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Abstract—This paper describes and demonstrates an
algorithm which determines successful cue ball impact direction
vectors for a standard striped ball versus solid ball pool game,
known as the Eight-ball variant of pool. From an input picture
of a pool table with random cue, eight, striped and solid ball
positions, the algorithm prioritizes view aspect, lighting
illumination, light aspect and scale invariance. View aspect
issues are reduced by rectification to a top-down view. Lighting
illumination issues are reduced by white-balancing ball colors.
Light direction issues are reduced by template matching. Scale
issues are reduced by scaling operations to the determined table
and ball size. Image processing techniques used by the algorithm
include homography, image segmentation, morphological
erosion, template matching, edge detection, and color processing.
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l. INTRODUCTION

Pool, also known as pocket billiards in the United States, is
played on a table with six pockets located along the wall edges
(or “rails”) lining the perimeter of the table. This table
typically has a ratio of length to width of approximately two,
with larger tables ranging in size from 7 feet by 3.5 feet, to 9
feet by 4.5 feet. Miniature tables can be much smaller, of
length as low as 2 feet or smaller. Onto this table are placed up
to 16 balls, with all but the cue ball numbered and colored
either a solid color, or white with a color stripe. There are 7
solid balls, and 7 stripes.

For many variants of pool, the white cue ball is hit head-on
with the tip of a pool stick. The cue ball is thus directed
towards impact either with another ball, or with the rail of the
table with subsequent banking an impact with another ball.
The goal is to impact the balls such that a chosen ball type or
ball number is landed in one of the six pockets. Eight-ball is a
common variant in which a player chooses either solids or
stripes to land in pockets. If the player lands the opposite ball
type, the opposing player wins the point. Furthermore, both
players must avoid landing the eight-ball (the black ball) in a
pocket. Other variants may focus on landed a particularly-
numbered ball, or achieving a particular number of banks
before landing. In Nine-ball, for instance, the player must
impact the lowest-numbered ball on the table.

In a full-size pool game, the view aspect could be from
many frontal angles, and lighting could range from lamps to
natural illumination. Scale would be determined both by the
distance the photographer retained to the table, and whichever
image resolution the camera provided. With this in mind, a
miniature table-top pool table with playing surface dimensions
of 37 inches by 18.5 inches was used for this project. This size
was chosen as the table was easy to move to achieve different
illumination, and different view aspects (such as top-down),
which could be difficult to accomplish with a particular full-
size table constrained in a particular pool room environment.

The pool variant of Eight-ball was chosen, as this variant
not only entails discriminating the white cue ball from other
balls, but also adds the challenge of discriminating solid balls
from stripes, and both from the eight ball. Thus the algorithm
was developed to process the pool table picture, and then create
two output pictures marking those impact (guide) vectors to the
cue ball which result in landed balls: one with cue guides
superimposed for stripe balls, and one for solids. To constrain
the difficulty level of the project, only solutions for up to one
cue ball bank and one impact ball bank were calculated.
Furthermore, multiple ball impacts were not calculated.

To achieve accurate pool cue guide information in a wide
variety of lighting, view aspect and scale conditions, the
following image processing steps were used: rectifying the 3D
image to a top-down view (using table edge detection, corner
projection and homography), separating and identifying
pockets and different types of balls (using image segmentation,
morphological erosion and region labeling), refining
localization of ball positions (using template matching),
identifying inner wall “rails” (using edge detection and
integrated gradient vectors), and compensating ball colors for
different illumination for stripe versus solid color ball
discrimination (using white balancing of ball colors from cue
information).

Il.  PRIOR AND RELATED WORK

A. Homographic Rectification to Top-Down View

Image rectification of a pool table picture for cue guide
determination has been used before. Takahashi, Kasai and
Suzuki [1] rectified pool table images by estimating camera
lens distortion and correcting using these estimated



coefficients. From the included rectified images it appears,
however, that the rectification did not use homography in the
rectification, as there is still apparent skew to the table lines.
This may simply be the edge and line detection, however.
Problematic to the use of this technique in the present project
was the need to estimate lens distortion coefficients. The
present project will take any pool table image as input, without
knowledge of the lens characteristics used for the picture-
taking. Therefore, a simpler technique of rectification using
homography on projected corners of the image was used. The
drawback to the present method to be delineated further in this
paper is of course curve line distortion in the image (such as in
the extreme a fish-eye view) will not be corrected.

Jebara, Eyster, Weaver, Starner, and Pentland [3] discuss a
technique for future development which would estimate the
pool table’s 3D coordinates from multiple views of the table
(multiple frames of video in this case), and then provide a
rectified top-down perspective. But this technique requires
multiple pictures. The present work in is limited to one picture
image. Therefore, homographic rectification, rather than 3D
modeling, was the technique selected.

