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a b s t r a c t 

The matching pursuit algorithm (MPA) is used in many applications for selecting the best predictors for a 

vector of measurements of size n from a dictionary that contains p n atoms, where usually n ≤ p n . A major 

unsolved problem is to determine the optimal stopping rule. In this work, we investigate various stop- 

ping rules which are modifications of the information theoretic (IT) criteria derived for Gaussian linear 

regression. Because all of them involve the degrees of freedom (df) given by the trace of the hat matrix, 

we provide some theoretical results concerning this matrix. We also propose novel stopping rules. An 

important contribution of this paper is a method for computing the df efficiently when big data ( n � p n ) 

are processed. The significance of the auxiliary variables appearing in MPA for big data is clarified via 

a theoretical analysis. The superiority of the new stopping rules in comparison with the traditional ap- 

proaches is demonstrated in simulations involving big data ( n � p n ) or overcomplete dictionaries ( n < p n ) 

and in experiments with air pollution data. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

1.1. Motivation 

An important problem in multivariate signal processing is the

prediction of a particular entry of the vector random process { y ( t )}

by using the past measurements as well as the current measure-

ments available for the other entries of the vector (see, for ex-

ample, [1] and the references therein). The problem can be easily

solved by applying the techniques for the identification of autore-

gressive models with exogenous input [2] . The most difficult part

is the selection of the best possible predictors from the existing

set of observations. In many practical applications, a large number

of past samples are available and this restrains the use of the full-

search approach during the training phase when the predictors are

chosen. 

The computational effort for selecting the predictors can be re-

duced significantly by applying greedy algorithms [3] . From this

family of algorithms, we are especially interested in the match-

ing pursuit algorithm (MPA), which is extensively used in signal

processing [4] , statistics [5] , and approximation theory [6] . At each
∗ corresponding author. 
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teration, MPA yields a linear model for the response vector y of

ize n ; each such model is a linear combination of some of the

ntries of a given set of p n predictors. Theoretical results on the

erformance of MPA have been recently proven [7] under the hy-

otheses that (i) p n grows very fast when n increases and (ii) the

redictors are not independent. 

The number of iterations for MPA can be as large as m ub =
0 , 0 0 0 and a different model is created at each iteration. The out-

ome of the algorithm is the model deemed to be “the best” with

espect to the selection rule. Because a selection rule decides the

utcome of MPA, it is often called the stopping rule . An open prob-

em concerns the stopping rule that should be applied as the use of

ross-validation (CV) is computationally intensive when the num-

er of iterations, m ub , is large [3] . 

In our conference paper [8] , we have investigated the perfor-

ance of eleven stopping rules based on different information

heoretic (IT) criteria. All of them have been derived from selec-

ion rules previously applied in classical linear regression. Another

ommon feature is the presence of the degrees of freedom (df) in

heir expressions. According to the definition [9] , df is evaluated

s the trace of the linear operator mapping y to ˆ y , where ˆ y is the

stimate of y produced by a certain model. This linear operator is

nown as the hat matrix. Importantly [10] , there is empirical ev-

dence that the trace-based computation may underestimate the
alue of df. 
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.2. Contributions 

After presenting MPA in Section 2 , we outline the following re-

ults in the rest of the paper. 

In Section 3 , we briefly discuss the IT criteria which are cur-

ently used in conjunction with MPA and introduce new stopping

ules. The new formulae are based on the properties of the hat

atrix that are presented in Appendix A . We show that, in gen-

ral, the hat matrix is not a projector and give an upper bound on

he increase of df from the m th iteration of the algorithm to the

(m + 1) th iteration. These results were stated without proof in [8] .

It has been already pointed out in [7] that, because of the mas-

ive amount of data produced nowadays, a formulation of MPA for

 � p n is really needed. Re-writing the algorithm for the big data

ase is straightforward and it was already done in [7] , but the most

ifficult part is the calculation of df at each iteration. In Theorem 1 ,

e demonstrate how this can be done efficiently. There is no re-

ult similar to Theorem 1 in the previous literature. In Section 4 we

erform a theoretical analysis that clarifies the significance of the

uxiliary variables appearing in the formulation of MPA for big

ata, but not in the classical formulation of the algorithm. 

In Section 5 we present the results of an extensive empirical

tudy which shows the superiority of the newly introduced IT cri-

eria. In experiments with air pollution data, the new criteria work

etter than CV. A more comprehensive discussion of the theoret-

cal and empirical results obtained in this work can be found in

ection 6 . 

.3. Notation 

Bold letters denote both vectors and matrices; I denotes the

dentity matrix of appropriate size, while 0 denotes the vec-

or/matrix whose entries are all equal to zero. The symbol x a 
tands for the a th entry of a vector x . If X is a matrix, then X a : 

s the a th row of X, X : b is the b th column of X , and x ab denotes

he entry of X located in the a th row and the b th column. The op-

rator for transposition is ( · ) � ; the Euclidean norm of a vector x

s || x ||; the operator � is employed for the element-wise product

f vectors. For an arbitrary matrix X , Sp( X ) denotes the linear sub-

pace spanned by the columns of X and Ker( X ) is the null space of

 . 

. The matching pursuit algorithm 

.1. Description 

Assume that the response vector y = [ y 1 , . . . , y n ] 
� is given, as

ell as the matrix X = [ x 1 · · · x p n ] of potential predictors, which is

alled dictionary. If X ̂

 β is the fitted linear model, then all non-zero

ntries of ˆ β correspond to the selected predictors. The residuals

re given by e = y − X ̂

 β. In the initialization phase of the algo-

ithm, the vector y and the columns of X are centred, and 

ˆ β is

et to 0 . At each iteration, MPA selects the column of X leading to

he largest reduction of the residual sum of squares. Assume that,

t the j th step of the algorithm, the column of X indexed by s ( j )

s selected, where 1 ≤ s ( j ) ≤ p n . Then, only the s ( j )th entry of ˆ β is

pdated by using the formula ˆ βs ( j) ← 

ˆ βs ( j) + ν(x � 
s ( j) 

x s ( j) ) 
−1 x � 

s ( j) 
e .

PA can be seen as a coordinate descent on the objective ‖ y −
 β‖ 2 , the chosen coordinate corresponding to the largest element

f the gradient. 

The parameter ν ∈ (0, 1] is the step size, also known as the

hrinkage parameter. Note that all other entries of ˆ β remain un-

hanged. This is a major difference from orthogonal matching pur-

uit (OMP) which re-estimates all the entries of the vector of linear
arameters at each step of the algorithm. The two algorithms have

een already compared in [ 3 , Sec. 12.7.1.1]. 

In general, the value of the shrinkage parameter in MPA is

aken to be small, for example, ν = 0 . 1 . This is justified in [ 3 ,

ec. 12.6.2.1] by emphasizing the relationship between MPA and

he well-known Lasso algorithm [11] . Another peculiarity of MPA is

hat the same predictor can be selected not only once, but multiple

imes during the iterations of the algorithm even when ν = 1 . This

akes it difficult to evaluate the complexity of the linear model

roduced at each step of MPA. We discuss this aspect below. 

.2. Hat matrix 

Let ˆ y m 

= X ̂

 βm 

be the estimate of y obtained after the m th step

f the algorithm. We denote by B m 

the linear operator, named the

at-matrix, which maps y to ˆ y m 

: 

ˆ 
 m 

= B m 

y . (1) 

ecalling that x s ( j ) denotes the predictor selected at the j th itera-

ion of MPA, B m 

is expressed as [12] (see also the discussion in [ 5 ,

ec. 5.3]): 

 m 

= I − A m 

, where (2) 

 m 

= 

(
I − νP s (m ) 

)
· · ·

(
I − νP s (1) 

)
, (3) 

 s ( j) = x̄ s ( j) ̄x 
� 
s ( j) 

and x̄ s ( j) = x s ( j) / || x s ( j) || for 1 ≤ j ≤ m . It can be

hown by mathematical induction that 

 m 

= 

m ∑ 

k =0 

S m,k , where S m, 0 = I (4) 

nd we have for 1 ≤ k ≤ m : 

 m,k = (−ν) k 
∑ 

m ≥ j k > j k −1 > ···> j 1 ≥1 

P s ( j k ) 
P s ( j k −1 ) 

· · · P s ( j 1 ) . (5) 

he matrix B m 

is important in evaluating the complexity of the

inear model produced at the m th step. More precisely, the degrees

f freedom for the fitted model are estimated by 

f m 

= tr (B m 

) . (6) 

his formula has been used, for example, in [9] . It follows

rom Stein’s theory on unbiased risk estimation [13] that for

he case when the design matrix is fixed and the residuals are

.i.d. Gaussian, with zero-mean and known variance σ 2 , df =
 n 
j=1 Cov ( ̂  y j , y j ) /σ

2 [14,15] . It is a simple exercise to demonstrate

hat this expression equals the trace of the hat matrix (see [ 3 ,

q. (2.34)]). 

