , 0 := inf 
c k > 0 , a k ∈A ( I ) 

{ 

K : y = 

K ∑ 

k =1 

c k a k 

} 

= inf 
f k ∈I,s k 

{ 

K : y = 

K ∑ 

k =1 

a ( f k ) s k 

} 

. (87)

 

y ‖ A ( I ) , 0 is of interest since it exploits sparsity to the greatest ex-

ent possible, while ‖ y ‖ A ( I ) is in fact its convex relaxation. It has

een vastly demonstrated in the literature on compressed sens-

ng that improved performance can usually be obtained by solv-

ng (or approximately solving) � 0 norm based problems (see, e.g.,

15,37,38] ). More recently, a new trend of frequency estimation is

o directly solve the � 0 norm based formulations using nonconvex

ptimization techniques for low rank matrix recovery [39,40] . To

o so, the key is to formulate the frequency estimation problem in

he continuous setting as a matrix rank minimization problem. In

he context of the FS atomic � 0 norm, the following result can be

btained by applying the FS Vandermonde decomposition. 

heorem 6. It holds that 

 

y ‖ A ( I ) , 0 = min 

x, t 
rank ( T ) , 

subject to 

[
x y H 

y T 

]
≥ 0 and T g ≥ 0 , (88)

here g is as defined previously. 

roof. The proof is similar to that of Theorem 5 . At the first step,

y applying the FS Vandermonde decomposition, we can construct

 feasible solution, as in the proof of Theorem 5 , to the optimiza-

ion problem in (88) , which concludes that ‖ y ‖ A ( I ) , 0 ≤ r ∗, where

 

∗ denotes the optimal objective value of (88) . At the second step,

or any optimal solution that achieves the optimal value r ∗, we can

imilarly obtain an r ∗-atomic FS decomposition of y , which results

n that ‖ y ‖ A ( I ) , 0 ≥ r ∗. So we complete the proof. �

It follows from Theorem 6 that ‖ y ‖ A ( I ) , 0 can be cast as a rank

inimization problem, while solving (or approximately solving)

he resulting optimization problem is beyond the scope of this pa-

er. It is worth noting that, since ‖ y ‖ A ( I ) , 0 is nonconvex, a trigono-

etric polynomial based technique, as used for ‖ y ‖ A ( I ) in [23] ,

annot be applied in this case to provide a finite-dimensional for-

ulation. 

. Conclusion 

In this paper, the FS Vandermonde decomposition of Toeplitz

atrices on a given interval was studied. The new result general-

zes the classical Vandermonde decomposition result. It was shown

y duality to be connected to the theory of trigonometric poly-

omials. It was also applied to provide a solution to the classical

runcated trigonometric K -moment problem and a primal SDP for-

ulation of the recent FS atomic norm for line spectral estimation

ith prior knowledge. 
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