B. Separating and Identifying Pockets and Different Types of
Balls

Reference [1] divides the table into 10 x 10 pixels, then
looks for the peak hue in the color component histograms.
Assisting the process was the easily discernible hue of each
ball color from the table cloth color, and the known 10 x 10
pixel region best used for known table dimensions. The
present work allows for discriminating balls from tables of the
same color, and allows for various scales of balls, making
simple hue detection on a 10 x 10 region less useful.
Furthermore, the use of largest hue may be problematic for
stripe balls, which can exhibit peak histogram values in the
white region, and it appears striped balls were not present in
the pictures of the test set-up in this reference.

Ling, Li, Xu and Zhou [2] discuss techniques to
discriminate green balls from a similar-hue green table cloth
background. Green balls are more reflective than table cloth,
therefore, gray-scale amplitude information in image
segmentation thresholding can be used to identify green balls.
The present paper uses a technique which works in the same
manner — additional gray-scale Otsu thresholding on ball
amplitude helps identify green balls missed by simple hue
detection differences from background table.

Reference [3] trains a probabilistic model of the pool table
and balls, which requires multiple training samples, under
multiple imaging situations, to optimize. This technique was
not adequate for the present paper, in that multiple pictures of
the pool table are not available. Compounding this is that any
pool table with any color background and any color balls is
allowable in the present method.

C. Refining Localization of Ball Positions

Reference [1] uses template matching to refine ball position
estimate, using an ideal ball pattern. A similar method was
used in the present paper, with the difference that an ideal ball

template was unknown. A varying size template method had to
be developed for varying pool table ball sizes.

Reference [3] uses a perceptual measure of symmetric
enclosure instead of template matching. It requires use at an
appropriate scale to consistently detect circular objects. The
present paper uses a method which allows larger variance in
scale, so the method in Reference [3] was not suitable.

D. Identifying Inner Wall “Rails” for Banking Shots

Reference [1] uses table edge diamond markers to
determine inner rails, which requires a known and marked pool
table. It appears that Reference [2] uses gradient edge
detection and the Hough transform to detect pool table edge
lines, but relies on the lines detected as being the inner rails,
whereas in many pool table types these detected edges may
instead be outer felt edges, beyond the rails. And even if rails
are the exclusively detectable region, they may not be detected
if the gradient is small and obscured by noise. Reference [3]
again requires training data over different images of the same
table to converge to a robust solution.

E. Compensating Ball Colors For Different lllumination, to
Discriminate Stripes versus Solids

The included references did not specifically address
discriminating stripe from solid balls under different
illumination, with the exception that Reference [3] cites
training models of stripes and solids with a Gaussian color
model. It is not clear if this method would address illumination
concerns, and whether it requires multiple pictures of the same
pool table and balls.

F. Ball Trajectory and Impact Physics

References [1] includes advanced physics modeling of the
balls and their impacts with each other and table rails. These
models requires knowledge of specific table rail cushioning,
and ball properties. The present paper allows for arbitrary table
rail and ball characteristics, and therefore these properties are
unknown by the algorithm. Therefore, advanced modeling of
physics could not be used.

I1l.  DESCRIPTION OF THE ALGORITHM

The following processing steps were undertaken to address
short-comings as mentioned concerning prior work, as applied
to the present project.

A. Homographic Rectification to Top-Down View

First, the dominant color components of the table were
captured by applying a view-box around the center portion of
the image, and obtaining the RGB component histogram peaks
in this box. The assumption was that the center portion of the
image is mostly the pool table, and the histogram peaks would
represent the dominant table top color.

The table’s dominant RGB color values were used in a
weighting vector, which was multiplied by each pixel in the
image. The result was compared to a threshold, and binarized
(tabletop white, background black). The resulting binarized
image was region labeled, and the region’s bounding box



calculated. The bounding box vertices provided the top,
bottom, left and right pixel regions over which to search for
table edges. Constrained to these pixel regions, searching was
executed from the edge of the picture inwards, until the white
binarized table region was found. The pixel locations where
table edge were found and used in a Hough transform to find
the corresponding lines and their characteristic equations.

From these table edge lines, artificial table corners were
projected. These corners were then input into a Homography
transform, along with corner locations for a scaled top-down
view of the table. The homography transform was then used to
rectify the pool table image to a top-down view (see Fig. 1 for
original view, Fig. 2 for rectified view).
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Fig. 1. Original pool table image, before rectification.
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Fig. 2. Pool table image, after rectification.

The advantage to this method using homography is it does
not rely on known table dimensions, but rather uses the general
pool table scale of length as twice the width and applies this to
scaled picture values which the transform will execute. The
table and camera specifications do not have to be known or
estimate, and picture scale is less of an issue.