In practice, the user chooses an upper bound, m ub , for the num-

er of iterations. It is often recommended to use an IT criterion for

electing the best model from the m ub different models produced

uring these iterations. Because of the particularities of MPA, the

T criteria that have been previously derived for the classical linear

odel cannot be applied in their original form [12] . The modifica-

ions of the criteria are discussed in Section 3 . They are based on

he properties of the hat matrix outlined in Appendix A . 

. Modified IT criteria 

We consider the classical linear regression problem for which

he additive noise is i.i.d. zero-mean Gaussian, with unknown vari-

nce. Let ˆ βγ denote the estimated vector of linear parameters for

 model whose set of regressor variables is γ . The vector of resid-

als is e γ = y − ˆ y γ , where ˆ y γ is the estimate calculated by using

ˆ 
γ . We denote the cardinality of γ by | γ |, and assume that | γ | > 0.

his means that we exclude the possibility that y is pure noise. An
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Table 1 

IT criteria: formulae for the classical linear regression problem with | γ | > 0 and the references 

where they have been derived. In order to make them compatible with MPA, the following 

alterations are applied to all criteria: || e γ || 2 
→ || e m || 
2 and | γ | 
→ df m . Modifications applied only 

to some of the criteria are listed in the second column. The modified criteria are given in 

the third column by mentioning the works from where they have been taken. Note that ψ( · ) 

stands for the digamma function. 

Original criterion Alterations Modified 

|| ̂ y γ || 2 || ̂ y γ || 2 criterion 

↓ ↓ 
|| ̂ y m || 2 || y || 2 − || e m || 2 

Akaike Information Criterion (corrected) [23,24] AIC C [12] 

ln 
|| e γ || 2 

n 
+ 

1+ | γ | /n 
1 −(| γ | +2) /n 

Kullback Information Criterion [25] KIC 

n ln 
|| e γ || 2 

n 
+ 3 | γ | 

Kullback Information Criterion (corrected) [26] KIC C 

n ln 
|| e γ || 2 

n 
+ 

2(| γ | +1) n 
n −| γ |−2 

− nψ( n −| γ | 
2 

) 

Bayesian Information Criterion [27] BIC [3] 

n ln 
|| e γ || 2 

n 
+ | γ | ln n 

Stochastic Complexity (SC) [28] � SC 1 [8] 

� SC 2 [8] 

n ln 
|| e γ || 2 

n 
+ | γ | ln || ̂ y γ || 2 / | γ | 

|| e γ || 2 / (n −| γ | ) + ln | γ | 
(n −| γ | ) n −1 

Generalized Minimum Description � gMDL 1 [8] 

Length [29] � gMDL 2 [5] 

If 
|| ̂ y γ || 2 
|| y || 2 < 

| γ | 
n 

, n 
2 

ln || y || 2 
n 

+ 

1 
2 

ln n, 

Else n 
2 

ln 
|| e γ || 2 
n −| γ | + 

| γ | 
2 

ln 
|| ̂ y γ || 2 / | γ | 

|| e γ || 2 / (n −| γ | ) + ln n 

Minimum Message Length [30] MMLU 

(uniform prior) 
n −| γ | 

2 
ln (2 π) + 

n −| γ | 
2 

(1 + ln 
|| e γ || 2 
n −| γ | ) + 

| γ | 
2 

ln (π || y || 2 ) − ln �(1 + 

| γ | 
2 

) + 

1 
2 

ln (| γ | + 1) 

Minimum Message Length [30] � MMLG 1 
( g -prior) � MMLG 2 

If 
|| ̂ y γ || 2 

max (| γ |−2 , 1) 
≤ || e γ || 2 

n −| γ | +2 
, n 

2 
(1 + ln 

|| e γ || 2 
n −| γ | +2 

) + 

1 
2 

ln (n − 1) + 

1 
2 
, 

Else n −| γ | +2 
2 

(1 + ln 
|| e γ || 2 

n −| γ | +2 
) + 

| γ |−2 
2 

ln ( 
|| ̂ y γ || 2 

max (| γ |−2 , 1) 
) + 

1 
2 

ln ((n − | γ | ) | γ | 2 ) 
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IT criterion is evaluated for all models of interest, and the model

which minimizes the criterion is deemed to be the “best”. 

It has been already mentioned in the previous literature that

these criteria cannot be applied straightforwardly for selecting the

number of iterations in MPA. In most cases, the criteria are altered

as follows: || e γ || 2 
→ || e m 

|| 2 and | γ | 
→ df m 

, where the entries of e m
are the residuals computed at the m th step of the MPA. We note

that df m 

≥ 0: According to Result 2 in Appendix A , the magnitudes

of the eigenvalues of A m 

are not larger than one. It follows from

(2) that the hat matrix satisfies tr( B m 

) ≥ 0. 

A more complicated approach takes into consideration

Remark 4 in Appendix A and replaces || ̂ y γ || 2 either with || ̂ y m 

|| 2 
or with || y || 2 − || e m 

|| 2 . In Table 1 , we give the formulae of eight

important IT criteria and their modified variants. 

According to Refs. [16,17] , for classical linear regression when

the total number of models is large, a supplementary term should

be added to the IT criteria. Based on this, the following “extended”

criteria were introduced in [8] : 

EBIC (y ; m ) = BIC (y ; m ) + 2 ν ln ϑ, (7)

ESC alt (y ; m ) = SC alt (y ; m ) + 2 ν ln ϑ, (8)

EgMDL alt (y ; m ) = gMDL alt (y ; m ) + ν ln ϑ, (9)

where alt = 1 , 2 and ln ( · ) denotes the natural logarithm. The ex-

pressions of BIC, SC alt and gMDL alt can be found in Table 1 . Note

that 

ϑ = 

(
p n 

s m 

)
= 

�(p n + 1) 

�(s m 

+ 1)�(p n − s m 

+ 1) 
, (10)

where s m 

is the number of non-zero entries of ˆ βm 

and �( · ) de-

notes the Gamma function. 
The presence of the ν-factor in (7) is justified by

roposition 2 in Appendix A which says that the difference

etween the penalty terms of BIC (y ; m + 1) and BIC( y ; m ) is at

ost νln n . This suggests that the “additional” penalty term of

BIC should be multiplied by ν . Taking into consideration the well-

nown relationship between the penalties of SC, gMDL and the

enalty of BIC (see, for example [18] ), we obtain the expressions

f the criteria in (8) and (9) . 

Another modification of the “extended” criteria was suggested

y one of the reviewers and consists in replacing s m 

with df m 

in

10) . The novel criteria are: 

BIC 

∗(y ; m ) = BIC (y ; m ) + 2 ln ϑ 

∗, (11)

SC 

∗
alt (y ; m ) = SC alt (y ; m ) + 2 ln ϑ 

∗, (12)

gMDL ∗alt (y ; m ) = gMDL alt (y ; m ) + ln ϑ 

∗, (13)

here alt = 1 , 2 and 

 

∗ = 

�(p n + 1) 

�( df m 

+ 1)�(p n − df m 

+ 1) 
. (14)

e also introduce a new criterion, inspired from a previous work

n graphical models. More precisely, we modify the criterion in

 19 , Eq. (1) ] by using df m 

instead of the number of edges, and by

eplacing the number of nodes of the graphical model with p n . Af-

er these alterations, we get the following formula: 

BIC 

◦(y ; m ) = BIC (y ; m ) + 4 df m 

ln p n . (15)

he expression above can be regarded as a modified variant of the

riterion proposed in [ 20 , Eq. (2) ] for model selection in linear re-

ression when the number of measurements is much smaller than
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he total number of predictors. For obtaining (15) , we take the con-

tant c in [ 20 , Eq. (2) ] to be two and apply the transformations

| e γ || 2 
→ || e m 

|| 2 , | γ | 
→ df m 

. More importantly, instead of the deter-

inant of the Fisher information matrix, we use its asymptotic ap-

roximation. This improves the performance of model selection in

he presence of collinearity [21] , but has a negative effect when

he variance of the additive noise tends to zero. As the noiseless

ase is of little interest for this work, we only mention here that

oth SC and gMDL can handle it without difficulty (see [18] ). 

For understanding the relationship between EBIC 

∗ and EBIC °,
e compare the penalty terms of the two criteria when p n � df m 

.

o this end, we apply the Stirling approximation ln �(z) =
z − 1 

2 

)
ln z − z + 

1 

2 
ln (2 π) [22] to �(p n + 1) and �(p n − df m 

+ 1)

n (14) . Hence, the penalty term of EBIC 

∗ can be written as

 ln ϑ 

∗ = 2 df m 

ln (p n − df m 

+ 1) + o( df m 

ln p n ) , which implies that

he penalty term of EBIC 

∗ is half of the penalty term of EBIC ° when

 n � df m 

. 

In comparison with EBIC, EBIC ° has the advantage that its

enalty term does not decrease when s m 

> p n /2 (see [8] ). It is

orth mentioning that EBIC ° reduces to BIC when n � p 4 n . This is

art of the big data case, for which we provide below a computa-

ionally efficient approach. 

. MPA for big data 

.1. Modified algorithm 

A formulation of MPA for big data is proposed in [7] , where

he algorithm is written for the case when n � p n . The key point is

o keep in memory only the vector c = (X 

� y ) /n of length p n and

he matrix D = (X 

� X ) /n of size p n × p n . Hence, all the calculations

nvolved by the algorithm should be done by only using the entries

f c and D , and without having access to the entries of X and y . 

For better understanding how this can be done, we analyse in

etail all the calculations performed at the (m + 1) th step of the

lgorithm, where 0 ≤ m < m ub . We assume that the vector y and

he columns of X are centred; the columns of X are standard-

sed such that all the diagonal entries of ( X 

� X )/ n are equal to one.

oreover, the algorithm is initialized as follows: m ← 0 and 

ˆ β ← 0 .

Let ˆ βm 

be the vector of linear parameters estimated at the

 th step; the corresponding residuals are the entries of e m 

= y −
 ̂

 βm 

. For any index j (1 ≤ j ≤ p n ), the squared norm of the vector

f residuals produced by selecting the j th predictor is || e m 

|| 2 −
(x � 

j 
e m 

) 2 /n . As we are interested in finding the predictor that leads

o the largest reduction of the sum of squares, we take s (m + 1) =
rg max 

1 ≤ j≤p n 
| x � j e m 

| . Let αm 

= c − D ̂

 βm 

= (X 

� e m 

) /n . The index s (m +
) corresponds to the entry of αm 

which has the largest mag-

itude. All the entries of ˆ βm +1 are the same as the entries of

ˆ 
m 

, except one which is updated as follows: ˆ βs (m +1) ← 

ˆ βs (m +1) +
αm,s (m +1) . Note that αm,s (m +1) is the s (m + 1) th entry of the vec-

or αm 

. This is the procedure used in [7] for selecting the predictor

nd updating the ˆ β-vector. 

However, for the evaluation of the IT criteria we need some

uantities that are not computed in [7] : || ̂ y m +1 || 2 /n is readily

btained and then can be used in the following calculations:

| e m +1 || 2 /n = (|| y || 2 + || ̂ y m +1 || 2 ) /n − 2 ̂  β
� 
m +1 c . It is easy to observe

hat MPA can be implemented such that the computational com-

lexity for each iteration is O(p n ) . 
.2. Computation of the degrees of freedom 

We need to evaluate df m +1 = tr (B m +1 ) = n − tr (A m +1 ) . Although

e have from (3) that 

 m +1 = 

(
I − νP s (m +1) 

)
A m 

, (16) 

t is not straightforward to calculate df m +1 when the matrix X is

ot stored in the memory. Even if X were available, the explicit

omputation of A m +1 requires O(n 2 ) operations. A computation-

lly efficient solution is presented in the theorem below. To this

nd, we need to introduce the auxiliary variables v , w ∈ R 

p n and

 ∈ R 

p n ×p n . MPA is initialized such that df is zero, and all the en-

ries of w and G are equal to zero. 

heorem 1. The degrees of freedom for the model produced at the 

(m + 1) th step of the MPA ( 0 ≤ m < m ub ) can be computed by us-

ng the updating formulae: 

 

� ← −νD s (m +1): G + ν2 D s (m +1): � w 

� , (17) 

 s (m +1): ← G s (m +1): + v � , (18) 

 s (m +1) ← w s (m +1) + 1 , (19) 

f m +1 ← df m 

+ ν − v � D : s (m +1) . (20) 

The proof is deferred to Appendix B . 

One can easily see that the number of operations for comput-

ng df m +1 decreases from O(n 2 ) to O(p 2 n ) if Eqs. (17) –(20) are em-

loyed instead of applying (16) . As n � p n , it means that the recur-

ions in Theorem 1 allow reduction of the memory usage and, at

he same time, improve the execution time. 

It follows from Theorem 1 that the entries of w are counts for

ow many times each predictor is selected. However, the signifi-

ance of v and G is not very clear. To gain more insight, we prove

he following results in Appendix B . 

.3. Some properties of the variables v and G 

Given a non-negative integer m 0 , we denote by � (1) , . . . , � (μ)

he iterations of MPA at which the first predictor ( ̄x 1 ) is selected,

ith m 0 < � (1) < ��� < � ( μ) ≤ m ub . For ease of writing, we take d 

� =
1 ˜ d 

� ] to be the first row of D . Similarly, g � 
� ( j) 

is the first row

f the G -matrix obtained at the � ( j )th iteration such that G � ( j) =
 g � ( j) 

˜ G 

� 
� ( j) 

] � . The symbol v � ( j ) stands for the vector v evaluated at

he � ( j )th iteration by using (17) . Similarly, w � ( j ) denotes the vector

 evaluated at the � ( j )th iteration by applying (19) . 

emma 1. (i) For 1 ≤ j ≤ μ − 1 , the following identities hold: 

 

� 
� ( j+1) = (1 − ν) g 

� 
� ( j) + ν2 ( j + j 0 ) h 

� + r � 
� ( j+1) , (21) 

 

� 
� ( j+1) = (1 − ν) v � 

� ( j) + ν2 h 

� + r � 
� ( j+1) − r � 

� ( j) , (22) 

here j 0 represents how many times the predictor x 1 was selected

uring the first m 0 iterations, and h 

� is the first row of the identity

atrix of size p n × p n . We define r � 
� ( j) 

= −ν ˜ d 

� ˜ G � ( j) −1 + ν2 [0 ˜ d 

� 
�

˜ 
 

� 
� ( j) −1 

] , where ˜ w 

� 
� ( j) −1 

contains the last p n − 1 entries of w 

� 
� ( j) −1 

. 

(ii) From (22) , we get: 

 

� 
� (μ) = (1 − ν) μ−1 v � 

� (1) + ν[1 − (1 − ν) μ−1 ] h 

� 

+ 

μ∑ 

j=2 

(r � 
� ( j) − r � 

� ( j−1) )(1 − ν) μ− j . (23) 
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These findings are instrumental in proving the next proposition.

Proposition 1. If lim μ→∞ 

(r � 
� (μ) 

− r � 
� (μ−1) 

) = 0 , then we have: 

lim 

μ→∞ 

v � 
� (μ) = νh 

� , (24)

lim 

μ→∞ 

g 

� 
� (μ) 

μ
= νh 

� . (25)

The condition which appears in Proposition 1 is clearly satisfied

whenever the first predictor is the only predictor selected in a long

sequence of iterations. 

4.4. Analysis of the case when m is large 

The condition in Proposition 1 is also satisfied when m 0 is

large. It is well-known that the vector of linear parameters esti-

mated at the m th step, ˆ βm 

, converges to the least-squares solution
ˆ βLS when m tends to infinity [ 5 , Sec. 4.1]. Therefore, for large μ,

r � 
� (μ) 

is almost the same as r � 
� (μ−1) 

, and this property implies that

v � ( μ) ≈νh 

� and g � 
� (μ) 

/μ ≈ νh 

� . 
The reasoning applied to the first predictor can be extended to

all other predictors. For large m , we have: 
• If the j th predictor is selected at the m th iteration, then v is

approximately equal to the j th row of νI . 
• If at the m th iteration we divide each entry of the j th row of

G by the j th entry of w for all j ∈ { 1 , . . . , p n } , then the resulting

matrix is approximately equal to νI . 

• As ˆ βm 

≈ ˆ βLS , we get from (1) that B m 

is approximately equal

to the orthogonal projector onto Sp 

(
x̄ 1 , . . . , ̄x p n 

)
. It follows from

(6) and [ 31 , Lemma 2.2] that df m 

≈ rank( X ). We have from (20) that

df m +1 ≈ df m 

because of (24) . 