B. Separating and Identifying Pockets and Different Types of
Balls

From the rectified image of the pool table, pockets and
balls were identified in the following manner.

The rectified image was binarize using the table weighting
vector found for rectification, but applied to the image post-
rectification. The binarize regions were region-labeled, and the
table bounding box found. The bounding box was used to
create a binarized filled rectangle of dimensions equal to the
table dimensions, and and exclusive-or was taken of the
resulting image with the original binarized table image, leaving
images of the pockets and balls. This image was then
morphologically eroded to isolate balls from each other and
pockets (see Fig. 3 for a picture of the resulting binarized
pocket and ball image, and of using erosion to separate
objects). These eroded objects were then region labeled.

Fig. 3. Binarized pockets and balls.

Fig. 4. Binarized pockets and balls after erosion (notice green ball middle left
has nearly been removed).

Obijects closest to the table bounding box vertices (and
midway along the length dimension) were assigned pockets,
the remainder potential ball candidates.

Using simple color weight vector thresholding to
discriminate ball from background table can result in missed
balls, particularly for green balls of the same color as the table.
Figs. 3 and 4 show an example of a solid green ball (at middle
left of figure) which was mostly missed in its green part
detections, leaving only the white portions of the ball helping
in discrimination. Morphological erosion nearly removed this
ball from the image. Therefore, it was also necessary to add



Otsu thresholding as a technique to detect green balls. This
helped detect green balls of the same hue as the table, but
different in reflection or color amplitude. Fig. 5 shows
binarization after adding Otsu thresholding, which improved
detection of the green ball’s green portions.

Noticeable in Fig. 5 is that the Otsu thresholding can add
false objects. These were removed from consideration by
comparing the peak object histogram amplitude to a threshold,
and removing those object which did not exhibit sufficient
large-amplitude reflection (similar to the method used in
Reference [1]).

The objects labeled from the simple hue discrimination
algorithm were considered of primary importance, as this test
worked best for finely locating all balls other than green.
Otsu’s method coupled with hue testing added green balls
missed by the hue test, but adversely influenced position
estimates of balls, since ball shadows would now be included
as part of an object. Therefore, balls detected by Otsu’s
method but missed by the simple test were added to the final
ball list. For balls detected by both methods, the hue objects
were used in the final ball list.

After culling ball objects, the cue and eight ball were found
from RGB color component values and amplitude, with the cue
containing the largest histogram values around white and the
largest reflection amplitude, and the eight ball containing the
lowest values.

Fig. 5. Binarized pockets and balls with addition of Otsu amplitude
thresholding; note improved green ball detection at left.

C. Refining Localization of Ball Positions

Similar to the method in Reference [1], a ball template was
used to refine localization of each ball. Unlike Reference [1],
the ball template was not an ideal ball, but rather was created
by averaging all of the ball objects’ binarized sub-images (a
sub-image being constrained to the edges of the ball). This
average was rounded, resulting in a binarized template of the
average ball characteristics. This template was then AND-
convolved with each ball image to find the ball position
yielding the highest correlation match. This approach reduced
susceptibility to scale, and was fairly fast due to the AND-
convolution (an AND operation of the binarized template with
the binarized ball image, rather than a multiplication).

D. Identifying Inner Wall “Rails” for Banking Shots

Inner rails were found by first using the binarized rectified
image of the pool table to find outer table edge lines in the
same manner used for homography. After region labeling of
the binarized image, the bounding box vertices of the table
were found, and used to project lines inward from the edge of
the picture, to thus find top, bottom, left and right outer walls.

In addition, vectors radiating inward from each table edge
pixel location were captured, and a gradient vector (central
difference) for each pixel value vector was found. These
gradient vectors were summed together for each vector along
the length of the table. The peak in the resulting gradient
vector was thus integrated over the length of the table. This
process allowed detection of low-amplitude inner wall “rails”,
with the caveat that these rails are parallel to the edges of the
table. Fig. 6 provides an example of low-amplitude gradients
for the rails, for which rail locations were found and
superimposed on the picture.
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Fig. 6. Low-amplitude rail gradients at upper left and lower right; shadow of
rail has larger gradient informatino than rail itself.

Fig. 7. Low-amplitude gradient rails found and marked.

E. Compensating Ball Colors For Different lllumination, to
Discriminate Stripes versus Solids

Using the cue ball as a reference, all balls were white-
balanced. @ The RGB weightings needed per pixel to



compensate the cue ball to white were found, and applied to
each ball sub-image.

This process was necessary to discriminate white balls from
solids under different lighting conditions. Discrimination was
accomplished by multiplying a white RGV weighting vector by
each pixel in a ball sub-image, then binarizing to a threshold.
Binarized pixels were added, then divided by ball radius to
determine percentage white. Balls with white percentages
exceeding a threshold were assigned stripes, those not were
assigned solids.

F. Ball Trajectory and Impact Physics

Rectification of the image helped in the accuracy of ball
banking calculations. If implemented earlier, physics
calculations could have been greatly simplified, as walls are
parallel to the x and y axes of the picture, making bounce
vector calculations simple. Angles alone were used in the
trajectory calculations, since object material physics were not
known a prior for a given table and balls (on purpose, since this
algorithm is meant to accommodate different tables and balls).

G. Image Marking of Pockets, Ball Types, and Cue Guides

Finally, two output images were created. Both of these
images were marked with lines indicating rails, filled boxes
marking pocket centers, and rings around each ball. Stripes
were marked with a broken ring, solids with a continuous ring.
The cue ball was marked with a blue ring, and a blue box in the
center. The eight ball was marked with a red ring and red mark
in the center. All balls were white-balanced in the marked
image, to provide a visual indication of the quality of the
white-balancing.

The cue guide solutions for the stripes player were
superimposed on the marked picture, with radial lines
emanating from the cue ball in the direction at which cue ball
impact would result in a landed stripe ball. Another image was
similarly created for solids players. Figs. 8 and 9 below
provide example pictures for the marked stripe and solid cue
guide solutions.

Fig. 8. Original image.

Fig. 10. Rectified and marked with solid cue guide solutions.

IV, RESULTS

The algorithm was tested under different lighting
conditions, lighting angles, table view aspects, and camera
image resolutions. In this manner, degree of invariance to
illumination coloring, ball shadows, rotation and 3D
perspective, and scaling were tested.

A. Ilumination Coloring and Angle Invariance

Pictures of the reference miniature pool table were taken
under two main lighting conditions: yellow (warm) lamp
lighting, and natural sun lighting, as provided by a window.
For both sources of lighting, different lighting angles were
provided to vary shadows.

For lamp lighting, identification of all balls worked well,
but the yellow stripe was misidentified as a solid. Also,
position localization of the green solid was problematic, as the
green ball detection algorithm is susceptible to ball shadows.
Fig. 11 below shows the green ball mislocated due to it’s
shadow.

With sun illumination, identification of balls was
problematic. Fig. 12 shows an example wherein both green
balls were missed. Also of interest is the homographic
distortion of the upper right purple ball’s shape. Fig. 13 shows
another natural lighting testing, with different lighting angle



(and therefore different shadowing) which resulted in all green
balls detected, but the red and orange solids misidentified as
stripes.

B. Table View Aspect Invariance

Of interest is that a top-down view instead of the frontal
view of under the same conditions as those for Fig. 13 in all
other respects resulted in properly identified stripes versus
solids. This indicates potential view aspect dependence.

C. Scale Invariance

Also of interest is that a reduced scale image similar in all
other conditions to those for Fig. 13 resulted in a missed cue
guide, as shown in Fig. 15. The other scale test did not indicate
differences between the high and low resolution versions.

Fig. 11. Lamp lighting. Solid green ball mislocated due to it’s shadow, and
yellow stripe misidentified as solid.

Fig. 12. Natural lighting. Green balls missed due to similar color and
amplitude as table.

Fig. 13. Natural lighting 2. Green balls detected but red and orange solids
misidentified as stripes.

Fig. 15. Natural lighting 2, low res scale. In comparison with Fig. 13, cue
guide missed.



V. CONCLUSIONS

This paper outlines an algorithm which works well in
identifying pockets, rails and non-green balls under variations
in lighting, view aspect, and scale. It does not work well in
identifying green balls under natural sun light conditions, but
does with the lamp lighting used in tests. Neither does it work
well in locating positions of green balls under shadow
conditions, understandable since shadows are also green given
a green table. Future work may include amplitude threshold
refinement to improve detection of green balls, and ball sub-
picture thresholding to improve green ball localization in
presence of shadows.

Of interest is the dependency of the algorithm’s solid vice
stripe ball discrimination and ball location on view aspect. Ball
location issues are understood, as homography distorts the
shapes of object which are not in-plane with the
transformation. This may be improved in future work with
affine correction of objects distorted by homography. Solid
vice stripe discrimination, however, should not be dependent
on view aspect, as the color components of each ball should not
change. Homographic rectification does change the scale
slightly, so variance from scale cannot yet be ruled out as the
cause. Future work will focus on blur correction of the image,
as adjacent pixel colors may influence white pixel color when
blurred.

Also of interest is the dependency of cue guide detection on
scale. This is understandable if the cue guide solution applies
to a very narrow range of impact angles, which are not

simulated accurately under lower resolution image situations.
Even so, the exact mechanism causing the issue is unknown at
this time, and requires further investigation.
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