After these theoretical considerations, we conduct an empirical

study for evaluating the performance of MPA. 

5. Experimental results 

5.1. Simulated data 

The procedure for simulating the data is similar to the one in

[ 7 , Sec. 3.3], and comprises the following steps. 

5.1.1. Generation of the dictionary X of size n × p n 
For an arbitrary T > n , let E be a matrix with T + n rows. The

columns of E are realizations of the autoregressive (AR) process

E : j = ωE : j−1 + u j , where ω ∈ (−1 , 1) and j ∈ { 1 , . . . , p n } . It is ob-

vious that the model represents a proper AR process only when

ω � = 0. Additionally, the random vectors { u j } are i.i.d. Gaussian, with

mean 0 and covariance matrix (1 − ω 

2 ) I . In order to reduce the

effect of initialization, we generate a sequence of (p n + 100) E : j -

vectors and keep only the last p n in E . These are used for produc-

ing the rows of X : 

X i : = 

T ∑ 

t=0 

θt E i + T −t: , for i = 1 , n . (26)

The coefficients θ t are such that 1 = θ0 ≥ θ1 ≥ · · · ≥ θT ≥ 0 . 

In our settings, ω = 0 or ω = 0 . 75 . The following cases are con-

sidered: Case I (memoryless): θt = 0 if t > 0; Case II (short memory,

geometric decay): T = 100 + n and θt = 0 . 95 t , for 0 < t ≤ T; Case III

(long memory, slow decay): T = 10 0 0 + n and θt = (t + 1) −1 / 2 , for

0 < t ≤ T . 
.1.2. Generation of the response vector y of length n 

It is given by y = X β + ε , where the entries of β are chosen

ccording to four different models: Model 1 (low-dimensional):

1 = β2 = β3 = 1 / 3 and βq = 0 for 4 ≤ q ≤ p n ; Model 2 (high-

imensional, small equal coefficients): βq = p −1 
n for 1 ≤ q ≤ p n ;

odel 3 (high-dimensional, decaying coefficients): βq = q −1 for

 ≤ q ≤ p n ; Model 4 (high-dimensional, slowly decaying coeffi-

ients): βq = q −1 / 2 for 1 ≤ q ≤ p n . Remark that only Model 1 is

parse. 

The ε -vector is simulated as follows: Let ˜ ε be a vector of length

 obtained by applying the linear filter with coefficients { θt } T t=0 
rom (26) to a vector of length T + n whose entries are i.i.d. stan-

ard Gaussian random variables. The entries of ˜ ε are statistically

ndependent with respect to the entries of the matrix E . With the

onvention that κ = 

[
Var (X β) 

Var ( ̃ ε ) 

]1 / 2 

and ς is a parameter that con-

rols the signal-to-noise ratio (SNR), we have: ε = (κ/ς ) ̃ ε . Follow-

ng [ 7 , Sec. 3.3], we take ς 

2 = 8 for high SNR and ς 

2 = 0 . 2 for low

NR. 

.1.3. Other details of the implementation 

The vector y and the columns of X are centred. Additionally, the

olumns of X are standardised such that all the diagonal entries of

 X 

� X )/ n are equal to one. The upper bound on the number of it-

rations for MPA is m ub = 20 , 0 0 0 . Because of the way in which

he expression of AIC C depends on df (see Table 1 ), we end the it-

rations before df equals n − 2 . An additional rule is applied such

hat MPA is stopped after the number of distinct selected predic-

ors becomes equal to p n . In our simulation study, we take ν = 0 . 1

nd this choice is based on the findings from [ 3 , Sec. 12.6.2.1] [8] . 

.1.4. Performance evaluation 

In order to test the predictive power of each IT criterion, we

se the same method as in [ 7 , Sec. 3.3]: For each trial, the same

lgorithm as the one used to generate the dictionary is applied in

rder to produce a matrix X out, r whose size is (10 n ) × p n . If ˆ β
ITC 

r 

s the vector of linear parameters corresponding to the model se-

ected by a particular IT criterion, in trial r , then we compute the

ean integrated squared error as follows [ 7 , Sec. 3.3]: 

ISE = 

∑ N TR 

r=1 

∥∥∥X out ,r β − X out ,r ̂
 β
ITC 

r 

∥∥∥2 

(10 n ) × N T R 

, (27)

here β is defined for each model in the description above and

 TR denotes the number of trials. Note that, for all 1 ≤ r ≤ N TR , the

olumns of X out, r are centred. 

We fix p n = 100 and vary the sample size such that n ∈
 20 , 100 , 10 , 0 0 0 } . For each quintuple (Case, Model, ω, ς 

2 , n ), we

ompute MISE for each IT criterion from N T R = 100 trials. The re-

ults are reported in the supplemental material [32] . As we are es-

ecially interested in comparing the performance of various cri-

eria, we apply the following scoring: For a fixed (Case, Model,

, ς 

2 , n ), the criterion which produces the minimum MISE gets

ne point, any other criterion whose MISE is within 5% from the

inimum MISE gets one half of a point, and all other criteria get

ero points. When the number of points earned in various exper-

ments are aggregated, the final score is computed as the ratio of

otal points to the number of experiments. This guarantees that

he maximum possible value for the final score is one, and this is

arned only by a criterion ranked the best in each of the experi-

ents. 

The number of experiments which are done for a fixed sam-

le size is 3 × 4 × 2 × 2 = 48 . The number of trials for each experi-

ent is N T R = 100 . We compute the aggregated scores from the 48

xperiments conducted for n = 20 and plot them in Fig. 1 . In the
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Fig. 1. Scores aggregated from all experiments. Note that the scores are normalized in order to take values in the interval [0,1]. The greater the score, the better the 

performance of the IT criterion. 
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ame figure, we present the scores which are similarly calculated

or n = 100 and n = 10 , 0 0 0 , respectively. It is clear that the best

cores are obtained by some of the “extended” criteria: ESC 

∗
1 and

SC 

∗
2 perform well when n < p n , whereas EBIC ° is very good when

 ≥ p n . It is interesting to observe that the criteria in (11) –(13) for

hich the extra-penalty term is computed by using ϑ∗ are superior

o those in (7) –(9) , where the extra-penalty term involves ϑ. 
According to the results reported in [32] , the best stopping

ules for n = 20 are those which select the smallest number of

redictors. Based on the analysis that employs Stirling approxi-

ation (see Section 3 ), we expect EBIC ° to choose fewer atoms

han EBIC 

∗. The experimental results confirm this, especially in the

ases 2 and 3 when ω = 0 . 75 and ς 

2 = 0 . 2 . However, the penalty

erm that depends explicitly on the data makes the difference

etween EBIC 

∗ and ESC 

∗
alt (alt = 1, 2): because of this term, ESC 

∗
1 

nd ESC 

∗
2 select models with higher sparsity than those chosen by

he other criteria and this explains their good performance. Ob-

erve that EgMDL ∗1 and EgMDL ∗2 produce moderately good results

hen n = 20 . This is a supplementary confirmation that the use of

he penalty term which involves ln ϑ∗ has beneficial effects when

 n > n . One can further exploit this idea by adding such penalties

o MMLU, MMLG 1 and MMLG 2 ; this is perfectly justified by [ 30 ,

ec. 5]. The fact that the number of criteria in our comparison is

ery large discouraged us from considering this approach. Without

he additional penalty term, MMLU, MMLG 1 and MMLG 2 behave

ike SC 1 and SC 2 . 

For better understanding how the stopping rules work in spe-

ific conditions, we aggregate the scores for a particular Case, or

or a certain level of correlation between the columns of the dic-

ionary, or for a particular SNR. In Fig. 2 , we show the scores ag-

regated from all the experiments in which SNR is low ( ς 

2 = 0 . 2 ).

ote that the best criteria are the same as in Fig. 1 , but this time

he gap between them and the rest of the stopping rules is much

igger. When comparing the scores for Case 1 that are presented

n Fig. 3 , ESC 

∗ is ranked first when n = 20 ; this is similar to the
2 c  

t

esults shown in Figs. 1 and 2 . The main difference occurs in the

anking of EBIC °, which is not the best criterion for n > 20. 

.1.5. Comparison with cross-validation (CV) 

The implementation is the same leave-one-out cross-validation

s in [ 7 , Sec. 3.3]: We sample without replacement n − 1 mea-

urements. Then MPA is applied to these measurements and, at

ach iteration of the algorithm, the estimated linear parameters

re used to compute an estimate for the n th measurement. The

quared error between this estimate and the “true” value of the

 th measurement is calculated. The procedure is repeated ρ = 25

imes, and the squared errors computed at each iteration are av-

raged. The selected model is the one which corresponds to the

inimum average. Furthermore, MISE is evaluated by applying the

ame methodology as in the case of IT criteria. 

The performance of CV is compared to that of IT criteria in

ig. 4 . More precisely, for a given context, we pick the IT criterion,

hich was found to be the best. For example, in Case 1 we have

rom Fig. 3 that ESC 

∗
2 is ranked first when n = 20 . Hence, for each

xperiment done in Case 1 when n = 20 , we compare the MISE

alculated for ESC 

∗
2 with the one computed for CV. The method

ith the smallest MISE gets one point. Any other method gets one

alf of a point if its MISE is within 5% from the MISE of the win-

er, or zero points otherwise. The final scores are aggregated as it

as already explained above. 

Based on the results presented in Fig. 4 , we can conclude that

he performance of CV tends to be superior to that of the IT cri-

eria. The superiority of CV is less evident for n = 20 , where ESC 

∗
2 

s better than CV in the following contexts: overall, high correla-

ion between the columns of the dictionary ( ω = 0 . 75 ), low SNR

 ς 

2 = 0 . 2 ), Case 1 and Case 3. For n > 20, there are two contexts

n which the IT criteria are better than CV: (i) n = 100 −EBIC ° has

 higher score than CV when SNR is low; (ii) n = 10 , 0 0 0 −AIC C is

uperior to CV in Case 1. For fairness, we should mention that the

omputational complexity of CV is about ρ = 25 times higher than

he computational complexity of any IT criterion. 
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Fig. 2. Scores aggregated from all experiments in which SNR is low ( ς 2 = 0 . 2 ). 

Fig. 3. Scores aggregated from all experiments done for Case 1. 
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5.2. Air pollution data 

5.2.1. Problem formulation 

Various studies published in the medical literature have shown

that the exposure to air pollutants increases the mortality rate

caused by respiratory and cardiovascular diseases (see, for exam-

ple, [33] ). Particulate matter (PM) is one of the main air pollutants

causing ill effects; the symbol PM d is generally used to denote the
articles having a diameter equal to or smaller than d microme-

ers. In most developed countries, there are regulations requiring

o measure the concentrations of PM 2.5 and PM 10 . It is evident

hat, at any point in time, the concentration measured for PM 2.5 

t a specific site cannot be greater than the concentration of PM 10 

t the same site. As the equipment for measuring the concentra-

ion of PM 2.5 is more expensive than that for the concentration of

M 10 , it is desirable to estimate the former from the latter. Because
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Fig. 4. Comparison of IT criteria with CV: for each scenario, the aggregated score of the best performing IT criterion is shown in the plot. 
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here is no clear dependence between daily measurements of the

wo concentrations, we treat this as a system identification prob-

em. 

.2.2. Measurements 

The New Zealand National Institute of Water and Atmospheric

NIWA) measures hourly the concentrations of PM 2.5 and PM 10 

in μg / m 

3 ) at various locations in Auckland (174.76 °E, 36.85 °S).

n this study, we conduct experiments with daily measurements

f PM obtained by averaging the hourly measurements. Based on

he integrity and continuity of the data, we consider the measure-

ents for the sites Patumahoe, Penrose, Takapuna, and Whanga-

araoa from 30/04/2008 to 30/06/2014. The interested reader can

nd statistical data about these regions of Auckland in [34–37] ; a

ap with the locations of the four sites is provided in [32] . The

issing values (about 2% for each site) are imputed by applying

 variant of the expectation maximization algorithm which uses

mooth spline (see the function mnimput in [38] and the discus-

ion in [ 39 , Sec. 2.1.2]). 

For a measurement site, let s 1 , s 2 , . . . be the time series of log-

ransformed daily concentrations of PM 2.5 . Similarly, z 1 , z 2 , . . . are

he log-transformed values for the concentrations of PM 10 mea-

ured at the same site, during the same days. For an arbitrary

nteger n > 0, and for any t ≥ n , we define the following vectors:

 (t) = [ s t s t−1 · · · s t−n +1 ] 
� and z (t) = [ z t z t−1 · · · z t−n +1 ] 

� . 

.2.3. Predictive models 

We want to find a linear model which describes the relation-

hip between the log-transformed concentration of PM 2.5 on the

urrent day at Patumahoe and the following variables: (i) past and

resent log-transformed concentrations of PM 2.5 for all other three

ites and (ii) past and present log-transformed concentrations of

M 10 for the Patumahoe site. Given the particularities of the data

hat we analyse, we propose two different scenarios: 

(i) Full set of predictors (FullSet): let n = 365 . We take the

esponse vector to be s PA ( t ) and, in order to be consistent

ith the previous notation, we name it y PA ( t ), where PA stands

or the site Patumahoe. We use the symbol X 

(i ) 
PA 

(t) for the

ictionary, in order to emphasize that it is for Scenario (i).

t is given by X 

(i ) 
PA 

(t) = [ z PA (t ) , . . . , z PA (t − n ) , s PE (t ) , . . . , s PE (t −
 ) , s TA (t) , . . . , s TA (t − n ) , s WH (t) , . . . , s WH (t − n )] , where PE, TA,
nd WH represent Penrose, Takapuna and Whangaparaoa, respec-

ively. Obviously, we have an overcomplete dictionary because the

otal number of predictors p n = 4(n + 1) = 1464 is much larger

han n . 

(ii) Constrained set of predictors (ConSet): we keep n = 365 and

he same y PA ( t ), but we reduce the total number of predictors

y using empirical knowledge from air pollution scientists. More

recisely, the dictionary X 

(ii ) 
PA 

(t) has two blocks. The first block

ontains log-transformed measurements of PM 10 from Patuma-

oe site: z PA (t) , z PA (t − 1) , . . . , z PA (t − 10) , z PA (t − 182) , z PA (t −
83) , z PA (t − 184) , z PA (t − n + 2) , z PA (t − n + 1) , z PA (t − n ) , i.e., fo-

using on the present, the recent past, six months ago and one

ear ago. The second block comprises the log-transformed concen-

rations of PM 2.5 collected from the sites Penrose, Takapuna, and

hangaparaoa, in the same days as the measurements within the

rst block. Note that p n = 4 · 17 = 68 , thus p n < n . 

.2.4. Performance evaluation 

In each run we use a frame of length 3 n from the data, cor-

esponding to three consecutive years of measurements. The first

wo years are used for training the linear predictor and the last

ear for evaluating it. For the r th run, let t r be the last day of the

econd year. With the convention that ( · ) s c is used to distinguish

etween the two prediction scenarios, y PA ( t r ) and X 

s c 
PA 

(t r ) are used

or training. Note that the response vector and the columns of the

ictionary are centred and standardised as explained in Section 5.1 .

he resulting vector of linear parameters is further used together

ith the dictionary X 

s c 
PA 

(t r + n ) in order to produce the estimate

ˆ 
 

s c 
PA 

(t r + n ) . This procedure is applied for N T R = 100 runs, where

he values of t r ( r = 1 , 100 ) are chosen as follows. We take t 0 to

e 30/04/2008 and t 1 = t 0 + 2 n − 1 ; then t r+1 = t r + 8 for r = 1 , 99 .
The experiment is repeated by selecting another site than Pa-

umahoe to be the site for which the level of PM 2.5 is predicted;
he measurements of PM 2.5 from the other three sites as well
s the measurements of PM 10 from the current site are used for
uilding the dictionaries as it was described above. In each case,
he normalized mean square error (NMSE) is computed by apply-
ng the formula: 

MSE s c site = 100 ×
∑ N TR 

r=1 

∥∥exp [ y site (t r + n ) ] − exp 
[

ˆ y s c 
site 

(t r + n ) 
]∥∥2 

∑ N TR ‖ exp [ y site (t r + n ) ] ‖ 2 . (28) 

r=1 
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Table 2 

Predictive models for air pollution data: the stopping rules applied to MPA are listed in the first 

column of the table. The values of NMSE computed with formula in (28) are shown in the other 

columns. In each column, the best result is represented in bold and is underlined, the results 

which are within a range of 1% from the best value on that column are shown in bold, and the 

results which are larger than 10% of the minimum value on that column are shown in italic. 

Patumahoe Penrose Takapuna Whangaparaoa 

FullSet ConSet FullSet ConSet FullSet ConSet FullSet ConSet 

AIC C 7.96 5.52 5.97 3.66 7.96 5.08 4.99 3.13 

KIC 8.09 5.61 6.06 3.64 8.07 5.12 5.08 3.13 

KIC C 7.60 5.62 5.77 3.63 7.80 5.13 4.80 3.13 

BIC 8.09 5.82 6.06 3.65 8.07 5.27 5.08 3.16 

EBIC 8.09 5.87 6.06 3.65 8.07 5.28 5.08 3.18 

EBIC ∗ 6.16 5.97 4.24 3.80 6.80 5.48 3.35 3.24 

EBIC ° 6.61 6.17 4.18 3.96 6.61 6.08 3.50 3.33 

SC 1 7.29 5.82 5.32 3.64 7.37 5.25 4.52 3.16 

SC 2 7.33 5.82 5.34 3.64 7.38 5.25 4.55 3.17 

ESC 1 6.62 5.87 4.88 3.64 7.02 5.27 3.95 3.19 

ESC 2 6.61 5.87 4.86 3.64 7.02 5.27 3.91 3.19 

ESC ∗1 6.16 5.98 4.03 3.82 6.19 5.50 3.35 3.25 

ESC ∗2 6.17 5.98 4.04 3.83 6.19 5.51 3.35 3.25 

gMDL 1 7.29 5.81 5.33 3.64 7.37 5.24 4.53 3.16 

gMDL 2 7.33 5.81 5.34 3.64 7.38 5.24 4.55 3.16 

EgMDL 1 6.63 5.86 4.88 3.64 7.03 5.26 3.95 3.18 

EgMDL 2 6.63 5.86 4.88 3.64 7.04 5.26 3.93 3.18 

EgMDL ∗1 6.14 5.98 4.04 3.81 6.19 5.48 3.35 3.24 

EgMDL ∗2 6.16 5.98 4.04 3.81 6.19 5.48 3.35 3.25 

MMLU 7.35 5.82 5.35 3.65 7.39 5.25 4.55 3.16 

MMLG 1 7.99 5.83 5.86 3.63 7.80 5.21 4.95 3.16 

MMLG 2 8.00 5.83 5.87 3.63 7.80 5.21 4.96 3.16 

CV 7.30 5.42 4.95 3.81 6.63 5.13 4.34 3.17 
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Note that the denominator corresponds to a trivial predictor hav-

ing all coefficients equal to zero. 

The values of NMSE computed by applying various stopping

rules for MPA are outlined in Table 2 . They show that it is highly

recommended to employ the “extended criteria” for the FullSet

dictionary ( n < p n ), but not for the ConSet dictionary ( n > p n ). This

observation is perfectly in line with the theoretical grounds on

which these criteria are based (see the discussion in Section 3 ). In

the family of the “extended criteria”, the best results are produced

by ESC 

∗
alt and EgMDL ∗alt , where alt = 1,2. There is no stopping rule

that is clearly the best one for the ConSet dictionary: for Patuma-

hoe the minimum NMSE is given by CV, for Penrose by MMLG 1 ,

for Takapuna by AIC C and for Whangaparaoa by KIC. This situa-

tion is so partly because almost all the criteria tend to work rela-

tively well when the total number of predictors is constrained to

be p n = 68 . 

The results reported for simulated data and air pollution data

can be reproduced by using the Matlab code available at https://

www.stat.auckland.ac.nz/ ∼cgiu216/PUBLICATIONS.htm . 

6. Final remarks 

In this paper, we have investigated various IT criteria that can

be employed as stopping rules for MPA. As all of them depend on

df given by the trace of the hat matrix, we provided some theoret-

ical results about the hat matrix. One of the main contributions of

this work is an efficient algorithm for computing df when n � p n 
(big data). 

For all the IT criteria that we have analyzed, the goodness-of-fit

term is essentially the same and what differentiates them is the

penalty term. We consider a classification of the selection rules

into the families {F i } 5 i =1 
, based on the form of the penalty. With

the convention that alt = 1 , 2 , we have: 

• F 1 – the penalty term depends only on the sample size and the

degrees of freedom: AIC , KIC, KIC , BIC; 
C C 
• F 2 – the penalty term depends explicitly on both the response

y and the data X : SC alt , gMDL alt , MMLU, MMLG; 
• F 3 – an extra penalty term, directly proportional to νln ϑ, is

added to some of the criteria from F 1 and F 2 : EBIC, ESC alt ,

EgMDL alt ; 
• F 4 – an extra penalty term, directly proportional to ln ϑ∗, is

added to some of the criteria from F 1 and F 2 : EBIC 

∗, ESC 

∗
alt ,

EgMDL ∗alt ; 
• F 5 – the penalty 4df m 

ln p n is added to BIC from F 1 : EBIC °. 

For simulated data, it follows from the experiments described

n [32] and in the previous sections that F 4 produces the best

esults when the number of samples is smaller than the number

f predictors ( n < p n ), whereas F 5 is the winner when n ≥ p n . F 1

orks well only when n is small and the SNR is high, or when n

s large and the data is memoryless. 

In the experiment with air pollution data where the full set of

redictors is considered (FullSet), F 4 yields the minimum NMSE

or all four sites. This confirms what we have already observed

rom simulations: F 4 is superior to other families of criteria when

 < p n . It is worth pointing out that the use of F 4 for selecting the

toms from a large dictionary for which p n = 1464 (FullSet) leads

o prediction results that are close to those obtained when the dic-

ionary is constrained to contain only p n = 68 atoms (ConSet). The

onstrained dictionary has been built by using prior knowledge

rom environmental chemistry. In what concerns the case n > p n 
or air pollution data (ConSet), F 1 and F 2 demonstrate an advan-

age with respect to other families. 

An important outcome of the comprehensive set of experiments

hat we have conducted with both simulated and air pollution data

s: F 4 -criteria introduced in this work are the best stopping rules

hen n < p n . Their performance is similar to and sometimes su-

erior to CV, but the computational complexity is lower. It is not

urprising that all the members of F 4 are modified versions of “ex-

ended criteria”, which have been designed for the situation when

he total number of predictors is large. However, our study shows

hat it is important how the alteration of the original criteria is

https://www.stat.auckland.ac.nz/~cgiu216/PUBLICATIONS.htm
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one: even if F 3 and F 4 are obtained by modifying the same set

f original criteria, the performance of F 3 is worse than that of

 4 . The unique member of F 5 is also derived from an “extended”

riterion, but it is particularly useful for large sample sizes when

ither the SNR is low or the data have memory. 

We have examined above the performance for families of IT cri-

eria and not individually because the total number of selection

ules evaluated in this study is very large. 

We conclude that MPA can be successfully applied for big data

 n � p n ) as well as for overcomplete dictionaries ( n < p n ) if the

topping rule is properly chosen. 
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ppendix A. Some properties of the hat matrix 

We need the following technical results: 

esult 1. Let x̄ , y ∈ R 

n such that || ̄x || = 1 and y � = 0 . If P = x̄ ̄x � , we

ave: 

| (I − νP ) y || ≤ || y || if ν ∈ (0 , 1] . (A.1) 

he equality is achieved if and only if x̄ � y = 0 . 

roof. The result can be established by observing that || (I −
P ) y || 2 = y � (I − νP ) 2 y and the largest eigenvalue of the symmet-

ic matrix (I − νP ) 2 is equal to one. Then (A.1) is a consequence of

he well-known Rayleigh inequality. �

esult 2. For y ∈ R 

n , we have that || A m 

y || ≤ || y || when m ≥ 1. 

roof. Using the notation A 0 = I , Result 1 implies that || (I −
P s ( j+1) )(A j y ) || ≤ || A j y || for all 0 ≤ j ≤ m − 1 . This leads straight-

orwardly to Result 2 . �

esult 3. The following identity holds true for m ≥ 1: 

tr (B m +1 − B m 

) = νtr (P s (m +1) A m 

) . 

roof. We can readily write the identities: tr (B m +1 −
 m 

) = tr [ (I − A m +1 ) − (I − A m 

) ] = tr (A m 

− A m +1 ) = 

r 
[
A m 

− (I − νP s (m +1) ) A m 

]
= νtr (P s (m +1) A m 

) . �

Now we show that, at each step of the MPA, the increase of df

s at most ν . This can be recast as a property of the hat matrix: 

roposition 2. For m ≥ 1, we have 

r (B m +1 ) − tr (B m 

) ≤ ν. (A.2) 

he equality holds if and only if x̄ � 
s (m +1) ̄

x s ( j) = 0 for all j ∈ { 1 , . . . , m } .
roof. An important consequence of Result 3 is that, for

roving Proposition 2 , it suffices to demonstrate the in-

quality tr (P s (m +1) A m 

) ≤ 1 . The fact that rank (P s (m +1) ) =
 implies rank (P s (m +1) A m 

) ≤ 1 . Additionally, we have

hat (P s (m +1) A m 

) ̄x s (m +1) = ( ̄x s (m +1) ̄x 
� 
s (m +1) 

) A m ̄

x s (m +1) =
( ̄x � 

s (m +1) 
A m ̄

x s (m +1) ) ̄x s (m +1) , which demonstrates that the only

on-zero eigenvalue of P s (m +1) A m 

is x̄ � 
s (m +1) 

A m ̄

x s (m +1) . Hence, we

et: 

 tr (P s (m +1) A m 

) | = | ̄x 

� 
s (m +1) A m ̄

x s (m +1) | ≤ || ̄x s (m +1) |||| A m ̄

x s (m +1) || 
(A.3) 

 || A m ̄

x s (m +1) || ≤ || ̄x s (m +1) || = 1 . (A.4) 
he inequality in (A.3) is obtained by using the properties of the

calar product [31, Th. 1.1] , while the inequality in (A.4) is based

n Result 2 . 

The equality holds in (A.2) if and only if we have simul-

aneously equalities in (A.3) and (A.4) . As we know from Re-

ult 1 that || (I − νP s ( j) ) ̄x s (m +1) || ≤ || ̄x s (m +1) || for any j ∈ { 1 , . . . , m } ,
he only possibility for having equality in (A.2) is x̄ s (m +1) ∈
 m 

j=1 Ker (P s ( j) ) . The condition is equivalent to x̄ � 
s (m +1) ̄

x s ( j) = 0 for

ll j ∈ { 1 , . . . , m } . �

emark 1. For all m ≥ 1, one can show that tr (B m +1 ) − tr (B m 

) ≥
ν by using Result 3 and inequality (A.4) . In practice, it is observed

hat tr (B m +1 ) − tr (B m 

) can be negative, hence is not guaranteed

hat df increases at each iteration of MPA. 

In general, B m 

is not a projection matrix. As a square matrix is

 projector if and only if it is idempotent (see, for example, [ 31 ,

h. 2.1]), we check when B 

2 
m 

= B m 

. 

roposition 3. (i) If ν ∈ (0, 1), then B m 

is not idempotent for all

 ≥ 1 . 

(ii) Consider the following conditions: ( c 1 ) m ≥ 2 ; ( c 2 ) ν = 1 ; 

( c 3 ) x̄ � 
s (i ) ̄

x s ( j) = 0 for all i, j ∈ { 1 , . . . , m } with property i > j. If all

hese conditions are satisfied, then B m 

is idempotent and symmetric. 

roof. (i) Using the identity in (2) , it is easy to show that B m 

is

dempotent if and only if A m 

is idempotent. Another important ob-

ervation is that det (A m 

) = (1 − ν) m , where det (·) denotes the de-

erminant. This is a consequence of the fact that det (I − νP s ( j) ) =
 − ν for j ∈ { 1 , . . . , m } . As ν ∈ (0, 1), we have det (A m 

) ∈ (0 , 1) .

herefore, A m 

is not idempotent because the determinant of an

dempotent matrix can only be zero or one. 

(ii) We have from hypothesis that P s (i ) P s ( j) = 0 for m ≥ i > j ≥ 1.

his property together with the identities in (4) and (5) lead to

he conclusion that A m 

= I − (P s (m ) + · · · + P s (1) ) . It follows from

2) that B m 

= P s (m ) + · · · + P s (1) . It is easy to check that B m 

is idem-

otent and symmetric. �

emark 2. The second part of Prop. 3 can be un-

erstood in connection with the result from [31,

. 44] which says that a sufficient condition for B m 

=
 m 

k =1 
(−1) k +1 

∑ 

m ≥ j k > j k −1 > ···> j 1 ≥1 
P s ( j k ) 

P s ( j k −1 ) 
· · · P s ( j 1 ) 

(see (2) -

3) ) to be the orthogonal projector onto Sp 

(
x̄ s (1) , . . . , ̄x s (m ) 

)
is: 

 s (i ) P s ( j) = P s ( j) P s (i ) for all i, j ∈ { 1 , . . . , m } . (A.5) 

emark 3. In order for the strong condition ( c 3 ) in Proposition 3 to

e fulfilled, we need m ≤ n . 

At the end of this analysis, we prove the following result: 

roposition 4. (i) If ν ∈ (0, 1), then A 

� 
m 

A m 

+ B 

� 
m 

B m 

� = I for all m ≥ 1 . 

(ii) If the conditions ( c 1 ) –( c 3 ) from Proposition 3 (ii) are satisfied,

hen A 

� 
m 

A m 

+ B 

� 
m 

B m 

= I . 

roof. (i) Assume that 

 

� 
m 

A m 

+ B 

� 
m 

B m 

= I , or equivalently , (A.6) 

 A 

� 
m 

A m 

− A m 

− A 

� 
m 

= 0 . (A.7) 

et v be an eigenvector of A m 

corresponding to the eigenvalue

. Using the fact that A m 

v = λv together with (A.7) , we get: (a)

 

� 
m 

v = 

λ
2 λ−1 

v , which shows that λ
2 λ−1 

is an eigenvalue for A 

� 
m 

. As

he eigenvalues of A 

� 
m 

are the same with the eigenvalues of A m 

,

t follows that λ
2 λ−1 

is also an eigenvalue for A m 

. (b) (A 

� 
m 

A m 

) v =
λ2 

2 λ−1 
v , which demonstrates that λ2 

2 λ−1 
is an eigenvalue for A 

� 
m 

A m 

.

ince we know from the proof of Proposition 3(i) that det (A m 

) =
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(1 − ν) m > 0 , we have that the symmetric matrix A 

� 
m 

A m 

is positive

definite. Hence, all the entries of v are real-valued and λ> 1/2. 

The considerations above imply that the positive numbers λ
and 

λ
2 λ−1 

are eigenvalues for A m 

. An important consequence of

Result 2 is that both eigenvalues are less than or equal to one.

However, if λ≤ 1, then 

λ
2 λ−1 

≥ 1 . Therefore, we need to have λ = 1 .

In other words, all eigenvalues of A m 

are equal to one, which we

know it is not possible because det (A m 

) = (1 − ν) m < 1 . We ob-

tained this contradiction because we have assumed that the iden-

tity in (A.6) holds true. 

(ii) We have from the proof of Proposition 3 (ii) that A m 

is idem-

potent and symmetric, therefore the identity in (A.7) is true. �

Remark 4. At the m th step of MPA, we obtain the estimate

ˆ y m 

= B m 

y and the error e m 

= y − ˆ y m 

= A m 

y . In general, || ̂ y m 

|| 2 +
|| e m 

|| 2 � = || y || 2 . 
Appendix B. Proofs for the results presented in Section 4 

Proof of Theorem 1: We rewrite the expression of A m 

by ex-

panding (4) and (5) and grouping the terms which have in com-

mon the first and the last predictor. The terms that contain a single

predictor are written separately. Hence, we get: 

A m 

= I − ν
m ∑ 

j=1 

x̄ s ( j) ̄x 

� 
s ( j) + 

p n ∑ 

a =1 

p n ∑ 

b=1 

∑ 

i 

(−ν) q i,ab ( ̄x a ̄x 

� 
a )�i,ab ( ̄x b ̄x 

� 
b ) . 

(B.1)

The number of terms in the sum over i and the values of the expo-

nents q i, ab are not important, as they are not computed explicitly.

We do not need to calculate the factors �i, ab , but it is helpful to

write down the following chain of identities: 

tr 
[
(−ν) q i,ab ( ̄x a ̄x 

� 
a )�i,ab ( ̄x b ̄x 

� 
b ) 

]
= (−ν) q i,ab tr 

[
x̄ a ( ̄x 

� 
a �i,ab ̄x b ) ̄x 

� 
b 

]
= (−ν) q i,ab ( ̄x 

� 
a �i,ab ̄x b ) tr 

(
x̄ a ̄x 

� 
b 

)
= (−ν) q i,ab ( ̄x 

� 
a �i,ab ̄x b ) d ba , (B.2)

where d ba denotes the entry of D located in the b th row and the

a th column. 

For writing the equations more compactly, we define the matrix

G m 

whose entries are: 

g m,ab = 

∑ 

i 

(−ν) q i,ab ( ̄x 

� 
a �i,ab ̄x b ) for 1 ≤ a, b ≤ p n . (B.3)

Even if not explicitly expressed, the quantities in the right-hand

side depend on m because they are affected by the predictor se-

lected at the m th step. It follows from Eqs. (B.1) –(B.3) that 

tr (A m 

) = n − mν + 

p n ∑ 

a =1 

p n ∑ 

b=1 

∑ 

i 

tr 
[
(−ν) q i,ab ( ̄x a ̄x 

� 
a )�i,ab ( ̄x b ̄x 

� 
b ) 

]

= n − mν + 

p n ∑ 

a =1 

p n ∑ 

b=1 

∑ 

i 

(−ν) q i,ab ( ̄x 

� 
a �i,ab ̄x b ) d ba 

= n − mν + 

p n ∑ 

a =1 

p n ∑ 

b=1 

g m,ab d ba 

= n − mν + tr (G m 

D ) . (B.4)

The recurrence relation in (16) leads to 

tr (A m +1 ) − tr (A m 

) 

= −νtr 
(
x̄ s (m +1) ̄x 

� 
s (m +1) A m 

)
= −νx̄ 

� 
s (m +1) A m ̄

x s (m +1) 

= −ν + ν2 
m ∑ 

j=1 

d 2 s (m +1) s ( j) [ see (B. 1)] 
−ν
p n ∑ 

a =1 

p n ∑ 

b=1 

x̄ 

� 
s (m +1) ̄x a 

[ ∑ 

i 

(−ν) q i,ab ( ̄x 

� 
a �i,ab ̄x b ) 

] 

x̄ 

� 
b x̄ s (m +1) (B.5)

= −ν + ν2 
m ∑ 

j=1 

d 2 s (m +1) s ( j) [ see (B. 3)] 

−ν
p n ∑ 

a =1 

p n ∑ 

b=1 

d s (m +1) a g m,ab d bs (m +1) (B.6)

= −ν

+ 

p n ∑ 

b=1 

[ 

ν2 d s (m +1) b 

m ∑ 

j=1 

� [ s ( j)= b ] − ν
p n ∑ 

a =1 

d s (m +1) a g m,ab 

] 

d bs (m +1) , 

(B.7)

here � [ s ( j)= b ] is equal to one if s ( j) = b and zero otherwise. Note

hat 
∑ m 

j=1 � [ s ( j)= b ] represents how many times the predictor x̄ b 
as selected in the first m steps of MPA. The identities in (B.4) and

B.7) imply that 

r (A m +1 ) = n − (m + 1) ν + 

p n ∑ 

b=1 

p n ∑ 

a =1 

g m,ab d ba 

+ 

p n ∑ 

b=1 

[ 

ν2 d s (m +1) b 

m ∑ 

j=1 

� [ s ( j)= b ] − ν
p n ∑ 

a =1 

d s (m +1) a g m,ab 

] 

× d bs (m +1) . (B.8)

dditionally, we have from (B.4) that 

r (A m +1 ) = n − (m + 1) ν + 

p n ∑ 

b=1 

p n ∑ 

a =1 

g m +1 ,ab d ba . (B.9)

omparing the expressions of tr (A m +1 ) given in the equations

bove, we conclude that the only entries of G m +1 that are differ-

nt from those of G m 

are located in the s (m + 1) th row. Moreover,

he following recursive formula holds for these entries: 

 m +1 ,s (m +1) b = g m,s (m +1) b 

+ ν2 d s (m +1) b 

m ∑ 

j=1 

� [ s ( j)= b ] − ν
p n ∑ 

a =1 

d s (m +1) a g m,ab , 

for 1 ≤ b ≤ p n . (B.10)

he vectors v , w ∈ R 

p n that appear in Theorem 1 are defined as

ollows. The b th entry of w , w b , is a count for how many times the

redictor x̄ b was selected in the first m steps of MPA. Note that

19) is a straightforward consequence of this definition. The b th

ntry of v is 

 b = ν2 d s (m +1) b w b − ν
p n ∑ 

a =1 

d s (m +1) a g m,ab , for 1 ≤ b ≤ p n , (B.11)

hich leads to (17) . Additionally, Eqs. (B.10) and (B.11) prove the

ecursion in (18) . The formula for the computation of the degrees

f freedom which is given in (20) follows immediately from (B.8) –

B.11) . 

Proof of Lemma 1: (i) The use of (17) for evaluating the vector

 at the � ( j + 1) th iteration leads to the following calculations: 

 

� 
� ( j+1) = −νd 

� G � ( j+1) −1 + ν2 d 

� 
� w 

� 
� ( j+1) −1 

= −ν[1 

˜ d 

� ] 

[
g 

� 
� ( j) 

˜ G � ( j+1) −1 

]
+ ν2 ( j + j 0 ) h 

� + ν2 [0 

˜ d 

� 
� ˜ w � ( j+1) −1 ] 

= −νg 

� 
� ( j) + ν2 ( j + j 0 ) h 

� + r � 
� ( j+1) . 

y employing (18) and the identity above, we get (21) .

urthermore, we have that v � 
� ( j+1) 

= g � 
� ( j+1) 

− g � 
� ( j) 

= (1 −
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[  

[  
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[  

 

[  

[  

[  

[  

 

[  

[  
) 
(

g � 
� ( j) 

− g � 
� ( j−1) 

)
+ ν2 [ j + j 0 − ( j − 1 + j 0 ) ] h 

� + r � 
� ( j+1) 

− r � 
� ( j) 

, 

hich proves the identity in (22) . 

(ii) The identity in (23) is a straightforward consequence of

22) . 

Proof of Prop. 1: We need two technical results: 

esult 4. Let ( a μ) μ≥ 1 be a sequence of real numbers. We

efine S μ = 

∑ μ
j=1 

a j (1 − ν) μ− j , where μ≥ 1 and ν ∈ (0, 1). If

im μ→∞ 

a μ = 0 , then lim μ→∞ 

S μ = 0 . 

roof. Let ε > 0. Because lim μ→∞ 

a μ = 0 , there is μ0 ≥ 1

uch that | a μ| < ( εν)/2 for all μ≥μ0 . Similarly, because

im μ→∞ 

(1 − ν) μ = 0 , there is μ1 ≥ 1 such that (1 − ν) μ <
ε/ 2 ∑ μ0 

j=1 
| a j | 

for all μ≥μ1 . For all μ ≥ (μ0 + μ1 ) , we have:

 S μ| = 

∣∣∣∑ μ0 
j=1 

a j (1 − ν) μ− j + 

∑ μ
j= μ0 +1 

a j (1 − ν) μ− j 

∣∣∣ < (1 −
) μ−μ0 

∑ μ0 
j=1 

| a j | + 

εν
2 

∑ μ
j= μ0 +1 

(1 − ν) μ− j < 

ε
2 + 

εν
2 

1 
ν = ε. This

hows that lim μ→∞ 

S μ = 0 . �

esult 5. Let ( a μ) μ≥ 1 be the same as in Result 4 . This time we

efine S μ = 

1 
μ

∑ μ
j=1 

a j for μ≥ 1. We show that lim μ→∞ 

a μ = 0 im-

lies lim μ→∞ 

S μ = 0 . 

roof. Let ε and μ0 have the same significance like in the

roof of Result 4 . As lim μ→∞ 

1 
μ = 0 , there is μ1 ≥ 1 such that

1 
μ < 

ε/ 2 ∑ μ0 
j=1 

| a j | 
for all μ≥μ1 . Hence, for all μ ≥ (μ0 + μ1 ) , we

ave: | S μ| < 

1 
μ

∑ μ0 
j=1 

| a j | + 

εν
2 

μ−μ0 
μ < 

ε
2 + 

ε
2 = ε, which proves that

im μ→∞ 

S μ = 0 . �

It follows from (23) that lim μ→∞ 

v � 
� (μ) 

= νh 

� +
im μ→∞ 

∑ μ
j=2 

(r � 
� ( j) 

− r � 
� ( j−1) 

)(1 − ν) μ− j . It can be easily shown

hat the limit in the right-hand side is 0 by applying Result

 to each sequence ( a μ) μ> 1 that corresponds to an entry of the

ifference (r � 
� ( j) 

− r � 
� ( j−1) 

) j> 1 . This proves the result in (24) . 

Similarly, Result 5 implies that lim μ→∞ 

1 
μ

∑ μ
j=2 

(r � 
� ( j) 

−

 

� 
� ( j−1) 

) = 0 . Hence, we have lim μ→∞ 

r � 
� (μ) 

μ = 0 . Addition-

lly, Eq. (21) leads to lim μ→∞ 

g � 
� (μ) 

μ = − 1 
ν lim μ→∞ 

v � 
� (μ) 

μ +
h 

� lim μ→∞ 

μ+ j 0 
μ + 

1 
ν lim μ→∞ 

r � 
� (μ) 

μ . This identity together with

he previous results show that (25) is true. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.sigpro.2018.09.033 
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